-
Notifications
You must be signed in to change notification settings - Fork 4
/
demo.py
346 lines (294 loc) · 12.6 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import sys
import time, logging
from datetime import datetime
import threading, collections, queue, os, os.path
import deepspeech
import numpy as np
import pyaudio
import wave
import webrtcvad
from halo import Halo
from scipy import signal
import colorful as cf
import requests
from pathlib import Path
logging.basicConfig(level=logging.INFO)
#logging.basicConfig(level=logging.DEBUG)
class Audio(object):
"""Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to be read from."""
FORMAT = pyaudio.paInt16
# Network/VAD rate-space
RATE_PROCESS = 16000
CHANNELS = 1
BLOCKS_PER_SECOND = 50
def __init__(self, callback=None, device=None, input_rate=RATE_PROCESS):
def proxy_callback(in_data, frame_count, time_info, status):
callback(in_data)
return (None, pyaudio.paContinue)
if callback is None: callback = lambda in_data: self.buffer_queue.put(in_data)
self.buffer_queue = queue.Queue()
self.device = device
self.input_rate = input_rate
self.sample_rate = self.RATE_PROCESS
self.block_size = int(self.RATE_PROCESS / float(self.BLOCKS_PER_SECOND))
self.block_size_input = int(self.input_rate / float(self.BLOCKS_PER_SECOND))
self.pa = pyaudio.PyAudio()
kwargs = {
'format': self.FORMAT,
'channels': self.CHANNELS,
'rate': self.input_rate,
'input': True,
'frames_per_buffer': self.block_size_input,
'stream_callback': proxy_callback,
}
# if not default device
if self.device:
kwargs['input_device_index'] = self.device
logging.debug('PA kwargs' + str(kwargs))
self.stream = self.pa.open(**kwargs)
self.stream.start_stream()
def resample(self, data, input_rate):
"""
Microphone may not support our native processing sampling rate, so
resample from input_rate to RATE_PROCESS here for webrtcvad and
deepspeech
Args:
data (binary): Input audio stream
input_rate (int): Input audio rate to resample from
"""
data16 = np.fromstring(string=data, dtype=np.int16)
resample_size = int(len(data16) / self.input_rate * self.RATE_PROCESS)
resample = signal.resample(data16, resample_size)
resample16 = np.array(resample, dtype=np.int16)
return resample16.tostring()
def read_resampled(self):
"""Return a block of audio data resampled to 16000hz, blocking if necessary."""
return self.resample(data=self.buffer_queue.get(),
input_rate=self.input_rate)
def read(self):
"""Return a block of audio data, blocking if necessary."""
return self.buffer_queue.get()
def pause(self):
"""Temporarily stop the stream listening."""
self.stream.stop_stream()
#self.stream.close()
#self.pa.terminate()
def restart(self):
"""Restart the stream listening (when previously paused)."""
time.sleep(0.5)
self.stream.start_stream()
def destroy(self):
self.stream.stop_stream()
self.stream.close()
self.pa.terminate()
frame_duration_ms = property(lambda self: 1000 * self.block_size // self.sample_rate)
def write_wav(self, filename, data):
logging.debug("write wav %s", filename)
wf = wave.open(filename, 'wb')
wf.setnchannels(self.CHANNELS)
# wf.setsampwidth(self.pa.get_sample_size(FORMAT))
assert self.FORMAT == pyaudio.paInt16
wf.setsampwidth(2)
wf.setframerate(self.sample_rate)
wf.writeframes(data)
wf.close()
class VADAudio(Audio):
"""Filter & segment audio with voice activity detection."""
def __init__(self, aggressiveness=3, device=None, input_rate=None):
super().__init__(device=device, input_rate=input_rate)
self.vad = webrtcvad.Vad(aggressiveness)
def frame_generator(self):
"""Generator that yields all audio frames from microphone."""
if self.input_rate == self.RATE_PROCESS:
while True:
yield self.read()
else:
while True:
yield self.read_resampled()
def vad_collector(self, padding_ms=300, ratio=0.75, frames=None):
"""Generator that yields series of consecutive audio frames comprising each utterence, separated by yielding a single None.
Determines voice activity by ratio of frames in padding_ms. Uses a buffer to include padding_ms prior to being triggered.
Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
|---utterence---| |---utterence---|
"""
if frames is None: frames = self.frame_generator()
num_padding_frames = padding_ms // self.frame_duration_ms
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
for frame in frames:
if len(frame) < 640:
return
is_speech = self.vad.is_speech(frame, self.sample_rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > ratio * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
yield f
ring_buffer.clear()
else:
yield frame
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
if num_unvoiced > ratio * ring_buffer.maxlen:
triggered = False
yield None
ring_buffer.clear()
#def play_wav(wav_file, p):
def play_wav(wav_file):
# workaround as sound output on my computer is playing up
# commented out code below may be an alternative (YMMV!)
os.system(f'aplay {wav_file}')
# Set chunk size of 1024 samples per data frame
# chunk = 1024
# # Open the sound file
# wf = wave.open(wav_file, 'rb')
# # Open a .Stream object to write the WAV file to
# # 'output = True' indicates that the sound will be played rather than recorded
# stream = p.open(format = p.get_format_from_width(wf.getsampwidth()),
# #channels = wf.getnchannels(),
# channels = 1,
# #rate = wf.getframerate(),
# rate = 16000,
# output = True,
# output_device_index = 8)
# #output_device_index = 0)
# # Read data in chunks
# data = wf.readframes(chunk)
# # Play the sound by writing the audio data to the stream
# while len(data) > 0:
# stream.write(data)
# data = wf.readframes(chunk)
# # Close and terminate the stream
# stream.stop_stream()
# stream.close()
def exit_app():
logging.warning("Stopping application.")
