diff --git a/.github/workflows/codeql-inLimbo.yml b/.github/workflows/codeql-inLimbo.yml index e60b16b..4ba0790 100644 --- a/.github/workflows/codeql-inLimbo.yml +++ b/.github/workflows/codeql-inLimbo.yml @@ -33,7 +33,7 @@ jobs: # Ensure any dependencies are installed before building sudo apt-get update - sudo apt-get install -y build-essential cmake libtag1-dev git libglib2.0-dev # Example dependencies, modify as needed + sudo apt-get install -y build-essential cmake libtag1-dev git libglib2.0-dev imagemagick # Example dependencies, modify as needed ./init.sh diff --git a/CHANGELOG.md b/CHANGELOG.md index 179a352..9c61884 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -615,3 +615,36 @@ Small commit that may fix codeql CI issue, going for refactor + small feature up - Runtime errors with respect to `PlayCurrentSong()` that may be due to detaching the audio thread --- + +## [ALPHA 1.9] --- 14-01-2025 + +### Added +- Image Template processing kit `CImg.h` and `ftxui::image_view` component in `src/ui/components/` and `src/ui/components/libs` + +- Thumbnail parsing function using taglib + +### Changed +- New screen (SHOW_SONG_INFO_SCREEN) with thumbnail and currently playing song info with progress bar + +- New field in `config.toml` to view song info screen (subsequent changes to `keymaps.hpp` and `ui_handler.hpp`) + +- Modifications to build file (`CMakeLists.txt`) to include the component as library for proper linking + +- Readme changes + +- `imagemagick` is now a required dependency for the inLimbo project + +### Fixed +**NIL** + +### Removed +**NIL** + +Medium commit with a new screen, I should really start to refactor now... + +### Known Issues to fix in immediate commits +- Runtime errors with respect to `PlayCurrentSong()` that may be due to detaching the audio thread + +- Centering of the image_view + +--- diff --git a/CMakeLists.txt b/CMakeLists.txt index 5932020..3f18596 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -10,6 +10,10 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_EXTENSIONS OFF) set(CMAKE_EXPORT_COMPILE_COMMANDS ON) +add_library(tiv + ${CMAKE_CURRENT_SOURCE_DIR}/src/ui/components/libs/tiv_lib.cpp +) + # --- Fetch FTXUI -------------------------------------------------------------- include(FetchContent) @@ -40,6 +44,8 @@ endif() add_executable(${EXECUTABLE_NAME} src/main.cpp src/ui/components/scroller.cpp + src/ui/components/image_view.cpp + src/ui/components/libs/tiv_lib.cpp ) # Set include directories for source files @@ -141,6 +147,8 @@ add_definitions(${GLIB_CFLAGS_OTHER}) # Link libraries for native build target_link_libraries(${EXECUTABLE_NAME} + PRIVATE tiv + PRIVATE X11 PRIVATE ftxui::screen PRIVATE ftxui::dom PRIVATE ftxui::component @@ -153,3 +161,6 @@ if (NOT EXISTS "$ENV{HOME}/.config/inLimbo/config.toml") file(MAKE_DIRECTORY "$ENV{HOME}/.config/inLimbo") configure_file("${CMAKE_SOURCE_DIR}/src/parser/examples/config.toml" "$ENV{HOME}/.config/inLimbo/config.toml" COPYONLY) endif() +if (NOT EXISTS "$ENV{HOME}/.cache/inLimbo/") + file(MAKE_DIRECTORY "$ENV{HOME}/.cache/inLimbo") +endif() diff --git a/README.md b/README.md index 815abaa..fa8c42e 100644 --- a/README.md +++ b/README.md @@ -22,7 +22,7 @@ > and no stable release is present as of yet. > -A possible revamp of LiteMus +The inLimbo project aims to be a new upcoming TUI music player for UNIX based systems that gives music lovers a clean and efficient environment to browse, play and interact with your favourite offline music. ## Features @@ -43,10 +43,13 @@ A possible revamp of LiteMus ## DEPENDENCIES -1. TagLib ==> [here](https://taglib.org/) [libtag1-dev for Ubuntu] -2. Gio ==> [here](https://docs.gtk.org/gio/) [libgio-2.0-dev for Ubuntu] -3. GLib ==> [here](https://docs.gtk.org/glib/) [libglib-2.0-dev for Ubuntu] -4. pkg-config ==> [here](https://www.freedesktop.org/wiki/Software/pkg-config/) [pkg-config for Ubuntu] +| Dependency | Ubuntu | Fedora | Arch Linux | +|-----------------|---------------------------|-------------------------------|------------------------------| +| **TagLib** | `libtag1-dev` | `taglib-devel` | `taglib` | +| **Gio** | `libgio-2.0-dev` | `glib2-devel` | `glib2` | +| **GLib** | `libglib-2.0-dev` | `glib2-devel` | `glib2` | +| **pkg-config** | `pkg-config` | `pkgconf` | `pkgconf` | +| **ImageMagick** | `imagemagick` | `ImageMagick` | `imagemagick` | **FTXUI** is fetched from GitHub [here](https://github.com/ArthurSonzogni/FTXUI/) itself during building so **NO** need to install it separately. diff --git a/src/dbus/mpris-service.hpp b/src/dbus/mpris-service.hpp index ec8a7d4..bb5014b 100644 --- a/src/dbus/mpris-service.hpp +++ b/src/dbus/mpris-service.hpp @@ -147,22 +147,22 @@ class MPRISService ~MPRISService() { - if (connection_) - { - g_object_unref(connection_); - connection_ = nullptr; - } - if (introspection_data_) - { - g_dbus_node_info_unref(introspection_data_); - introspection_data_ = nullptr; - } - if (current_metadata_) - { - g_variant_unref(current_metadata_); - current_metadata_ = nullptr; - } - std::cout << "-- MPRISService cleaned up." << std::endl; + if (connection_) + { + g_object_unref(connection_); + connection_ = nullptr; + } + if (introspection_data_) + { + g_dbus_node_info_unref(introspection_data_); + introspection_data_ = nullptr; + } + if (current_metadata_) + { + g_variant_unref(current_metadata_); + current_metadata_ = nullptr; + } + std::cout << "-- MPRISService cleaned up." << std::endl; } /** diff --git a/src/dirsort/taglib_parser.h b/src/dirsort/taglib_parser.h index 6f06ef5..43d0b7f 100644 --- a/src/dirsort/taglib_parser.h +++ b/src/dirsort/taglib_parser.h @@ -2,13 +2,18 @@ #define TAGLIB_PARSER_H #include +#include #include #include #include #ifndef __EMSCRIPTEN__ #include #include +#include +#include +#include #include +#include #endif #include @@ -186,4 +191,50 @@ void printMetadata(const Metadata& metadata) { std::cout << "+++++++++++++++++++++++++++" << std::endl; } +bool extractThumbnail(const std::string& audioFilePath, const std::string& outputImagePath) { + // Open the file using TagLib + TagLib::MPEG::File file(audioFilePath.c_str()); + if (!file.isValid()) { + std::cerr << "Error: Could not open audio file." << std::endl; + return false; + } + + // Ensure the file has ID3v2 tags + TagLib::ID3v2::Tag* id3v2Tag = file.ID3v2Tag(); + if (!id3v2Tag) { + std::cerr << "Error: No ID3v2 tags found in the audio file." << std::endl; + return false; + } + + // Search for the APIC (Attached Picture) frame + const TagLib::ID3v2::FrameList& frameList = id3v2Tag->frameListMap()["APIC"]; + if (frameList.isEmpty()) { + std::cerr << "Error: No embedded album art found in the audio file." << std::endl; + return false; + } + + // Extract the first APIC frame (album art) + auto* apicFrame = dynamic_cast(frameList.front()); + if (!apicFrame) { + std::cerr << "Error: Failed to retrieve album art." << std::endl; + return false; + } + + // Get the picture data and MIME type + const auto& pictureData = apicFrame->picture(); + const std::string mimeType = apicFrame->mimeType().toCString(true); + + // Save the picture data to a file + std::ofstream outputFile(outputImagePath, std::ios::binary); + if (!outputFile) { + std::cerr << "Error: Could not create output image file." << std::endl; + return false; + } + + outputFile.write(reinterpret_cast(pictureData.data()), pictureData.size()); + outputFile.close(); + + return true; +} + #endif // TAGLIB_PARSER_H diff --git a/src/parser/examples/config.toml b/src/parser/examples/config.toml index 00d1988..00c1987 100644 --- a/src/parser/examples/config.toml +++ b/src/parser/examples/config.toml @@ -43,6 +43,7 @@ add_artists_songs_to_queue = "e" remove_song_from_queue = "d" play_this_song_next = "b" view_song_queue = "3" +view_current_song_info = "i" # Colors format: Solid Colors and Hexadecimal values of format `#RRGGBB` [colors] diff --git a/src/parser/toml_parser.hpp b/src/parser/toml_parser.hpp index cd6a9df..9c7af53 100644 --- a/src/parser/toml_parser.hpp +++ b/src/parser/toml_parser.hpp @@ -11,35 +11,36 @@ namespace fs = std::filesystem; /** * @brief Macros for parent and field names used in the TOML configuration. - * + * * These macros represent the sections and fields in the TOML configuration file. */ -#define PARENT_LIB "library" /**< Parent section for library settings */ -#define PARENT_LIB_FIELD_NAME "name" /**< Field for the library name */ +#define PARENT_LIB "library" /**< Parent section for library settings */ +#define PARENT_LIB_FIELD_NAME "name" /**< Field for the library name */ #define PARENT_LIB_FIELD_DIR "directory" /**< Field for the library directory */ -#define PARENT_FTP "ftp" /**< Parent section for FTP settings */ -#define PARENT_FTP_FIELD_USER "username" /**< Field for FTP username */ -#define PARENT_FTP_FIELD_SALT "salt" /**< Field for FTP salt */ +#define PARENT_FTP "ftp" /**< Parent section for FTP settings */ +#define PARENT_FTP_FIELD_USER "username" /**< Field for FTP username */ +#define PARENT_FTP_FIELD_SALT "salt" /**< Field for FTP salt */ #define PARENT_FTP_FIELD_PWD_HASH "password_hash" /**< Field for FTP password hash */ -#define PARENT_DBG "debug" /**< Parent section for debug settings */ +#define PARENT_DBG "debug" /**< Parent section for debug settings */ #define PARENT_DBG_FIELD_PARSER_LOG "parser_log" /**< Field for debug parser log setting */ /* SPECIAL KEYBINDS MACROS */ #define PARENT_KEYBINDS "keybinds" /**< Parent section for keybinds */ -#define SPECIAL_KEYBIND_ENTER_STR "Enter" /**< Special keybind for Enter */ -#define SPECIAL_KEYBIND_TAB_STR "Tab" /**< Special keybind for Tab */ -#define SPECIAL_KEYBIND_SPACE_STR "Space" /**< Special keybind for Space */ +#define SPECIAL_KEYBIND_ENTER_STR "Enter" /**< Special keybind for Enter */ +#define SPECIAL_KEYBIND_TAB_STR "Tab" /**< Special keybind for Tab */ +#define SPECIAL_KEYBIND_SPACE_STR "Space" /**< Special keybind for Space */ #define PARENT_COLORS "colors" /**< Parent section for color settings */ /** * @brief Retrieves the path to the configuration file. - * - * This function constructs the path to the `config.toml` file located in the user's home directory, inside the + * + * This function constructs the path to the `config.toml` file located in the user's home directory, + * inside the * `.config/inLimbo/` folder. - * + * * @param fileName The name of the configuration file (e.g., "config.toml"). * @return A string representing the full path to the configuration file. * @throws std::runtime_error If the HOME environment variable is not found. @@ -58,11 +59,25 @@ string getConfigPath(string fileName) return configFilePath; } +string getCachePath() +{ + const char* homeDir = std::getenv("HOME"); + if (!homeDir) + { + cerr << "ERROR: HOME environment variable not found." << endl; + exit(EXIT_FAILURE); /**< Exit gracefully if the HOME environment variable is not set. */ + } + + string cacheFilePath = string(homeDir) + "/.cache/inLimbo/"; + + return cacheFilePath; +} + /** * @brief Checks if the configuration file exists. - * + * * This function checks if the `config.toml` file exists at the given file path. - * + * * @param filePath The path to the configuration file. * @return `true` if the file exists, otherwise `false`. */ @@ -70,10 +85,10 @@ bool configFileExists(const string& filePath) { return fs::exists(filePath); } /** * @brief Loads the configuration file. - * - * This function loads the `config.toml` file and parses it using the `toml` library. If the file does not exist, - * the program exits gracefully with an error message. - * + * + * This function loads the `config.toml` file and parses it using the `toml` library. If the file + * does not exist, the program exits gracefully with an error message. + * * @return A `toml::parse_result` object representing the parsed configuration. * @throws std::runtime_error If the configuration file does not exist or cannot be parsed. */ @@ -95,32 +110,34 @@ auto config = loadConfig(); /** * @brief Parses a string field from the TOML configuration. - * - * This function retrieves the value of a specific field within a parent section of the TOML configuration. - * If the field is not found, it returns an empty string view. - * + * + * This function retrieves the value of a specific field within a parent section of the TOML + * configuration. If the field is not found, it returns an empty string view. + * * @param parent The parent section name (e.g., "library"). * @param field The field name within the parent section (e.g., "name"). * @return A string view representing the value of the field. */ string_view parseTOMLField(string parent, string field) { - return config[parent][field].value_or(""sv); /**< If the field is not found, return an empty string view. */ + return config[parent][field].value_or( + ""sv); /**< If the field is not found, return an empty string view. */ } /** * @brief Parses an integer field from the TOML configuration. - * - * This function retrieves the value of a specific field as an integer from the TOML configuration. If the field is - * not found, it returns -1 as a default value. - * + * + * This function retrieves the value of a specific field as an integer from the TOML configuration. + * If the field is not found, it returns -1 as a default value. + * * @param parent The parent section name (e.g., "ftp"). * @param field The field name within the parent section (e.g., "username"). * @return The integer value of the field, or -1 if the field is not found. */ int64_t parseTOMLFieldInt(string parent, string field) { - return config[parent][field].value_or(-1); /**< If the field is not found, return -1 as default. */ + return config[parent][field].value_or( + -1); /**< If the field is not found, return -1 as default. */ } #endif diff --git a/src/signal/signalHandler.hpp b/src/signal/signalHandler.hpp index 0770b23..2a97a97 100644 --- a/src/signal/signalHandler.hpp +++ b/src/signal/signalHandler.hpp @@ -51,7 +51,7 @@ class SignalHandler { return std::string(buffer); } - static void createLogDirectory(const std::string& path) { + static void createCacheDirectory(const std::string& path) { struct stat info; if (stat(path.c_str(), &info) != 0 || !(info.st_mode & S_IFDIR)) { mkdir(path.c_str(), 0755); // Create directory with rwx permissions @@ -100,7 +100,7 @@ class SignalHandler { } std::string logDir = std::string(std::getenv("HOME")) + "/.cache/inLimbo/"; - createLogDirectory(logDir); // Ensure the directory exists + createCacheDirectory(logDir); // Ensure the directory exists std::string logFileName = logDir +"debug-" + std::to_string(signal) + ".log"; std::ofstream logFile(logFileName, std::ios::out | std::ios::app); diff --git a/src/ui/components/image_view.cpp b/src/ui/components/image_view.cpp new file mode 100644 index 0000000..6396e46 --- /dev/null +++ b/src/ui/components/image_view.cpp @@ -0,0 +1,86 @@ +#include // for min +#include // for make_shared +#include // for string, wstring +#include // for move +#include // for vector +#include +#include + +#include // for text, vtext +#include // for Element, text, vtext +#include // for Node +#include +#include // for Requirement +#include // for Box +#include // for Pixel, Screen +#include // for string_width, Utf8ToGlyphs, to_string + +#include "libs/tiv_lib.h" +#include "image_view.hpp" + +namespace ftxui { + +namespace { + +using ftxui::Screen; + +class ImageView: public Node { + public: + explicit ImageView(std::string_view url) : url_(url) {} + + void ComputeRequirement() override { + img_ = tiv::load_rgb_CImg(url_.c_str()); + + requirement_.min_x = img_.width() / 4; + requirement_.min_y = img_.height() / 8; + } + + void Render(Screen& screen) override { + auto get_pixel = [this](int row, int col) -> unsigned long { + return (((unsigned long) img_(row, col, 0, 0)) << 16) + | (((unsigned long) img_(row, col, 0, 1)) << 8) + | (((unsigned long) img_(row, col, 0, 2))); + }; + auto origin_image_width = (box_.x_max - box_.x_min + 1) * 4; + auto origin_image_height = (box_.y_max - box_.y_min + 1) * 8; + auto new_size = tiv::size(img_).fitted_within(tiv::size(origin_image_width, origin_image_height)); + img_.resize(new_size.width, new_size.height, -100, -100, 5); + + auto flags = tiv::FLAG_24BIT; + tiv::CharData lastCharData; + auto screen_y = box_.y_min; + for (int y = 0; y <= img_.height() - 8; y += 8) { + auto screen_x = box_.x_min; + for (int x = 0; x <= img_.width() - 4; x += 4) { + if(screen_x > box_.x_max) + break; + std::stringstream output; + tiv::CharData charData = tiv::findCharData(get_pixel, x, y, tiv::FLAG_24BIT); + ftxui::Color bgColor(charData.bgColor[0], charData.bgColor[1],charData.bgColor[2]); + ftxui::Color fgColor(charData.fgColor[0], charData.fgColor[1],charData.fgColor[2]); + tiv::printCodepoint(output, charData.codePoint); + auto pixel = ftxui::Pixel(); + pixel.background_color = bgColor; + pixel.foreground_color = fgColor; + pixel.character = output.str(); + screen.PixelAt(screen_x++, screen_y) = pixel; + } + ++screen_y; + } + } + + private: + std::string url_; + + cimg_library::CImg img_; + int width_; + int height_; +}; + +} // namespace + +Element image_view(std::string_view url) { + return std::make_shared(url); +} + +} // namespace ftxui diff --git a/src/ui/components/image_view.hpp b/src/ui/components/image_view.hpp new file mode 100644 index 0000000..733a5f4 --- /dev/null +++ b/src/ui/components/image_view.hpp @@ -0,0 +1,11 @@ +#pragma once + +#include + +#include +#include + +namespace ftxui +{ +Element image_view(std::string_view url); +} diff --git a/src/ui/components/libs/CImg.h b/src/ui/components/libs/CImg.h new file mode 100644 index 0000000..327e2e0 --- /dev/null +++ b/src/ui/components/libs/CImg.h @@ -0,0 +1,68765 @@ +/* + # + # File : CImg.h + # ( C++ header file ) + # + # Description : C++ Template Image Processing Toolkit. + # This file is the main component of the CImg Library project. + # ( http://cimg.eu ) + # + # Project manager : David Tschumperlé + # ( http://tschumperle.users.greyc.fr/ ) + # + # A complete list of contributors is available in file 'README.txt' + # distributed within the CImg package. + # + # Licenses : This file is 'dual-licensed', you have to choose one + # of the two licenses below to apply. + # + # CeCILL-C + # The CeCILL-C license is close to the GNU LGPL. + # ( http://cecill.info/licences/Licence_CeCILL-C_V1-en.html ) + # + # or CeCILL v2.1 + # The CeCILL license is compatible with the GNU GPL. + # ( http://cecill.info/licences/Licence_CeCILL_V2.1-en.html ) + # + # This software is governed either by the CeCILL or the CeCILL-C license + # under French law and abiding by the rules of distribution of free software. + # You can use, modify and or redistribute the software under the terms of + # the CeCILL or CeCILL-C licenses as circulated by CEA, CNRS and INRIA + # at the following URL: "http://cecill.info". + # + # As a counterpart to the access to the source code and rights to copy, + # modify and redistribute granted by the license, users are provided only + # with a limited warranty and the software's author, the holder of the + # economic rights, and the successive licensors have only limited + # liability. + # + # In this respect, the user's attention is drawn to the risks associated + # with loading, using, modifying and/or developing or reproducing the + # software by the user in light of its specific status of free software, + # that may mean that it is complicated to manipulate, and that also + # therefore means that it is reserved for developers and experienced + # professionals having in-depth computer knowledge. Users are therefore + # encouraged to load and test the software's suitability as regards their + # requirements in conditions enabling the security of their systems and/or + # data to be ensured and, more generally, to use and operate it in the + # same conditions as regards security. + # + # The fact that you are presently reading this means that you have had + # knowledge of the CeCILL and CeCILL-C licenses and that you accept its terms. + # +*/ + +// Set version number of the library. +#ifndef cimg_version +#define cimg_version 340 + +/*----------------------------------------------------------- + # + # Test and possibly auto-set CImg configuration variables + # and include required headers. + # + # If you find that the default configuration variables are + # not adapted to your system, you can override their values + # before including the header file "CImg.h" + # (use the #define directive). + # + ------------------------------------------------------------*/ + +// Include standard C++ headers. +// This is the minimal set of required headers to make CImg-based codes compile. +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#define cimg_str(x) #x +#define cimg_str2(x) cimg_str(x) + +// Detect/configure OS variables. +// +// Define 'cimg_OS' to: '0' for an unknown OS (will try to minize library dependencies). +// '1' for a Unix-like OS (Linux, Solaris, BSD, MacOSX, Irix, ...). +// '2' for Microsoft Windows. +// (auto-detection is performed if 'cimg_OS' is not set by the user). +#ifndef cimg_OS +#if defined(unix) || defined(__unix) || defined(__unix__) \ + || defined(linux) || defined(__linux) || defined(__linux__) \ + || defined(sun) || defined(__sun) \ + || defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) \ + || defined(__FreeBSD__) || defined (__DragonFly__) \ + || defined(sgi) || defined(__sgi) \ + || defined(__OSX__) || defined(__MACOSX__) || defined(__APPLE__) \ + || defined(__CYGWIN__) +#define cimg_OS 1 +#elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) \ + || defined(WIN64) || defined(_WIN64) || defined(__WIN64__) +#define cimg_OS 2 +#else +#define cimg_OS 0 +#endif +#elif !