I build a machine learning model to predict the quality of wine, employing various algorithms. Ultimately, I opted for the Elastic Net model, which yielded an accuracy of approximately 81%.
- Update config.yaml
- Update schema.yaml
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the app.py
Clone the repository
https://github.com/entbappy/End-to-end-Machine-Learning-Project-with-MLflow
conda create -n wine python=3.8 -y
conda activate wine
pip install -r requirements.txt
# Finally run the following command
python app.py
Now,
open up you local host and port
- mlflow ui
MLFLOW_TRACKING_URI=https://dagshub.com/niloycste/Wine-Quality-Check-using-ML-Mlflow-DVC.mlflow
MLFLOW_TRACKING_USERNAME=niloycste
MLFLOW_TRACKING_PASSWORD=55343c50b515f85d83d1bbecdf5e45f6664231d3
python script.py
Run this to export as env variables:
export MLFLOW_TRACKING_URI=https://dagshub.com/niloycste/Wine-Quality-Check-using-ML-Mlflow-DVC.mlflow
export MLFLOW_TRACKING_USERNAME=niloycste
export MLFLOW_TRACKING_PASSWORD=55343c50b515f85d83d1bbecdf5e45f6664231d3