echo_line("Stopping application", False)
sys.exit()
def check_input(input_text, vad_audio):
vad_audio.pause()
if input_text.lower() == 'stop':
exit_app()
#elif input_text.lower().startswith('make a robot noise'):
# play_wav('robot_noise.wav')
elif input_text.lower().startswith('tell me about'):
read_wikipedia(input_text)
elif input_text.lower().startswith('pause'):
t = 20
echo_line(f'Pausing for {t} seconds', False)
time.sleep(20)
print(cf.bold_coral("Listening (ctrl-C to exit)..."))
else:
echo_line(input_text)
vad_audio.restart()
return
def read_wikipedia(input_text):
print_output: print(cf.slateGray("Recognized: {0}".format(cf.bold_white(input_text))))
input_text = input_text[13:].strip()
if input_text.strip() != '':
url = "https://en.wikipedia.org/api/rest_v1/page/summary/{}".format(input_text)
logging.info('URL: ' + url)
r = requests.get(url)
page = r.json()
if 'extract' in page:
resp = page["extract"]
print(resp)
echo_line(resp, False)
else:
echo_line('No details found', False)
def echo_line(input_text, print_output = True):
filename = 'response.wav'
if input_text.strip() != '':
#say_text = 'I heard, ' + input_text
if len(input_text) <= 2:
input_text = 'error with text length'
else:
say_text = input_text
url = 'http://0.0.0.0:5002/api/tts?text={}'.format(say_text)
r = requests.get(url)
with open(filename, 'wb') as f:
f.write(r.content)
logging.debug('saved wav for {}'.format(url))
#p = pyaudio.PyAudio()
#play_wav(filename, p)
play_wav(filename)
#p.terminate()
if print_output: print(cf.slateGray("Recognized: {0}".format(cf.bold_white(input_text))))
return
def match_line(input_text):
# determine closest line to input
if input_text in ["testing"]:
line = cf.bold_cornflowerBlue_on_snow(input_text)
else:
line = cf.bold_white(input_text)
return line
def main(ARGS):
#p = pyaudio.PyAudio()
#play_wav('robot_noise.wav')
#p.terminate()
# Load DeepSpeech model
if os.path.isdir(ARGS.model):
model_dir = ARGS.model
ARGS.model = os.path.join(model_dir, 'output_graph.pb')
ARGS.scorer = os.path.join(model_dir, ARGS.scorer)
print(cf.bold_coral('Initializing model...'))
logging.info("ARGS.model: %s", ARGS.model)
model = deepspeech.Model(ARGS.model)
if ARGS.scorer:
logging.info("ARGS.scorer: %s", ARGS.scorer)
model.enableExternalScorer(ARGS.scorer)
# Start audio with VAD
vad_audio = VADAudio(aggressiveness=ARGS.vad_aggressiveness,
device=ARGS.device,
input_rate=ARGS.rate)
print(cf.bold_coral("Listening (ctrl-C to exit)..."))
frames = vad_audio.vad_collector()
# Stream from microphone to DeepSpeech using VAD
spinner = None
if not ARGS.nospinner:
spinner = Halo(spinner='line')
stream_context = model.createStream()
wav_data = bytearray()
for frame in frames:
if frame is not None:
if spinner: spinner.start()
logging.debug("streaming frame")
stream_context.feedAudioContent(np.frombuffer(frame, np.int16))
#model.feedAudioContent(stream_context, np.frombuffer(frame, np.int16))
if ARGS.savewav: wav_data.extend(frame)
else:
if spinner: spinner.stop()
logging.debug("end utterence")
if ARGS.savewav:
vad_audio.write_wav(os.path.join(ARGS.savewav, datetime.now().strftime("savewav_%Y-%m-%d_%H-%M-%S_%f.wav")), wav_data)
wav_data = bytearray()
text = stream_context.finishStream()
#text = model.finishStream(stream_context)
check_input(text, vad_audio)
#print(cf.slateGray("Recognized: {0}".format(cf.bold_white(text))))
stream_context = model.createStream()
if __name__ == '__main__':
DEFAULT_SAMPLE_RATE = 16000
import argparse
parser = argparse.ArgumentParser(description="Stream from microphone to DeepSpeech using VAD and then on to TTS")
parser.add_argument('-v', '--vad_aggressiveness', type=int, default=2,
help="Set aggressiveness of VAD: an integer between 0 and 3, 0 being the least aggressive about filtering out non-speech, 3 the most aggressive. Default: 2")
parser.add_argument('--nospinner', action='store_true',
help="Disable spinner")
parser.add_argument('-w', '--savewav',
help="Save .wav files of utterences to given directory")
parser.add_argument('-m', '--model', required=True,
help="Path to the model (protocol buffer binary file, or entire directory containing all standard-named files for model)")
parser.add_argument('-s', '--scorer',
help="Path to the external scorer file.")
parser.add_argument('-d', '--device', type=int, default=None,
help="Device input index (Int) as listed by pyaudio.PyAudio.get_device_info_by_index(). If not provided, falls back to PyAudio.get_default_device()")
parser.add_argument('-r', '--rate', type=int, default=DEFAULT_SAMPLE_RATE,
help=f"Input device sample rate. Default: {DEFAULT_SAMPLE_RATE}. Your device may require 44100.")
ARGS = parser.parse_args()
if ARGS.savewav: os.makedirs(ARGS.savewav, exist_ok=True)
main(ARGS)