(cimg_OS==0 || cimg_OS==1 || cimg_OS==2) +#error CImg Library: Invalid configuration variable 'cimg_OS'. +#error (correct values are '0 = unknown OS', '1 = Unix-like OS', '2 = Microsoft Windows'). +#endif +#ifndef cimg_date +#define cimg_date __DATE__ +#endif +#ifndef cimg_time +#define cimg_time __TIME__ +#endif + +// Disable silly warnings on some Microsoft VC++ compilers. +#ifdef _MSC_VER +#pragma warning(push) +#pragma warning(disable:4127) +#pragma warning(disable:4244) +#pragma warning(disable:4307) +#pragma warning(disable:4311) +#pragma warning(disable:4312) +#pragma warning(disable:4319) +#pragma warning(disable:4512) +#pragma warning(disable:4571) +#pragma warning(disable:4640) +#pragma warning(disable:4706) +#pragma warning(disable:4710) +#pragma warning(disable:4800) +#pragma warning(disable:4804) +#pragma warning(disable:4820) +#pragma warning(disable:4995) +#pragma warning(disable:4996) + +#ifndef _CRT_SECURE_NO_DEPRECATE +#define _CRT_SECURE_NO_DEPRECATE 1 +#endif +#ifndef _CRT_SECURE_NO_WARNINGS +#define _CRT_SECURE_NO_WARNINGS 1 +#endif +#ifndef _CRT_NONSTDC_NO_DEPRECATE +#define _CRT_NONSTDC_NO_DEPRECATE 1 +#endif +#endif + +// Define correct string functions for each compiler and OS. +#if cimg_OS==2 && defined(_MSC_VER) +#define cimg_sscanf std::sscanf +#define cimg_snprintf cimg::_snprintf +#define cimg_vsnprintf cimg::_vsnprintf +#else +#include +#if defined(__MACOSX__) || defined(__APPLE__) +#define cimg_sscanf cimg::_sscanf +#define cimg_snprintf cimg::_snprintf +#define cimg_vsnprintf cimg::_vsnprintf +#else +#define cimg_sscanf std::sscanf +#define cimg_snprintf snprintf +#define cimg_vsnprintf vsnprintf +#endif +#endif + +// Include OS-specific headers. +#if cimg_OS==1 +#include +#include +#include +#include +#include +#include +#elif cimg_OS==2 +#ifndef NOMINMAX +#define NOMINMAX +#endif +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#include +#ifndef _WIN32_IE +#define _WIN32_IE 0x0400 +#endif +#include +#include +#include +enum {FALSE_WIN = 0}; +#endif + +// Look for C++11 features. +#ifndef cimg_use_cpp11 +#if __cplusplus>201100 +#define cimg_use_cpp11 1 +#else +#define cimg_use_cpp11 0 +#endif +#endif +#if cimg_use_cpp11==1 +#include +#include +#endif + +// Convenient macro to define pragma +#ifdef _MSC_VER +#define cimg_pragma(x) __pragma(x) +#else +#define cimg_pragma(x) _Pragma(#x) +#endif + +// Define own datatypes to ensure portability. +// ( 'sizeof(cimg_ulong/cimg_long) = sizeof(void*)' ). +#define cimg_uint8 unsigned char +#if defined(CHAR_MAX) && CHAR_MAX==255 +#define cimg_int8 signed char +#else +#define cimg_int8 char +#endif +#define cimg_uint16 unsigned short +#define cimg_int16 short +#define cimg_uint32 unsigned int +#define cimg_int32 int +#define cimg_float32 float +#define cimg_float64 double + +#if cimg_OS==2 + +#define cimg_uint64 unsigned __int64 +#define cimg_int64 __int64 +#define cimg_ulong UINT_PTR +#define cimg_long INT_PTR +#ifdef _MSC_VER +#define cimg_fuint64 "%I64u" +#define cimg_fint64 "%I64d" +#else +#define cimg_fuint64 "%llu" +#define cimg_fint64 "%lld" +#endif +#define cimg_fhex64 "%llx" + +#else + +#if UINTPTR_MAX==0xffffffff || defined(__arm__) || defined(_M_ARM) || ((ULONG_MAX)==(UINT_MAX)) +#define cimg_uint64 unsigned long long +#define cimg_int64 long long +#define cimg_fuint64 "%llu" +#define cimg_fint64 "%lld" +#define cimg_fhex64 "%llx" +#else +#define cimg_uint64 unsigned long +#define cimg_int64 long +#define cimg_fuint64 "%lu" +#define cimg_fint64 "%ld" +#define cimg_fhex64 "%lx" +#endif + +#if defined(__arm__) || defined(_M_ARM) +#define cimg_ulong unsigned long long +#define cimg_long long long +#else +#define cimg_ulong unsigned long +#define cimg_long long +#endif + +#endif + +#ifndef cimg_max_buf_size +#if UINTPTR_MAX==0xffffffff +#define cimg_max_buf_size ((cimg_ulong)3*1024*1024*1024) +#else +#define cimg_max_buf_size ((cimg_ulong)16*1024*1024*1024) +#endif +#endif + +// Configure filename separator. +// +// Filename separator is set by default to '/', except for Windows where it is '\'. +#ifndef cimg_file_separator +#if cimg_OS==2 +#define cimg_file_separator '\\' +#else +#define cimg_file_separator '/' +#endif +#endif + +// Configure verbosity of output messages. +// +// Define 'cimg_verbosity' to: '0' to hide library messages (quiet mode). +// '1' to output library messages on the console. +// '2' to output library messages on a basic dialog window (default behavior). +// '3' to do as '1' + add extra warnings (may slow down the code!). +// '4' to do as '2' + add extra warnings (may slow down the code!). +// +// Define 'cimg_strict_warnings' to replace warning messages by exception throwns. +// +// Define 'cimg_use_vt100' to allow output of color messages on VT100-compatible terminals. +#ifndef cimg_verbosity +#if cimg_OS==2 +#define cimg_verbosity 2 +#else +#define cimg_verbosity 1 +#endif +#elif !(cimg_verbosity==0 || cimg_verbosity==1 || cimg_verbosity==2 || cimg_verbosity==3 || cimg_verbosity==4) +#error CImg Library: Configuration variable 'cimg_verbosity' is badly defined. +#error (should be { 0=quiet | 1=console | 2=dialog | 3=console+warnings | 4=dialog+warnings }). +#endif + +// Configure OpenMP support. +// (http://www.openmp.org) +// +// Define 'cimg_use_openmp' to enable OpenMP support (requires OpenMP 3.0+). +// +// OpenMP directives are used in many CImg functions to get +// advantages of multi-core CPUs. +#if !defined(cimg_use_openmp) +#ifdef _OPENMP +#define cimg_use_openmp 1 +#else +#define cimg_use_openmp 0 +#endif +#else +#undef cimg_use_openmp +#define cimg_use_openmp 1 +#endif +#if cimg_use_openmp!=0 +#include +#define cimg_pragma_openmp(p) cimg_pragma(omp p) +#else +#define cimg_pragma_openmp(p) +#endif + +// Configure the 'abort' signal handler (does nothing by default). +// A typical signal handler can be defined in your own source like this: +// #define cimg_abort_test if (is_abort) throw CImgAbortException("") +// +// where 'is_abort' is a boolean variable defined somewhere in your code and reachable in the method. +// 'cimg_abort_test2' does the same but is called more often (in inner loops). +#if defined(cimg_abort_test) && cimg_use_openmp!=0 + +// Define abort macros to be used with OpenMP. +#ifndef _cimg_abort_init_openmp +#define _cimg_abort_init_openmp unsigned int _cimg_abort_go_openmp = 1; cimg::unused(_cimg_abort_go_openmp) +#endif +#ifndef _cimg_abort_try_openmp +#define _cimg_abort_try_openmp if (_cimg_abort_go_openmp) try +#endif +#ifndef _cimg_abort_catch_openmp +#define _cimg_abort_catch_openmp catch (CImgAbortException&) { \ + cimg_pragma_openmp(atomic) _cimg_abort_go_openmp&=0; \ +} +#endif +#ifndef _cimg_abort_catch_fill_openmp +#define _cimg_abort_catch_fill_openmp \ + catch (CImgException& e) { cimg_pragma(omp critical(abort)) CImg::string(e._message).move_to(is_error_expr); \ + cimg_pragma_openmp(atomic) _cimg_abort_go_openmp&=0; } +#endif +#ifdef cimg_abort_test2 +#ifndef _cimg_abort_try_openmp2 +#define _cimg_abort_try_openmp2 _cimg_abort_try_openmp +#endif +#ifndef _cimg_abort_catch_openmp2 +#define _cimg_abort_catch_openmp2 _cimg_abort_catch_openmp +#endif +#endif +#endif + +#ifndef _cimg_abort_init_openmp +#define _cimg_abort_init_openmp +#endif +#ifndef _cimg_abort_try_openmp +#define _cimg_abort_try_openmp +#endif +#ifndef _cimg_abort_catch_openmp +#define _cimg_abort_catch_openmp +#endif +#ifndef _cimg_abort_try_openmp2 +#define _cimg_abort_try_openmp2 +#endif +#ifndef _cimg_abort_catch_openmp2 +#define _cimg_abort_catch_openmp2 +#endif +#ifndef _cimg_abort_catch_fill_openmp +#define _cimg_abort_catch_fill_openmp +#endif +#ifndef cimg_abort_init +#define cimg_abort_init +#endif +#ifndef cimg_abort_test +#define cimg_abort_test +#endif +#ifndef cimg_abort_test2 +#define cimg_abort_test2 +#endif + +// Configure display framework. +// +// Define 'cimg_display' to: '0' to disable display capabilities. +// '1' to use the X-Window framework (X11). +// '2' to use the Microsoft GDI32 framework. +#ifndef cimg_display +#if cimg_OS==0 +#define cimg_display 0 +#elif cimg_OS==1 +#define cimg_display 1 +#elif cimg_OS==2 +#define cimg_display 2 +#endif +#elif !(cimg_display==0 || cimg_display==1 || cimg_display==2) +#error CImg Library: Configuration variable 'cimg_display' is badly defined. +#error (should be { 0=none | 1=X-Window (X11) | 2=Microsoft GDI32 }). +#endif + +// Include display-specific headers. +#if cimg_display==1 +#include +#include +#include +#include +#ifdef cimg_use_xshm +#include +#include +#include +#endif +#ifdef cimg_use_xrandr +#include +#endif +#endif +#ifndef cimg_appname +#define cimg_appname "CImg" +#endif + +// Configure OpenCV support. +// (http://opencv.willowgarage.com/wiki/) +// +// Define 'cimg_use_opencv' to enable OpenCV support. +// +// OpenCV library may be used to access images from cameras +// (see method 'CImg::load_camera()'). +#ifdef cimg_use_opencv +#ifdef True +#undef True +#define _cimg_redefine_True +#endif +#ifdef False +#undef False +#define _cimg_redefine_False +#endif +#ifdef Status +#undef Status +#define _cimg_redefine_Status +#endif +#include +#include +#if CV_MAJOR_VERSION>=3 +#define _cimg_fourcc cv::VideoWriter::fourcc +#define _cimg_cap_prop_frame_width cv::VideoCaptureProperties::CAP_PROP_FRAME_WIDTH +#define _cimg_cap_prop_frame_height cv::VideoCaptureProperties::CAP_PROP_FRAME_HEIGHT +#define _cimg_cap_prop_frame_count cv::VideoCaptureProperties::CAP_PROP_FRAME_COUNT +#else +#define _cimg_fourcc CV_FOURCC +#define _cimg_cap_prop_frame_width CV_CAP_PROP_FRAME_WIDTH +#define _cimg_cap_prop_frame_height CV_CAP_PROP_FRAME_HEIGHT +#define _cimg_cap_prop_frame_count CV_CAP_PROP_FRAME_COUNT +#endif +#endif + +// Configure LibPNG support. +// (http://www.libpng.org) +// +// Define 'cimg_use_png' to enable LibPNG support. +// +// PNG library may be used to get a native support of '.png' files. +// (see methods 'CImg::{load,save}_png()'. +#ifdef cimg_use_png +extern "C" { +#include "png.h" +} +#endif + +// Configure LibJPEG support. +// (http://en.wikipedia.org/wiki/Libjpeg) +// +// Define 'cimg_use_jpeg' to enable LibJPEG support. +// +// JPEG library may be used to get a native support of '.jpg' files. +// (see methods 'CImg::{load,save}_jpeg()'). +#ifdef cimg_use_jpeg +extern "C" { +#include "jpeglib.h" +#include "setjmp.h" +} +#endif + +// Configure LibTIFF support. +// (http://www.libtiff.org) +// +// Define 'cimg_use_tiff' to enable LibTIFF support. +// +// TIFF library may be used to get a native support of '.tif' files. +// (see methods 'CImg[List]::{load,save}_tiff()'). +#ifdef cimg_use_tiff +extern "C" { +#define uint64 uint64_hack_ +#define int64 int64_hack_ +#include "tiffio.h" +#undef uint64 +#undef int64 +} +#endif + +// Configure HEIF support +// (https://github.com/strukturag/libheif) +// +// Define 'cimg_use_heif' to enable HEIF support. +// +// HEIF library may be used to get a native support of '.heic' and '.avif' files. +// (see method 'CImg::load_heif()'). +#ifdef cimg_use_heif +#include +#endif + +// Configure LibMINC2 support. +// (http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference) +// +// Define 'cimg_use_minc2' to enable LibMINC2 support. +// +// MINC2 library may be used to get a native support of '.mnc' files. +// (see methods 'CImg::{load,save}_minc2()'). +#ifdef cimg_use_minc2 +#include "minc_io_simple_volume.h" +#include "minc_1_simple.h" +#include "minc_1_simple_rw.h" +#endif + +// Configure Zlib support. +// (http://www.zlib.net) +// +// Define 'cimg_use_zlib' to enable Zlib support. +// +// Zlib library may be used to allow compressed data in '.cimgz' files +// (see methods 'CImg[List]::{load,save}_cimg()'). +#ifdef cimg_use_zlib +extern "C" { +#include "zlib.h" +} +#endif + +// Configure libcurl support. +// (http://curl.haxx.se/libcurl/) +// +// Define 'cimg_use_curl' to enable libcurl support. +// +// Libcurl may be used to get a native support of file downloading from the network. +// (see method 'cimg::load_network()'.) +#ifdef cimg_use_curl +#include "curl/curl.h" +#endif + +// Configure Magick++ support. +// (http://www.imagemagick.org/Magick++) +// +// Define 'cimg_use_magick' to enable Magick++ support. +// +// Magick++ library may be used to get a native support of various image file formats. +// (see methods 'CImg::{load,save}()'). +#ifdef cimg_use_magick +#include "Magick++.h" +#endif + +// Configure FFTW3 support. +// (http://www.fftw.org) +// +// Define 'cimg_use_fftw3' to enable libFFTW3 support. +// +// FFTW3 library may be used to efficiently compute the Fast Fourier Transform +// of image data, without restriction on the image size. +// (see method 'CImg[List]::FFT()'). +#ifdef cimg_use_fftw3 +extern "C" { +#include "fftw3.h" +} +#endif + +// Configure LibBoard support. +// (http://libboard.sourceforge.net/) +// +// Define 'cimg_use_board' to enable Board support. +// +// Board library may be used to draw 3D objects in vector-graphics canvas +// that can be saved as '.ps' or '.svg' files afterwards. +// (see method 'CImg::draw_object3d()'). +#ifdef cimg_use_board +#include "Board.h" +#endif + +// Configure OpenEXR support. +// (http://www.openexr.com/) +// +// Define 'cimg_use_openexr' to enable OpenEXR support. +// +// OpenEXR library may be used to get a native support of '.exr' files. +// (see methods 'CImg::{load,save}_exr()'). +#ifdef cimg_use_openexr +#if __GNUC__>=5 +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wdeprecated" +#pragma GCC diagnostic ignored "-Wdeprecated-copy" +#pragma GCC diagnostic ignored "-Wshadow" +#endif +#include "ImfRgbaFile.h" +#include "ImfInputFile.h" +#include "ImfChannelList.h" +#include "ImfMatrixAttribute.h" +#include "ImfArray.h" +#if __GNUC__>=5 +#pragma GCC diagnostic pop +#endif +#endif + +// Configure TinyEXR support. +// (https://github.com/syoyo/tinyexr) +// +// Define 'cimg_use_tinyexr' to enable TinyEXR support. +// +// TinyEXR is a small, single header-only library to load and save OpenEXR(.exr) images. +#ifdef cimg_use_tinyexr +#ifndef TINYEXR_IMPLEMENTATION +#define TINYEXR_IMPLEMENTATION +#endif +#include "tinyexr.h" +#endif + +// Lapack configuration. +// (http://www.netlib.org/lapack) +// +// Define 'cimg_use_lapack' to enable LAPACK support. +// +// Lapack library may be used in several CImg methods to speed up +// matrix computations (eigenvalues, inverse, ...). +#ifdef cimg_use_lapack +extern "C" { + extern void sgetrf_(int*, int*, float*, int*, int*, int*); + extern void sgetri_(int*, float*, int*, int*, float*, int*, int*); + extern void sgetrs_(char*, int*, int*, float*, int*, int*, float*, int*, int*); + extern void sgesvd_(char*, char*, int*, int*, float*, int*, float*, float*, int*, float*, int*, float*, int*, int*); + extern void ssyev_(char*, char*, int*, float*, int*, float*, float*, int*, int*); + extern void dgetrf_(int*, int*, double*, int*, int*, int*); + extern void dgetri_(int*, double*, int*, int*, double*, int*, int*); + extern void dgetrs_(char*, int*, int*, double*, int*, int*, double*, int*, int*); + extern void dgesvd_(char*, char*, int*, int*, double*, int*, double*, double*, + int*, double*, int*, double*, int*, int*); + extern void dsyev_(char*, char*, int*, double*, int*, double*, double*, int*, int*); + extern void dgels_(char*, int*,int*,int*,double*,int*,double*,int*,double*,int*,int*); + extern void sgels_(char*, int*,int*,int*,float*,int*,float*,int*,float*,int*,int*); +} +#endif + +// Check if min/max/PI macros are defined. +// +// CImg does not compile if macros 'min', 'max' or 'PI' are defined, +// because it redefines functions min(), max() and const variable PI in the cimg:: namespace. +// so it '#undef' these macros if necessary, and restore them to reasonable +// values at the end of this file. +#ifdef min +#undef min +#define _cimg_redefine_min +#endif +#ifdef max +#undef max +#define _cimg_redefine_max +#endif +#ifdef PI +#undef PI +#define _cimg_redefine_PI +#endif + +/*------------------------------------------------------------------------------ + # + # Define user-friendly macros. + # + # These CImg macros are prefixed by 'cimg_' and can be used safely in your own + # code. They are useful to parse command line options, or to write image loops. + # + ------------------------------------------------------------------------------*/ + +// Macros to define program usage, and retrieve command line arguments. +#define cimg_usage(usage) cimg_library::cimg::option((char*)0,argc,argv,(char*)0,usage,false) +#define cimg_help(str) cimg_library::cimg::option((char*)0,argc,argv,str,(char*)0) +#define cimg_option(name,_default,usage) cimg_library::cimg::option(name,argc,argv,_default,usage) + +// Macros to define and manipulate local neighborhoods. +#define CImg_2x2(I,T) T I[4]; \ + T& I##cc = I[0]; T& I##nc = I[1]; \ + T& I##cn = I[2]; T& I##nn = I[3]; \ + I##cc = I##nc = \ + I##cn = I##nn = 0 + +#define CImg_3x3(I,T) T I[9]; \ + T& I##pp = I[0]; T& I##cp = I[1]; T& I##np = I[2]; \ + T& I##pc = I[3]; T& I##cc = I[4]; T& I##nc = I[5]; \ + T& I##pn = I[6]; T& I##cn = I[7]; T& I##nn = I[8]; \ + I##pp = I##cp = I##np = \ + I##pc = I##cc = I##nc = \ + I##pn = I##cn = I##nn = 0 + +#define CImg_4x4(I,T) T I[16]; \ + T& I##pp = I[0]; T& I##cp = I[1]; T& I##np = I[2]; T& I##ap = I[3]; \ + T& I##pc = I[4]; T& I##cc = I[5]; T& I##nc = I[6]; T& I##ac = I[7]; \ + T& I##pn = I[8]; T& I##cn = I[9]; T& I##nn = I[10]; T& I##an = I[11]; \ + T& I##pa = I[12]; T& I##ca = I[13]; T& I##na = I[14]; T& I##aa = I[15]; \ + I##pp = I##cp = I##np = I##ap = \ + I##pc = I##cc = I##nc = I##ac = \ + I##pn = I##cn = I##nn = I##an = \ + I##pa = I##ca = I##na = I##aa = 0 + +#define CImg_5x5(I,T) T I[25]; \ + T& I##bb = I[0]; T& I##pb = I[1]; T& I##cb = I[2]; T& I##nb = I[3]; T& I##ab = I[4]; \ + T& I##bp = I[5]; T& I##pp = I[6]; T& I##cp = I[7]; T& I##np = I[8]; T& I##ap = I[9]; \ + T& I##bc = I[10]; T& I##pc = I[11]; T& I##cc = I[12]; T& I##nc = I[13]; T& I##ac = I[14]; \ + T& I##bn = I[15]; T& I##pn = I[16]; T& I##cn = I[17]; T& I##nn = I[18]; T& I##an = I[19]; \ + T& I##ba = I[20]; T& I##pa = I[21]; T& I##ca = I[22]; T& I##na = I[23]; T& I##aa = I[24]; \ + I##bb = I##pb = I##cb = I##nb = I##ab = \ + I##bp = I##pp = I##cp = I##np = I##ap = \ + I##bc = I##pc = I##cc = I##nc = I##ac = \ + I##bn = I##pn = I##cn = I##nn = I##an = \ + I##ba = I##pa = I##ca = I##na = I##aa = 0 + +#define CImg_2x2x2(I,T) T I[8]; \ + T& I##ccc = I[0]; T& I##ncc = I[1]; \ + T& I##cnc = I[2]; T& I##nnc = I[3]; \ + T& I##ccn = I[4]; T& I##ncn = I[5]; \ + T& I##cnn = I[6]; T& I##nnn = I[7]; \ + I##ccc = I##ncc = \ + I##cnc = I##nnc = \ + I##ccn = I##ncn = \ + I##cnn = I##nnn = 0 + +#define CImg_3x3x3(I,T) T I[27]; \ + T& I##ppp = I[0]; T& I##cpp = I[1]; T& I##npp = I[2]; \ + T& I##pcp = I[3]; T& I##ccp = I[4]; T& I##ncp = I[5]; \ + T& I##pnp = I[6]; T& I##cnp = I[7]; T& I##nnp = I[8]; \ + T& I##ppc = I[9]; T& I##cpc = I[10]; T& I##npc = I[11]; \ + T& I##pcc = I[12]; T& I##ccc = I[13]; T& I##ncc = I[14]; \ + T& I##pnc = I[15]; T& I##cnc = I[16]; T& I##nnc = I[17]; \ + T& I##ppn = I[18]; T& I##cpn = I[19]; T& I##npn = I[20]; \ + T& I##pcn = I[21]; T& I##ccn = I[22]; T& I##ncn = I[23]; \ + T& I##pnn = I[24]; T& I##cnn = I[25]; T& I##nnn = I[26]; \ + I##ppp = I##cpp = I##npp = \ + I##pcp = I##ccp = I##ncp = \ + I##pnp = I##cnp = I##nnp = \ + I##ppc = I##cpc = I##npc = \ + I##pcc = I##ccc = I##ncc = \ + I##pnc = I##cnc = I##nnc = \ + I##ppn = I##cpn = I##npn = \ + I##pcn = I##ccn = I##ncn = \ + I##pnn = I##cnn = I##nnn = 0 + +#define cimg_def2x2(img,x,y) \ + int _n1##x = x<(img).width() - 1?x + 1:(img).width() - 1, \ + _n1##y = y<(img).height() - 1?y + 1:(img).height() - 1 + +#define cimg_def3x3(img,x,y) \ + cimg_def2x2(img,x,y); \ + int _p1##x = x>1?x - 1:0, \ + _p1##y = y>1?y - 1:0 + +#define cimg_def4x4(img,x,y) \ + cimg_def3x3(img,x,y); \ + int _n2##x = x<(img).width() - 2?x + 2:(img).width() - 1, \ + _n2##y = y<(img).height() - 2?y + 2:(img).height() - 1 + +#define cimg_def5x5(img,x,y) \ + cimg_def4x4(img,x,y); \ + int _p2##x = x>2?x - 2:0, \ + _p2##y = y>2?y - 2:0 + +#define cimg_def6x6(img,x,y) \ + cimg_def5x5(img,x,y); \ + int _n3##x = x<(img).width() - 3?x + 3:(img).width() - 1, \ + _n3##y = y<(img).height() - 