-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_resfusion_generate.py
173 lines (150 loc) · 6.85 KB
/
train_resfusion_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
""" Train the resfusion generate module """
import pytorch_lightning as pl
from argparse import ArgumentParser
from pytorch_lightning import Trainer
import pytorch_lightning.callbacks as plc
from datamodule import CIFAR10_DataModule
from model.denoising_module import RDDM_Unet, DiT_models, DDIM_Unet
from model import GaussianResfusion_Generate
from variance_scheduler import LinearProScheduler, CosineProScheduler
from callback import EMA, EMAModelCheckpoint
import torch
def load_callbacks(args):
callbacks = []
if args.use_ema:
callbacks.append(EMAModelCheckpoint(
monitor='val_FID',
filename='best-{epoch:02d}-{val_FID:.3f}',
mode='min',
save_last=True,
save_on_train_epoch_end=True,
every_n_epochs=args.check_val_every_n_epoch
))
callbacks.append(EMA(decay=0.9999))
else:
callbacks.append(plc.ModelCheckpoint(
monitor='val_FID',
filename='best-{epoch:02d}-{val_FID:.3f}',
mode='min',
save_last=True,
save_on_train_epoch_end=True,
every_n_epochs=args.check_val_every_n_epoch
))
callbacks.append(plc.LearningRateMonitor(logging_interval='epoch'))
if args.early_stopping:
callbacks.append(plc.EarlyStopping(monitor='val_FID', mode='min', patience=50))
return callbacks
def main(args):
if args.set_float32_matmul_precision_high:
torch.set_float32_matmul_precision('high')
if args.set_float32_matmul_precision_medium:
torch.set_float32_matmul_precision('medium')
pl.seed_everything(args.seed, workers=True)
if args.dataset == 'CIFAR10':
data_module = CIFAR10_DataModule(root_dir=args.data_dir, batch_size=args.batch_size, pin_mem=args.pin_mem,
num_workers=args.num_workers)
else:
raise ValueError("Wrong dataset type !!!")
if args.noise_schedule == 'LinearPro':
variance_scheduler = LinearProScheduler(T=args.T)
elif args.noise_schedule == 'CosinePro':
variance_scheduler = CosineProScheduler(T=args.T)
else:
raise ValueError("Wrong variance scheduler type !!!")
if args.denoising_model == 'RDDM_Unet':
denoising_model = RDDM_Unet(
dim=args.dim,
out_dim=args.n_channels,
channels=args.n_channels,
resnet_block_groups=args.resnet_block_groups
)
elif args.denoising_model == 'DDIM_Unet':
denoising_model = DDIM_Unet(
image_size=args.input_size,
in_channels=args.n_channels,
out_ch=args.n_channels
)
elif args.denoising_model in DiT_models:
denoising_model = DiT_models[args.denoising_model](
input_size=args.input_size,
channels=args.n_channels
)
else:
raise ValueError("Wrong denoising_model type !!!")
resfusion_generate_model = GaussianResfusion_Generate(denoising_module=denoising_model,
variance_scheduler=variance_scheduler,
**vars(args))
# train the model
trainer = Trainer(
log_every_n_steps=1,
accelerator=args.accelerator,
devices=args.devices,
num_nodes=args.num_nodes,
max_epochs=args.epochs,
accumulate_grad_batches=args.accum_iter,
default_root_dir=args.log_dir,
check_val_every_n_epoch=args.check_val_every_n_epoch,
gradient_clip_val=args.gradient_clip,
precision=args.precision,
logger=True,
callbacks=load_callbacks(args),
deterministic='warn',
strategy='ddp',
enable_model_summary=False
)
trainer.fit(model=resfusion_generate_model, datamodule=data_module)
if __name__ == '__main__':
parser = ArgumentParser('Train the resfusion_generate module')
# Accuracy control
parser.add_argument('--set_float32_matmul_precision_high', action='store_true')
parser.set_defaults(set_float32_matmul_precision_high=False)
parser.add_argument('--set_float32_matmul_precision_medium', action='store_true')
parser.set_defaults(set_float32_matmul_precision_medium=False)
# Basic Training Control
parser.add_argument('--epochs', default=3000, type=int)
parser.add_argument('--check_val_every_n_epoch', default=100, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations '
'(for increasing the effective batch size under memory constraints)')
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--pin_mem', default=True, type=bool)
parser.add_argument('--seed', default=2024, type=int)
parser.add_argument('--gradient_clip', default=1, type=float)
parser.add_argument('--precision', default='32', type=str)
parser.add_argument('--early_stopping', action='store_true')
parser.set_defaults(early_stopping=False)
parser.add_argument('--use_ema', action='store_true')
parser.set_defaults(use_ema=False)
# Hyperparameters
parser.add_argument('--n_channels', default=3, type=int)
parser.add_argument('--noise_schedule', default='LinearPro', type=str)
parser.add_argument('--T', default=273, type=int)
parser.add_argument('--loss_type', default='L2', type=str)
parser.add_argument('--optimizer_type', default='AdamW', type=str)
parser.add_argument('--lr_scheduler_type', default='CosineAnnealingLR', type=str)
# Denoising Model Hyperparameters
parser.add_argument('--denoising_model', default='DDIM_Unet', type=str)
parser.add_argument('--mode', default='epsilon', type=str)
# RDDM_Unet(if used)
parser.add_argument('--dim', default=64, type=int)
parser.add_argument('--resnet_block_groups', default=8, type=int)
# DiT(if used) or DDIM_Unet(if used)
parser.add_argument('--input_size', default=32, type=int)
# Optimizer parameters
parser.add_argument('--blr', default=4e-4, type=float)
parser.add_argument('--min_lr', default=2e-4, type=float)
parser.add_argument('--weight_decay', default=0, type=float)
# Training Info
parser.add_argument('--dataset', default='CIFAR10', type=str)
parser.add_argument('--data_dir', default='../datasets/cifar10', type=str)
parser.add_argument('--log_dir', default='resfusion_generate_train', type=str)
# distributed training parameters
parser.add_argument('--accelerator', default="gpu", type=str,
help='type of accelerator')
parser.add_argument('--devices', default=2, type=int,
help='number of devices')
parser.add_argument('--num_nodes', default=1, type=int,
help='number of num nodes')
args = parser.parse_args()
main(args)