-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patholdversion.py
244 lines (205 loc) · 7.67 KB
/
oldversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Install necessary libraries
# Use line below to install library, if it doesn't work
#!{sys.executable} -m pip install geopy
import sys
import requests
import csv
import geopy.distance
import numpy
import folium
from folium.plugins import MarkerCluster
# Creating dictionary of countires and their codes using our database
countries = {}
countries_keys = []
with open('CountryCodes.csv', 'r') as f:
reader = csv.reader(f, delimiter=',')
for row in reader:
countries[row[1]] = row[0]
countries_keys.append(row[1])
print("Please, enter the country name:")
# Checking the correctness of user's input
InputCountry = str(input())
i = 0
while (i != 1):
if InputCountry in countries.keys():
i = 1
InputCountry = "&country="+countries[InputCountry]
elif (InputCountry == "c"):
print(*countries_keys, sep=", ")
print("\n")
InputCountry = str(input())
else:
print("There is not such country, please, enter correct name.\
If you would like to see the list of existing countries, enter 'c'.")
InputCountry = str(input())
# Short names for parts of link
str1 = "http://api.geonames.org/searchJSON?&maxRows=1000"
str2 = "&featureClass=P&featureCodePPL&cities=cities15000&username=premium"
# First request
response = requests.get(str1+InputCountry+str2)
city = response.json()
m = city['totalResultsCount']
if (m == 1):
print("There is " + str(m) + " city.")
else:
print("There are " + str(m) + " cities.")
k1 = [] #List of cities and their coordinates
if (m > 0):
for p in city['geonames']:
#print(p['toponymName'] + " " + p['lat'] + " " + p['lng'])
k2 = []
k2.extend([p['toponymName'], p['lat'], p['lng']])
k1.append(k2)
# If there more than 1000 cities, send other requests
count = 1001
while (count < m) or (count < 5000):
c = "&startRow=" + str(count)
response = requests.get(str1+c+InputCountry+str2)
city = response.json()
for p in city['geonames']:
#print(p['toponymName'] + " " + p['lat'] + " " + p['lng'])
k2 = []
k2.extend([p['toponymName'], float(p['lat']), float(p['lng'])])
k1.append(k2)
count = count + 1000
# Create a CSV file with cities names and their coordinates
city_index = {}
with open("output.csv", 'a', encoding='utf-8') as outcsv:
#configure writer to write standard CSV file
writer = csv.writer(outcsv, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL, lineterminator='\n')
index = 0
for item in k1:
#Write item to outcsv
writer.writerow([item[0], item[1], item[2]])
city_index[item[0]] = index
index += 1
print("CSV file has been created.")
# Creating matrix of distances between cities and weighted graph
Graph = []
distances = numpy.zeros( (len(k1), len(k1)) )
for i in range(0, len(k1)):
for j in range(i, len(k1)):
coords_1 = (k1[i][1], k1[i][2])
coords_2 = (k1[j][1], k1[j][2])
total = geopy.distance.geodesic(coords_1, coords_2).km
distances[i][j] = total
distances[j][i] = total
Graph.append([i, j, total])
print("Matrix of distances has been created.")
# Jarník's algorithm, Prim–Jarník algorithm, Prim–Dijkstra algorithm or the DJP algorithm
def PrimSpanningTree(V, G, DistanceMatrix):
# Starting with zero vertex
vertex = 0
# Create empty arrays for algorithm
MST = []
edges = []
visited = []
minEdge = [None, None, float('inf')]
# Repeating the algorithm until MST contains all vertices
while len(MST) != V-1:
# mark this vertex as visited
visited.append(vertex)
# Edges that may be possible for connection
for e in range(0, V):
if DistanceMatrix[vertex][e] != 0:
edges.append([vertex, e, DistanceMatrix[vertex][e]])
# Find edge with the smallest weight for a vertex that is not visited
for e in range(0, len(edges)):
if edges[e][2] < minEdge[2] and edges[e][1] not in visited:
minEdge = edges[e]
edges.remove(minEdge)
MST.append(minEdge)
# start at new vertex and reset min edge
vertex = minEdge[1]
minEdge = [None, None, float('inf')]
return MST
# Kruskal's algorithm, V is number of vertices
def KruskalSpanningTree(V, Graph):
# Sort edges in graph by their weigth
Graph.sort(key = lambda x: x[2])
result = []
empty = set()
# Create set for each vertice
vertices = {}
for i in range(0, V):
vertices[i] = set([i])
for edge in range(0, len(Graph)):
begin = Graph[edge][0]
end = Graph[edge][1]
if (vertices[begin].intersection(vertices[end]) == empty):
result.append([begin, end])
temporary = vertices[begin].union(vertices[end])
vertices[begin] = temporary
vertices[end] = temporary
for vertice in vertices[end]:
vertices[vertice] = temporary
return result
# Boruvka's way of solving problems
def Boruvka(distances):
setMatrix = []
allEdges = []
for i in range(0, len(distances)):
setMatrix.append([i])
def combine(e):
e0 = -1
e1 = -1
for i in range(0, len(setMatrix)):
if e[0] in setMatrix[i]:
e0 = i
if e[1] in setMatrix[i]:
e1 = i
setMatrix[e0] += setMatrix[e1]
del setMatrix[e1]
while (len(setMatrix) > 1):
edges = []
for component in setMatrix:
m = [9999999, [0, 0]]
for vertex in component:
for i in range(0, len(distances[0])):
if i not in component and distances[vertex][i] != 0:
if (m[0] > distances[vertex][i]):
m[0] = distances[vertex][i]
m[1] = [vertex, i]
if (m[1][0] > m[1][1]):
m[1][0], m[1][1] = m[1][1], m[1][0]
if (m[1] not in edges):
edges.append(m[1])
for e in edges:
combine(e)
allEdges.append(e)
return allEdges
#Create map
the_map = folium.Map(location=[k1[0][1], k1[0][2]], zoom_start = 5)
#Create Cluster
marker_cluster = MarkerCluster().add_to(the_map)
for i in range(len(k1)):
folium.Marker(location=[k1[i][1], k1[i][2]], popup=k1[i][0], icon=folium.Icon(color = 'gray')).add_to(marker_cluster)
# Connect all cities using minimum spanning tree
# Chose one of your preference
print("Choose algorithm for connecting cities:")
print("1 - Jarník's algorithm, Prim–Jarník algorithm, Prim–Dijkstra algorithm.")
print("2 - Kruskal's algorithm")
print("3 - Boruvka's algorithm ")
print("Enter the number of algorhitm. If input is incorrect, program will choose the second one.")
AlgorithmChoice = input()
if (AlgorithmChoice == "1"):
roads = PrimSpanningTree(len(k1), Graph, distances)
elif (AlgorithmChoice == "3"):
roads = Boruvka(distances)
else:
roads = KruskalSpanningTree(len(k1), Graph)
# City connection
for i in range(0, len(roads)):
coords_1 = (float(k1[roads[i][0]][1]), float(k1[roads[i][0]][2]))
coords_2 = (float(k1[roads[i][1]][1]), float(k1[roads[i][1]][2]))
line = [coords_1, coords_2]
dist = str("%.2f" % distances[roads[i][0]][roads[i][1]]) + " km"
folium.PolyLine(locations=line, weight=5, color='green', tooltip=dist).add_to(the_map)
# Add layer control
folium.TileLayer('openstreetmap').add_to(the_map)
folium.TileLayer('stamenterrain').add_to(the_map)
folium.TileLayer('CartoDB dark_matter').add_to(the_map)
folium.LayerControl().add_to(the_map)
# Save map
the_map.save("map.html")
print("Map has been saved.")