3?y + 3:(img).height() - 1 + +#define cimg_def7x7(img,x,y) \ + cimg_def6x6(img,x,y); \ + int _p3##x = x>3?x - 3:0, \ + _p3##y = y>3?y - 3:0 + +#define cimg_def8x8(img,x,y) \ + cimg_def7x7(img,x,y); \ + int _n4##x = x<(img).width() - 4?x + 4:(img).width() - 1, \ + _n4##y = y<(img).height() - 4?y + 4:(img).height() - 1 + +#define cimg_def9x9(img,x,y) \ + cimg_def8x8(img,x,y); \ + int _p4##x = x>4?x - 4:0, \ + _p4##y = y>4?y - 4:0 + +#define cimg_def2x2x2(img,x,y,z) \ + cimg_def2x2(img,x,y); \ + int _n1##z = z<(img).depth() - 1?z + 1:(img).depth() - 1 + +#define cimg_def3x3x3(img,x,y,z) \ + cimg_def2x2x2(img,x,y,z); \ + int _p1##x = x>1?x - 1:0, \ + _p1##y = y>1?y - 1:0, \ + _p1##z = z>1?z - 1:0 + +#define cimg_get2x2(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(x,y,z,c), I[1] = (T)(img)(_n1##x,y,z,c), I[2] = (T)(img)(x,_n1##y,z,c), \ + I[3] = (T)(img)(_n1##x,_n1##y,z,c) + +#define cimg_get3x3(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p1##x,_p1##y,z,c), I[1] = (T)(img)(x,_p1##y,z,c), I[2] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[3] = (T)(img)(_p1##x,y,z,c), I[4] = (T)(img)(x,y,z,c), I[5] = (T)(img)(_n1##x,y,z,c), \ + I[6] = (T)(img)(_p1##x,_n1##y,z,c), I[7] = (T)(img)(x,_n1##y,z,c), I[8] = (T)(img)(_n1##x,_n1##y,z,c) + +#define cimg_get4x4(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p1##x,_p1##y,z,c), I[1] = (T)(img)(x,_p1##y,z,c), I[2] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[3] = (T)(img)(_n2##x,_p1##y,z,c), I[4] = (T)(img)(_p1##x,y,z,c), I[5] = (T)(img)(x,y,z,c), \ + I[6] = (T)(img)(_n1##x,y,z,c), I[7] = (T)(img)(_n2##x,y,z,c), I[8] = (T)(img)(_p1##x,_n1##y,z,c), \ + I[9] = (T)(img)(x,_n1##y,z,c), I[10] = (T)(img)(_n1##x,_n1##y,z,c), I[11] = (T)(img)(_n2##x,_n1##y,z,c), \ + I[12] = (T)(img)(_p1##x,_n2##y,z,c), I[13] = (T)(img)(x,_n2##y,z,c), I[14] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[15] = (T)(img)(_n2##x,_n2##y,z,c) + +#define cimg_get5x5(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p2##x,_p2##y,z,c), I[1] = (T)(img)(_p1##x,_p2##y,z,c), I[2] = (T)(img)(x,_p2##y,z,c), \ + I[3] = (T)(img)(_n1##x,_p2##y,z,c), I[4] = (T)(img)(_n2##x,_p2##y,z,c), I[5] = (T)(img)(_p2##x,_p1##y,z,c), \ + I[6] = (T)(img)(_p1##x,_p1##y,z,c), I[7] = (T)(img)(x,_p1##y,z,c), I[8] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[9] = (T)(img)(_n2##x,_p1##y,z,c), I[10] = (T)(img)(_p2##x,y,z,c), I[11] = (T)(img)(_p1##x,y,z,c), \ + I[12] = (T)(img)(x,y,z,c), I[13] = (T)(img)(_n1##x,y,z,c), I[14] = (T)(img)(_n2##x,y,z,c), \ + I[15] = (T)(img)(_p2##x,_n1##y,z,c), I[16] = (T)(img)(_p1##x,_n1##y,z,c), I[17] = (T)(img)(x,_n1##y,z,c), \ + I[18] = (T)(img)(_n1##x,_n1##y,z,c), I[19] = (T)(img)(_n2##x,_n1##y,z,c), I[20] = (T)(img)(_p2##x,_n2##y,z,c), \ + I[21] = (T)(img)(_p1##x,_n2##y,z,c), I[22] = (T)(img)(x,_n2##y,z,c), I[23] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[24] = (T)(img)(_n2##x,_n2##y,z,c) + +#define cimg_get6x6(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p2##x,_p2##y,z,c), I[1] = (T)(img)(_p1##x,_p2##y,z,c), I[2] = (T)(img)(x,_p2##y,z,c), \ + I[3] = (T)(img)(_n1##x,_p2##y,z,c), I[4] = (T)(img)(_n2##x,_p2##y,z,c), I[5] = (T)(img)(_n3##x,_p2##y,z,c), \ + I[6] = (T)(img)(_p2##x,_p1##y,z,c), I[7] = (T)(img)(_p1##x,_p1##y,z,c), I[8] = (T)(img)(x,_p1##y,z,c), \ + I[9] = (T)(img)(_n1##x,_p1##y,z,c), I[10] = (T)(img)(_n2##x,_p1##y,z,c), I[11] = (T)(img)(_n3##x,_p1##y,z,c), \ + I[12] = (T)(img)(_p2##x,y,z,c), I[13] = (T)(img)(_p1##x,y,z,c), I[14] = (T)(img)(x,y,z,c), \ + I[15] = (T)(img)(_n1##x,y,z,c), I[16] = (T)(img)(_n2##x,y,z,c), I[17] = (T)(img)(_n3##x,y,z,c), \ + I[18] = (T)(img)(_p2##x,_n1##y,z,c), I[19] = (T)(img)(_p1##x,_n1##y,z,c), I[20] = (T)(img)(x,_n1##y,z,c), \ + I[21] = (T)(img)(_n1##x,_n1##y,z,c), I[22] = (T)(img)(_n2##x,_n1##y,z,c), I[23] = (T)(img)(_n3##x,_n1##y,z,c), \ + I[24] = (T)(img)(_p2##x,_n2##y,z,c), I[25] = (T)(img)(_p1##x,_n2##y,z,c), I[26] = (T)(img)(x,_n2##y,z,c), \ + I[27] = (T)(img)(_n1##x,_n2##y,z,c), I[28] = (T)(img)(_n2##x,_n2##y,z,c), I[29] = (T)(img)(_n3##x,_n2##y,z,c), \ + I[30] = (T)(img)(_p2##x,_n3##y,z,c), I[31] = (T)(img)(_p1##x,_n3##y,z,c), I[32] = (T)(img)(x,_n3##y,z,c), \ + I[33] = (T)(img)(_n1##x,_n3##y,z,c), I[34] = (T)(img)(_n2##x,_n3##y,z,c), I[35] = (T)(img)(_n3##x,_n3##y,z,c) + +#define cimg_get7x7(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p3##x,_p3##y,z,c), I[1] = (T)(img)(_p2##x,_p3##y,z,c), I[2] = (T)(img)(_p1##x,_p3##y,z,c), \ + I[3] = (T)(img)(x,_p3##y,z,c), I[4] = (T)(img)(_n1##x,_p3##y,z,c), I[5] = (T)(img)(_n2##x,_p3##y,z,c), \ + I[6] = (T)(img)(_n3##x,_p3##y,z,c), I[7] = (T)(img)(_p3##x,_p2##y,z,c), I[8] = (T)(img)(_p2##x,_p2##y,z,c), \ + I[9] = (T)(img)(_p1##x,_p2##y,z,c), I[10] = (T)(img)(x,_p2##y,z,c), I[11] = (T)(img)(_n1##x,_p2##y,z,c), \ + I[12] = (T)(img)(_n2##x,_p2##y,z,c), I[13] = (T)(img)(_n3##x,_p2##y,z,c), I[14] = (T)(img)(_p3##x,_p1##y,z,c), \ + I[15] = (T)(img)(_p2##x,_p1##y,z,c), I[16] = (T)(img)(_p1##x,_p1##y,z,c), I[17] = (T)(img)(x,_p1##y,z,c), \ + I[18] = (T)(img)(_n1##x,_p1##y,z,c), I[19] = (T)(img)(_n2##x,_p1##y,z,c), I[20] = (T)(img)(_n3##x,_p1##y,z,c), \ + I[21] = (T)(img)(_p3##x,y,z,c), I[22] = (T)(img)(_p2##x,y,z,c), I[23] = (T)(img)(_p1##x,y,z,c), \ + I[24] = (T)(img)(x,y,z,c), I[25] = (T)(img)(_n1##x,y,z,c), I[26] = (T)(img)(_n2##x,y,z,c), \ + I[27] = (T)(img)(_n3##x,y,z,c), I[28] = (T)(img)(_p3##x,_n1##y,z,c), I[29] = (T)(img)(_p2##x,_n1##y,z,c), \ + I[30] = (T)(img)(_p1##x,_n1##y,z,c), I[31] = (T)(img)(x,_n1##y,z,c), I[32] = (T)(img)(_n1##x,_n1##y,z,c), \ + I[33] = (T)(img)(_n2##x,_n1##y,z,c), I[34] = (T)(img)(_n3##x,_n1##y,z,c), I[35] = (T)(img)(_p3##x,_n2##y,z,c), \ + I[36] = (T)(img)(_p2##x,_n2##y,z,c), I[37] = (T)(img)(_p1##x,_n2##y,z,c), I[38] = (T)(img)(x,_n2##y,z,c), \ + I[39] = (T)(img)(_n1##x,_n2##y,z,c), I[40] = (T)(img)(_n2##x,_n2##y,z,c), I[41] = (T)(img)(_n3##x,_n2##y,z,c), \ + I[42] = (T)(img)(_p3##x,_n3##y,z,c), I[43] = (T)(img)(_p2##x,_n3##y,z,c), I[44] = (T)(img)(_p1##x,_n3##y,z,c), \ + I[45] = (T)(img)(x,_n3##y,z,c), I[46] = (T)(img)(_n1##x,_n3##y,z,c), I[47] = (T)(img)(_n2##x,_n3##y,z,c), \ + I[48] = (T)(img)(_n3##x,_n3##y,z,c) + +#define cimg_get8x8(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p3##x,_p3##y,z,c), I[1] = (T)(img)(_p2##x,_p3##y,z,c), I[2] = (T)(img)(_p1##x,_p3##y,z,c), \ + I[3] = (T)(img)(x,_p3##y,z,c), I[4] = (T)(img)(_n1##x,_p3##y,z,c), I[5] = (T)(img)(_n2##x,_p3##y,z,c), \ + I[6] = (T)(img)(_n3##x,_p3##y,z,c), I[7] = (T)(img)(_n4##x,_p3##y,z,c), I[8] = (T)(img)(_p3##x,_p2##y,z,c), \ + I[9] = (T)(img)(_p2##x,_p2##y,z,c), I[10] = (T)(img)(_p1##x,_p2##y,z,c), I[11] = (T)(img)(x,_p2##y,z,c), \ + I[12] = (T)(img)(_n1##x,_p2##y,z,c), I[13] = (T)(img)(_n2##x,_p2##y,z,c), I[14] = (T)(img)(_n3##x,_p2##y,z,c), \ + I[15] = (T)(img)(_n4##x,_p2##y,z,c), I[16] = (T)(img)(_p3##x,_p1##y,z,c), I[17] = (T)(img)(_p2##x,_p1##y,z,c), \ + I[18] = (T)(img)(_p1##x,_p1##y,z,c), I[19] = (T)(img)(x,_p1##y,z,c), I[20] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[21] = (T)(img)(_n2##x,_p1##y,z,c), I[22] = (T)(img)(_n3##x,_p1##y,z,c), I[23] = (T)(img)(_n4##x,_p1##y,z,c), \ + I[24] = (T)(img)(_p3##x,y,z,c), I[25] = (T)(img)(_p2##x,y,z,c), I[26] = (T)(img)(_p1##x,y,z,c), \ + I[27] = (T)(img)(x,y,z,c), I[28] = (T)(img)(_n1##x,y,z,c), I[29] = (T)(img)(_n2##x,y,z,c), \ + I[30] = (T)(img)(_n3##x,y,z,c), I[31] = (T)(img)(_n4##x,y,z,c), I[32] = (T)(img)(_p3##x,_n1##y,z,c), \ + I[33] = (T)(img)(_p2##x,_n1##y,z,c), I[34] = (T)(img)(_p1##x,_n1##y,z,c), I[35] = (T)(img)(x,_n1##y,z,c), \ + I[36] = (T)(img)(_n1##x,_n1##y,z,c), I[37] = (T)(img)(_n2##x,_n1##y,z,c), I[38] = (T)(img)(_n3##x,_n1##y,z,c), \ + I[39] = (T)(img)(_n4##x,_n1##y,z,c), I[40] = (T)(img)(_p3##x,_n2##y,z,c), I[41] = (T)(img)(_p2##x,_n2##y,z,c), \ + I[42] = (T)(img)(_p1##x,_n2##y,z,c), I[43] = (T)(img)(x,_n2##y,z,c), I[44] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[45] = (T)(img)(_n2##x,_n2##y,z,c), I[46] = (T)(img)(_n3##x,_n2##y,z,c), I[47] = (T)(img)(_n4##x,_n2##y,z,c), \ + I[48] = (T)(img)(_p3##x,_n3##y,z,c), I[49] = (T)(img)(_p2##x,_n3##y,z,c), I[50] = (T)(img)(_p1##x,_n3##y,z,c), \ + I[51] = (T)(img)(x,_n3##y,z,c), I[52] = (T)(img)(_n1##x,_n3##y,z,c), I[53] = (T)(img)(_n2##x,_n3##y,z,c), \ + I[54] = (T)(img)(_n3##x,_n3##y,z,c), I[55] = (T)(img)(_n4##x,_n3##y,z,c), I[56] = (T)(img)(_p3##x,_n4##y,z,c), \ + I[57] = (T)(img)(_p2##x,_n4##y,z,c), I[58] = (T)(img)(_p1##x,_n4##y,z,c), I[59] = (T)(img)(x,_n4##y,z,c), \ + I[60] = (T)(img)(_n1##x,_n4##y,z,c), I[61] = (T)(img)(_n2##x,_n4##y,z,c), I[62] = (T)(img)(_n3##x,_n4##y,z,c), \ + I[63] = (T)(img)(_n4##x,_n4##y,z,c); + +#define cimg_get9x9(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p4##x,_p4##y,z,c), I[1] = (T)(img)(_p3##x,_p4##y,z,c), I[2] = (T)(img)(_p2##x,_p4##y,z,c), \ + I[3] = (T)(img)(_p1##x,_p4##y,z,c), I[4] = (T)(img)(x,_p4##y,z,c), I[5] = (T)(img)(_n1##x,_p4##y,z,c), \ + I[6] = (T)(img)(_n2##x,_p4##y,z,c), I[7] = (T)(img)(_n3##x,_p4##y,z,c), I[8] = (T)(img)(_n4##x,_p4##y,z,c), \ + I[9] = (T)(img)(_p4##x,_p3##y,z,c), I[10] = (T)(img)(_p3##x,_p3##y,z,c), I[11] = (T)(img)(_p2##x,_p3##y,z,c), \ + I[12] = (T)(img)(_p1##x,_p3##y,z,c), I[13] = (T)(img)(x,_p3##y,z,c), I[14] = (T)(img)(_n1##x,_p3##y,z,c), \ + I[15] = (T)(img)(_n2##x,_p3##y,z,c), I[16] = (T)(img)(_n3##x,_p3##y,z,c), I[17] = (T)(img)(_n4##x,_p3##y,z,c), \ + I[18] = (T)(img)(_p4##x,_p2##y,z,c), I[19] = (T)(img)(_p3##x,_p2##y,z,c), I[20] = (T)(img)(_p2##x,_p2##y,z,c), \ + I[21] = (T)(img)(_p1##x,_p2##y,z,c), I[22] = (T)(img)(x,_p2##y,z,c), I[23] = (T)(img)(_n1##x,_p2##y,z,c), \ + I[24] = (T)(img)(_n2##x,_p2##y,z,c), I[25] = (T)(img)(_n3##x,_p2##y,z,c), I[26] = (T)(img)(_n4##x,_p2##y,z,c), \ + I[27] = (T)(img)(_p4##x,_p1##y,z,c), I[28] = (T)(img)(_p3##x,_p1##y,z,c), I[29] = (T)(img)(_p2##x,_p1##y,z,c), \ + I[30] = (T)(img)(_p1##x,_p1##y,z,c), I[31] = (T)(img)(x,_p1##y,z,c), I[32] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[33] = (T)(img)(_n2##x,_p1##y,z,c), I[34] = (T)(img)(_n3##x,_p1##y,z,c), I[35] = (T)(img)(_n4##x,_p1##y,z,c), \ + I[36] = (T)(img)(_p4##x,y,z,c), I[37] = (T)(img)(_p3##x,y,z,c), I[38] = (T)(img)(_p2##x,y,z,c), \ + I[39] = (T)(img)(_p1##x,y,z,c), I[40] = (T)(img)(x,y,z,c), I[41] = (T)(img)(_n1##x,y,z,c), \ + I[42] = (T)(img)(_n2##x,y,z,c), I[43] = (T)(img)(_n3##x,y,z,c), I[44] = (T)(img)(_n4##x,y,z,c), \ + I[45] = (T)(img)(_p4##x,_n1##y,z,c), I[46] = (T)(img)(_p3##x,_n1##y,z,c), I[47] = (T)(img)(_p2##x,_n1##y,z,c), \ + I[48] = (T)(img)(_p1##x,_n1##y,z,c), I[49] = (T)(img)(x,_n1##y,z,c), I[50] = (T)(img)(_n1##x,_n1##y,z,c), \ + I[51] = (T)(img)(_n2##x,_n1##y,z,c), I[52] = (T)(img)(_n3##x,_n1##y,z,c), I[53] = (T)(img)(_n4##x,_n1##y,z,c), \ + I[54] = (T)(img)(_p4##x,_n2##y,z,c), I[55] = (T)(img)(_p3##x,_n2##y,z,c), I[56] = (T)(img)(_p2##x,_n2##y,z,c), \ + I[57] = (T)(img)(_p1##x,_n2##y,z,c), I[58] = (T)(img)(x,_n2##y,z,c), I[59] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[60] = (T)(img)(_n2##x,_n2##y,z,c), I[61] = (T)(img)(_n3##x,_n2##y,z,c), I[62] = (T)(img)(_n4##x,_n2##y,z,c), \ + I[63] = (T)(img)(_p4##x,_n3##y,z,c), I[64] = (T)(img)(_p3##x,_n3##y,z,c), I[65] = (T)(img)(_p2##x,_n3##y,z,c), \ + I[66] = (T)(img)(_p1##x,_n3##y,z,c), I[67] = (T)(img)(x,_n3##y,z,c), I[68] = (T)(img)(_n1##x,_n3##y,z,c), \ + I[69] = (T)(img)(_n2##x,_n3##y,z,c), I[70] = (T)(img)(_n3##x,_n3##y,z,c), I[71] = (T)(img)(_n4##x,_n3##y,z,c), \ + I[72] = (T)(img)(_p4##x,_n4##y,z,c), I[73] = (T)(img)(_p3##x,_n4##y,z,c), I[74] = (T)(img)(_p2##x,_n4##y,z,c), \ + I[75] = (T)(img)(_p1##x,_n4##y,z,c), I[76] = (T)(img)(x,_n4##y,z,c), I[77] = (T)(img)(_n1##x,_n4##y,z,c), \ + I[78] = (T)(img)(_n2##x,_n4##y,z,c), I[79] = (T)(img)(_n3##x,_n4##y,z,c), I[80] = (T)(img)(_n4##x,_n4##y,z,c) + +#define cimg_get2x2x2(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(x,y,z,c), I[1] = (T)(img)(_n1##x,y,z,c), I[2] = (T)(img)(x,_n1##y,z,c), \ + I[3] = (T)(img)(_n1##x,_n1##y,z,c), I[4] = (T)(img)(x,y,_n1##z,c), I[5] = (T)(img)(_n1##x,y,_n1##z,c), \ + I[6] = (T)(img)(x,_n1##y,_n1##z,c), I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c) + +#define cimg_get3x3x3(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[1] = (T)(img)(x,_p1##y,_p1##z,c), \ + I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[3] = (T)(img)(_p1##x,y,_p1##z,c), I[4] = (T)(img)(x,y,_p1##z,c), \ + I[5] = (T)(img)(_n1##x,y,_p1##z,c), I[6] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[7] = (T)(img)(x,_n1##y,_p1##z,c), \ + I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[9] = (T)(img)(_p1##x,_p1##y,z,c), I[10] = (T)(img)(x,_p1##y,z,c), \ + I[11] = (T)(img)(_n1##x,_p1##y,z,c), I[12] = (T)(img)(_p1##x,y,z,c), I[13] = (T)(img)(x,y,z,c), \ + I[14] = (T)(img)(_n1##x,y,z,c), I[15] = (T)(img)(_p1##x,_n1##y,z,c), I[16] = (T)(img)(x,_n1##y,z,c), \ + I[17] = (T)(img)(_n1##x,_n1##y,z,c), I[18] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[19] = (T)(img)(x,_p1##y,_n1##z,c), \ + I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[21] = (T)(img)(_p1##x,y,_n1##z,c), I[22] = (T)(img)(x,y,_n1##z,c), \ + I[23] = (T)(img)(_n1##x,y,_n1##z,c), I[24] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[25] = (T)(img)(x,_n1##y,_n1##z,c), \ + I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c) + +// Macros to perform various image loops. +// +// These macros are simpler to use than loops with C++ iterators. +#define cimg_for(img,ptrs,T_ptrs) \ + for (T_ptrs *ptrs = (img)._data, *_max##ptrs = (img)._data + (img).size(); ptrs<_max##ptrs; ++ptrs) +#define cimg_rof(img,ptrs,T_ptrs) for (T_ptrs *ptrs = (img)._data + (img).size() - 1; ptrs>=(img)._data; --ptrs) +#define cimg_foroff(img,off) for (cimg_ulong off = 0, _max##off = (img).size(); off<_max##off; ++off) +#define cimg_rofoff(img,off) for (cimg_long off = (cimg_long)((img).size() - 1); off>=0; --off) + +#define cimg_for1(bound,i) for (int i = 0; i<(int)(bound); ++i) +#define cimg_forX(img,x) cimg_for1((img)._width,x) +#define cimg_forY(img,y) cimg_for1((img)._height,y) +#define cimg_forZ(img,z) cimg_for1((img)._depth,z) +#define cimg_forC(img,c) cimg_for1((img)._spectrum,c) +#define cimg_forXY(img,x,y) cimg_forY(img,y) cimg_forX(img,x) +#define cimg_forXZ(img,x,z) cimg_forZ(img,z) cimg_forX(img,x) +#define cimg_forYZ(img,y,z) cimg_forZ(img,z) cimg_forY(img,y) +#define cimg_forXC(img,x,c) cimg_forC(img,c) cimg_forX(img,x) +#define cimg_forYC(img,y,c) cimg_forC(img,c) cimg_forY(img,y) +#define cimg_forZC(img,z,c) cimg_forC(img,c) cimg_forZ(img,z) +#define cimg_forXYZ(img,x,y,z) cimg_forZ(img,z) cimg_forXY(img,x,y) +#define cimg_forXYC(img,x,y,c) cimg_forC(img,c) cimg_forXY(img,x,y) +#define cimg_forXZC(img,x,z,c) cimg_forC(img,c) cimg_forXZ(img,x,z) +#define cimg_forYZC(img,y,z,c) cimg_forC(img,c) cimg_forYZ(img,y,z) +#define cimg_forXYZC(img,x,y,z,c) cimg_forC(img,c) cimg_forXYZ(img,x,y,z) + +#define cimg_rof1(bound,i) for (int i = (int)(bound) - 1; i>=0; --i) +#define cimg_rofX(img,x) cimg_rof1((img)._width,x) +#define cimg_rofY(img,y) cimg_rof1((img)._height,y) +#define cimg_rofZ(img,z) cimg_rof1((img)._depth,z) +#define cimg_rofC(img,c) cimg_rof1((img)._spectrum,c) +#define cimg_rofXY(img,x,y) cimg_rofY(img,y) cimg_rofX(img,x) +#define cimg_rofXZ(img,x,z) cimg_rofZ(img,z) cimg_rofX(img,x) +#define cimg_rofYZ(img,y,z) cimg_rofZ(img,z) cimg_rofY(img,y) +#define cimg_rofXC(img,x,c) cimg_rofC(img,c) cimg_rofX(img,x) +#define cimg_rofYC(img,y,c) cimg_rofC(img,c) cimg_rofY(img,y) +#define cimg_rofZC(img,z,c) cimg_rofC(img,c) cimg_rofZ(img,z) +#define cimg_rofXYZ(img,x,y,z) cimg_rofZ(img,z) cimg_rofXY(img,x,y) +#define cimg_rofXYC(img,x,y,c) cimg_rofC(img,c) cimg_rofXY(img,x,y) +#define cimg_rofXZC(img,x,z,c) cimg_rofC(img,c) cimg_rofXZ(img,x,z) +#define cimg_rofYZC(img,y,z,c) cimg_rofC(img,c) cimg_rofYZ(img,y,z) +#define cimg_rofXYZC(img,x,y,z,c) cimg_rofC(img,c) cimg_rofXYZ(img,x,y,z) + +#define cimg_for_in1(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), _max##i = (int)(i1)<(int)(bound)?(int)(i1):(int)(bound) - 1; i<=_max##i; ++i) +#define cimg_for_inX(img,x0,x1,x) cimg_for_in1((img)._width,x0,x1,x) +#define cimg_for_inY(img,y0,y1,y) cimg_for_in1((img)._height,y0,y1,y) +#define cimg_for_inZ(img,z0,z1,z) cimg_for_in1((img)._depth,z0,z1,z) +#define cimg_for_inC(img,c0,c1,c) cimg_for_in1((img)._spectrum,c0,c1,c) +#define cimg_for_inXY(img,x0,y0,x1,y1,x,y) cimg_for_inY(img,y0,y1,y) cimg_for_inX(img,x0,x1,x) +#define cimg_for_inXZ(img,x0,z0,x1,z1,x,z) cimg_for_inZ(img,z0,z1,z) cimg_for_inX(img,x0,x1,x) +#define cimg_for_inXC(img,x0,c0,x1,c1,x,c) cimg_for_inC(img,c0,c1,c) cimg_for_inX(img,x0,x1,x) +#define cimg_for_inYZ(img,y0,z0,y1,z1,y,z) cimg_for_inZ(img,x0,z1,z) cimg_for_inY(img,y0,y1,y) +#define cimg_for_inYC(img,y0,c0,y1,c1,y,c) cimg_for_inC(img,c0,c1,c) cimg_for_inY(img,y0,y1,y) +#define cimg_for_inZC(img,z0,c0,z1,c1,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inZ(img,z0,z1,z) +#define cimg_for_inXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_inZ(img,z0,z1,z) cimg_for_inXY(img,x0,y0,x1,y1,x,y) +#define cimg_for_inXYC(img,x0,y0,c0,x1,y1,c1,x,y,c) cimg_for_inC(img,c0,c1,c) cimg_for_inXY(img,x0,y0,x1,y1,x,y) +#define cimg_for_inXZC(img,x0,z0,c0,x1,z1,c1,x,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inXZ(img,x0,z0,x1,z1,x,z) +#define cimg_for_inYZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inYZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_inXYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_inC(img,c0,c1,c) cimg_for_inXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) +#define cimg_for_insideX(img,x,n) cimg_for_inX(img,n,(img)._width - 1 - (n),x) +#define cimg_for_insideY(img,y,n) cimg_for_inY(img,n,(img)._height - 1 - (n),y) +#define cimg_for_insideZ(img,z,n) cimg_for_inZ(img,n,(img)._depth - 1 - (n),z) +#define cimg_for_insideC(img,c,n) cimg_for_inC(img,n,(img)._spectrum - 1 - (n),c) +#define cimg_for_insideXY(img,x,y,n) cimg_for_inXY(img,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),x,y) +#define cimg_for_insideXYZ(img,x,y,z,n) \ + cimg_for_inXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z) +#define cimg_for_insideXYZC(img,x,y,z,c,n) \ + cimg_for_inXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z) + +#define cimg_for_out1(boundi,i0,i1,i) \ + for (int i = (int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); ++i, i = i==(int)(i0)?(int)(i1) + 1:i) +#define cimg_for_out2(boundi,boundj,i0,j0,i1,j1,i,j) \ + for (int j = 0; j<(int)(boundj); ++j) \ + for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j?0:(int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); \ + ++i, i = _n1j?i:(i==(int)(i0)?(int)(i1) + 1:i)) +#define cimg_for_out3(boundi,boundj,boundk,i0,j0,k0,i1,j1,k1,i,j,k) \ + for (int k = 0; k<(int)(boundk); ++k) \ + for (int _n1k = (int)(k<(int)(k0) || k>(int)(k1)), j = 0; j<(int)(boundj); ++j) \ + for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j || _n1k?0:(int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); \ + ++i, i = _n1j || _n1k?i:(i==(int)(i0)?(int)(i1) + 1:i)) +#define cimg_for_out4(boundi,boundj,boundk,boundl,i0,j0,k0,l0,i1,j1,k1,l1,i,j,k,l) \ + for (int l = 0; l<(int)(boundl); ++l) \ + for (int _n1l = (int)(l<(int)(l0) || l>(int)(l1)), k = 0; k<(int)(boundk); ++k) \ + for (int _n1k = (int)(k<(int)(k0) || k>(int)(k1)), j = 0; j<(int)(boundj); ++j) \ + for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j || _n1k || _n1l?0:(int)(i0)>0?0:(int)(i1) + 1; \ + i<(int)(boundi); ++i, i = _n1j || _n1k || _n1l?i:(i==(int)(i0)?(int)(i1) + 1:i)) +#define cimg_for_outX(img,x0,x1,x) cimg_for_out1((img)._width,x0,x1,x) +#define cimg_for_outY(img,y0,y1,y) cimg_for_out1((img)._height,y0,y1,y) +#define cimg_for_outZ(img,z0,z1,z) cimg_for_out1((img)._depth,z0,z1,z) +#define cimg_for_outC(img,c0,c1,c) cimg_for_out1((img)._spectrum,c0,c1,c) +#define cimg_for_outXY(img,x0,y0,x1,y1,x,y) cimg_for_out2((img)._width,(img)._height,x0,y0,x1,y1,x,y) +#define cimg_for_outXZ(img,x0,z0,x1,z1,x,z) cimg_for_out2((img)._width,(img)._depth,x0,z0,x1,z1,x,z) +#define cimg_for_outXC(img,x0,c0,x1,c1,x,c) cimg_for_out2((img)._width,(img)._spectrum,x0,c0,x1,c1,x,c) +#define cimg_for_outYZ(img,y0,z0,y1,z1,y,z) cimg_for_out2((img)._height,(img)._depth,y0,z0,y1,z1,y,z) +#define cimg_for_outYC(img,y0,c0,y1,c1,y,c) cimg_for_out2((img)._height,(img)._spectrum,y0,c0,y1,c1,y,c) +#define cimg_for_outZC(img,z0,c0,z1,c1,z,c) cimg_for_out2((img)._depth,(img)._spectrum,z0,c0,z1,c1,z,c) +#define cimg_for_outXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) \ + cimg_for_out3((img)._width,(img)._height,(img)._depth,x0,y0,z0,x1,y1,z1,x,y,z) +#define cimg_for_outXYC(img,x0,y0,c0,x1,y1,c1,x,y,c) \ + cimg_for_out3((img)._width,(img)._height,(img)._spectrum,x0,y0,c0,x1,y1,c1,x,y,c) +#define cimg_for_outXZC(img,x0,z0,c0,x1,z1,c1,x,z,c) \ + cimg_for_out3((img)._width,(img)._depth,(img)._spectrum,x0,z0,c0,x1,z1,c1,x,z,c) +#define cimg_for_outYZC(img,y0,z0,c0,y1,z1,c1,y,z,c) \ + cimg_for_out3((img)._height,(img)._depth,(img)._spectrum,y0,z0,c0,y1,z1,c1,y,z,c) +#define cimg_for_outXYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_out4((img)._width,(img)._height,(img)._depth,(img)._spectrum,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) +#define cimg_for_borderX(img,x,n) cimg_for_outX(img,n,(img)._width - 1 - (n),x) +#define cimg_for_borderY(img,y,n) cimg_for_outY(img,n,(img)._height - 1 - (n),y) +#define cimg_for_borderZ(img,z,n) cimg_for_outZ(img,n,(img)._depth - 1 - (n),z) +#define cimg_for_borderC(img,c,n) cimg_for_outC(img,n,(img)._spectrum - 1 - (n),c) +#define cimg_for_borderXY(img,x,y,n) cimg_for_outXY(img,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),x,y) +#define cimg_for_borderXYZ(img,x,y,z,n) \ + cimg_for_outXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z) +#define cimg_for_borderXYZC(img,x,y,z,c,n) \ + cimg_for_outXYZC(img,n,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n), \ + (img)._depth - 1 - (n),(img)._spectrum - 1 - (n),x,y,z,c) + +#define cimg_for_spiralXY(img,x,y) \ + for (int x = 0, y = 0, _n1##x = 1, _n1##y = (img).width()*(img).height(); _n1##y; \ + --_n1##y, _n1##x+=(_n1##x>>2) - ((!