forked from philippe-ostiguy/PyBacktesting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
indicator.py
89 lines (74 loc) · 3.85 KB
/
indicator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/local/bin/env python3.7
# -*- coding: utf-8; py-indent-offset:4 -*-
###############################################################################
#
# The MIT License (MIT)
# Copyright (c) 2020 Philippe Ostiguy
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
# OR OTHER DEALINGS IN THE SOFTWARE.
###############################################################################
"""Return the values of the indicator of our choice through the desired timeframe and interval"""
import indicators.regression.linear_regression as lr
import indicators.regression.mann_kendall as mk
import numpy as np
from manip_data import ManipData as md
from init_operations import InitOp
class Indicator(InitOp):
def __init__(self):
super().__init__()
def __call__(self):
super().__call__()
def calcul_indicator(self):
"""Function that return the value of an indicator through desired period and the calculation lenght of the
indicator
The indicator always take into account the value of the price for the same row.
Ex: We are at row 99, the indicator will take into account the data for row 99 then write the value on row 99.
Basically, we have to enter or exit the market (or exit) on the next row (value)
The function iterate through the indicators in `self.indicator` and through the range of `self.series`,defined
in `init_operations.py` and function `init_series()`. Then it calculates the value of the indicator using
the subseries `self.sous_series`.
Parameters
----------
`self.series` : pandas Dataframe
It contains the series used to build the model.
`self.indicator` : dictionary
It contains the indicator we are using for the strategy.
Return
------
The function doesn't return anything in itself, but it calculates and stores the value of the desired indicator
in `self.indicator` with new columns in `self.series` (pandas Dataframe)
"""
super().__call__()
rg = lr.RegressionSlopeStrenght(self.series,self)
mk_ = mk.MannKendall(self.series,self)
self.indicator = {'r_square': rg, 'mk': mk_}
self.point_data=0
#self.slope_key=list(self.indicator.keys())[0]
self.r_square_key=list(self.indicator.keys())[0]
self.mk_key = list(self.indicator.keys())[1]
self.point_data = 0
nb_columns=len(self.series.columns)
for key,value in self.indicator.items():
self.series[key] = np.nan
value.point_data = 0
for row in range(len(self.series.index)-self.nb_data+1):
value.sous_series = md.sous_series_(self.series,self.nb_data,point_data=value.point_data)
value_ = getattr(value,key)()
self.series.loc[self.series.index[row]+self.nb_data-1,key]=value_
value.point_data+=1