-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tower6.py
694 lines (554 loc) · 24.7 KB
/
train_tower6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import torch.utils.data
import torch.backends.cudnn as cudnn
from callbacks import AverageMeter, Logger, set_save_path
import time
from collections import OrderedDict
from utils import *
from torch.utils.data import DataLoader
import json
import pickle
from datasets.CrossTask_dataloader import *
from focalloss import *
parser = argparse.ArgumentParser()
data_path = "datasets/CrossTask_assets"
parser.add_argument(
"--data_path", type=str, default=data_path, help="default data path"
)
parser.add_argument(
"--primary_path",
type=str,
default=os.path.join(data_path, "crosstask_release/tasks_primary.txt"),
help="list of primary tasks",
)
parser.add_argument(
"--related_path",
type=str,
default=os.path.join(data_path, "crosstask_release/tasks_related.txt"),
help="list of related tasks",
)
parser.add_argument(
"--annotation_path",
type=str,
default=os.path.join(data_path, "crosstask_release/annotations"),
help="path to annotations",
)
parser.add_argument(
"--video_csv_path",
type=str,
default=os.path.join(data_path, "crosstask_release/videos.csv"),
help="path to video csv",
)
parser.add_argument(
"--val_csv_path",
type=str,
default=os.path.join(data_path, "crosstask_release/videos_val.csv"),
help="path to validation csv",
)
parser.add_argument(
"--features_path",
type=str,
default=os.path.join(data_path, "crosstask_features"),
help="path to features",
)
parser.add_argument(
"--constraints_path",
type=str,
default=os.path.join(data_path, "crosstask_constraints"),
help="path to constraints",
)
parser.add_argument(
"--n_train", type=int, default=30, help="videos per task for training"
)
parser.add_argument(
"--use_related",
type=int,
default=0,
help="1 for using related tasks during training, 0 for using primary tasks only",
)
parser.add_argument(
"--share",
type=str,
default="words",
help="Level of sharing between tasks",
)
parser.add_argument(
"--dataset",
type=str,
default="crosstask",
help="Used dataset name for logging",
)
parser.add_argument(
"--dataloader-type",
type=str,
default="ddn",
help="The type of dataset processing loader: either ddn or plate",
)
parser.add_argument(
"--label-type",
type=str,
default="ddn",
help="The type of dataset processing loader: either ddn or plate",
)
parser.add_argument('--epochs', default=200, type=int, help='number of epochs')
parser.add_argument('--batch_size', default=16, type=int, help='batch size')
parser.add_argument('--max_traj_len', default=6, type=int, help='action number')
parser.add_argument('--gpu', default='1', type=str)
parser.add_argument('--dataset_mode', default='multiple')
parser.add_argument('--dataset_root', default='./crosstask/')
parser.add_argument('--frameduration', default=3, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--lr', default=0.02, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=0.0001, type=float, help='weight decay')
parser.add_argument('--start_epoch', default=None, type=int)
parser.add_argument('--lr_steps', default=[100, 150, 200, 250, 300, 350, 400, 450, 500, 700, 900], type=float)
parser.add_argument('--clip_gradient', default=5, type=float)
parser.add_argument('--print_freq', '-p', default=100, type=int, help='print frequency (default: 20)')
parser.add_argument('--log_freq', '-l', default=10, type=int, help='frequency to write in tensorboard (default: 10)')