(_n1##x&3)?--y:((_n1##x&3)==1?(img)._width - 1 - ++x:\ + ((_n1##x&3)==2?(img)._height - 1 - ++y:--x))))?0:1) + +#define cimg_for_lineXY(x,y,x0,y0,x1,y1) \ + for (int x = (int)(x0), y = (int)(y0), _sx = 1, _sy = 1, _slope = 0, \ + _dx=(x1)>(x0)?(int)(x1) - (int)(x0):(_sx=-1,(int)(x0) - (int)(x1)), \ + _dy=(y1)>(y0)?(int)(y1) - (int)(y0):(_sy=-1,(int)(y0) - (int)(y1)), \ + _counter = _dx, \ + _err = _dx>_dy?(_dy>>1):((_slope=1),(_counter=_dy),(_dx>>1)); \ + _counter>=0; \ + --_counter, x+=_slope? \ + (y+=_sy,(_err-=_dx)<0?_err+=_dy,_sx:0): \ + (y+=(_err-=_dy)<0?_err+=_dx,_sy:0,_sx)) + +#define cimg_for2(bound,i) \ + for (int i = 0, _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + ++i, ++_n1##i) +#define cimg_for2X(img,x) cimg_for2((img)._width,x) +#define cimg_for2Y(img,y) cimg_for2((img)._height,y) +#define cimg_for2Z(img,z) cimg_for2((img)._depth,z) +#define cimg_for2C(img,c) cimg_for2((img)._spectrum,c) +#define cimg_for2XY(img,x,y) cimg_for2Y(img,y) cimg_for2X(img,x) +#define cimg_for2XZ(img,x,z) cimg_for2Z(img,z) cimg_for2X(img,x) +#define cimg_for2XC(img,x,c) cimg_for2C(img,c) cimg_for2X(img,x) +#define cimg_for2YZ(img,y,z) cimg_for2Z(img,z) cimg_for2Y(img,y) +#define cimg_for2YC(img,y,c) cimg_for2C(img,c) cimg_for2Y(img,y) +#define cimg_for2ZC(img,z,c) cimg_for2C(img,c) cimg_for2Z(img,z) +#define cimg_for2XYZ(img,x,y,z) cimg_for2Z(img,z) cimg_for2XY(img,x,y) +#define cimg_for2XZC(img,x,z,c) cimg_for2C(img,c) cimg_for2XZ(img,x,z) +#define cimg_for2YZC(img,y,z,c) cimg_for2C(img,c) cimg_for2YZ(img,y,z) +#define cimg_for2XYZC(img,x,y,z,c) cimg_for2C(img,c) cimg_for2XYZ(img,x,y,z) + +#define cimg_for_in2(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1; \ + i<=(int)(i1) && (_n1##i<(int)(bound) || i==--_n1##i); \ + ++i, ++_n1##i) +#define cimg_for_in2X(img,x0,x1,x) cimg_for_in2((img)._width,x0,x1,x) +#define cimg_for_in2Y(img,y0,y1,y) cimg_for_in2((img)._height,y0,y1,y) +#define cimg_for_in2Z(img,z0,z1,z) cimg_for_in2((img)._depth,z0,z1,z) +#define cimg_for_in2C(img,c0,c1,c) cimg_for_in2((img)._spectrum,c0,c1,c) +#define cimg_for_in2XY(img,x0,y0,x1,y1,x,y) cimg_for_in2Y(img,y0,y1,y) cimg_for_in2X(img,x0,x1,x) +#define cimg_for_in2XZ(img,x0,z0,x1,z1,x,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2X(img,x0,x1,x) +#define cimg_for_in2XC(img,x0,c0,x1,c1,x,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2X(img,x0,x1,x) +#define cimg_for_in2YZ(img,y0,z0,y1,z1,y,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2Y(img,y0,y1,y) +#define cimg_for_in2YC(img,y0,c0,y1,c1,y,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2Y(img,y0,y1,y) +#define cimg_for_in2ZC(img,z0,c0,z1,c1,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2Z(img,z0,z1,z) +#define cimg_for_in2XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in2XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in2YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in2XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in2C(img,c0,c1,c) cimg_for_in2XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for3(bound,i) \ + for (int i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + _p1##i = i++, ++_n1##i) +#define cimg_for3X(img,x) cimg_for3((img)._width,x) +#define cimg_for3Y(img,y) cimg_for3((img)._height,y) +#define cimg_for3Z(img,z) cimg_for3((img)._depth,z) +#define cimg_for3C(img,c) cimg_for3((img)._spectrum,c) +#define cimg_for3XY(img,x,y) cimg_for3Y(img,y) cimg_for3X(img,x) +#define cimg_for3XZ(img,x,z) cimg_for3Z(img,z) cimg_for3X(img,x) +#define cimg_for3XC(img,x,c) cimg_for3C(img,c) cimg_for3X(img,x) +#define cimg_for3YZ(img,y,z) cimg_for3Z(img,z) cimg_for3Y(img,y) +#define cimg_for3YC(img,y,c) cimg_for3C(img,c) cimg_for3Y(img,y) +#define cimg_for3ZC(img,z,c) cimg_for3C(img,c) cimg_for3Z(img,z) +#define cimg_for3XYZ(img,x,y,z) cimg_for3Z(img,z) cimg_for3XY(img,x,y) +#define cimg_for3XZC(img,x,z,c) cimg_for3C(img,c) cimg_for3XZ(img,x,z) +#define cimg_for3YZC(img,y,z,c) cimg_for3C(img,c) cimg_for3YZ(img,y,z) +#define cimg_for3XYZC(img,x,y,z,c) cimg_for3C(img,c) cimg_for3XYZ(img,x,y,z) + +#define cimg_for_in3(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1; \ + i<=(int)(i1) && (_n1##i<(int)(bound) || i==--_n1##i); \ + _p1##i = i++, ++_n1##i) +#define cimg_for_in3X(img,x0,x1,x) cimg_for_in3((img)._width,x0,x1,x) +#define cimg_for_in3Y(img,y0,y1,y) cimg_for_in3((img)._height,y0,y1,y) +#define cimg_for_in3Z(img,z0,z1,z) cimg_for_in3((img)._depth,z0,z1,z) +#define cimg_for_in3C(img,c0,c1,c) cimg_for_in3((img)._spectrum,c0,c1,c) +#define cimg_for_in3XY(img,x0,y0,x1,y1,x,y) cimg_for_in3Y(img,y0,y1,y) cimg_for_in3X(img,x0,x1,x) +#define cimg_for_in3XZ(img,x0,z0,x1,z1,x,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3X(img,x0,x1,x) +#define cimg_for_in3XC(img,x0,c0,x1,c1,x,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3X(img,x0,x1,x) +#define cimg_for_in3YZ(img,y0,z0,y1,z1,y,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3Y(img,y0,y1,y) +#define cimg_for_in3YC(img,y0,c0,y1,c1,y,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3Y(img,y0,y1,y) +#define cimg_for_in3ZC(img,z0,c0,z1,c1,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3Z(img,z0,z1,z) +#define cimg_for_in3XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in3XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in3YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in3XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in3C(img,c0,c1,c) cimg_for_in3XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for4(bound,i) \ + for (int i = 0, _p1##i = 0, _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2; \ + _n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i); \ + _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for4X(img,x) cimg_for4((img)._width,x) +#define cimg_for4Y(img,y) cimg_for4((img)._height,y) +#define cimg_for4Z(img,z) cimg_for4((img)._depth,z) +#define cimg_for4C(img,c) cimg_for4((img)._spectrum,c) +#define cimg_for4XY(img,x,y) cimg_for4Y(img,y) cimg_for4X(img,x) +#define cimg_for4XZ(img,x,z) cimg_for4Z(img,z) cimg_for4X(img,x) +#define cimg_for4XC(img,x,c) cimg_for4C(img,c) cimg_for4X(img,x) +#define cimg_for4YZ(img,y,z) cimg_for4Z(img,z) cimg_for4Y(img,y) +#define cimg_for4YC(img,y,c) cimg_for4C(img,c) cimg_for4Y(img,y) +#define cimg_for4ZC(img,z,c) cimg_for4C(img,c) cimg_for4Z(img,z) +#define cimg_for4XYZ(img,x,y,z) cimg_for4Z(img,z) cimg_for4XY(img,x,y) +#define cimg_for4XZC(img,x,z,c) cimg_for4C(img,c) cimg_for4XZ(img,x,z) +#define cimg_for4YZC(img,y,z,c) cimg_for4C(img,c) cimg_for4YZ(img,y,z) +#define cimg_for4XYZC(img,x,y,z,c) cimg_for4C(img,c) cimg_for4XYZ(img,x,y,z) + +#define cimg_for_in4(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2; \ + i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i)); \ + _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for_in4X(img,x0,x1,x) cimg_for_in4((img)._width,x0,x1,x) +#define cimg_for_in4Y(img,y0,y1,y) cimg_for_in4((img)._height,y0,y1,y) +#define cimg_for_in4Z(img,z0,z1,z) cimg_for_in4((img)._depth,z0,z1,z) +#define cimg_for_in4C(img,c0,c1,c) cimg_for_in4((img)._spectrum,c0,c1,c) +#define cimg_for_in4XY(img,x0,y0,x1,y1,x,y) cimg_for_in4Y(img,y0,y1,y) cimg_for_in4X(img,x0,x1,x) +#define cimg_for_in4XZ(img,x0,z0,x1,z1,x,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4X(img,x0,x1,x) +#define cimg_for_in4XC(img,x0,c0,x1,c1,x,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4X(img,x0,x1,x) +#define cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4Y(img,y0,y1,y) +#define cimg_for_in4YC(img,y0,c0,y1,c1,y,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4Y(img,y0,y1,y) +#define cimg_for_in4ZC(img,z0,c0,z1,c1,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4Z(img,z0,z1,z) +#define cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in4XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in4YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in4XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in4C(img,c0,c1,c) cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for5(bound,i) \ + for (int i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2; \ + _n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for5X(img,x) cimg_for5((img)._width,x) +#define cimg_for5Y(img,y) cimg_for5((img)._height,y) +#define cimg_for5Z(img,z) cimg_for5((img)._depth,z) +#define cimg_for5C(img,c) cimg_for5((img)._spectrum,c) +#define cimg_for5XY(img,x,y) cimg_for5Y(img,y) cimg_for5X(img,x) +#define cimg_for5XZ(img,x,z) cimg_for5Z(img,z) cimg_for5X(img,x) +#define cimg_for5XC(img,x,c) cimg_for5C(img,c) cimg_for5X(img,x) +#define cimg_for5YZ(img,y,z) cimg_for5Z(img,z) cimg_for5Y(img,y) +#define cimg_for5YC(img,y,c) cimg_for5C(img,c) cimg_for5Y(img,y) +#define cimg_for5ZC(img,z,c) cimg_for5C(img,c) cimg_for5Z(img,z) +#define cimg_for5XYZ(img,x,y,z) cimg_for5Z(img,z) cimg_for5XY(img,x,y) +#define cimg_for5XZC(img,x,z,c) cimg_for5C(img,c) cimg_for5XZ(img,x,z) +#define cimg_for5YZC(img,y,z,c) cimg_for5C(img,c) cimg_for5YZ(img,y,z) +#define cimg_for5XYZC(img,x,y,z,c) cimg_for5C(img,c) cimg_for5XYZ(img,x,y,z) + +#define cimg_for_in5(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2; \ + i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i)); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for_in5X(img,x0,x1,x) cimg_for_in5((img)._width,x0,x1,x) +#define cimg_for_in5Y(img,y0,y1,y) cimg_for_in5((img)._height,y0,y1,y) +#define cimg_for_in5Z(img,z0,z1,z) cimg_for_in5((img)._depth,z0,z1,z) +#define cimg_for_in5C(img,c0,c1,c) cimg_for_in5((img)._spectrum,c0,c1,c) +#define cimg_for_in5XY(img,x0,y0,x1,y1,x,y) cimg_for_in5Y(img,y0,y1,y) cimg_for_in5X(img,x0,x1,x) +#define cimg_for_in5XZ(img,x0,z0,x1,z1,x,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5X(img,x0,x1,x) +#define cimg_for_in5XC(img,x0,c0,x1,c1,x,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5X(img,x0,x1,x) +#define cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5Y(img,y0,y1,y) +#define cimg_for_in5YC(img,y0,c0,y1,c1,y,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5Y(img,y0,y1,y) +#define cimg_for_in5ZC(img,z0,c0,z1,c1,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5Z(img,z0,z1,z) +#define cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in5XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in5YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in5XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in5C(img,c0,c1,c) cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for6(bound,i) \ + for (int i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(bound)?(int)(bound) - 1:3; \ + _n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for6X(img,x) cimg_for6((img)._width,x) +#define cimg_for6Y(img,y) cimg_for6((img)._height,y) +#define cimg_for6Z(img,z) cimg_for6((img)._depth,z) +#define cimg_for6C(img,c) cimg_for6((img)._spectrum,c) +#define cimg_for6XY(img,x,y) cimg_for6Y(img,y) cimg_for6X(img,x) +#define cimg_for6XZ(img,x,z) cimg_for6Z(img,z) cimg_for6X(img,x) +#define cimg_for6XC(img,x,c) cimg_for6C(img,c) cimg_for6X(img,x) +#define cimg_for6YZ(img,y,z) cimg_for6Z(img,z) cimg_for6Y(img,y) +#define cimg_for6YC(img,y,c) cimg_for6C(img,c) cimg_for6Y(img,y) +#define cimg_for6ZC(img,z,c) cimg_for6C(img,c) cimg_for6Z(img,z) +#define cimg_for6XYZ(img,x,y,z) cimg_for6Z(img,z) cimg_for6XY(img,x,y) +#define cimg_for6XZC(img,x,z,c) cimg_for6C(img,c) cimg_for6XZ(img,x,z) +#define cimg_for6YZC(img,y,z,c) cimg_for6C(img,c) cimg_for6YZ(img,y,z) +#define cimg_for6XYZC(img,x,y,z,c) cimg_for6C(img,c) cimg_for6XYZ(img,x,y,z) + +#define cimg_for_in6(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3; \ + i<=(int)(i1) && \ + (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i)); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for_in6X(img,x0,x1,x) cimg_for_in6((img)._width,x0,x1,x) +#define cimg_for_in6Y(img,y0,y1,y) cimg_for_in6((img)._height,y0,y1,y) +#define cimg_for_in6Z(img,z0,z1,z) cimg_for_in6((img)._depth,z0,z1,z) +#define cimg_for_in6C(img,c0,c1,c) cimg_for_in6((img)._spectrum,c0,c1,c) +#define cimg_for_in6XY(img,x0,y0,x1,y1,x,y) cimg_for_in6Y(img,y0,y1,y) cimg_for_in6X(img,x0,x1,x) +#define cimg_for_in6XZ(img,x0,z0,x1,z1,x,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6X(img,x0,x1,x) +#define cimg_for_in6XC(img,x0,c0,x1,c1,x,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6X(img,x0,x1,x) +#define cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6Y(img,y0,y1,y) +#define cimg_for_in6YC(img,y0,c0,y1,c1,y,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6Y(img,y0,y1,y) +#define cimg_for_in6ZC(img,z0,c0,z1,c1,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6Z(img,z0,z1,z) +#define cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in6XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in6YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in6XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in6C(img,c0,c1,c) cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for7(bound,i) \ + for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(bound)?(int)(bound) - 1:3; \ + _n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for7X(img,x) cimg_for7((img)._width,x) +#define cimg_for7Y(img,y) cimg_for7((img)._height,y) +#define cimg_for7Z(img,z) cimg_for7((img)._depth,z) +#define cimg_for7C(img,c) cimg_for7((img)._spectrum,c) +#define cimg_for7XY(img,x,y) cimg_for7Y(img,y) cimg_for7X(img,x) +#define cimg_for7XZ(img,x,z) cimg_for7Z(img,z) cimg_for7X(img,x) +#define cimg_for7XC(img,x,c) cimg_for7C(img,c) cimg_for7X(img,x) +#define cimg_for7YZ(img,y,z) cimg_for7Z(img,z) cimg_for7Y(img,y) +#define cimg_for7YC(img,y,c) cimg_for7C(img,c) cimg_for7Y(img,y) +#define cimg_for7ZC(img,z,c) cimg_for7C(img,c) cimg_for7Z(img,z) +#define cimg_for7XYZ(img,x,y,z) cimg_for7Z(img,z) cimg_for7XY(img,x,y) +#define cimg_for7XZC(img,x,z,c) cimg_for7C(img,c) cimg_for7XZ(img,x,z) +#define cimg_for7YZC(img,y,z,c) cimg_for7C(img,c) cimg_for7YZ(img,y,z) +#define cimg_for7XYZC(img,x,y,z,c) cimg_for7C(img,c) cimg_for7XYZ(img,x,y,z) + +#define cimg_for_in7(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p3##i = i - 3<0?0:i - 3, \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3; \ + i<=(int)(i1) && \ + (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i)); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for_in7X(img,x0,x1,x) cimg_for_in7((img)._width,x0,x1,x) +#define cimg_for_in7Y(img,y0,y1,y) cimg_for_in7((img)._height,y0,y1,y) +#define cimg_for_in7Z(img,z0,z1,z) cimg_for_in7((img)._depth,z0,z1,z) +#define cimg_for_in7C(img,c0,c1,c) cimg_for_in7((img)._spectrum,c0,c1,c) +#define cimg_for_in7XY(img,x0,y0,x1,y1,x,y) cimg_for_in7Y(img,y0,y1,y) cimg_for_in7X(img,x0,x1,x) +#define cimg_for_in7XZ(img,x0,z0,x1,z1,x,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7X(img,x0,x1,x) +#define cimg_for_in7XC(img,x0,c0,x1,c1,x,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7X(img,x0,x1,x) +#define cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7Y(img,y0,y1,y) +#define cimg_for_in7YC(img,y0,c0,y1,c1,y,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7Y(img,y0,y1,y) +#define cimg_for_in7ZC(img,z0,c0,z1,c1,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7Z(img,z0,z1,z) +#define cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in7XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in7YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in7XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in7C(img,c0,c1,c) cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for8(bound,i) \ + for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(bound)?(int)(bound) - 1:3, \ + _n4##i = 4>=(bound)?(int)(bound) - 1:4; \ + _n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for8X(img,x) cimg_for8((img)._width,x) +#define cimg_for8Y(img,y) cimg_for8((img)._height,y) +#define cimg_for8Z(img,z) cimg_for8((img)._depth,z) +#define cimg_for8C(img,c) cimg_for8((img)._spectrum,c) +#define cimg_for8XY(img,x,y) cimg_for8Y(img,y) cimg_for8X(img,x) +#define cimg_for8XZ(img,x,z) cimg_for8Z(img,z) cimg_for8X(img,x) +#define cimg_for8XC(img,x,c) cimg_for8C(img,c) cimg_for8X(img,x) +#define cimg_for8YZ(img,y,z) cimg_for8Z(img,z) cimg_for8Y(img,y) +#define cimg_for8YC(img,y,c) cimg_for8C(img,c) cimg_for8Y(img,y) +#define cimg_for8ZC(img,z,c) cimg_for8C(img,c) cimg_for8Z(img,z) +#define cimg_for8XYZ(img,x,y,z) cimg_for8Z(img,z) cimg_for8XY(img,x,y) +#define cimg_for8XZC(img,x,z,c) cimg_for8C(img,c) cimg_for8XZ(img,x,z) +#define cimg_for8YZC(img,y,z,c) cimg_for8C(img,c) cimg_for8YZ(img,y,z) +#define cimg_for8XYZC(img,x,y,z,c) cimg_for8C(img,c) cimg_for8XYZ(img,x,y,z) + +#define cimg_for_in8(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p3##i = i - 3<0?0:i - 3, \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \ + _n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4; \ + i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for_in8X(img,x0,x1,x) cimg_for_in8((img)._width,x0,x1,x) +#define cimg_for_in8Y(img,y0,y1,y) cimg_for_in8((img)._height,y0,y1,y) +#define cimg_for_in8Z(img,z0,z1,z) cimg_for_in8((img)._depth,z0,z1,z) +#define cimg_for_in8C(img,c0,c1,c) cimg_for_in8((img)._spectrum,c0,c1,c) +#define cimg_for_in8XY(img,x0,y0,x1,y1,x,y) cimg_for_in8Y(img,y0,y1,y) cimg_for_in8X(img,x0,x1,x) +#define cimg_for_in8XZ(img,x0,z0,x1,z1,x,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8X(img,x0,x1,x) +#define cimg_for_in8XC(img,x0,c0,x1,c1,x,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8X(img,x0,x1,x) +#define cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8Y(img,y0,y1,y) +#define cimg_for_in8YC(img,y0,c0,y1,c1,y,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8Y(img,y0,y1,y) +#define cimg_for_in8ZC(img,z0,c0,z1,c1,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8Z(img,z0,z1,z) +#define cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in8XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in8YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in8XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in8C(img,c0,c1,c) cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for9(bound,i) \ + for (int i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \ + _n4##i = 4>=(int)(bound)?