Skip to content

Latest commit

 

History

History
88 lines (57 loc) · 1.79 KB

File metadata and controls

88 lines (57 loc) · 1.79 KB

Wine-Quality-Check-using-ML-Mlflow-DVC

I build a machine learning model to predict the quality of wine, employing various algorithms. Ultimately, I opted for the Elastic Net model, which yielded an accuracy of approximately 81%.

Workflows

  1. Update config.yaml
  2. Update schema.yaml
  3. Update params.yaml
  4. Update the entity
  5. Update the configuration manager in src config
  6. Update the components
  7. Update the pipeline
  8. Update the main.py
  9. Update the app.py

How to run?

STEPS:

Clone the repository

https://github.com/entbappy/End-to-end-Machine-Learning-Project-with-MLflow

STEP 01- Create a conda environment after opening the repository

conda create -n wine python=3.8 -y
conda activate wine

STEP 02- install the requirements

pip install -r requirements.txt
# Finally run the following command
python app.py

Now,

open up you local host and port

MLflow

Documentation

cmd
  • mlflow ui

dagshub

dagshub

MLFLOW_TRACKING_URI=https://dagshub.com/niloycste/Wine-Quality-Check-using-ML-Mlflow-DVC.mlflow
MLFLOW_TRACKING_USERNAME=niloycste
MLFLOW_TRACKING_PASSWORD=55343c50b515f85d83d1bbecdf5e45f6664231d3
python script.py

Run this to export as env variables:

export MLFLOW_TRACKING_URI=https://dagshub.com/niloycste/Wine-Quality-Check-using-ML-Mlflow-DVC.mlflow

export MLFLOW_TRACKING_USERNAME=niloycste

export MLFLOW_TRACKING_PASSWORD=55343c50b515f85d83d1bbecdf5e45f6664231d3

Final Output

Click here to watch the video of this Ml Model Baesd App