-
Notifications
You must be signed in to change notification settings - Fork 29
/
0004-Median-of-Two-Sorted-Arrays.py
56 lines (44 loc) · 1.54 KB
/
0004-Median-of-Two-Sorted-Arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
'''
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
'''
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
m, n = len(nums1), len(nums2)
if m > n:
nums1, nums2, m, n = nums2, nums1, n, m
if not n:
return
imin, imax, half_len = 0, m, (m + n + 1) // 2
while imin <= imax:
i = (imin + imax) // 2
j = half_len - i
if i < m and nums2[j - 1] > nums1[i]:
imin = i + 1
elif i > 0 and nums1[i - 1] > nums2[j]:
imax = i - 1
else:
if not i:
max_left = nums2[j - 1]
elif not j:
max_left = nums1[i - 1]
else:
max_left = max(nums1[i - 1], nums2[j - 1])
if (m + n) % 2 == 1:
return max_left
if i == m:
min_right = nums2[j]
elif j == n:
min_right = nums1[i]
else:
min_right = min(nums1[i], nums2[j])
return (max_left + min_right) / 2.0