parser.add_argument('--ckpt', default='./ckpt',
help='folder to output checkpoints')
parser.add_argument('--memory_size', default=128)
parser.add_argument('--N', default=1, type=int,help='Number of layers in the temporal decoder')
parser.add_argument('--H', default=16, type=int,help='Number of heads in the temporal decoder')
parser.add_argument('--d_model', default=1024, type=int)
parser.add_argument('--decoder_dropout', default=0, type=float)
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=999999999, type=int)
parser.add_argument('--exist_datasplit', default=False, type=bool)
parser.add_argument('--dim_feedforward', default=1024, type=int)
parser.add_argument('--mlp_mid', default=512, type=int)
parser.add_argument('--query_length', default=7, type=int)
parser.add_argument('--memory_length', default=7, type=int)
parser.add_argument('--gamma', default=1.5, type=float)
parser.add_argument('--smallmid_ratio', default=3, type=int)
# options
args = parser.parse_args()
print(args)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.set_default_tensor_type('torch.FloatTensor')
best_loss = 1000000
best_acc = -np.inf
best_success_rate = -np.inf
best_miou = -np.inf
########################################
# Start Loading/Processing the dataset #
########################################
task_vids = get_vids(args.video_csv_path)
val_vids = get_vids(args.val_csv_path)
task_vids = {
task: [vid for vid in vids if task not in val_vids or vid not in val_vids[task]]
for task, vids in task_vids.items()
}
primary_info = read_task_info(args.primary_path)
test_tasks = set(primary_info["steps"].keys())
if args.use_related:
related_info = read_task_info(args.related_path)
task_steps = {**primary_info["steps"], **related_info["steps"]}
n_steps = {**primary_info["n_steps"], **related_info["n_steps"]}
else:
task_steps = primary_info["steps"]
n_steps = primary_info["n_steps"]
all_tasks = set(n_steps.keys())
task_vids = {task: vids for task,
vids in task_vids.items() if task in all_tasks}
val_vids = {task: vids for task, vids in val_vids.items() if task in all_tasks}
with open(os.path.join(args.data_path, "crosstask_release/cls_step.json"), "r") as f:
step_cls = json.load(f)
with open(os.path.join(args.data_path, "crosstask_release/activity_step.json"), "r") as f:
act_cls = json.load(f)
##################################
# If using existing data-split #
##################################
if args.exist_datasplit:
with open("./checkpoints/CrossTask_t{}_datasplit_pre.pth".format(args.max_traj_len), "rb") as f:
datasplit = pickle.load(f)
trainset = CrossTaskDataset(
task_vids,
n_steps,
args.features_path,
args.annotation_path,
step_cls,
pred_h=args.max_traj_len,
act_json=act_cls,
)
testset = CrossTaskDataset(
task_vids,
n_steps,
args.features_path,
args.annotation_path,
step_cls,
pred_h=args.max_traj_len,
act_json=act_cls,
train=False,
)
trainset.plan_vids = datasplit["train"]
testset.plan_vids = datasplit["test"]
else:
""" Random Split dataset by video """
train_vids, test_vids = random_split(
task_vids, test_tasks, args.n_train, seed=args.seed)
trainset = CrossTaskDataset(
train_vids,
n_steps,
args.features_path,
args.annotation_path,
step_cls,
pred_h=args.max_traj_len,
act_json=act_cls
)
# Run random_split for eval/test sub-set
# trainset.random_split()
testset = CrossTaskDataset(
test_vids,
n_steps,
args.features_path,
args.annotation_path,
step_cls,
pred_h=args.max_traj_len,
act_json=act_cls
)
#######################
# Run data whitening #
#######################