(int)(bound) - 1:4; \ + _n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i); \ + _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for9X(img,x) cimg_for9((img)._width,x) +#define cimg_for9Y(img,y) cimg_for9((img)._height,y) +#define cimg_for9Z(img,z) cimg_for9((img)._depth,z) +#define cimg_for9C(img,c) cimg_for9((img)._spectrum,c) +#define cimg_for9XY(img,x,y) cimg_for9Y(img,y) cimg_for9X(img,x) +#define cimg_for9XZ(img,x,z) cimg_for9Z(img,z) cimg_for9X(img,x) +#define cimg_for9XC(img,x,c) cimg_for9C(img,c) cimg_for9X(img,x) +#define cimg_for9YZ(img,y,z) cimg_for9Z(img,z) cimg_for9Y(img,y) +#define cimg_for9YC(img,y,c) cimg_for9C(img,c) cimg_for9Y(img,y) +#define cimg_for9ZC(img,z,c) cimg_for9C(img,c) cimg_for9Z(img,z) +#define cimg_for9XYZ(img,x,y,z) cimg_for9Z(img,z) cimg_for9XY(img,x,y) +#define cimg_for9XZC(img,x,z,c) cimg_for9C(img,c) cimg_for9XZ(img,x,z) +#define cimg_for9YZC(img,y,z,c) cimg_for9C(img,c) cimg_for9YZ(img,y,z) +#define cimg_for9XYZC(img,x,y,z,c) cimg_for9C(img,c) cimg_for9XYZ(img,x,y,z) + +#define cimg_for_in9(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p4##i = i - 4<0?0:i - 4, \ + _p3##i = i - 3<0?0:i - 3, \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \ + _n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4; \ + i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \ + _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for_in9X(img,x0,x1,x) cimg_for_in9((img)._width,x0,x1,x) +#define cimg_for_in9Y(img,y0,y1,y) cimg_for_in9((img)._height,y0,y1,y) +#define cimg_for_in9Z(img,z0,z1,z) cimg_for_in9((img)._depth,z0,z1,z) +#define cimg_for_in9C(img,c0,c1,c) cimg_for_in9((img)._spectrum,c0,c1,c) +#define cimg_for_in9XY(img,x0,y0,x1,y1,x,y) cimg_for_in9Y(img,y0,y1,y) cimg_for_in9X(img,x0,x1,x) +#define cimg_for_in9XZ(img,x0,z0,x1,z1,x,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9X(img,x0,x1,x) +#define cimg_for_in9XC(img,x0,c0,x1,c1,x,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9X(img,x0,x1,x) +#define cimg_for_in9YZ(img,y0,z0,y1,z1,y,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9Y(img,y0,y1,y) +#define cimg_for_in9YC(img,y0,c0,y1,c1,y,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9Y(img,y0,y1,y) +#define cimg_for_in9ZC(img,z0,c0,z1,c1,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9Z(img,z0,z1,z) +#define cimg_for_in9XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in9XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in9YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in9XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in9C(img,c0,c1,c) cimg_for_in9XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for2x2(img,x,y,z,c,I,T) \ + cimg_for2((img)._height,y) for (int x = 0, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(0,y,z,c)), \ + (I[2] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], \ + I[2] = I[3], \ + ++x, ++_n1##x) + +#define cimg_for_in2x2(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in2((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _n1##x = (int)( \ + (I[0] = (T)(img)(x,y,z,c)), \ + (I[2] = (T)(img)(x,_n1##y,z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], \ + I[2] = I[3], \ + ++x, ++_n1##x) + +#define cimg_for3x3(img,x,y,z,c,I,T) \ + cimg_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,z,c)), \ + (I[6] = I[7] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + +#define cimg_for_in3x3(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in3((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = (T)(img)(_p1##x,y,z,c)), \ + (I[6] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[1] = (T)(img)(x,_p1##y,z,c)), \ + (I[4] = (T)(img)(x,y,z,c)), \ + (I[7] = (T)(img)(x,_n1##y,z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + +#define cimg_for4x4(img,x,y,z,c,I,T) \ + cimg_for4((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[4] = I[5] = (T)(img)(0,y,z,c)), \ + (I[8] = I[9] = (T)(img)(0,_n1##y,z,c)), \ + (I[12] = I[13] = (T)(img)(0,_n2##y,z,c)), \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[6] = (T)(img)(_n1##x,y,z,c)), \ + (I[10] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_n2##y,z,c)), \ + 2>=(img)._width?(img).width() - 1:2); \ + (_n2##x<(img).width() && ( \ + (I[3] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[7] = (T)(img)(_n2##x,y,z,c)), \ + (I[11] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], \ + I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for_in4x4(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in4((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = (int)( \ + (I[0] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[4] = (T)(img)(_p1##x,y,z,c)), \ + (I[8] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[12] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[1] = (T)(img)(x,_p1##y,z,c)), \ + (I[5] = (T)(img)(x,y,z,c)), \ + (I[9] = (T)(img)(x,_n1##y,z,c)), \ + (I[13] = (T)(img)(x,_n2##y,z,c)), \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[6] = (T)(img)(_n1##x,y,z,c)), \ + (I[10] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_n2##y,z,c)), \ + x + 2>=(int)(img)._width?(img).width() - 1:x + 2); \ + x<=(int)(x1) && ((_n2##x<(img).width() && ( \ + (I[3] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[7] = (T)(img)(_n2##x,y,z,c)), \ + (I[11] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], \ + I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for5x5(img,x,y,z,c,I,T) \ + cimg_for5((img)._height,y) for (int x = 0, \ + _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = (int)( \ + (I[0] = I[1] = I[2] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[5] = I[6] = I[7] = (T)(img)(0,_p1##y,z,c)), \ + (I[10] = I[11] = I[12] = (T)(img)(0,y,z,c)), \ + (I[15] = I[16] = I[17] = (T)(img)(0,_n1##y,z,c)), \ + (I[20] = I[21] = I[22] = (T)(img)(0,_n2##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[13] = (T)(img)(_n1##x,y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_n2##y,z,c)), \ + 2>=(img)._width?(img).width() - 1:2); \ + (_n2##x<(img).width() && ( \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n2##x,y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ + I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ + I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ + I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ + I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for_in5x5(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in5((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = (int)( \ + (I[0] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[5] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[10] = (T)(img)(_p2##x,y,z,c)), \ + (I[15] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[20] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[1] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[6] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[11] = (T)(img)(_p1##x,y,z,c)), \ + (I[16] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[21] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[2] = (T)(img)(x,_p2##y,z,c)), \ + (I[7] = (T)(img)(x,_p1##y,z,c)), \ + (I[12] = (T)(img)(x,y,z,c)), \ + (I[17] = (T)(img)(x,_n1##y,z,c)), \ + (I[22] = (T)(img)(x,_n2##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[13] = (T)(img)(_n1##x,y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_n2##y,z,c)), \ + x + 2>=(int)(img)._width?(img).width() - 1:x + 2); \ + x<=(int)(x1) && ((_n2##x<(img).width() && ( \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n2##x,y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ + I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ + I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ + I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ + I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for6x6(img,x,y,z,c,I,T) \ + cimg_for6((img)._height,y) for (int x = 0, \ + _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = 2>=(img)._width?(img).width() - 1:2, \ + _n3##x = (int)( \ + (I[0] = I[1] = I[2] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[6] = I[7] = I[8] = (T)(img)(0,_p1##y,z,c)), \ + (I[12] = I[13] = I[14] = (T)(img)(0,y,z,c)), \ + (I[18] = I[19] = I[20] = (T)(img)(0,_n1##y,z,c)), \ + (I[24] = I[25] = I[26] = (T)(img)(0,_n2##y,z,c)), \ + (I[30] = I[31] = I[32] = (T)(img)(0,_n3##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[15] = (T)(img)(_n1##x,y,z,c)), \ + (I[21] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[27] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[33] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[10] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[16] = (T)(img)(_n2##x,y,z,c)), \ + (I[22] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[28] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[34] = (T)(img)(_n2##x,_n3##y,z,c)), \ + 3>=(img)._width?(img).width() - 1:3); \ + (_n3##x<(img).width() && ( \ + (I[5] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[11] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[17] = (T)(img)(_n3##x,y,z,c)), \ + (I[23] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[29] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[35] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3## x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ + I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for_in6x6(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in6((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)x0, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(int)(img)._width?(img).width() - 1:x + 2, \ + _n3##x = (int)( \ + (I[0] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[6] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[12] = (T)(img)(_p2##x,y,z,c)), \ + (I[18] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[24] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[30] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[1] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[7] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[13] = (T)(img)(_p1##x,y,z,c)), \ + (I[19] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[25] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[31] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[2] = (T)(img)(x,_p2##y,z,c)), \ + (I[8] = (T)(img)(x,_p1##y,z,c)), \ + (I[14] = (T)(img)(x,y,z,c)), \ + (I[20] = (T)(img)(x,_n1##y,z,c)), \ + (I[26] = (T)(img)(x,_n2##y,z,c)), \ + (I[32] = (T)(img)(x,_n3##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[15] = (T)(img)(_n1##x,y,z,c)), \ + (I[21] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[27] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[33] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[10] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[16] = (T)(img)(_n2##x,y,z,c)), \ + (I[22] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[28] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[34] = (T)(img)(_n2##x,_n3##y,z,c)), \ + x + 3>=(int)(img)._width?(img).width() - 1:x + 3); \ + x<=(int)(x1) && ((_n3##x<(img).width() && ( \ + (I[5] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[11] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[17] = (T)(img)(_n3##x,y,z,c)), \ + (I[23] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[29] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[35] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3## x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ + I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for7x7(img,x,y,z,c,I,T) \ + cimg_for7((img)._height,y) for (int x = 0, \ + _p3##x = 0, _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = 2>=(img)._width?(img).width() - 1:2, \ + _n3##x = (int)( \ + (I[0] = I[1] = I[2] = I[3] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p2##y,z,c)), \ + (I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p1##y,z,c)), \ + (I[21] = I[22] = I[23] = I[24] = (T)(img)(0,y,z,c)), \ + (I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_n1##y,z,c)), \ + (I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_n2##y,z,c)), \ + (I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[11] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[25] = (T)(img)(_n1##x,y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[39] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[46] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[26] = (T)(img)(_n2##x,y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[40] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[47] = (T)(img)(_n2##x,_n3##y,z,c)), \ + 3>=(img)._width?(img).width() - 1:3); \ + (_n3##x<(img).width() && ( \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[27] = (T)(img)(_n3##x,y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[41] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[48] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \ + I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ + I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ + I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ + I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ + I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ + I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for_in7x7(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in7((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p3##x = x - 3<0?0:x - 3, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(int)(img)._width?(img).width() - 1:x + 2, \ + _n3##x = (int)( \ + (I[0] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[7] = (T)(img)(_p3##x,_p2##y,z,c)), \ + (I[14] = (T)(img)(_p3##x,_p1##y,z,c)), \ + (I[21] = (T)(img)(_p3##x,y,z,c)), \ + (I[28] = (T)(img)(_p3##x,_n1##y,z,c)), \ + (I[35] = (T)(img)(_p3##x,_n2##y,z,c)), \ + (I[42] = (T)(img)(_p3##x,_n3##y,z,c)), \ + (I[1] = (T)(img)(_p2##x,_p3##y,z,c)), \ + (I[8] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[15] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[22] = (T)(img)(_p2##x,y,z,c)), \ + (I[29] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[36] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[43] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[2] = (T)(img)(_p1##x,_p3##y,z,c)), \ + (I[9] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[16] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[23] = (T)(img)(_p1##x,y,z,c)), \ + (I[30] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[37] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[44] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[3] = (T)(img)(x,_p3##y,z,c)), \ + (I[10] = (T)(img)(x,_p2##y,z,c)), \ + (I[17] = (T)(img)(x,_p1##y,z,c)), \ + (I[24] = (T)(img)(x,y,z,c)), \ + (I[31] = (T)(img)(x,_n1##y,z,c)), \ + (I[38] = (T)(img)(x,_n2##y,z,c)), \ + (I[45] = (T)(img)(x,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[11] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[25] = (T)(img)(_n1##x,y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[39] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[46] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[26] = (T)(img)(_n2##x,y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[40] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[47] = (T)(img)(_n2##x,_n3##y,z,c)), \ + x + 3>=(int)(img)._width?(img).width() - 1:x + 3); \ + x<=(int)(x1) && ((_n3##x<(img).width() && ( \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[27] = (T)(img)(_n3##x,y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[41] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[48] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \ + I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ + I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ + I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ + I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ + I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ + I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for8x8(img,x,y,z,c,I,T) \ + cimg_for8((img)._height,y) for (int x = 0, \ + _p3##x = 0, _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=((img)._width)?(img).width() - 1:1, \ + _n2##x = 2>=((img)._width)?(img).width() - 1:2, \ + _n3##x = 3>=((img)._width)?(img).width() - 1:3, \ + _n4##x = (int)( \ + (I[0] = I[1] = I[2] = I[3] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p2##y,z,c)), \ + (I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p1##y,z,c)), \ + (I[24] = I[25] = I[26] = I[27] = (T)(img)(0,y,z,c)), \ + (I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_n1##y,z,c)), \ + (I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_n2##y,z,c)), \ + (I[48] = I[49] = I[50] = I[51] = (T)(img)(0,_n3##y,z,c)), \ + (I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_n4##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[28] = (T)(img)(_n1##x,y,z,c)), \ + (I[36] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[44] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[52] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[60] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[21] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[29] = (T)(img)(_n2##x,y,z,c)), \ + (I[37] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[45] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[53] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[61] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[14] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[22] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[30] = (T)(img)(_n3##x,y,z,c)), \ + (I[38] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[46] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[54] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[62] = (T)(img)(_n3##x,_n4##y,z,c)), \ + 4>=((img)._width)?(img).width() - 1:4); \ + (_n4##x<(img).width() && ( \ + (I[7] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[15] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[23] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[31] = (T)(img)(_n4##x,y,z,c)), \ + (I[39] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[47] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[55] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[63] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for_in8x8(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in8((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p3##x = x - 3<0?0:x - 3, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \ + _n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \ + _n4##x = (int)( \ + (I[0] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[8] = (T)(img)(_p3##x,_p2##y,z,c)), \ + (I[16] = (T)(img)(_p3##x,_p1##y,z,c)), \ + (I[24] = (T)(img)(_p3##x,y,z,c)), \ + (I[32] = (T)(img)(_p3##x,_n1##y,z,c)), \ + (I[40] = (T)(img)(_p3##x,_n2##y,z,c)), \ + (I[48] = (T)(img)(_p3##x,_n3##y,z,c)), \ + (I[56] = (T)(img)(_p3##x,_n4##y,z,c)), \ + (I[1] = (T)(img)(_p2##x,_p3##y,z,c)), \ + (I[9] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[17] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[25] = (T)(img)(_p2##x,y,z,c)), \ + (I[33] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[41] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[49] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[57] = (T)(img)(_p2##x,_n4##y,z,c)), \ + (I[2] = (T)(img)(_p1##x,_p3##y,z,c)), \ + (I[10] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[18] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[26] = (T)(img)(_p1##x,y,z,c)), \ + (I[34] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[42] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[50] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[58] = (T)(img)(_p1##x,_n4##y,z,c)), \ + (I[3] = (T)(img)(x,_p3##y,z,c)), \ + (I[11] = (T)(img)(x,_p2##y,z,c)), \ + (I[19] = (T)(img)(x,_p1##y,z,c)), \ + (I[27] = (T)(img)(x,y,z,c)), \ + (I[35] = (T)(img)(x,_n1##y,z,c)), \ + (I[43] = (T)(img)(x,_n2##y,z,c)), \ + (I[51] = (T)(img)(x,_n3##y,z,c)), \ + (I[59] = (T)(img)(x,_n4##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[28] = (T)(img)(_n1##x,y,z,c)), \ + (I[36] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[44] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[52] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[60] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[21] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[29] = (T)(img)(_n2##x,y,z,c)), \ + (I[37] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[45] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[53] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[61] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[14] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[22] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[30] = (T)(img)(_n3##x,y,z,c)), \ + (I[38] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[46] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[54] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[62] = (T)(img)(_n3##x,_n4##y,z,c)), \ + x + 4>=(img).width()?(img).width() - 1:x + 4); \ + x<=(int)(x1) && ((_n4##x<(img).width() && ( \ + (I[7] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[15] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[23] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[31] = (T)(img)(_n4##x,y,z,c)), \ + (I[39] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[47] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[55] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[63] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for9x9(img,x,y,z,c,I,T) \ + cimg_for9((img)._height,y) for (int x = 0, \ + _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=((img)._width)?(img).width() - 1:1, \ + _n2##x = 2>=((img)._width)?(img).width() - 1:2, \ + _n3##x = 3>=((img)._width)?(img).width() - 1:3, \ + _n4##x = (int)( \ + (I[0] = I[1] = I[2] = I[3] = I[4] = (T)(img)(_p4##x,_p4##y,z,c)), \ + (I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p3##y,z,c)), \ + (I[18] = I[19] = I[20] = I[21] = I[22] = (T)(img)(0,_p2##y,z,c)), \ + (I[27] = I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_p1##y,z,c)), \ + (I[36] = I[37] = I[38] = I[39] = I[40] = (T)(img)(0,y,z,c)), \ + (I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_n1##y,z,c)), \ + (I[54] = I[55] = I[56] = I[57] = I[58] = (T)(img)(0,_n2##y,z,c)), \ + (I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_n3##y,z,c)), \ + (I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[41] = (T)(img)(_n1##x,y,z,c)), \ + (I[50] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[59] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[68] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[77] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[42] = (T)(img)(_n2##x,y,z,c)), \ + (I[51] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[60] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[69] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[78] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \ + (I[16] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[25] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[43] = (T)(img)(_n3##x,y,z,c)), \ + (I[52] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[61] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[70] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[79] = (T)(img)(_n3##x,_n4##y,z,c)), \ + 4>=((img)._width)?