-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathapp.py
179 lines (146 loc) · 7.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from ultralytics import YOLO
import cv2
from time import time
import numpy as np
from Pyresearch import BirdsEyeView
import colorsys
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import os
# getting Video
cap = cv2.VideoCapture("1860079-uhd_2560_1440_25fps.mp4") #0 and 1 webcam
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
source_fps = int(cap.get(cv2.CAP_PROP_FPS))
print("frame_width: ", frame_width)
print("frame_height: ", frame_height)
print("Source FPS: ", source_fps)
if not cap.isOpened():
print("Error Opening Video File.")
# Saving Video
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
out = cv2.VideoWriter("output_video/output_video.mp4", fourcc, source_fps, (frame_width, frame_height))
# getting color for each track_id
def color(tracking_id):
hue = (tracking_id * 137.5) % 360 # Change 137.5 to adjust the hue spread
red, green, brown = colorsys.hsv_to_rgb(hue / 360, 1.0, 1.0)
return int(red * 255), int(green * 255), int(brown * 255)
# Loading Yolo V8 Model
model = YOLO("yolov8n.pt")
# Road polygons to be removed from tracking
road_polygon_points = [(0, 0), (0, 789), (3300, int(789)),
(3300, 0), (0, 0)]
# Perspective Transform from Camera view to Birds Eye View
target_width = 50
target_height = 250
source = np.array([[1252, 789], [2289, 789], [5039, 2159], [-550, 2159]])
target = np.array([[0, 0], [target_width-1, 0], [target_width-1, target_height-1], [0, target_height-1]])
transformation = BirdsEyeView(source, target, frame_width, frame_height, target_width, target_height)
# Declaration
prev_y_dict = {} # Dictionary to store previous y-coordinate to calculate speeds
speeding_vehicles = {} # Dictionary to store speeding vehicles' images and speeds
trails = {} # Dictionary to store the trails for each track_id
# Create a directory to store speeding vehicle images
output_dir = "speeding_images"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
ptime = 0 # Start Time to Calculate fps
while True:
rect, frame = cap.read()
if not rect:
break
frame_for_ticket = frame.copy()
mask = np.zeros_like(frame)
cv2.fillPoly(mask, [np.array(road_polygon_points, dtype=np.int32)], (255, 255, 255))
original_region = cv2.bitwise_and(frame, mask)
mask_inv = cv2.bitwise_not(mask)
frame = cv2.bitwise_and(frame, mask_inv)
frame = transformation.draw_road(frame)
results = model.track(frame, conf=0.3, imgsz=(3840, 2176),
persist=True, classes=[2, 7], tracker="bytetrack.yaml", verbose=False)
for result in results:
for r in result.boxes.data.tolist():
x1, y1, x2, y2, track_id, conf, class_id = r
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
track_id = int(track_id)
class_id = int(class_id)
color_id = color(track_id)
cv2.rectangle(frame, (x1, y1), (x2, y2), color_id, 5)
cv2.putText(frame, ("car" if class_id == 2 else "truck" if class_id == 7 else None) + f" - {track_id}",
(x1, y1 - 10), 1, cv2.FONT_HERSHEY_COMPLEX, color_id, 3)
# Drawing trail behind the vehicle
if track_id not in trails:
trails[track_id] = []
trails[track_id].append((int((x1 + x2) / 2), int((y1 + y2) / 2)))
if len(trails[track_id]) > 10: # Limiting the length of the trail
trails[track_id].pop(0)
for i in range(1, len(trails[track_id])):
cv2.line(frame, trails[track_id][i - 1], trails[track_id][i], color_id, 3)
# Transformation and drawing on canvas
bottom_center_point_bbox = (int((x1 + x2) / 2), y2)
cv2.circle(frame, bottom_center_point_bbox, 10, color_id, -1)
bottom_center_point_array = np.array([bottom_center_point_bbox])
transformed_points = transformation.transform_points(points=bottom_center_point_array)[0]
frame = transformation.draw_car_point(transformed_points, frame, track_id, color_id)
# Speed Calculation
if track_id not in prev_y_dict:
prev_y_dict[track_id] = [transformed_points[1]]
else:
prev_y_dict[track_id].append(transformed_points[1])
speed = transformation.speed_calculation(prev_y_dict[track_id], source_fps)
if len(prev_y_dict[track_id]) > (source_fps / 2):
prev_y_dict[track_id].pop(0)
# Labeling Speed Calculation on the car and canvas
label_width = int((x2 - x1) * 0.45)
bbox_center = int(((x1 + x2) / 2))
cv2.rectangle(frame, (bbox_center-label_width, y2+10), (bbox_center+label_width, y2 + 40), color_id, -1)
if label_width > 115:
text_scale = 0.5
else:
text_scale = 0.95
cv2.putText(frame, f"{speed} Km/h.",
(int(bbox_center-label_width * text_scale), y2+33), 4, cv2.FONT_HERSHEY_PLAIN, (0, 0, 0), 2)
transformation.label_speed_on_canvas(speed, frame, color_id)
# Ticket Generation for cars with speed more than 120 km/h and trucks more than 100 km/h
if (class_id == 2 and speed > 120) or (class_id == 7 and speed > 100):
if track_id not in speeding_vehicles:
speeding_vehicles[track_id] = {"speed": speed, "images": []}
# Save the image of the speeding vehicle along with its speed
image_filename = f"speeding_vehicle_{track_id}_{speed}Kmph.jpg"
cv2.imwrite(os.path.join(output_dir, image_filename), frame_for_ticket[y1:y2, x1:x2])
speeding_vehicles[track_id]["images"].append((image_filename, speed))
frame = cv2.add(frame, original_region)
ctime = time()
fps = round((1 / (ctime - ptime)), 2)
ptime = ctime
cv2.putText(frame, f"Pyresearch: FPS: {fps}", (30, 40), 4, cv2.FONT_HERSHEY_PLAIN, (0, 225, 0), 2)
cv2.namedWindow('Output', cv2.WINDOW_NORMAL)
cv2.imshow("Output", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
out.write(frame)
cap.release()
out.release()
cv2.destroyAllWindows()
# After video processing ends, generate PDFs for each speeding vehicle
for track_id, vehicle_data in speeding_vehicles.items():
pdf_filename = f"speeding_vehicle_{track_id}_ticket.pdf"
c = canvas.Canvas(os.path.join(output_dir, pdf_filename), pagesize=letter)
# Add details to the PDF
c.setFont("Helvetica", 12)
c.drawString(100, 750, f"Vehicle ID: {track_id}")
c.drawString(100, 730, f"Speed: {vehicle_data['speed']} Km/h")
# Draw images of the speeding vehicle along with speed
image_y = 500
for image_filename, speed in vehicle_data["images"]:
c.drawString(100, image_y - 20, f"Speed: {speed} Km/h") # Add speed information
c.drawImage(os.path.join(output_dir, image_filename), 100, image_y, width=400, height=250)
image_y -= 300
# Add the logo to the PDF
logo_path = "Transparent logo.png" # Replace with the actual path to your logo image
c.drawImage(logo_path, 100, 50, width=100, height=50) # Adjust the coordinates and size as needed
# Save and close the PDF
c.save()