mean_lang = 0.038948704
mean_vis = 0.000133333
var_lang = 33.063942
var_vis = 0.00021489676
trainset.mean_lan = mean_lang
trainset.mean_vis = mean_vis
trainset.var_lan = var_lang
trainset.var_vis = var_vis
testset.mean_lan = mean_lang
testset.mean_vis = mean_vis
testset.var_lan = var_lang
testset.var_vis = var_vis
#######################
# Init the DataLoader #
#######################
train_loader = DataLoader(
trainset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
drop_last=True,
# collate_fn=collate_func,
)
val_loader = DataLoader(
testset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
drop_last=True,
# collate_fn=collate_func,
)
# Show stats of train/test dataset
print("Training dataset has {} samples".format(len(trainset)))
print("Testing dataset has {} samples".format(len(testset)))
"""Get all reference from test-set, for KL-Divgence, NLL, MC-Prec and MC-Rec"""
reference = [x[2] for x in testset.plan_vids]
all_ref = np.array(reference)
time_pre = time.strftime("%Y%m%d%H%M%S", time.localtime())
logname = 'exptower6_' + time_pre + '_' + str(args.dataset_mode) + '_' + str(args.max_traj_len)
args.logname = logname
##################################
# Saving the data split to local #
##################################
if not args.exist_datasplit:
datasplit = {}
datasplit["train"] = trainset.plan_vids
datasplit["test"] = testset.plan_vids
with open("CrossTask_t{}_datasplit.pth".format(args.max_traj_len), "wb") as f:
pickle.dump(datasplit, f)
def main():
global best_loss, best_acc, best_success_rate, best_miou
# create model
from model.model_baseline_tower6 import Model
model = Model(args)
# optionally resume from a checkpoint
if args.resume:
assert os.path.isfile(args.resume), "No checkpoint found at '{}'".format(args.resume)
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_loss = checkpoint['best_loss']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {}, top1_acc {})"
.format(args.resume, checkpoint['epoch'], checkpoint['best_top1_acc']))
if args.start_epoch is None:
args.start_epoch = 0
model = model.cuda()
cudnn.benchmark = True
num_param = sum(p.numel() for p in model.parameters())
print('Total number of parameters: ', num_param)
optimizer = torch.optim.SGD(model.parameters(),
momentum=args.momentum,
lr=args.lr,
weight_decay=args.weight_decay)
criterion = FocalLoss(gamma=args.gamma)
# training
tb_logdir = os.path.join('./logs', logname)
if not (os.path.exists(tb_logdir)):
os.makedirs(tb_logdir)
tb_logger = Logger(tb_logdir)
log, writer = set_save_path(tb_logdir)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(args, optimizer, epoch, args.lr_steps)
epoch_starttime = time.time()
train_loss, train_state_loss, train_acc, train_success_rate, train_miou = train(args, train_loader, model, optimizer, epoch, criterion, tb_logger)
loss, acc, success_rate, miou = validate(args, val_loader, model, criterion, epoch, tb_logger)
epoch_endtime = time.time()
oneepoch_time = epoch_endtime - epoch_starttime
print('one epoch time:', oneepoch_time)
print('t/T=', oneepoch_time * epoch, '/', oneepoch_time * args.epochs)
print('SSSSSSSSSSSSSSETTING', args)
is_best_sr = success_rate > best_success_rate
if is_best_sr:
best_loss = loss
best_acc = acc
best_success_rate = success_rate
best_miou = miou
print(
'Epoch {}: Best evaluation - '
'accuracy: {:.2f}, success rate: {:.2f}, miou: {:.2f}'
.format(epoch, best_acc, best_success_rate, best_miou))
if not os.path.exists(args.ckpt):
os.makedirs(args.ckpt)
save_checkpoint(
