-
Notifications
You must be signed in to change notification settings - Fork 29
/
0053-Maximum-Subarray.py
53 lines (36 loc) · 1.33 KB
/
0053-Maximum-Subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
'''
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
'''
# Using Sliding Window
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
maxSum = nums[0]
curSum = 0
for num in nums:
if curSum < 0:
curSum = 0
curSum += num
maxSum = max(curSum, maxSum)
return maxSum
# Using Kadane's Algorithm METHOD 1
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
cur_sum = max_sum = nums[0]
for i in range(1, len(nums)):
cur_sum = max(nums[i] + cur_sum, nums[i])
max_sum = max(cur_sum, max_sum)
return max_sum
# Using Kadane's Algorithm METHOD 2
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
cur_sum, max_sum = 0, nums[0]
for num in nums:
cur_sum = max(num, cur_sum + num)
max_sum = max(cur_sum, max_sum)
return max_sum