forked from multimodalart/mindseye
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatent_streamlit_run.py
443 lines (358 loc) · 17.3 KB
/
latent_streamlit_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import gc
import io
import math
import sys
import time
from PIL import Image, ImageOps
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
import numpy as np
sys.path.append("./glid-3-xl")
from jack_guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
from dalle_pytorch import DiscreteVAE, VQGanVAE
from einops import rearrange
from math import log2, sqrt
import argparse
import pickle
import shutil
import os
from os.path import exists as path_exists
sys.path.append("glid-3-xl/encoders")
from encoders.modules import BERTEmbedder
from CLIP import clip
from pathvalidate import sanitize_filename
torch.cuda.empty_cache()
def run_model(args, status, stoutput, DefaultPaths):
global model, diffusion, ldm, bert, last_model, clip_model, clip_preprocess
try:
last_model
except:
last_model = ''
print(args)
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
device = torch.device('cuda:0' if (torch.cuda.is_available() and not args.cpu) else 'cpu')
print('Using device:', device)
print(args.model_path)
model_state_dict = torch.load(args.model_path, map_location='cpu')
model_params = {
'attention_resolutions': '32,16,8',
'class_cond': False,
'diffusion_steps': 1000,
'rescale_timesteps': True,
'timestep_respacing': '27', # Modify this value to decrease the number of
# timesteps.
'image_size': 32,
'learn_sigma': False,
'noise_schedule': 'linear',
'num_channels': 320,
'num_heads': 8,
'num_res_blocks': 2,
'resblock_updown': False,
'use_fp16': False,
'use_scale_shift_norm': False,
'clip_embed_dim': 768 if 'clip_proj.weight' in model_state_dict else None,
'image_condition': True if model_state_dict['input_blocks.0.0.weight'].shape[1] == 8 else False,
'super_res_condition': True if 'external_block.0.0.weight' in model_state_dict else False,
}
if args.ddpm:
model_params['timestep_respacing'] = 1000
if args.ddim:
if args.steps:
model_params['timestep_respacing'] = 'ddim'+str(args.steps)
else:
model_params['timestep_respacing'] = 'ddim50'
elif args.steps:
model_params['timestep_respacing'] = str(args.steps)
model_config = model_and_diffusion_defaults()
model_config.update(model_params)
if args.cpu:
model_config['use_fp16'] = False
# Load models
if(last_model == args.model_path):
try:
model
status.write(f"Loading {args.model_path} loaded.")
except:
status.write(f"Loading {args.model_path} ...\n")
model, diffusion = create_model_and_diffusion(**model_config)
model.load_state_dict(model_state_dict, strict=False)
model.requires_grad_(args.clip_guidance).eval().to(device)
else:
#Yea I should make a function
status.write(f"Loading {args.model_path} ...\n")
model, diffusion = create_model_and_diffusion(**model_config)
model.load_state_dict(model_state_dict, strict=False)
model.requires_grad_(args.clip_guidance).eval().to(device)
if model_config['use_fp16']:
model.convert_to_fp16()
else:
model.convert_to_fp32()
def set_requires_grad(model, value):
for param in model.parameters():
param.requires_grad = value
# vae
try:
ldm
set_requires_grad(ldm, args.clip_guidance)
except:
status.write(f"Loading {args.kl_path} ...\n")
ldm = torch.load(args.kl_path, map_location="cpu")
ldm.to(device)
ldm.eval()
ldm.requires_grad_(args.clip_guidance)
set_requires_grad(ldm, args.clip_guidance)
try:
bert
set_requires_grad(bert, False)
except:
status.write(f"Loading {args.bert_path} ...\n")
bert = BERTEmbedder(1280, 32)
sd = torch.load(args.bert_path, map_location="cpu")
bert.load_state_dict(sd)
bert.to(device)
bert.half().eval()
set_requires_grad(bert, False)
# clip
try:
clip_model
except:
clip_model, clip_preprocess = clip.load('ViT-L/14', device=device, jit=False)
clip_model.eval().requires_grad_(False)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])
def do_run():
if args.seed >= 0:
torch.manual_seed(args.seed)
# bert context
text_emb = bert.encode([args.text]*args.batch_size).to(device).float()
