forked from hjptriplebee/VGG19_with_tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestModel.py
executable file
·65 lines (57 loc) · 2.21 KB
/
testModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# coding: UTF-8
'''''''''''''''''''''''''''''''''''''''''''''''''''''
file name: testModel.py
create time: 2017年03月31日 星期五 15时48分05秒
author: Jipeng Huang
e-mail: huangjipengnju@gmail.com
github: https://github.com/hjptriplebee
'''''''''''''''''''''''''''''''''''''''''''''''''''''
import os
import urllib.request
import argparse
import sys
import vgg19
import cv2
import tensorflow as tf
import numpy as np
import caffe_classes
parser = argparse.ArgumentParser(description='Classify some images.')
parser.add_argument('-m', '--mode', choices=['folder', 'url'], default='folder')
parser.add_argument('-p', '--path', help='Specify a path [e.g. testModel]', default='testModel')
args = parser.parse_args(sys.argv[1:])
if args.mode == 'folder':
#get testImage
withPath = lambda f: '{}/{}'.format(args.path,f)
testImg = dict((f,cv2.imread(withPath(f))) for f in os.listdir(args.path) if os.path.isfile(withPath(f)))
elif args.mode == 'url':
def url2img(url):
'''url to image'''
resp = urllib.request.urlopen(url)
image = np.asarray(bytearray(resp.read()), dtype="uint8")
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
return image
testImg = {args.path:url2img(args.path)}
if testImg.values():
#some params
dropoutPro = 1
classNum = 1000
skip = []
imgMean = np.array([104, 117, 124], np.float)
x = tf.placeholder("float", [1, 224, 224, 3])
model = vgg19.VGG19(x, dropoutPro, classNum, skip)
score = model.fc8
softmax = tf.nn.softmax(score)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
model.loadModel(sess)
for key,img in testImg.items():
#img preprocess
resized = cv2.resize(img.astype(np.float), (224, 224)) - imgMean
maxx = np.argmax(sess.run(softmax, feed_dict = {x: resized.reshape((1, 224, 224, 3))}))
res = caffe_classes.class_names[maxx]
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, res, (int(img.shape[0]/3), int(img.shape[1]/3)), font, 1, (0, 255, 0), 2)
print("{}: {}\n----".format(key,res))
cv2.imshow("demo", img)
cv2.waitKey(0)