{
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_loss': best_loss,
'best_success_rate': best_success_rate,
},
is_best_sr, # is_best,
os.path.join(tb_logdir, '{}'.format(logname)))
log_info = ['epoch {}/{}'.format(epoch, args.epochs)]
log_info.append('train: train_loss={:.4f}'.format(train_loss))
log_info.append('train_acc={:.4f}'.format(train_acc))
log_info.append('train_success_rate={:.4f}'.format(train_success_rate))
log_info.append('train_MIoU={:.4f}'.format(train_miou))
log_info.append('val: val_loss={:.4f}'.format(loss))
log_info.append('val_acc={:.4f}'.format(acc))
log_info.append('val_success_rate={:.4f}'.format(success_rate))
log_info.append('val_MIoU={:.4f}'.format(miou))
log_info.append('best: best_loss={:.4f}'.format(best_loss))
log_info.append('best_acc={:.4f}'.format(best_acc))
log_info.append('best_success_rate={:.4f}'.format(best_success_rate))
log_info.append('best_MIoU={:.4f}'.format(best_miou))
# writer.flush()
log(', '.join(log_info))
if epoch == 1:
tb_logger.log_info(args)
def train(args, train_loader, model, optimizer, epoch, criterion, tb_logger, memory_frames=None, memory_lowlevel_labels=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
state_losses = AverageMeter()
acc_meter = AverageMeter()
success_rate_meter = AverageMeter()
miou_meter = AverageMeter()
model.train()
end = time.time()
for i, (_, _, frames, _, lowlevel_labels, _) in enumerate(train_loader):
model.zero_grad()
data_time.update(time.time() - end)
frames = frames.cuda()
lowlevel_labels = lowlevel_labels.cuda()
if i == 0:
print('lowlevel label pre', lowlevel_labels[0, :])
output1, output2, output3, output4, output\
= model(frames)
output_reshaped = output.contiguous().view(-1, output.shape[-1])
lowlevel_labels_reshaped = lowlevel_labels.contiguous().view(-1)
loss5 = criterion(output_reshaped, lowlevel_labels_reshaped.long().cuda())
lowlevel_labels1 = torch.cat([lowlevel_labels[:, 0:2], lowlevel_labels[:, 5:6]], dim=1)
output_reshaped1 = output1.contiguous().view(-1, output1.shape[-1])
lowlevel_labels_reshaped1 = lowlevel_labels1.contiguous().view(-1)
loss1 = criterion(output_reshaped1, lowlevel_labels_reshaped1.long().cuda())
lowlevel_labels2 = torch.cat([lowlevel_labels[:, 0:1], lowlevel_labels[:, 2:3],
lowlevel_labels[:, 5:6]], dim=1)
output_reshaped2 = output2.contiguous().view(-1, output2.shape[-1])
lowlevel_labels_reshaped2 = lowlevel_labels2.contiguous().view(-1)
loss2 = criterion(output_reshaped2, lowlevel_labels_reshaped2.long().cuda())
lowlevel_labels3 = torch.cat([lowlevel_labels[:, 0:1], lowlevel_labels[:, 3:4],
lowlevel_labels[:, 5:6]], dim=1)
output_reshaped3 = output3.contiguous().view(-1, output3.shape[-1])
lowlevel_labels_reshaped3 = lowlevel_labels3.contiguous().view(-1)
loss3 = criterion(output_reshaped3, lowlevel_labels_reshaped3.long().cuda())
lowlevel_labels4 = torch.cat([lowlevel_labels[:, 0:1], lowlevel_labels[:, 4:6]], dim=1)
output_reshaped4 = output4.contiguous().view(-1, output4.shape[-1])
lowlevel_labels_reshaped4 = lowlevel_labels4.contiguous().view(-1)
loss4 = criterion(output_reshaped4, lowlevel_labels_reshaped4.long().cuda())
loss = loss1 + loss2 + loss3 + loss4 + loss5
if i == 0:
print('lowlevel label1 post', lowlevel_labels1[0, :])
print('lowlevel label2 post', lowlevel_labels2[0, :])
print('lowlevel label3 post', lowlevel_labels3[0, :])
print('lowlevel label4 post', lowlevel_labels4[0, :])
acc, success_rate, _ = accuracy(output_reshaped.cpu(), lowlevel_labels_reshaped.cpu(), args.max_traj_len)