(img).width() - 1:4); \ + (_n4##x<(img).width() && ( \ + (I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \ + (I[17] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[26] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[35] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[44] = (T)(img)(_n4##x,y,z,c)), \ + (I[53] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[62] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[71] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[80] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \ + I[16] = I[17], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + I[24] = I[25], I[25] = I[26], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[54] = I[55], I[55] = I[56], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[63] = I[64], \ + I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ + I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ + I[79] = I[80], \ + _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for_in9x9(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in9((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p4##x = x - 4<0?0:x - 4, \ + _p3##x = x - 3<0?0:x - 3, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \ + _n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \ + _n4##x = (int)( \ + (I[0] = (T)(img)(_p4##x,_p4##y,z,c)), \ + (I[9] = (T)(img)(_p4##x,_p3##y,z,c)), \ + (I[18] = (T)(img)(_p4##x,_p2##y,z,c)), \ + (I[27] = (T)(img)(_p4##x,_p1##y,z,c)), \ + (I[36] = (T)(img)(_p4##x,y,z,c)), \ + (I[45] = (T)(img)(_p4##x,_n1##y,z,c)), \ + (I[54] = (T)(img)(_p4##x,_n2##y,z,c)), \ + (I[63] = (T)(img)(_p4##x,_n3##y,z,c)), \ + (I[72] = (T)(img)(_p4##x,_n4##y,z,c)), \ + (I[1] = (T)(img)(_p3##x,_p4##y,z,c)), \ + (I[10] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[19] = (T)(img)(_p3##x,_p2##y,z,c)), \ + (I[28] = (T)(img)(_p3##x,_p1##y,z,c)), \ + (I[37] = (T)(img)(_p3##x,y,z,c)), \ + (I[46] = (T)(img)(_p3##x,_n1##y,z,c)), \ + (I[55] = (T)(img)(_p3##x,_n2##y,z,c)), \ + (I[64] = (T)(img)(_p3##x,_n3##y,z,c)), \ + (I[73] = (T)(img)(_p3##x,_n4##y,z,c)), \ + (I[2] = (T)(img)(_p2##x,_p4##y,z,c)), \ + (I[11] = (T)(img)(_p2##x,_p3##y,z,c)), \ + (I[20] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[29] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[38] = (T)(img)(_p2##x,y,z,c)), \ + (I[47] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[56] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[65] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[74] = (T)(img)(_p2##x,_n4##y,z,c)), \ + (I[3] = (T)(img)(_p1##x,_p4##y,z,c)), \ + (I[12] = (T)(img)(_p1##x,_p3##y,z,c)), \ + (I[21] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[30] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[39] = (T)(img)(_p1##x,y,z,c)), \ + (I[48] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[57] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[66] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[75] = (T)(img)(_p1##x,_n4##y,z,c)), \ + (I[4] = (T)(img)(x,_p4##y,z,c)), \ + (I[13] = (T)(img)(x,_p3##y,z,c)), \ + (I[22] = (T)(img)(x,_p2##y,z,c)), \ + (I[31] = (T)(img)(x,_p1##y,z,c)), \ + (I[40] = (T)(img)(x,y,z,c)), \ + (I[49] = (T)(img)(x,_n1##y,z,c)), \ + (I[58] = (T)(img)(x,_n2##y,z,c)), \ + (I[67] = (T)(img)(x,_n3##y,z,c)), \ + (I[76] = (T)(img)(x,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[41] = (T)(img)(_n1##x,y,z,c)), \ + (I[50] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[59] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[68] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[77] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[42] = (T)(img)(_n2##x,y,z,c)), \ + (I[51] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[60] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[69] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[78] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \ + (I[16] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[25] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[43] = (T)(img)(_n3##x,y,z,c)), \ + (I[52] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[61] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[70] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[79] = (T)(img)(_n3##x,_n4##y,z,c)), \ + x + 4>=(img).width()?(img).width() - 1:x + 4); \ + x<=(int)(x1) && ((_n4##x<(img).width() && ( \ + (I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \ + (I[17] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[26] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[35] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[44] = (T)(img)(_n4##x,y,z,c)), \ + (I[53] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[62] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[71] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[80] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \ + I[16] = I[17], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + I[24] = I[25], I[25] = I[26], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[54] = I[55], I[55] = I[56], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[63] = I[64], \ + I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ + I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ + I[79] = I[80], \ + _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for2x2x2(img,x,y,z,c,I,T) \ + cimg_for2((img)._depth,z) cimg_for2((img)._height,y) for (int x = 0, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(0,y,z,c)), \ + (I[2] = (T)(img)(0,_n1##y,z,c)), \ + (I[4] = (T)(img)(0,y,_n1##z,c)), \ + (I[6] = (T)(img)(0,_n1##y,_n1##z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], \ + ++x, ++_n1##x) + +#define cimg_for_in2x2x2(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \ + cimg_for_in2((img)._depth,z0,z1,z) cimg_for_in2((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _n1##x = (int)( \ + (I[0] = (T)(img)(x,y,z,c)), \ + (I[2] = (T)(img)(x,_n1##y,z,c)), \ + (I[4] = (T)(img)(x,y,_n1##z,c)), \ + (I[6] = (T)(img)(x,_n1##y,_n1##z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], \ + ++x, ++_n1##x) + +#define cimg_for3x3x3(img,x,y,z,c,I,T) \ + cimg_for3((img)._depth,z) cimg_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,_p1##z,c)), \ + (I[6] = I[7] = (T)(img)(0,_n1##y,_p1##z,c)), \ + (I[9] = I[10] = (T)(img)(0,_p1##y,z,c)), \ + (I[12] = I[13] = (T)(img)(0,y,z,c)), \ + (I[15] = I[16] = (T)(img)(0,_n1##y,z,c)), \ + (I[18] = I[19] = (T)(img)(0,_p1##y,_n1##z,c)), \ + (I[21] = I[22] = (T)(img)(0,y,_n1##z,c)), \ + (I[24] = I[25] = (T)(img)(0,_n1##y,_n1##z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_p1##z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \ + (I[11] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,y,z,c)), \ + (I[17] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \ + (I[23] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], I[24] = I[25], I[25] = I[26], \ + _p1##x = x++, ++_n1##x) + +#define cimg_for_in3x3x3(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \ + cimg_for_in3((img)._depth,z0,z1,z) cimg_for_in3((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \ + (I[3] = (T)(img)(_p1##x,y,_p1##z,c)), \ + (I[6] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \ + (I[9] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[12] = (T)(img)(_p1##x,y,z,c)), \ + (I[15] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[18] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \ + (I[21] = (T)(img)(_p1##x,y,_n1##z,c)), \ + (I[24] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \ + (I[1] = (T)(img)(x,_p1##y,_p1##z,c)), \ + (I[4] = (T)(img)(x,y,_p1##z,c)), \ + (I[7] = (T)(img)(x,_n1##y,_p1##z,c)), \ + (I[10] = (T)(img)(x,_p1##y,z,c)), \ + (I[13] = (T)(img)(x,y,z,c)), \ + (I[16] = (T)(img)(x,_n1##y,z,c)), \ + (I[19] = (T)(img)(x,_p1##y,_n1##z,c)), \ + (I[22] = (T)(img)(x,y,_n1##z,c)), \ + (I[25] = (T)(img)(x,_n1##y,_n1##z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_p1##z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \ + (I[11] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,y,z,c)), \ + (I[17] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \ + (I[23] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], I[24] = I[25], I[25] = I[26], \ + _p1##x = x++, ++_n1##x) + +#define cimglist_for(list,l) for (int l = 0; l<(int)(list)._width; ++l) +#define cimglist_rof(list,l) for (int l = (int)(list)._width - 1; l>=0; --l) +#define cimglist_for_in(list,l0,l1,l) \ + for (int l = (int)(l0)<0?0:(int)(l0), _max##l = (unsigned int)l1<(list)._width?(int)(l1):(int)(list)._width - 1; \ + l<=_max##l; ++l) + +#define cimglist_apply(list,fn) cimglist_for(list,__##fn) (list)[__##fn].fn + +// Macros used to display error messages when exceptions are thrown. +// You should not use these macros is your own code. +#define _cimgdisplay_instance "[instance(%u,%u,%u,%c%s%c)] CImgDisplay::" +#define cimgdisplay_instance _width,_height,_normalization,_title?'\"':'[',_title?_title:"untitled",_title?'\"':']' +#define _cimg_instance "[instance(%u,%u,%u,%u,%p,%sshared)] CImg<%s>::" +#define cimg_instance _width,_height,_depth,_spectrum,_data,_is_shared?"":"non-",pixel_type() +#define _cimglist_instance "[instance(%u,%u,%p)] CImgList<%s>::" +#define cimglist_instance _width,_allocated_width,_data,pixel_type() + +/*------------------------------------------------ + # + # + # Define cimg_library:: namespace + # + # + -------------------------------------------------*/ +//! Contains all classes and functions of the \CImg library. +/** + This namespace is defined to avoid functions and class names collisions + that could happen with the inclusion of other C++ header files. + Anyway, it should not happen often and you should reasonably start most of your + \CImg-based programs with + \code + #include "CImg.h" + using namespace cimg_library; + \endcode + to simplify the declaration of \CImg Library objects afterwards. +**/ +namespace cimg_library { + + // Declare the four classes of the CImg Library. + template struct CImg; + template struct CImgList; + struct CImgDisplay; + struct CImgException; + + // Declare cimg:: namespace. + // This is an incomplete namespace definition here. It only contains some + // necessary stuff to ensure a correct declaration order of the classes and functions + // defined afterwards. + namespace cimg { + + // Define character sequences for colored terminal output. +#ifdef cimg_use_vt100 + static const char t_normal[] = { 0x1b, '[', '0', ';', '0', ';', '0', 'm', 0 }; + static const char t_black[] = { 0x1b, '[', '0', ';', '3', '0', ';', '5', '9', 'm', 0 }; + static const char t_red[] = { 0x1b, '[', '0', ';', '3', '1', ';', '5', '9', 'm', 0 }; + static const char t_green[] = { 0x1b, '[', '0', ';', '3', '2', ';', '5', '9', 'm', 0 }; + static const char t_yellow[] = { 0x1b, '[', '0', ';', '3', '3', ';', '5', '9', 'm', 0 }; + static const char t_blue[] = { 0x1b, '[', '0', ';', '3', '4', ';', '5', '9', 'm', 0 }; + static const char t_magenta[] = { 0x1b, '[', '0', ';', '3', '5', ';', '5', '9', 'm', 0 }; + static const char t_cyan[] = { 0x1b, '[', '0', ';', '3', '6', ';', '5', '9', 'm', 0 }; + static const char t_white[] = { 0x1b, '[', '0', ';', '3', '7', ';', '5', '9', 'm', 0 }; + static const char t_bold[] = { 0x1b, '[', '1', 'm', 0 }; + static const char t_underscore[] = { 0x1b, '[', '4', 'm', 0 }; +#else + static const char t_normal[] = { 0 }; + static const char *const t_black = cimg::t_normal, + *const t_red = cimg::t_normal, + *const t_green = cimg::t_normal, + *const t_yellow = cimg::t_normal, + *const t_blue = cimg::t_normal, + *const t_magenta = cimg::t_normal, + *const t_cyan = cimg::t_normal, + *const t_white = cimg::t_normal, + *const t_bold = cimg::t_normal, + *const t_underscore = cimg::t_normal; +#endif + + inline std::FILE* output(std::FILE *file=0); + inline void info(); + + //! Avoid warning messages due to unused parameters. Do nothing actually. + template + inline void unused(const T&, ...) {} + + // [internal] Lock/unlock a mutex for managing concurrent threads. + // 'lock_mode' can be { 0=unlock | 1=lock | 2=trylock }. + // 'n' can be in [0,31] but mutex range [0,15] is reserved by CImg. + inline int mutex(const unsigned int n, const int lock_mode=1); + + inline unsigned int& exception_mode(const unsigned int value, const bool is_set) { + static unsigned int mode = cimg_verbosity; + if (is_set) { cimg::mutex(0); mode = value<4?value:4; cimg::mutex(0,0); } + return mode; + } + + // Functions to return standard streams 'stdin', 'stdout' and 'stderr'. + inline FILE* _stdin(const bool throw_exception=true); + inline FILE* _stdout(const bool throw_exception=true); + inline FILE* _stderr(const bool throw_exception=true); + + // Mandatory because Microsoft's _snprintf() and _vsnprintf() do not add the '\0' character + // at the end of the string. +#if cimg_OS==2 && defined(_MSC_VER) + inline int _snprintf(char *const s, const size_t size, const char *const format, ...) { + va_list ap; + va_start(ap,format); + const int result = _vsnprintf(s,size,format,ap); + va_end(ap); + return result; + } + + inline int _vsnprintf(char *const s, const size_t size, const char *const format, va_list ap) { + int result = -1; + cimg::mutex(6); + if (size) result = _vsnprintf_s(s,size,_TRUNCATE,format,ap); + if (result==-1) result = _vscprintf(format,ap); + cimg::mutex(6,0); + return result; + } + + // Mutex-protected version of sscanf, snprintf and vnsprintf. + // Used only MacOSX, as it seems those functions are not re-entrant on MacOSX. +#elif defined(__MACOSX__) || defined(__APPLE__) + inline int _sscanf(const char *const s, const char *const format, ...) { + cimg::mutex(6); + va_list args; + va_start(args,format); + const int result = std::vsscanf(s,format,args); + va_end(args); + cimg::mutex(6,0); + return result; + } + + inline int _snprintf(char *const s, const size_t n, const char *const format, ...) { + cimg::mutex(6); + va_list args; + va_start(args,format); + const int result = std::vsnprintf(s,n,format,args); + va_end(args); + cimg::mutex(6,0); + return result; + } + + inline int _vsnprintf(char *const s, const size_t size, const char* format, va_list ap) { + cimg::mutex(6); + const int result = std::vsnprintf(s,size,format,ap); + cimg::mutex(6,0); + return result; + } +#endif + + //! Set current \CImg exception mode. + /** + The way error messages are handled by \CImg can be changed dynamically, using this function. + \param mode Desired exception mode. Possible values are: + - \c 0: Hide library messages (quiet mode). + - \c 1: Print library messages on the console. + - \c 2: Display library messages on a dialog window. + - \c 3: Do as \c 1 + add extra debug warnings (slow down the code!). + - \c 4: Do as \c 2 + add extra debug warnings (slow down the code!). + **/ + inline unsigned int& exception_mode(const unsigned int mode) { + return exception_mode(mode,true); + } + + //! Return current \CImg exception mode. + /** + \note By default, return the value of configuration macro \c cimg_verbosity + **/ + inline unsigned int& exception_mode() { + return exception_mode(0,false); + } + + inline unsigned int openmp_mode(const unsigned int value, const bool is_set) { +#if cimg_use_openmp!=0 + static unsigned int mode = 2; + if (is_set) { cimg::mutex(0); mode = value<2?value:2; cimg::mutex(0,0); } + return mode; +#else + cimg::unused(value,is_set); + return 0; +#endif + } + + //! Set current \CImg openmp mode. + /** + The way openmp-based methods are handled by \CImg can be changed dynamically, using this function. + \param mode Desired openmp mode. Possible values are: + - \c 0: Never parallelize. + - \c 1: Always parallelize. + - \c 2: Adaptive parallelization mode (default behavior). + **/ + inline unsigned int openmp_mode(const unsigned int mode) { + return openmp_mode(mode,true); + } + + //! Return current \CImg openmp mode. + inline unsigned int openmp_mode() { + return openmp_mode(0,false); + } + +#ifndef cimg_openmp_sizefactor +#define cimg_openmp_sizefactor 1 +#endif +#define cimg_openmp_if(cond) if ((cimg::openmp_mode()==1 || (cimg::openmp_mode()>1 && (cond)))) +#define cimg_openmp_if_size(size,min_size) cimg_openmp_if((size)>=(cimg_openmp_sizefactor)*(min_size)) +#ifdef _MSC_VER +// Disable 'collapse()' directive for MSVC (supports only OpenMP 2.0). +#define cimg_openmp_collapse(k) +#else +#define cimg_openmp_collapse(k) collapse(k) +#endif + +#if cimg_OS==2 +// Disable parallelization of simple loops on Windows, due to noticed performance drop. +#define cimg_openmp_for(instance,expr,min_size) cimg_rof((instance),ptr,T) *ptr = (T)(expr); +#else +#define cimg_openmp_for(instance,expr,min_size) \ + cimg_pragma_openmp(parallel for cimg_openmp_if_size((instance).size(),min_size)) \ + cimg_rof((instance),ptr,T) *ptr = (T)(expr); +#endif + + // Display a simple dialog box, and wait for the user's response. + inline int dialog(const char *const title, const char *const msg, + const char *const button1_label="OK", const char *const button2_label=0, + const char *const button3_label=0, const char *const button4_label=0, + const char *const button5_label=0, const char *const button6_label=0, + const bool centering=false); + + // Evaluate math expression. + inline double eval(const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0); + + } // namespace cimg { ... + + /*--------------------------------------- + # + # Define the CImgException structures + # + --------------------------------------*/ + //! Instances of \c CImgException are thrown when errors are encountered in a \CImg function call. + /** + \par Overview + + CImgException is the base class of all exceptions thrown by \CImg (except \b CImgAbortException). + CImgException is never thrown itself. Derived classes that specify the type of errord are thrown instead. + These classes can be: + + - \b CImgAbortException: Thrown when a computationally-intensive function is aborted by an external signal. + This is the only \c non-derived exception class. + + - \b CImgArgumentException: Thrown when one argument of a called \CImg function is invalid. + This is probably one of the most thrown exception by \CImg. + For instance, the following example throws a \c CImgArgumentException: + \code + CImg img(100,100,1,3); // Define a 100x100 color image with float-valued pixels + img.mirror('e'); // Try to mirror image along the (non-existing) 'e'-axis + \endcode + + - \b CImgDisplayException: Thrown when something went wrong during the display of images in CImgDisplay instances. + + - \b CImgInstanceException: Thrown when an instance associated to a called \CImg method does not fit + the function requirements. For instance, the following example throws a \c CImgInstanceException: + \code + const CImg img; // Define an empty image + const float value = img.at(0); // Try to read first pixel value (does not exist) + \endcode + + - \b CImgIOException: Thrown when an error occurred when trying to load or save image files. + This happens when trying to read files that do not exist or with invalid formats. + For instance, the following example throws a \c CImgIOException: + \code + const CImg img("missing_file.jpg"); // Try to load a file that does not exist + \endcode + + - \b CImgWarningException: Thrown only if configuration macro \c cimg_strict_warnings is set, and + when a \CImg function has to display a warning message (see cimg::warn()). + + It is not recommended to throw CImgException instances by yourself, + since they are expected to be thrown only by \CImg. + When an error occurs in a library function call, \CImg may display error messages on the screen or on the + standard output, depending on the current \CImg exception mode. + The \CImg exception mode can be get and set by functions cimg::exception_mode() and + cimg::exception_mode(unsigned int). + + \par Exceptions handling + + In all cases, when an error occurs in \CImg, an instance of the corresponding exception class is thrown. + This may lead the program to break (this is the default behavior), but you can bypass this behavior by + handling the exceptions by yourself, + using a usual try { ... } catch () { ... } block, as in the following example: + \code + #define "CImg.h" + using namespace cimg_library; + int main() { + cimg::exception_mode(0); // Enable quiet exception mode + try { + ... // Here, do what you want to stress CImg + } catch (CImgException& e) { // You succeeded: something went wrong! + std::fprintf(stderr,"CImg Library Error: %s",e.what()); // Display your custom error message + ... // Do what you want now to save the ship! + } + } + \endcode + **/ + struct CImgException : public std::exception { +#define _cimg_exception_err(etype,disp_flag) \ + std::va_list ap, ap2; \ + va_start(ap,format); va_start(ap2,format); \ + int size = cimg_vsnprintf(0,0,format,ap2); \ + if (size++>=0) { \ + delete[] _message; \ + _message = new char[(size_t)size]; \ + cimg_vsnprintf(_message,(size_t)size,format,ap); \ + if (cimg::exception_mode()) { \ + std::fprintf(cimg::output(),"\n%s[CImg] *** %s ***%s %s\n",cimg::t_red,etype,cimg::t_normal,_message); \ + if (cimg_display && disp_flag && !