-
Notifications
You must be signed in to change notification settings - Fork 0
/
MaximumSumCircullarSubarray.java
87 lines (76 loc) · 2.91 KB
/
MaximumSumCircullarSubarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#Maximum Sum Circular Subarray
#Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
#Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
#Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
#Example 1:
#Input: [1,-2,3,-2]
#Output: 3
#Explanation: Subarray [3] has maximum sum 3
#Example 2:
#Input: [5,-3,5]
#Output: 10
#Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
#Example 3:
#Input: [3,-1,2,-1]
#Output: 4
#Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
#Example 4:
#Input: [3,-2,2,-3]
#Output: 3
#Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
#Example 5:
#Input: [-2,-3,-1]
#Output: -1
#Explanation: Subarray [-1] has maximum sum -1
#Note:
#-30000 <= A[i] <= 30000
#1 <= A.length <= 30000
#Hint - 1
#For those of you who are familiar with the Kadane's algorithm, think in terms of that. For the newbies, Kadane's algorithm is used to finding the maximum sum subarray from a given array. This problem is a twist on that idea and it is advisable to read up on that algorithm first before starting this problem. Unless you already have a great algorithm brewing up in your mind in which case, go right ahead!
#Hint - 2
#What is an alternate way of representing a circular array so that it appears to be a straight array? Essentially, there are two cases of this problem that we need to take care of. Let's look at the figure below to understand those two cases:
#Hint - 3
#The first case can be handled by the good old Kadane's algorithm. However, is there a smarter way of going about handling the second case as well?
class Solution {
public boolean chkNegative(int[] A, int n)
{
for(int i=0; i<n; i++)
if(A[i]>=0)
return false;
return true;
}
public int maxSubarraySumCircular(int[] A) {
int maxSum = Integer.MIN_VALUE, invertedSum = maxSum;
int sum = 0,wrap=0;
int n = A.length;
if(chkNegative(A,n))
{
for(int i=0; i<n; i++)
{
if(A[i]>maxSum)
maxSum=A[i];
}
return maxSum;
}
for(int i = 0; i<n; i++)
{
sum+=A[i];
wrap+=A[i];
A[i]=-A[i];
if(sum>maxSum)
maxSum=sum;
if(sum<0)
sum=0;
}
sum=0;
for(int i = 0; i<n; i++)
{
sum+=A[i];
if(sum>invertedSum)
invertedSum=sum;
if(sum<0)
sum=0;
}
return maxSum>wrap+invertedSum? maxSum : wrap+invertedSum;
}
}