|
| 1 | +// SPDX-License-Identifier: Apache-2.0 |
| 2 | +/** |
| 3 | + * Copyright (C) 2020 Jijoong Moon <jijoong.moon@samsung.com> |
| 4 | + * |
| 5 | + * @file unittest_nntrainer_tensor.cpp |
| 6 | + * @date 03 June 2020 |
| 7 | + * @brief Unit test utility for tensor. |
| 8 | + * @see https://github.com/nnstreamer/nntrainer |
| 9 | + * @author Jijoong Moon <jijoong.moon@samsung.com> |
| 10 | + * @bug No known bugs |
| 11 | + */ |
| 12 | +#include <gtest/gtest.h> |
| 13 | + |
| 14 | +#include "nntrainer_test_util.h" |
| 15 | +#include "util_func.h" |
| 16 | +#include <fstream> |
| 17 | +#include <nntrainer_error.h> |
| 18 | +#include <quantizer.h> |
| 19 | +#include <tensor.h> |
| 20 | + |
| 21 | +TEST(nntrainer_Quantizer, per_tensor_affine_01_n) { |
| 22 | + nntrainer::Tensor input(3, 2, 4, 5); |
| 23 | + input.setRandNormal(1.235f, 0.04f); |
| 24 | + |
| 25 | + std::unique_ptr<nntrainer::Quantizer> quantizer = |
| 26 | + nntrainer::Quantization::createQuantizer( |
| 27 | + nntrainer::QScheme::PER_TENSOR_AFFINE); |
| 28 | + |
| 29 | + EXPECT_THROW(quantizer->quantize(input, nntrainer::Tdatatype::FP32), |
| 30 | + std::invalid_argument); |
| 31 | +} |
| 32 | + |
| 33 | +TEST(nntrainer_Quantizer, per_tensor_affine_02_n) { |
| 34 | + nntrainer::Tensor input(3, 3, 24, 24); |
| 35 | + input.setRandNormal(3.812f, 0.15f); |
| 36 | + |
| 37 | + std::unique_ptr<nntrainer::Quantizer> quantizer = |
| 38 | + nntrainer::Quantization::createQuantizer( |
| 39 | + nntrainer::QScheme::PER_TENSOR_AFFINE); |
| 40 | + |
| 41 | + nntrainer::Tensor quantized_tensor = |
| 42 | + quantizer->quantize(input, nntrainer::Tdatatype::QINT8); |
| 43 | + |
| 44 | + EXPECT_THROW(quantizer->dequantize(input, nntrainer::Tdatatype::QINT8), |
| 45 | + std::invalid_argument); |
| 46 | +} |
| 47 | + |
| 48 | +TEST(nntrainer_Quantizer, per_tensor_affine_03_p) { |
| 49 | + float input_data[] = {-0.16924214, -0.10338581, 0.31561565, -0.00533330, |
| 50 | + 0.44809300, -0.15348488, 0.14003623, -0.07908171, |
| 51 | + -0.21415669, -0.35267806, 0.46354777, -0.35009885, |
| 52 | + -0.07760239, -0.28348053, -0.37242615, 0.30941701}; |
| 53 | + nntrainer::Tensor input({1, 1, 4, 4}, input_data); |
| 54 | + |
| 55 | + int8_t qdata[] = {-47, -28, 87, -1, 123, -42, 39, -22, |
| 56 | + -59, -97, 127, -96, -21, -78, -102, 85}; |
| 57 | + nntrainer::Tensor quant_answer( |
| 58 | + {1, 1, 4, 4, nntrainer::Tformat::NCHW, nntrainer::Tdatatype::QINT8}, qdata); |
| 59 | + |
| 60 | + float output_data[] = {-0.17087643, -0.10179872, 0.31630316, -0.00363567, |
| 61 | + 0.44718724, -0.15269808, 0.14179108, -0.07998471, |
| 62 | + -0.21450445, -0.35265985, 0.46172991, -0.34902418, |
| 63 | + -0.07634904, -0.28358215, -0.37083820, 0.30903184}; |
| 64 | + nntrainer::Tensor float_answer({1, 1, 4, 4}, output_data); |
| 65 | + |
| 66 | + // Per tensor affine quantizer |
| 67 | + std::unique_ptr<nntrainer::Quantizer> quantizer = |
| 68 | + nntrainer::Quantization::createQuantizer( |
| 69 | + nntrainer::QScheme::PER_TENSOR_AFFINE); |
| 70 | + |
| 71 | + // Perform Quantization |
| 72 | + nntrainer::Tensor quantized_tensor = |
| 73 | + quantizer->quantize(input, nntrainer::Tdatatype::QINT8); |
| 74 | + ASSERT_EQ(quantized_tensor, quant_answer); |
| 75 | + |
| 76 | + // Perform Deuantization |
| 77 | + nntrainer::Tensor output = |
| 78 | + quantizer->dequantize(quantized_tensor, nntrainer::Tdatatype::FP32); |
| 79 | + ASSERT_EQ(output, float_answer); |
| 80 | +} |
| 81 | + |
| 82 | +TEST(nntrainer_Quantizer, per_tensor_affine_04_p) { |
| 83 | + float input_data[] = { |
| 84 | + -0.29562217, 0.02348283, 0.04334664, 0.03752254, 0.17764580, |
| 85 | + 0.04449826, 0.15144463, -0.15716791, -0.07842141, 0.34517670, |