(cimg::exception_mode()%2)) try { cimg::dialog(etype,_message,"Abort"); } \ + catch (CImgException&) {} \ + if (cimg::exception_mode()>=3) cimg_library::cimg::info(); \ + } \ + } \ + va_end(ap); va_end(ap2); + + char *_message; + CImgException() { _message = new char[1]; *_message = 0; } + CImgException(const char *const format, ...):_message(0) { _cimg_exception_err("CImgException",true); } + CImgException(const CImgException& e):std::exception(e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + } + ~CImgException() throw() { delete[] _message; } + CImgException& operator=(const CImgException& e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + return *this; + } + //! Return a C-string containing the error message associated to the thrown exception. + const char *what() const throw() { return _message; } + }; // struct CImgException { ... + + // The CImgAbortException class is used to throw an exception when + // a computationally-intensive function has been aborted by an external signal. + struct CImgAbortException : public std::exception { + char *_message; + CImgAbortException() { _message = new char[1]; *_message = 0; } + CImgAbortException(const char *const format, ...):_message(0) { _cimg_exception_err("CImgAbortException",true); } + CImgAbortException(const CImgAbortException& e):std::exception(e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + } + ~CImgAbortException() throw() { delete[] _message; } + CImgAbortException& operator=(const CImgAbortException& e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + return *this; + } + //! Return a C-string containing the error message associated to the thrown exception. + const char *what() const throw() { return _message; } + }; // struct CImgAbortException { ... + + // The CImgArgumentException class is used to throw an exception related + // to invalid arguments encountered in a library function call. + struct CImgArgumentException : public CImgException { + CImgArgumentException(const char *const format, ...) { _cimg_exception_err("CImgArgumentException",true); } + }; // struct CImgArgumentException { ... + + // The CImgDisplayException class is used to throw an exception related + // to display problems encountered in a library function call. + struct CImgDisplayException : public CImgException { + CImgDisplayException(const char *const format, ...) { _cimg_exception_err("CImgDisplayException",false); } + }; // struct CImgDisplayException { ... + + // The CImgInstanceException class is used to throw an exception related + // to an invalid instance encountered in a library function call. + struct CImgInstanceException : public CImgException { + CImgInstanceException(const char *const format, ...) { _cimg_exception_err("CImgInstanceException",true); } + }; // struct CImgInstanceException { ... + + // The CImgIOException class is used to throw an exception related + // to input/output file problems encountered in a library function call. + struct CImgIOException : public CImgException { + CImgIOException(const char *const format, ...) { _cimg_exception_err("CImgIOException",true); } + }; // struct CImgIOException { ... + + // The CImgWarningException class is used to throw an exception for warnings + // encountered in a library function call. + struct CImgWarningException : public CImgException { + CImgWarningException(const char *const format, ...) { _cimg_exception_err("CImgWarningException",false); } + }; // struct CImgWarningException { ... + + /*------------------------------------- + # + # Define cimg:: namespace + # + -----------------------------------*/ + //! Contains \a low-level functions and variables of the \CImg Library. + /** + Most of the functions and variables within this namespace are used by the \CImg library for low-level operations. + You may use them to access specific const values or environment variables internally used by \CImg. + \warning Never write using namespace cimg_library::cimg; in your source code. Lot of functions in the + cimg:: namespace have the same names as standard C functions that may be defined in the global + namespace ::. + **/ + namespace cimg { + + // Define traits that will be used to determine the best data type to work in CImg functions. + // + template struct type { + static const char* string() { + static const char* s[] = { "unknown", "unknown8", "unknown16", "unknown24", + "unknown32", "unknown40", "unknown48", "unknown56", + "unknown64", "unknown72", "unknown80", "unknown88", + "unknown96", "unknown104", "unknown112", "unknown120", + "unknown128" }; + return s[(sizeof(T)<17)?sizeof(T):0]; + } + static bool is_float() { return false; } + static bool is_inf(const T) { return false; } + static bool is_nan(const T) { return false; } + static bool is_finite(const T) { return true; } + static T min() { return ~max(); } + static T max() { return (T)1<<(8*sizeof(T) - 1); } + static T inf() { return max(); } + static T nan() { return inf(); } + static T cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(T)val; } + static const char* format() { return "%s"; } + static const char* format_s() { return "%s"; } + static const char* format(const T& val) { static const char *const s = "unknown"; cimg::unused(val); return s; } + }; + + template<> struct type { + static const char* string() { + static const char *const s = "bool"; + return s; + } + static bool is_float() { return false; } + static bool is_inf(const bool) { return false; } + static bool is_nan(const bool) { return false; } + static bool is_finite(const bool) { return true; } + static bool min() { return false; } + static bool max() { return true; } + static bool inf() { return max(); } + static bool nan() { return inf(); } + static bool is_inf() { return false; } + static bool cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(bool)val; } + static const char* format() { return "%s"; } + static const char* format_s() { return "%s"; } + static const char* format(const bool val) { static const char* s[] = { "false", "true" }; return s[val?1:0]; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "uint8"; return s; } + static bool is_float() { return false; } + static bool is_inf(const unsigned char) { return false; } + static bool is_nan(const unsigned char) { return false; } + static bool is_finite(const unsigned char) { return true; } + static unsigned char min() { return 0; } + static unsigned char max() { return (unsigned char)-1; } + static unsigned char inf() { return max(); } + static unsigned char nan() { return inf(); } + static unsigned char cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned char)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const unsigned char val) { return (unsigned int)val; } + }; + +#if defined(CHAR_MAX) && CHAR_MAX==255 + template<> struct type { + static const char* string() { static const char *const s = "uint8"; return s; } + static bool is_float() { return false; } + static bool is_inf(const char) { return false; } + static bool is_nan(const char) { return false; } + static bool is_finite(const char) { return true; } + static char min() { return 0; } + static char max() { return (char)-1; } + static char inf() { return max(); } + static char nan() { return inf(); } + static char cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned char)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const char val) { return (unsigned int)val; } + }; +#else + template<> struct type { + static const char* string() { static const char *const s = "int8"; return s; } + static bool is_float() { return false; } + static bool is_inf(const char) { return false; } + static bool is_nan(const char) { return false; } + static bool is_finite(const char) { return true; } + static char min() { return ~max(); } + static char max() { return (char)((unsigned char)-1>>1); } + static char inf() { return max(); } + static char nan() { return inf(); } + static char cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(char)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const char val) { return (int)val; } + }; +#endif + + template<> struct type { + static const char* string() { static const char *const s = "int8"; return s; } + static bool is_float() { return false; } + static bool is_inf(const signed char) { return false; } + static bool is_nan(const signed char) { return false; } + static bool is_finite(const signed char) { return true; } + static signed char min() { return ~max(); } + static signed char max() { return (signed char)((unsigned char)-1>>1); } + static signed char inf() { return max(); } + static signed char nan() { return inf(); } + static signed char cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(signed char)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const signed char val) { return (int)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "uint16"; return s; } + static bool is_float() { return false; } + static bool is_inf(const unsigned short) { return false; } + static bool is_nan(const unsigned short) { return false; } + static bool is_finite(const unsigned short) { return true; } + static unsigned short min() { return 0; } + static unsigned short max() { return (unsigned short)-1; } + static unsigned short inf() { return max(); } + static unsigned short nan() { return inf(); } + static unsigned short cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned short)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const unsigned short val) { return (unsigned int)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "int16"; return s; } + static bool is_float() { return false; } + static bool is_inf(const short) { return false; } + static bool is_nan(const short) { return false; } + static bool is_finite(const short) { return true; } + static short min() { return ~max(); } + static short max() { return (short)((unsigned short)-1>>1); } + static short inf() { return max(); } + static short nan() { return inf(); } + static short cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(short)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const short val) { return (int)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "uint32"; return s; } + static bool is_float() { return false; } + static bool is_inf(const unsigned int) { return false; } + static bool is_nan(const unsigned int) { return false; } + static bool is_finite(const unsigned int) { return true; } + static unsigned int min() { return 0; } + static unsigned int max() { return (unsigned int)-1; } + static unsigned int inf() { return max(); } + static unsigned int nan() { return inf(); } + static unsigned int cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned int)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const unsigned int val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "int32"; return s; } + static bool is_float() { return false; } + static bool is_inf(const int) { return false; } + static bool is_nan(const int) { return false; } + static bool is_finite(const int) { return true; } + static int min() { return ~max(); } + static int max() { return (int)(~0U>>1); } + static int inf() { return max(); } + static int nan() { return inf(); } + static int cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(int)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const int val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "uint64"; return s; } + static bool is_float() { return false; } + static bool is_inf(const cimg_uint64) { return false; } + static bool is_nan(const cimg_uint64) { return false; } + static bool is_finite(const cimg_uint64) { return true; } + static cimg_uint64 min() { return 0; } + static cimg_uint64 max() { return (cimg_uint64)-1; } + static cimg_uint64 inf() { return max(); } + static cimg_uint64 nan() { return inf(); } + static cimg_uint64 cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(cimg_uint64)val; } + static const char* format() { return cimg_fuint64; } + static const char* format_s() { return cimg_fuint64; } + static cimg_uint64 format(const cimg_uint64 val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "int64"; return s; } + static bool is_float() { return false; } + static bool is_inf(const cimg_int64) { return false; } + static bool is_nan(const cimg_int64) { return false; } + static bool is_finite(const cimg_int64) { return true; } + static cimg_int64 min() { return ~max(); } + static cimg_int64 max() { return (cimg_int64)((cimg_uint64)-1>>1); } + static cimg_int64 inf() { return max(); } + static cimg_int64 nan() { return inf(); } + static cimg_int64 cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(cimg_int64)val; + } + static const char* format() { return cimg_fint64; } + static const char* format_s() { return cimg_fint64; } + static long format(const long val) { return (long)val; } + }; + +#if cimg_use_cpp11==1 && \ + (!(UINTPTR_MAX==0xffffffff || defined(__arm__) || defined(_M_ARM) || ((ULONG_MAX)==(UINT_MAX)))) + template<> struct type { + static const char* string() { static const char *const s = "uint64"; return s; } + static bool is_float() { return false; } + static bool is_inf(const cimg_uint64) { return false; } + static bool is_nan(const cimg_uint64) { return false; } + static bool is_finite(const cimg_uint64) { return true; } + static cimg_uint64 min() { return 0; } + static cimg_uint64 max() { return (cimg_uint64)-1; } + static cimg_uint64 inf() { return max(); } + static cimg_uint64 nan() { return inf(); } + static cimg_uint64 cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(cimg_uint64)val; } + static const char* format() { return cimg_fuint64; } + static const char* format_s() { return cimg_fuint64; } + static cimg_uint64 format(const cimg_uint64 val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "int64"; return s; } + static bool is_float() { return false; } + static bool is_inf(const cimg_int64) { return false; } + static bool is_nan(const cimg_int64) { return false; } + static bool is_finite(const cimg_int64) { return true; } + static long long min() { return ~max(); } + static long long max() { return (cimg_int64)((cimg_uint64)-1>>1); } + static long long inf() { return max(); } + static long long nan() { return max(); } + static long long cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(cimg_int64)val; + } + static const char* format() { return cimg_fint64; } + static const char* format_s() { return cimg_fint64; } + static long format(const long val) { return (long)val; } + }; +#endif + + template<> struct type { + static const char* string() { static const char *const s = "float64"; return s; } + static bool is_float() { return true; } + static bool is_inf(const double val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const double val) { // Custom version that works with '-ffast-math' + if (sizeof(double)==8) { + cimg_uint64 u; + std::memcpy(&u,&val,sizeof(double)); + return ((unsigned int)(u>>32)&0x7fffffff) + ((unsigned int)u!=0)>0x7ff00000; + } +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static bool is_finite(const double val) { +#ifdef isfinite + return (bool)isfinite(val); +#else + return !is_nan(val) && !is_inf(val); +#endif + } + static double min() { return -DBL_MAX; } + static double max() { return DBL_MAX; } + static double inf() { +#ifdef INFINITY + return (double)INFINITY; +#else + return max()*max(); +#endif + } + static double nan() { +#ifdef NAN + return (double)NAN; +#else + const double val_nan = -std::sqrt(-1.); return val_nan; +#endif + } + static double cut(const double val) { return val; } + static const char* format() { return "%.17g"; } + static const char* format_s() { return "%g"; } + static double format(const double val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "float32"; return s; } + static bool is_float() { return true; } + static bool is_inf(const float val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const float val) { // Custom version that works with '-ffast-math' + if (sizeof(float)==4) { + unsigned int u; + std::memcpy(&u,&val,sizeof(float)); + return (u&0x7fffffff)>0x7f800000; + } +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static bool is_finite(const float val) { +#ifdef isfinite + return (bool)isfinite(val); +#else + return !is_nan(val) && !is_inf(val); +#endif + } + static float min() { return -FLT_MAX; } + static float max() { return FLT_MAX; } + static float inf() { return (float)cimg::type::inf(); } + static float nan() { return (float)cimg::type::nan(); } + static float cut(const double val) { return (float)val; } + static float cut(const float val) { return (float)val; } + static const char* format() { return "%.9g"; } + static const char* format_s() { return "%g"; } + static double format(const float val) { return (double)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "float128"; return s; } + static bool is_float() { return true; } + static bool is_inf(const long double val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const long double val) { +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static bool is_finite(const long double val) { +#ifdef isfinite + return (bool)isfinite(val); +#else + return !is_nan(val) && !is_inf(val); +#endif + } + static long double min() { return -LDBL_MAX; } + static long double max() { return LDBL_MAX; } + static long double inf() { return max()*max(); } + static long double nan() { const long double val_nan = -std::sqrt(-1.L); return val_nan; } + static long double cut(const long double val) { return val; } + static const char* format() { return "%.17g"; } + static const char* format_s() { return "%g"; } + static double format(const long double val) { return (double)val; } + }; + +#ifdef cimg_use_half + template<> struct type { + static const char* string() { static const char *const s = "float16"; return s; } + static bool is_float() { return true; } + static bool is_inf(const long double val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const half val) { // Custom version that works with '-ffast-math' + if (sizeof(half)==2) { + short u; + std::memcpy(&u,&val,sizeof(short)); + return (bool)((u&0x7fff)>0x7c00); + } + return cimg::type::is_nan((float)val); + } + static bool is_finite(const half val) { +#ifdef isfinite + return (bool)isfinite(val); +#else + return !is_nan(val) && !is_inf(val); +#endif + } + static half min() { return (half)-65504; } + static half max() { return (half)65504; } + static half inf() { return max()*max(); } + static half nan() { const half val_nan = (half)-std::sqrt(-1.); return val_nan; } + static half cut(const double val) { return (half)val; } + static const char* format() { return "%.9g"; } + static const char* format_s() { return "%g"; } + static double format(const half val) { return (double)val; } + }; +#endif + + template struct superset { typedef T type; }; + template<> struct superset { typedef unsigned char type; }; + template<> struct superset { typedef char type; }; + template<> struct superset { typedef signed char type; }; + template<> struct superset { typedef unsigned short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef unsigned int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef unsigned short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef unsigned int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef unsigned int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; +#if cimg_use_cpp11==1 && \ + (!