text_blank = bert.encode([args.negative]*args.batch_size).to(device).float()
text = clip.tokenize([args.text]*args.batch_size, truncate=True).to(device)
text_clip_blank = clip.tokenize([args.negative]*args.batch_size, truncate=True).to(device)
# clip context
text_emb_clip = clip_model.encode_text(text)
text_emb_clip_blank = clip_model.encode_text(text_clip_blank)
make_cutouts = MakeCutouts(clip_model.visual.input_resolution, args.cutn)
text_emb_norm = text_emb_clip[0] / text_emb_clip[0].norm(dim=-1, keepdim=True)
image_embed = None
# image context
if args.edit:
if args.edit.endswith('.npy'):
with open(args.edit, 'rb') as f:
im = np.load(f)
im = torch.from_numpy(im).unsqueeze(0).to(device)
input_image = torch.zeros(1, 4, args.height//8, args.width//8, device=device)
y = args.edit_y//8
x = args.edit_x//8
ycrop = y + im.shape[2] - input_image.shape[2]
xcrop = x + im.shape[3] - input_image.shape[3]
ycrop = ycrop if ycrop > 0 else 0
xcrop = xcrop if xcrop > 0 else 0
input_image[0,:,y if y >=0 else 0:y+im.shape[2],x if x >=0 else 0:x+im.shape[3]] = im[:,:,0 if y > 0 else -y:im.shape[2]-ycrop,0 if x > 0 else -x:im.shape[3]-xcrop]
input_image_pil = ldm.decode(input_image)
input_image_pil = TF.to_pil_image(input_image_pil.squeeze(0).add(1).div(2).clamp(0, 1))
input_image *= 0.18215
else:
w = args.edit_width if args.edit_width else args.width
h = args.edit_height if args.edit_height else args.height
input_image_pil = Image.open(fetch(args.edit)).convert('RGB')
input_image_pil = ImageOps.fit(input_image_pil, (w, h))
input_image = torch.zeros(1, 4, args.height//8, args.width//8, device=device)
im = transforms.ToTensor()(input_image_pil).unsqueeze(0).to(device)
im = 2*im-1
im = ldm.encode(im).sample()
y = args.edit_y//8
x = args.edit_x//8
input_image = torch.zeros(1, 4, args.height//8, args.width//8, device=device)
ycrop = y + im.shape[2] - input_image.shape[2]
xcrop = x + im.shape[3] - input_image.shape[3]
ycrop = ycrop if ycrop > 0 else 0
xcrop = xcrop if xcrop > 0 else 0
input_image[0,:,y if y >=0 else 0:y+im.shape[2],x if x >=0 else 0:x+im.shape[3]] = im[:,:,0 if y > 0 else -y:im.shape[2]-ycrop,0 if x > 0 else -x:im.shape[3]-xcrop]
input_image_pil = ldm.decode(input_image)
input_image_pil = TF.to_pil_image(input_image_pil.squeeze(0).add(1).div(2).clamp(0, 1))
input_image *= 0.18215
if args.mask:
mask_image = Image.open(fetch(args.mask)).convert('L')
mask_image = mask_image.resize((args.width//8,args.height//8), Image.ANTIALIAS)
mask = transforms.ToTensor()(mask_image).unsqueeze(0).to(device)
else:
print('draw the area for inpainting, then close the window')
app = QApplication(sys.argv)
d = Draw(args.width, args.height, input_image_pil)
app.exec_()
mask_image = d.getCanvas().convert('L').point( lambda p: 255 if p < 1 else 0 )
mask_image.save('mask.png')
mask_image = mask_image.resize((args.width//8,args.height//8), Image.ANTIALIAS)
mask = transforms.ToTensor()(mask_image).unsqueeze(0).to(device)
mask1 = (mask > 0.5)
mask1 = mask1.float()
input_image *= mask1
image_embed = torch.cat(args.batch_size*2*[input_image], dim=0).float()
elif model_params['image_condition']:
# using inpaint model but no image is provided
image_embed = torch.zeros(args.batch_size*2, 4, args.height//8, args.width//8, device=device)
kwargs = {
"context": torch.cat([text_emb, text_blank], dim=0).float(),
"clip_embed": torch.cat([text_emb_clip, text_emb_clip_blank], dim=0).float() if model_params['clip_embed_dim'] else None,
"image_embed": image_embed
}
# Create a classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = torch.cat([half, half], dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + args.guidance_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
cur_t = None
def cond_fn(x, t, context=None, clip_embed=None, image_embed=None):
with torch.enable_grad():
x = x[:args.batch_size].detach().requires_grad_()
n = x.shape[0]
my_t = torch.ones([n], device=device, dtype=torch.long) * cur_t
kw = {
'context': context[:args.batch_size],