| 86 | + 0.16458672, -0.09487095, -0.28020513, 0.32698259, -0.24903688, |
| 87 | + -0.33132783, 0.13940062, 0.18400775, -0.26359966, 0.30900121, |
| 88 | + 0.08309542, -0.09066082, 0.08950174, -0.29709017, -0.26397359, |
| 89 | + -0.16240828, -0.18758762, -0.31878781, 0.06728745, -0.04749811, |
| 90 | + 0.16789703, 0.02212419, 0.10671097, -0.28938687, 0.16250020, |
| 91 | + -0.09017495, 0.24699482, -0.26789218, 0.16414545, 0.22879964, |
| 92 | + -0.15821624, -0.23149055, 0.26526868, -0.11006282, -0.20480227, |
| 93 | + 0.29863110, 0.24005184, -0.09062263, 0.22294718, 0.32583672, |
| 94 | + -0.10362835, 0.03243832, 0.24707781, 0.27685603, 0.03360258, |
| 95 | + -0.00209959, 0.27976128, -0.24468939, -0.19273037, -0.25921509, |
| 96 | + -0.20489319, 0.33036807, 0.27226517, -0.25207010}; |
| 97 | + nntrainer::Tensor input({1, 1, 8, 8}, input_data); |
| 98 | + |
| 99 | + int8_t qdata[] = {-109, 9, 16, 14, 66, 16, 56, -58, -29, 127, 61, |
| 100 | + -35, -104, 121, -92, -122, 51, 68, -97, 114, 31, -33, |
| 101 | + 33, -110, -98, -60, -69, -118, 25, -18, 62, 8, 39, |
| 102 | + -107, 60, -33, 91, -99, 61, 85, -58, -86, 98, -41, |
| 103 | + -76, 110, 89, -33, 82, 120, -38, 12, 91, 102, 12, |
| 104 | + -1, 103, -90, -71, -96, -76, 122, 101, -93}; |
| 105 | + nntrainer::Tensor quant_answer( |
| 106 | + {1, 1, 8, 8, nntrainer::Tformat::NCHW, nntrainer::Tdatatype::QINT8}, qdata); |
| 107 | + |
| 108 | + float output_data[] = { |
| 109 | + -0.29509223, 0.02436541, 0.04331629, 0.03790175, 0.17867969, |
| 110 | + 0.04331629, 0.15160701, -0.15702155, -0.07851078, 0.34382305, |
| 111 | + 0.16514336, -0.09475438, -0.28155589, 0.32757944, -0.24906866, |
| 112 | + -0.33028671, 0.13807067, 0.18409424, -0.26260501, 0.30862856, |
| 113 | + 0.08392531, -0.08933984, 0.08933984, -0.29779950, -0.26531228, |
| 114 | + -0.16243608, -0.18680149, -0.31945765, 0.06768170, -0.04873083, |
| 115 | + 0.16785063, 0.02165814, 0.10558346, -0.28967768, 0.16243608, |
| 116 | + -0.08933984, 0.24636140, -0.26801956, 0.16514336, 0.23011778, |
| 117 | + -0.15702155, -0.23282506, 0.26531228, -0.11099799, -0.20575237, |
| 118 | + 0.29779950, 0.24094686, -0.08933984, 0.22199598, 0.32487217, |
| 119 | + -0.10287619, 0.03248722, 0.24636140, 0.27614135, 0.03248722, |
| 120 | + -0.00270727, 0.27884862, -0.24365413, -0.19221604, -0.25989774, |
| 121 | + -0.20575237, 0.33028671, 0.27343407, -0.25177592}; |
| 122 | + nntrainer::Tensor float_answer({1, 1, 8, 8}, output_data); |
| 123 | + |
| 124 | + // Per tensor affine quantizer |
| 125 | + std::unique_ptr<nntrainer::Quantizer> quantizer = |
| 126 | + nntrainer::Quantization::createQuantizer( |
| 127 | + nntrainer::QScheme::PER_TENSOR_AFFINE); |
| 128 | + |
| 129 | + // Perform Quantization |
| 130 | + nntrainer::Tensor quantized_tensor = |
| 131 | + quantizer->quantize(input, nntrainer::Tdatatype::QINT8); |
| 132 | + ASSERT_EQ(quantized_tensor, quant_answer); |
| 133 | + |
| 134 | + // Perform Deuantization |
| 135 | + nntrainer::Tensor output = |
| 136 | + quantizer->dequantize(quantized_tensor, nntrainer::Tdatatype::FP32); |
| 137 | + ASSERT_EQ(output, float_answer); |
| 138 | +} |
| 139 | + |
| 140 | +int main(int argc, char **argv) { |
| 141 | + int result = -1; |
| 142 | + |
| 143 | + try { |
| 144 | + testing::InitGoogleTest(&argc, argv); |
| 145 | + } catch (...) { |
| 146 | + std::cerr << "Error during InitGoogleTest" << std::endl; |
| 147 | + return 0; |
| 148 | + } |
| 149 | + |
| 150 | + try { |
| 151 | + result = RUN_ALL_TESTS(); |
| 152 | + } catch (...) { |
| 153 | + std::cerr << "Error during RUN_ALL_TESTS()" << std::endl; |
| 154 | + } |
| 155 | + |
| 156 | + return result; |
| 157 | +} |
0 commit comments