-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
208 lines (119 loc) · 4.89 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import quandl
import datetime
import pandas as pd
from formulae import xirr
quandl.ApiConfig.api_key = "#PutYourQuandlAPIKeyHere#"
class FundRequest:
def __init__(self, scode, startDate, endDate, sipAmount):
self.qcode = 'AMFI/' + scode
self.startDate = startDate
self.endDate = endDate
self.sipAmount = sipAmount
self.fundName = quandl.Dataset(self.qcode).name
self.create_date_nav_df()
self.add_quantity_to_df()
xirr = None
df = None
totalQuantity = 0
def get_sip_dates(self):
day = self.startDate.day
month = self.startDate.month
year = self.startDate.year
dates = []
dates.append(self.startDate)
date = self.startDate
while date < self.endDate:
if month == 12:
year += 1
month = month % 12 + 1
try:
nextDate = datetime.date(year, month, day)
except:
nextDate = datetime.date(year,month+1,1)
dates.append(nextDate)
date = nextDate
return dates
def get_nav_df(self, date):
if date < datetime.date.today():
res = quandl.get(self.qcode, start_date=date, end_date=date)
if res.empty:
incDate = date + datetime.timedelta(days = 1)
return self.get_nav_df(incDate)
return res
else:
print("I can't predict future!")
def create_date_nav_df(self):
sipDates = self.get_sip_dates()
if sipDates:
dfList = []
for tentativeDate in sipDates:
ls = []
navDf = self.get_nav_df(tentativeDate)
actualDateTimeStamp = navDf['Net Asset Value'].index[0]
actualDate = datetime.date(actualDateTimeStamp.year, actualDateTimeStamp.month, actualDateTimeStamp.day)
ls.append(actualDate)
nav = float(navDf['Net Asset Value'][0])
ls.append(nav)
dfList.append(ls)
df = pd.DataFrame(dfList, columns = ['Date', 'NAV'])
df = df.set_index('Date')
self.df = df
return df
else:
print('Error!')
def add_quantity_to_df(self):
modDf = self.df
modDf['Quantity'] = float(self.sipAmount) / modDf['NAV']
modDf['Quantity'] = modDf['Quantity'].round(decimals=4)
modDf['Cash-Flow'] = - self.sipAmount
print(modDf)
self.df = modDf
return modDf
def add_lump_sum(self, date, amount):
df = self.df
navDf = self.get_nav_df(date)
if not navDf.empty:
dateTimeStamp = navDf['Net Asset Value'].index[0]
actualDate = datetime.date(dateTimeStamp.year, dateTimeStamp.month, dateTimeStamp.day)
nav = float(navDf['Net Asset Value'][0])
quantity = round(float(amount) / nav, 4)
row = pd.Series({'NAV':nav, 'Cash-Flow':-amount, 'Quantity':quantity},name=actualDate)
df = df.append(row)
self.df = df
return df
else:
print('Error: Check the dates!')
def get_latest_nav_df(self, date):
if date <= datetime.date.today():
# print(date)
res = quandl.get(self.qcode, start_date=date, end_date=date)
if res.empty:
decDate = date - datetime.timedelta(days = 1)
return self.get_latest_nav_df(decDate)
return res
def calculate_xirr(self):
df = self.df
df.sort_index(inplace=True)
quantitySum = float(df['Quantity'].sum())
self.totalQuantity = round(quantitySum, 4)
latestNAVdf = self.get_latest_nav_df(datetime.date.today())
latestNAV = float(latestNAVdf['Net Asset Value'][0])
latestDateTimestamp = latestNAVdf['Net Asset Value'].index[0]
latestDate = datetime.date(latestDateTimestamp.year, latestDateTimestamp.month, latestDateTimestamp.day)
redemptionAmount = round(quantitySum * latestNAV, 4)
row = pd.Series({'NAV':latestNAV,'Cash-Flow':redemptionAmount},name=latestDate)
df = df.append(row)
row = pd.Series({'Quantity':quantitySum},name='Total')
df = df.append(row)
# print(df)
dateList = list(df.index[:-1])
cashFlowList = list(df['Cash-Flow'][:-1])
dateAndCashFlowList = list(zip(dateList, cashFlowList))
xirrValue = float(xirr(dateAndCashFlowList) * 100)
xirrValue = round(xirrValue, 2)
xirrValue = str(xirrValue) + ' %'
row = pd.Series({'Cash-Flow':xirrValue},name='XIRR')
df = df.append(row)
self.df = df
self.xirr = xirrValue
return xirrValue