_, output_r = output.topk(1, 2, True, True)
gt = output_r.squeeze(-1).cpu().numpy().astype("int")
rst = lowlevel_labels.squeeze(-1).cpu().numpy().astype("int")
miou = acc_iou(rst, gt, False)
miou = miou.mean()
losses.update(loss.item(), frames.size(0))
acc_meter.update(acc.item(), frames.size(0))
success_rate_meter.update(success_rate.item(), frames.size(0))
miou_meter.update(miou, frames.size(0) // args.max_traj_len)
optimizer.zero_grad()
loss.backward()
if args.clip_gradient is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'State Loss {state_loss.val:.4f} ({state_loss.avg:.4f})\t'
'Train Acc {acc_meter.val:.2f} ({acc_meter.avg:.2f})\t'
'Train Success Rate {success_rate_meter.val:.2f} ({success_rate_meter.avg:.2f})\t'
'Train_MIoU {miou_meter.val:.2f} ({miou_meter.avg:.2f})\t'
.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, state_loss=state_losses,
acc_meter=acc_meter,
success_rate_meter=success_rate_meter,
miou_meter=miou_meter))
# log training data into tensorboard
if tb_logger is not None and i % args.log_freq == 0:
logs = OrderedDict()
logs['Train/IterLoss'] = losses.val
logs['Train/Acc'] = acc_meter.val
logs['Train/Success_Rate'] = success_rate_meter.val
logs['Train/MIoU'] = miou_meter.val
# how many iterations we have trained
iter_count = epoch * len(train_loader) + i
for key, value in logs.items():
tb_logger.log_scalar(value, key, iter_count)
# tb_logger.log_info = ['epoch {}/{}'.format(epoch, args.epoch)]
tb_logger.flush()
return losses.avg, state_losses.avg, acc_meter.avg, success_rate_meter.avg, miou_meter.avg
def validate(args, val_loader, model, criterion, epoch, tb_logger, memory_frames=None, memory_lowlevel_labels=None):
batch_time = AverageMeter()
losses = AverageMeter()
state_losses = AverageMeter()
acc_meter = AverageMeter()
success_rate_meter = AverageMeter()
miou_meter = AverageMeter()
end = time.time()
for i, (_, _, frames, _, lowlevel_labels, _) in enumerate(val_loader):
frames = frames.cuda()
lowlevel_labels = lowlevel_labels.cuda()
with torch.no_grad():
output1, output2, output3, output4, output\
= model(frames)
output_reshaped = output.contiguous().view(-1, output.shape[-1])
lowlevel_labels_reshaped = lowlevel_labels.contiguous().view(-1)
loss5 = criterion(output_reshaped, lowlevel_labels_reshaped.long().cuda())
lowlevel_labels1 = torch.cat([lowlevel_labels[:, 0:2], lowlevel_labels[:, 5:6]], dim=1)
output_reshaped1 = output1.contiguous().view(-1, output1.shape[-1])
lowlevel_labels_reshaped1 = lowlevel_labels1.contiguous().view(-1)
loss1 = criterion(output_reshaped1, lowlevel_labels_reshaped1.long().cuda())
lowlevel_labels2 = torch.cat([lowlevel_labels[:, 0:1], lowlevel_labels[:, 2:3],
lowlevel_labels[:, 5:6]], dim=1)
output_reshaped2 = output2.contiguous().view(-1, output2.shape[-1])
lowlevel_labels_reshaped2 = lowlevel_labels2.contiguous().view(-1)
loss2 = criterion(output_reshaped2, lowlevel_labels_reshaped2.long().cuda())
lowlevel_labels3 = torch.cat([lowlevel_labels[:, 0:1], lowlevel_labels[:, 3:4],
lowlevel_labels[:, 5:6]], dim=1)
output_reshaped3 = output3.contiguous().view(-1, output3.shape[-1])
lowlevel_labels_reshaped3 = lowlevel_labels3.contiguous().view(-1)
loss3 = criterion(output_reshaped3, lowlevel_labels_reshaped3.long().cuda())
lowlevel_labels4 = torch.cat([lowlevel_labels[:, 0:1], lowlevel_labels[:, 4:6]], dim=1)
output_reshaped4 = output4.contiguous().view(-1, output4.shape[-1])
lowlevel_labels_reshaped4 = lowlevel_labels4.contiguous().view(-1)