'clip_embed': clip_embed[:args.batch_size] if model_params['clip_embed_dim'] else None,
'image_embed': image_embed[:args.batch_size] if image_embed is not None else None
}
out = diffusion.p_mean_variance(model, x, my_t, clip_denoised=False, model_kwargs=kw)
fac = diffusion.sqrt_one_minus_alphas_cumprod[cur_t]
x_in = out['pred_xstart'] * fac + x * (1 - fac)
x_in /= 0.18215
x_img = ldm.decode(x_in)
clip_in = normalize(make_cutouts(x_img.add(1).div(2)))
clip_embeds = clip_model.encode_image(clip_in).float()
dists = spherical_dist_loss(clip_embeds.unsqueeze(1), text_emb_clip.unsqueeze(0))
dists = dists.view([args.cutn, n, -1])
losses = dists.sum(2).mean(0)
loss = losses.sum() * args.clip_guidance_scale
return -torch.autograd.grad(loss, x)[0]
if args.ddpm:
sample_fn = diffusion.ddpm_sample_loop_progressive
elif args.ddim:
sample_fn = diffusion.ddim_sample_loop_progressive
else:
sample_fn = diffusion.plms_sample_loop_progressive
def save_sample(i, sample, clip_score=False):
for k, image in enumerate(sample['pred_xstart'][:args.batch_size]):
image /= 0.18215
im = image.unsqueeze(0)
out = ldm.decode(im)
out = TF.to_pil_image(out.squeeze(0).add(1).div(2).clamp(0, 1))
out.save(f'{k}-{args.image_file}')
imageLocationInternal.append(f'{k}-{args.image_file}')
if clip_score:
image_emb = clip_model.encode_image(clip_preprocess(out).unsqueeze(0).to(device))
image_emb_norm = image_emb / image_emb.norm(dim=-1, keepdim=True)
similarity = torch.nn.functional.cosine_similarity(image_emb_norm, text_emb_norm, dim=-1)
final_filename = f'output/{args.prefix}_{similarity.item():0.3f}_{i * args.batch_size + k:05}.png'
#os.rename(filename, final_filename)
npy_final = f'output_npy/{args.prefix}_{similarity.item():0.3f}_{i * args.batch_size + k:05}.npy'
#os.rename(npy_filename, npy_final)
if args.init_image:
init = Image.open(args.init_image).convert('RGB')
init = init.resize((int(args.width), int(args.height)), Image.LANCZOS)
init = TF.to_tensor(init).to(device).unsqueeze(0).clamp(0,1)
h = ldm.encode(init * 2 - 1).sample() * 0.18215
init = torch.cat(args.batch_size*2*[h], dim=0)
else:
init = None
print(init)
#image_display = Output()
for i in range(args.num_batches):
cur_t = diffusion.num_timesteps - 1
total_steps = cur_t
status.write("Starting the execution...")
samples = sample_fn(
model_fn,
(args.batch_size*2, 4, int(args.height/8), int(args.width/8)),
clip_denoised=False,
model_kwargs=kwargs,
cond_fn=cond_fn if args.clip_guidance else None,
device=device,
progress=True,
init_image=init,
skip_timesteps=args.skip_timesteps if init is not None else 0,
)
itt = 0
before_start_time = time.perf_counter()
bar_container = status.container()
iteration_counter = bar_container.empty()
progress_bar = bar_container.progress(0)
for j, sample in enumerate(samples):
if(itt==0):
iteration_counter.empty()
imageLocation = stoutput.empty()
#for _ in range(args.batch_size):
# imageLocationInternal.append(stoutput.empty())
cur_t -= 1
if j % 5 == 0 and j != diffusion.num_timesteps - 1:
imageLocationInternal = []
#sample.save(args.image_file)
save_sample(i, sample)
imageLocation.image(imageLocationInternal)
itt += 1
time_past_seconds = time.perf_counter() - before_start_time
iterations_per_second = itt / time_past_seconds
time_left = (total_steps - itt) / iterations_per_second
percentage = round((itt / (total_steps + 1)) * 100)
iteration_counter.write(
f"{percentage}% {itt}/{total_steps+1} [{time.strftime('%M:%S', time.gmtime(time_past_seconds))}<{time.strftime('%M:%S', time.gmtime(time_left))}, {round(iterations_per_second,2)} it/s]"
)
progress_bar.progress(int(percentage))
#save_sample(i, sample, args.clip_score)
if not path_exists(DefaultPaths.output_path):
os.makedirs(DefaultPaths.output_path)
save_filename = f"{DefaultPaths.output_path}/{sanitize_filename(args.text)} [GLID-3 XL] {args.seed}.png"
for k in range(args.batch_size):
shutil.copyfile(
f'{k}-{args.image_file}',
f'{save_filename[ : -4]}-{k}.png',
)
imageLocation.empty()
status.write("Done!")
gc.collect()
do_run()
last_model = args.model_path