-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel_one_voxel.Rmd
138 lines (109 loc) · 3.29 KB
/
model_one_voxel.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
jupyter:
jupytext:
notebook_metadata_filter: all,-language_info
split_at_heading: true
text_representation:
extension: .Rmd
format_name: rmarkdown
format_version: '1.2'
jupytext_version: 1.13.7
kernelspec:
display_name: Python 3
language: python
name: python3
---
# Modeling a single voxel
The [voxel regression page](regress_one_voxel.Rmd) has a worked
example of applying [simple regression](on_regression.Rmd)) on a single voxel.
This page runs the same calculations, but using the [General Linear
Model](glm_intro.Rmd) notation and matrix calculations.
Let’s get that same voxel time course back again:
```{python}
import numpy as np
import matplotlib.pyplot as plt
import nibabel as nib
# Only show 6 decimals when printing
np.set_printoptions(precision=6)
```
```{python}
# Load the function to fetch the data file we need.
import nipraxis
# Fetch the data file.
data_fname = nipraxis.fetch_file('ds114_sub009_t2r1.nii')
img = nib.load(data_fname)
data = img.get_fdata()
# Knock off the first four volumes (to avoid artefact).
data = data[..., 4:]
# Get the voxel time course of interest.
voxel_time_course = data[42, 32, 19]
plt.plot(voxel_time_course)
```
Load the convolved time course, and plot the voxel values against the convolved regressor:
```{python}
tc_fname = nipraxis.fetch_file('ds114_sub009_t2r1_conv.txt')
# Show the file name of the fetched data.
convolved = np.loadtxt(tc_fname)
# Knock off first 4 elements to match data.
convolved = convolved[4:]
# Plot.
plt.scatter(convolved, voxel_time_course)
plt.xlabel('Convolved prediction')
plt.ylabel('Voxel values')
```
As you remember, we apply the GLM by first preparing a design matrix, that has one column corresponding for each *parameter* in the *model*.
In our case we have two parameters, the *slope* and the *intercept*.
First we make our *design matrix*. It has a column for the convolved
regressor, and a column of ones:
```{python}
N = len(convolved)
X = np.ones((N, 2))
X[:, 0] = convolved
plt.imshow(X, cmap='gray', aspect=0.1, interpolation='none')
```
$\newcommand{\yvec}{\vec{y}}$
$\newcommand{\xvec}{\vec{x}}$
$\newcommand{\evec}{\vec{\varepsilon}}$
$\newcommand{Xmat}{\boldsymbol X} \newcommand{\bvec}{\vec{\beta}}$
$\newcommand{\bhat}{\hat{\bvec}} \newcommand{\yhat}{\hat{\yvec}}$
Our model is:
$$
\yvec = \Xmat \bvec + \evec
$$
We can get our least mean squared error (MSE) parameter *estimates* for
$\bvec$ with:
$$
\bhat = \Xmat^+y
$$
where $\Xmat^+$ is the *pseudoinverse* of $\Xmat$. When $\Xmat$ is
invertible, the pseudoinverse is given by:
$$
\Xmat^+ = (\Xmat^T \Xmat)^{-1} \Xmat^T
$$
Let’s calculate the pseudoinverse for our design:
```{python}
import numpy.linalg as npl
Xp = npl.pinv(X)
Xp.shape
```
We calculate $\bhat$:
```{python}
beta_hat = Xp @ voxel_time_course
beta_hat
```
We can then calculate $\yhat$ (also called the *fitted data*):
```{python}
y_hat = X @ beta_hat
```
Finally, we may be interested to calculate the MSE of this model:
```{python}
# Residuals are actual minus fitted.
e_vec = voxel_time_course - y_hat
mse = np.mean(e_vec ** 2)
mse
```
Notice that the $\bhat$ parameters are the same as the slope and intercept from the Scipy calculation using `linregress`:
```{python}
import scipy.stats as sps
sps.linregress(convolved, voxel_time_course)
```