loss4 = criterion(output_reshaped4, lowlevel_labels_reshaped4.long().cuda())
loss = loss1 + loss2 + loss3 + loss4 + loss5
acc, success_rate, _ = accuracy(output_reshaped.cpu(), lowlevel_labels_reshaped.cpu(), max_traj_len=args.max_traj_len)
_, output_r = output.topk(1, 2, True, True)
gt = output_r.squeeze(-1).cpu().numpy().astype("int")
rst = lowlevel_labels.squeeze(-1).cpu().numpy().astype("int")
miou = acc_iou(rst, gt, False)
miou = miou.mean()
# acc = mean_category_acc(rst, gt)
losses.update(loss.item(), frames.size(0))
acc_meter.update(acc.item(), frames.size(0))
success_rate_meter.update(success_rate.item(), frames.size(0))
miou_meter.update(miou, frames.size(0) // args.max_traj_len)
batch_time.update(time.time() - end)
if i % args.print_freq == 0 or i + 1 == len(val_loader):
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Val Acc {acc_meter.val:.2f} ({acc_meter.avg:.2f})\t'
'Val Success Rate {success_rate_meter.val:.2f} ({success_rate_meter.avg:.2f})\t'
'Val MIoU {miou_meter.val:.1f} ({miou_meter.avg:.2f})\t'
.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
acc_meter=acc_meter, success_rate_meter=success_rate_meter,
miou_meter=miou_meter))
if epoch is not None and tb_logger is not None:
logs = OrderedDict()
logs['Val/EpochLoss'] = losses.avg
logs['Val/Acc'] = acc_meter.val
logs['Val/Success_Rate'] = success_rate_meter.val
logs['Val/MIoU'] = miou_meter.val
# how many iterations we have trained
for key, value in logs.items():
tb_logger.log_scalar(value, key, epoch + 1)
tb_logger.flush()
return losses.avg, acc_meter.avg, success_rate_meter.avg, miou_meter.avg
def save_checkpoint(state, is_best, filename):
torch.save(state, filename + '_latest.pth.tar')
if is_best:
shutil.copyfile(filename + '_latest.pth.tar', filename + '_best.pth.tar')
def adjust_learning_rate(args, optimizer, epoch, lr_steps):
"""Sets the learning rate to the initial LR decayed by 10"""
decay = 0.1 ** (sum(epoch >= np.array(lr_steps)))
lr = args.lr * decay
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, max_traj_len=0):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
# Token Accuracy
batch_size = target.size(0)
_, pred = output.topk(1, 1, True, True)
correct_1 = pred.eq(target.view(-1, 1)) # .view(-1, max_traj_len) # (bz, 1)
# Instruction Accuracy
instruction_correct = torch.all(correct_1, dim=1)
instruction_accuracy = instruction_correct.sum() * 100.0 / instruction_correct.shape[0]
# Success Rate
trajectory_success = torch.all(instruction_correct.view(correct_1.shape[0] // max_traj_len, -1), dim=1)
trajectory_success_rate = trajectory_success.sum() * 100.0 / trajectory_success.shape[0]
# MIoU
pred_inst = pred
pred_inst_set = set()
target_inst = target.view(correct_1.shape[0], -1)
target_inst_set = set()
for i in range(pred_inst.shape[0]):
# print(pred_inst[i], target_inst[i])
pred_inst_set.add(tuple(pred_inst[i].tolist()))
target_inst_set.add(tuple(target_inst[i].tolist()))
MIoU = 100.0 * len(pred_inst_set.intersection(target_inst_set)) / len(pred_inst_set.union(target_inst_set))
return instruction_accuracy, trajectory_success_rate, MIoU
def acc_iou(pred, gt, aggregate=True):
"""required format
Action space is a single integer
pred: Numpy [batch, seq]
gt : Numpy [batch, seq]
"""
epsn = 1e-6
if aggregate:
intersection = (pred & gt).sum((0, 1))
union = (pred | gt).sum((0, 1))
else:
intersection = (pred & gt).sum((1))
union = (pred | gt).sum((1))
return 100 * ((intersection + epsn) / (union + epsn))
if __name__ == '__main__':
main()