(UINTPTR_MAX==0xffffffff || defined(__arm__) || defined(_M_ARM) || ((ULONG_MAX)==(UINT_MAX)))) + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; +#endif + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + +#ifdef cimg_use_half + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; +#endif + + template struct superset2 { + typedef typename superset::type>::type type; + }; + + template struct superset3 { + typedef typename superset::type>::type type; + }; + + template struct last { typedef t2 type; }; + +#define _cimg_Tt typename cimg::superset::type +#define _cimg_Tfloat typename cimg::superset::type +#define _cimg_tfloat typename cimg::superset::type +#define _cimg_Ttfloat typename cimg::superset2::type +#define _cimg_Ttdouble typename cimg::superset2::type + + // Define variables used internally by CImg. +#if cimg_display==1 + struct X11_static { + unsigned int nb_wins; + pthread_t *events_thread; + pthread_cond_t wait_event; + pthread_mutex_t wait_event_mutex; + CImgDisplay **wins; + Display *display; + unsigned int nb_bits; + bool is_blue_first; + bool is_shm_enabled; + bool byte_order; + +#ifdef cimg_use_xrandr + XRRScreenSize *resolutions; + Rotation curr_rotation; + unsigned int curr_resolution; + unsigned int nb_resolutions; +#endif + X11_static():nb_wins(0),events_thread(0),display(0), + nb_bits(0),is_blue_first(false),is_shm_enabled(false),byte_order(false) { +#ifdef __FreeBSD__ + XInitThreads(); +#endif + wins = new CImgDisplay*[1024]; + pthread_mutex_init(&wait_event_mutex,0); + pthread_cond_init(&wait_event,0); + +#ifdef cimg_use_xrandr + resolutions = 0; + curr_rotation = 0; + curr_resolution = nb_resolutions = 0; +#endif + } + + ~X11_static() { + delete[] wins; + /* + if (events_thread) { + pthread_cancel(*events_thread); + delete events_thread; + } + if (display) { } // XCloseDisplay(display); } + pthread_cond_destroy(&wait_event); + pthread_mutex_unlock(&wait_event_mutex); + pthread_mutex_destroy(&wait_event_mutex); + */ + } + }; // struct X11_static { ... +#if defined(cimg_module) + X11_static& X11_attr(); +#elif defined(cimg_main) + X11_static& X11_attr() { static X11_static val; return val; } +#else + inline X11_static& X11_attr() { static X11_static val; return val; } +#endif + +#elif cimg_display==2 + struct Win32_static { + HANDLE wait_event; + Win32_static() { wait_event = CreateEvent(0,FALSE_WIN,FALSE_WIN,0); } + }; // struct Win32_static { ... +#if defined(cimg_module) + Win32_static& Win32_attr(); +#elif defined(cimg_main) + Win32_static& Win32_attr() { static Win32_static val; return val; } +#else + inline Win32_static& Win32_attr() { static Win32_static val; return val; } +#endif +#endif +#define cimg_lock_display() cimg::mutex(15) +#define cimg_unlock_display() cimg::mutex(15,0) + + struct Mutex_static { +#if cimg_OS==1 && (defined(cimg_use_pthread) || cimg_display==1) + pthread_mutex_t mutex[32]; + Mutex_static() { for (unsigned int i = 0; i<32; ++i) pthread_mutex_init(&mutex[i],0); } + void lock(const unsigned int n) { pthread_mutex_lock(&mutex[n]); } + void unlock(const unsigned int n) { pthread_mutex_unlock(&mutex[n]); } + int trylock(const unsigned int n) { return pthread_mutex_trylock(&mutex[n]); } +#elif cimg_OS==2 + HANDLE mutex[32]; + Mutex_static() { for (unsigned int i = 0; i<32; ++i) mutex[i] = CreateMutex(0,FALSE_WIN,0); } + void lock(const unsigned int n) { WaitForSingleObject(mutex[n],INFINITE); } + void unlock(const unsigned int n) { ReleaseMutex(mutex[n]); } + int trylock(const unsigned int) { return 0; } +#else + Mutex_static() {} + void lock(const unsigned int) {} + void unlock(const unsigned int) {} + int trylock(const unsigned int) { return 0; } +#endif + }; // struct Mutex_static { ... +#if defined(cimg_module) + Mutex_static& Mutex_attr(); +#elif defined(cimg_main) + Mutex_static& Mutex_attr() { static Mutex_static val; return val; } +#else + inline Mutex_static& Mutex_attr() { static Mutex_static val; return val; } +#endif + +#if defined(cimg_use_magick) + struct Magick_static { + Magick_static() { + Magick::InitializeMagick(""); + } + }; // struct Magick_static { ... + static Magick_static _Magick_static; +#endif + +#if defined(cimg_use_fftw3) && !defined(cimg_use_fftw3_singlethread) + struct FFTW3_static { + FFTW3_static() { + fftw_init_threads(); + } + }; // struct FFTW3_static { ... + static FFTW3_static _FFTW3_static; +#endif + +#if cimg_display==1 + // Define keycodes for X11-based graphical systems. + const unsigned int keyESC = XK_Escape; + const unsigned int keyF1 = XK_F1; + const unsigned int keyF2 = XK_F2; + const unsigned int keyF3 = XK_F3; + const unsigned int keyF4 = XK_F4; + const unsigned int keyF5 = XK_F5; + const unsigned int keyF6 = XK_F6; + const unsigned int keyF7 = XK_F7; + const unsigned int keyF8 = XK_F8; + const unsigned int keyF9 = XK_F9; + const unsigned int keyF10 = XK_F10; + const unsigned int keyF11 = XK_F11; + const unsigned int keyF12 = XK_F12; + const unsigned int keyPAUSE = XK_Pause; + const unsigned int key1 = XK_1; + const unsigned int key2 = XK_2; + const unsigned int key3 = XK_3; + const unsigned int key4 = XK_4; + const unsigned int key5 = XK_5; + const unsigned int key6 = XK_6; + const unsigned int key7 = XK_7; + const unsigned int key8 = XK_8; + const unsigned int key9 = XK_9; + const unsigned int key0 = XK_0; + const unsigned int keyBACKSPACE = XK_BackSpace; + const unsigned int keyINSERT = XK_Insert; + const unsigned int keyHOME = XK_Home; + const unsigned int keyPAGEUP = XK_Page_Up; + const unsigned int keyTAB = XK_Tab; + const unsigned int keyQ = XK_q; + const unsigned int keyW = XK_w; + const unsigned int keyE = XK_e; + const unsigned int keyR = XK_r; + const unsigned int keyT = XK_t; + const unsigned int keyY = XK_y; + const unsigned int keyU = XK_u; + const unsigned int keyI = XK_i; + const unsigned int keyO = XK_o; + const unsigned int keyP = XK_p; + const unsigned int keyDELETE = XK_Delete; + const unsigned int keyEND = XK_End; + const unsigned int keyPAGEDOWN = XK_Page_Down; + const unsigned int keyCAPSLOCK = XK_Caps_Lock; + const unsigned int keyA = XK_a; + const unsigned int keyS = XK_s; + const unsigned int keyD = XK_d; + const unsigned int keyF = XK_f; + const unsigned int keyG = XK_g; + const unsigned int keyH = XK_h; + const unsigned int keyJ = XK_j; + const unsigned int keyK = XK_k; + const unsigned int keyL = XK_l; + const unsigned int keyENTER = XK_Return; + const unsigned int keySHIFTLEFT = XK_Shift_L; + const unsigned int keyZ = XK_z; + const unsigned int keyX = XK_x; + const unsigned int keyC = XK_c; + const unsigned int keyV = XK_v; + const unsigned int keyB = XK_b; + const unsigned int keyN = XK_n; + const unsigned int keyM = XK_m; + const unsigned int keySHIFTRIGHT = XK_Shift_R; + const unsigned int keyARROWUP = XK_Up; + const unsigned int keyCTRLLEFT = XK_Control_L; + const unsigned int keyAPPLEFT = XK_Super_L; + const unsigned int keyALT = XK_Alt_L; + const unsigned int keySPACE = XK_space; + const unsigned int keyALTGR = XK_Alt_R; + const unsigned int keyAPPRIGHT = XK_Super_R; + const unsigned int keyMENU = XK_Menu; + const unsigned int keyCTRLRIGHT = XK_Control_R; + const unsigned int keyARROWLEFT = XK_Left; + const unsigned int keyARROWDOWN = XK_Down; + const unsigned int keyARROWRIGHT = XK_Right; + const unsigned int keyPAD0 = XK_KP_0; + const unsigned int keyPAD1 = XK_KP_1; + const unsigned int keyPAD2 = XK_KP_2; + const unsigned int keyPAD3 = XK_KP_3; + const unsigned int keyPAD4 = XK_KP_4; + const unsigned int keyPAD5 = XK_KP_5; + const unsigned int keyPAD6 = XK_KP_6; + const unsigned int keyPAD7 = XK_KP_7; + const unsigned int keyPAD8 = XK_KP_8; + const unsigned int keyPAD9 = XK_KP_9; + const unsigned int keyPADADD = XK_KP_Add; + const unsigned int keyPADSUB = XK_KP_Subtract; + const unsigned int keyPADMUL = XK_KP_Multiply; + const unsigned int keyPADDIV = XK_KP_Divide; + +#elif cimg_display==2 + // Define keycodes for Windows. + const unsigned int keyESC = VK_ESCAPE; + const unsigned int keyF1 = VK_F1; + const unsigned int keyF2 = VK_F2; + const unsigned int keyF3 = VK_F3; + const unsigned int keyF4 = VK_F4; + const unsigned int keyF5 = VK_F5; + const unsigned int keyF6 = VK_F6; + const unsigned int keyF7 = VK_F7; + const unsigned int keyF8 = VK_F8; + const unsigned int keyF9 = VK_F9; + const unsigned int keyF10 = VK_F10; + const unsigned int keyF11 = VK_F11; + const unsigned int keyF12 = VK_F12; + const unsigned int keyPAUSE = VK_PAUSE; + const unsigned int key1 = '1'; + const unsigned int key2 = '2'; + const unsigned int key3 = '3'; + const unsigned int key4 = '4'; + const unsigned int key5 = '5'; + const unsigned int key6 = '6'; + const unsigned int key7 = '7'; + const unsigned int key8 = '8'; + const unsigned int key9 = '9'; + const unsigned int key0 = '0'; + const unsigned int keyBACKSPACE = VK_BACK; + const unsigned int keyINSERT = VK_INSERT; + const unsigned int keyHOME = VK_HOME; + const unsigned int keyPAGEUP = VK_PRIOR; + const unsigned int keyTAB = VK_TAB; + const unsigned int keyQ = 'Q'; + const unsigned int keyW = 'W'; + const unsigned int keyE = 'E'; + const unsigned int keyR = 'R'; + const unsigned int keyT = 'T'; + const unsigned int keyY = 'Y'; + const unsigned int keyU = 'U'; + const unsigned int keyI = 'I'; + const unsigned int keyO = 'O'; + const unsigned int keyP = 'P'; + const unsigned int keyDELETE = VK_DELETE; + const unsigned int keyEND = VK_END; + const unsigned int keyPAGEDOWN = VK_NEXT; + const unsigned int keyCAPSLOCK = VK_CAPITAL; + const unsigned int keyA = 'A'; + const unsigned int keyS = 'S'; + const unsigned int keyD = 'D'; + const unsigned int keyF = 'F'; + const unsigned int keyG = 'G'; + const unsigned int keyH = 'H'; + const unsigned int keyJ = 'J'; + const unsigned int keyK = 'K'; + const unsigned int keyL = 'L'; + const unsigned int keyENTER = VK_RETURN; + const unsigned int keySHIFTLEFT = VK_SHIFT; + const unsigned int keyZ = 'Z'; + const unsigned int keyX = 'X'; + const unsigned int keyC = 'C'; + const unsigned int keyV = 'V'; + const unsigned int keyB = 'B'; + const unsigned int keyN = 'N'; + const unsigned int keyM = 'M'; + const unsigned int keySHIFTRIGHT = VK_SHIFT; + const unsigned int keyARROWUP = VK_UP; + const unsigned int keyCTRLLEFT = VK_CONTROL; + const unsigned int keyAPPLEFT = VK_LWIN; + const unsigned int keyALT = VK_LMENU; + const unsigned int keySPACE = VK_SPACE; + const unsigned int keyALTGR = VK_CONTROL; + const unsigned int keyAPPRIGHT = VK_RWIN; + const unsigned int keyMENU = VK_APPS; + const unsigned int keyCTRLRIGHT = VK_CONTROL; + const unsigned int keyARROWLEFT = VK_LEFT; + const unsigned int keyARROWDOWN = VK_DOWN; + const unsigned int keyARROWRIGHT = VK_RIGHT; + const unsigned int keyPAD0 = 0x60; + const unsigned int keyPAD1 = 0x61; + const unsigned int keyPAD2 = 0x62; + const unsigned int keyPAD3 = 0x63; + const unsigned int keyPAD4 = 0x64; + const unsigned int keyPAD5 = 0x65; + const unsigned int keyPAD6 = 0x66; + const unsigned int keyPAD7 = 0x67; + const unsigned int keyPAD8 = 0x68; + const unsigned int keyPAD9 = 0x69; + const unsigned int keyPADADD = VK_ADD; + const unsigned int keyPADSUB = VK_SUBTRACT; + const unsigned int keyPADMUL = VK_MULTIPLY; + const unsigned int keyPADDIV = VK_DIVIDE; + +#else + // Define random keycodes when no display is available. + // (should rarely be used then!). + const unsigned int keyESC = 1U; //!< Keycode for the \c ESC key (architecture-dependent) + const unsigned int keyF1 = 2U; //!< Keycode for the \c F1 key (architecture-dependent) + const unsigned int keyF2 = 3U; //!< Keycode for the \c F2 key (architecture-dependent) + const unsigned int keyF3 = 4U; //!< Keycode for the \c F3 key (architecture-dependent) + const unsigned int keyF4 = 5U; //!< Keycode for the \c F4 key (architecture-dependent) + const unsigned int keyF5 = 6U; //!< Keycode for the \c F5 key (architecture-dependent) + const unsigned int keyF6 = 7U; //!< Keycode for the \c F6 key (architecture-dependent) + const unsigned int keyF7 = 8U; //!< Keycode for the \c F7 key (architecture-dependent) + const unsigned int keyF8 = 9U; //!< Keycode for the \c F8 key (architecture-dependent) + const unsigned int keyF9 = 10U; //!< Keycode for the \c F9 key (architecture-dependent) + const unsigned int keyF10 = 11U; //!< Keycode for the \c F10 key (architecture-dependent) + const unsigned int keyF11 = 12U; //!< Keycode for the \c F11 key (architecture-dependent) + const unsigned int keyF12 = 13U; //!< Keycode for the \c F12 key (architecture-dependent) + const unsigned int keyPAUSE = 14U; //!< Keycode for the \c PAUSE key (architecture-dependent) + const unsigned int key1 = 15U; //!< Keycode for the \c 1 key (architecture-dependent) + const unsigned int key2 = 16U; //!< Keycode for the \c 2 key (architecture-dependent) + const unsigned int key3 = 17U; //!< Keycode for the \c 3 key (architecture-dependent) + const unsigned int key4 = 18U; //!< Keycode for the \c 4 key (architecture-dependent) + const unsigned int key5 = 19U; //!< Keycode for the \c 5 key (architecture-dependent) + const unsigned int key6 = 20U; //!< Keycode for the \c 6 key (architecture-dependent) + const unsigned int key7 = 21U; //!< Keycode for the \c 7 key (architecture-dependent) + const unsigned int key8 = 22U; //!< Keycode for the \c 8 key (architecture-dependent) + const unsigned int key9 = 23U; //!< Keycode for the \c 9 key (architecture-dependent) + const unsigned int key0 = 24U; //!< Keycode for the \c 0 key (architecture-dependent) + const unsigned int keyBACKSPACE = 25U; //!< Keycode for the \c BACKSPACE key (architecture-dependent) + const unsigned int keyINSERT = 26U; //!< Keycode for the \c INSERT key (architecture-dependent) + const unsigned int keyHOME = 27U; //!< Keycode for the \c HOME key (architecture-dependent) + const unsigned int keyPAGEUP = 28U; //!< Keycode for the \c PAGEUP key (architecture-dependent) + const unsigned int keyTAB = 29U; //!< Keycode for the \c TAB key (architecture-dependent) + const unsigned int keyQ = 30U; //!< Keycode for the \c Q key (architecture-dependent) + const unsigned int keyW = 31U; //!< Keycode for the \c W key (architecture-dependent) + const unsigned int keyE = 32U; //!< Keycode for the \c E key (architecture-dependent) + const unsigned int keyR = 33U; //!< Keycode for the \c R key (architecture-dependent) + const unsigned int keyT = 34U; //!< Keycode for the \c T key (architecture-dependent) + const unsigned int keyY = 35U; //!< Keycode for the \c Y key (architecture-dependent) + const unsigned int keyU = 36U; //!< Keycode for the \c U key (architecture-dependent) + const unsigned int keyI = 37U; //!< Keycode for the \c I key (architecture-dependent) + const unsigned int keyO = 38U; //!< Keycode for the \c O key (architecture-dependent) + const unsigned int keyP = 39U; //!< Keycode for the \c P key (architecture-dependent) + const unsigned int keyDELETE = 40U; //!< Keycode for the \c DELETE key (architecture-dependent) + const unsigned int keyEND = 41U; //!< Keycode for the \c END key (architecture-dependent) + const unsigned int keyPAGEDOWN = 42U; //!< Keycode for the \c PAGEDOWN key (architecture-dependent) + const unsigned int keyCAPSLOCK = 43U; //!< Keycode for the \c CAPSLOCK key (architecture-dependent) + const unsigned int keyA = 44U; //!< Keycode for the \c A key (architecture-dependent) + const unsigned int keyS = 45U; //!< Keycode for the \c S key (architecture-dependent) + const unsigned int keyD = 46U; //!< Keycode for the \c D key (architecture-dependent) + const unsigned int keyF = 47U; //!< Keycode for the \c F key (architecture-dependent) + const unsigned int keyG = 48U; //!< Keycode for the \c G key (architecture-dependent) + const unsigned int keyH = 49U; //!< Keycode for the \c H key (architecture-dependent) + const unsigned int keyJ = 50U; //!< Keycode for the \c J key (architecture-dependent) + const unsigned int keyK = 51U; //!< Keycode for the \c K key (architecture-dependent) + const unsigned int keyL = 52U; //!< Keycode for the \c L key (architecture-dependent) + const unsigned int keyENTER = 53U; //!< Keycode for the \c ENTER key (architecture-dependent) + const unsigned int keySHIFTLEFT = 54U; //!< Keycode for the \c SHIFTLEFT key (architecture-dependent) + const unsigned int keyZ = 55U; //!< Keycode for the \c Z key (architecture-dependent) + const unsigned int keyX = 56U; //!< Keycode for the \c X key (architecture-dependent) + const unsigned int keyC = 57U; //!< Keycode for the \c C key (architecture-dependent) + const unsigned int keyV = 58U; //!< Keycode for the \c V key (architecture-dependent) + const unsigned int keyB = 59U; //!< Keycode for the \c B key (architecture-dependent) + const unsigned int keyN = 60U; //!< Keycode for the \c N key (architecture-dependent) + const unsigned int keyM = 61U; //!< Keycode for the \c M key (architecture-dependent) + const unsigned int keySHIFTRIGHT = 62U; //!< Keycode for the \c SHIFTRIGHT key (architecture-dependent) + const unsigned int keyARROWUP = 63U; //!< Keycode for the \c ARROWUP key (architecture-dependent) + const unsigned int keyCTRLLEFT = 64U; //!< Keycode for the \c CTRLLEFT key (architecture-dependent) + const unsigned int keyAPPLEFT = 65U; //!< Keycode for the \c APPLEFT key (architecture-dependent) + const unsigned int keyALT = 66U; //!< Keycode for the \c ALT key (architecture-dependent) + const unsigned int keySPACE = 67U; //!< Keycode for the \c SPACE key (architecture-dependent) + const unsigned int keyALTGR = 68U; //!< Keycode for the \c ALTGR key (architecture-dependent) + const unsigned int keyAPPRIGHT = 69U; //!< Keycode for the \c APPRIGHT key (architecture-dependent) + const unsigned int keyMENU = 70U; //!< Keycode for the \c MENU key (architecture-dependent) + const unsigned int keyCTRLRIGHT = 71U; //!< Keycode for the \c CTRLRIGHT key (architecture-dependent) + const unsigned int keyARROWLEFT = 72U; //!< Keycode for the \c ARROWLEFT key (architecture-dependent) + const unsigned int keyARROWDOWN = 73U; //!< Keycode for the \c ARROWDOWN key (architecture-dependent) + const unsigned int keyARROWRIGHT = 74U; //!< Keycode for the \c ARROWRIGHT key (architecture-dependent) + const unsigned int keyPAD0 = 75U; //!< Keycode for the \c PAD0 key (architecture-dependent) + const unsigned int keyPAD1 = 76U; //!< Keycode for the \c PAD1 key (architecture-dependent) + const unsigned int keyPAD2 = 77U; //!< Keycode for the \c PAD2 key (architecture-dependent) + const unsigned int keyPAD3 = 78U; //!< Keycode for the \c PAD3 key (architecture-dependent) + const unsigned int keyPAD4 = 79U; //!< Keycode for the \c PAD4 key (architecture-dependent) + const unsigned int keyPAD5 = 80U; //!< Keycode for the \c PAD5 key (architecture-dependent) + const unsigned int keyPAD6 = 81U; //!< Keycode for the \c PAD6 key (architecture-dependent) + const unsigned int keyPAD7 = 82U; //!< Keycode for the \c PAD7 key (architecture-dependent) + const unsigned int keyPAD8 = 83U; //!< Keycode for the \c PAD8 key (architecture-dependent) + const unsigned int keyPAD9 = 84U; //!< Keycode for the \c PAD9 key (architecture-dependent) + const unsigned int keyPADADD = 85U; //!< Keycode for the \c PADADD key (architecture-dependent) + const unsigned int keyPADSUB = 86U; //!< Keycode for the \c PADSUB key (architecture-dependent) + const unsigned int keyPADMUL = 87U; //!< Keycode for the \c PADMUL key (architecture-dependent) + const unsigned int keyPADDIV = 88U; //!< Keycode for the \c PADDDIV key (architecture-dependent) +#endif + + const double PI = 3.14159265358979323846; //!< Value of the mathematical constant PI + + // Define a 10x13 binary font (small sans). + static const char *const data_font_small[] = { + " UwlwnwoyuwHwlwmwcwlwnw[xuwowlwmwoyuwRwlwnxcw Mw (wnwnwuwpwuypwuwoy" + "ZwnwmwuwowuwmwnwnwuwowuwfwuxnwnwmwuwpwuypwuwZwnwnwtwpwtwow'y Hw cwnw >{ jw %xdxZwdw_wexfwYwkw 7yowoyFx=w " + "ry qw %wuw !xnwkwnwoyuwfwuw[wkwnwcwowrwpwdwuwoxuwpwkwnwoyuwRwkwnwbwpwNyoyoyoyoy;wdwnxpxtxowG|!ydwnwuwowtwow" + "pxswqxlwnxnxmwDwoyoxnyoymwp{oyq{pyoy>ypwqwpwp{oyqzo{q{pzrwrwowlwqwswpwnwqwsxswpypzoyqzozq}swrwrwqwtwswswtxsxswq" + "ws}qwnwkwnydwew_wfwdwkwmwowkw(w0wmwmwGwtwdxQw swuwnwo{q{pynwp|rwtwtwqydwcwcwcwmwmxgwqwpwnzpwuwpzoyRzoyoyexnynwd" + "z\\xnxgxrwsxrwsyswowmwmwmwmwmwmwo}ryp{q{q{q{nwmwnwmwozqxswpyoyoyoyoyeyuwswrwrwrwrwrwrwrwrwqwrwmwtwnwmwnwuwpwuyp" + "wuwoyZwmwnwuwowuwmwqwkwuwowuwoxnwuxowmwnwuwpwuypwuwZwmwnwuwowuwnwowmwtw\\wuwuwqwswqwswqwswqwswEwqwtweypzr~qyIw " + "rwswewnwuwowuwozswtwuwqwtwmwnwlwowuwuwowOxpxuxqwuwowswqwswoxpwlwjwqwswqwswy~}P{|k~-{|w~}k{|w~}Ww~|S{|k~X{|v~vv~|Y{|}k~}|Z{|y~" + "}y|xy|}w~| s{|}k~}|Z{|l~|V{}p~}\"{|y~}|w{|}w~|V{|}|u{|v~P{}x~} {{}h~} N{|~y}y|}x~|S{|v~}|y{|}w~}2{|w~y}x~|g{}x" + "~|k{|w~y}x~|g{}x~|kx}|w{|}w~}k{}x~}%{}t~|P{}t~|P{}t~|P{}t~|P{}t~|P{}t~}W{|[~}e{}f~}b{}c~|a{}c~|a{}c~|a{}c~|X{}w" + "~}M{}w~}M{}w~}M{}w~}Z{|d~}|`{}t~}kv~b{|g~}]{|g~}]{|g~}]{|g~}]{|g~}){|g~|{|w~|h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f" + "{|v~h{}w~}f{|v~|j{|v~|b{}w~}L{|u~}|w{|}v~|W{|w~|Iw~}Qw~x{}x~|V{}y~}x{}s~|X{|v~|wv~}Vx~}v{|x~| D{}x~}I{}w~Q{}x~|" + "xw~U{}w~}w{|v~T{|w~|J{|w~Q{|x~}x{|x~|V{|v~vv~|T{}q~}|Wx~|x{}s~T{|w~I{|w~|R{|x~}x{}x~|Vx~}x{}s~|X{|v~vv~| Fw~}J{" + "|w~|R{|x~}x{|x~}Uv~|w{}w~}Q{|w~|Ww~}Hv~}w{}w~} Pw~}y{|x~}cY~ i{}y~|#{|w~}Qm~|`m~}w{|m~|\\{}v~| ;{}`~} -" + "{|r~x}t~}$v~}R{}x~}vw~}S{|w~t{|x~}U{|y~|_{|w~}w{}w~|n{}x~}_{|t~w}u~|Q{}x~}K{}w~N{}x~}Jx~ +{|w~Xs~y}s~|\\m~}X{}" + "f~\\{}g~}R{|s~}\\{|g~}Y{|i~|`{}c~|_{|s~w}s~}]{|s~x}s~ hr~}r~|[{|f~}Xs~}Y{}d~|\\{|c~}g{}b~|^{}c~|`{}e~_{|a~|g{" + "}w~}hv~|Y{}w~}M{}w~}W{}w~}n{|u~|_{}w~}V{}s~}jr~|h{}s~|lv~c{|p~}q~}^{}f~}_{|p~}q~}`{}e~[{}q~}p~dZ~g{|v~h{}w~}h{|" + "v~|f{|v~p{|v~m{|t~}m{}w~}m{|v~|m{}v~c{}v~jv~}e\\~]{|w~}Nw~}D{|w~|Sp~| ww~|!w~} `{|w~|${}w~}!w~}Cv~Lv~Tw~}Dv~ " + " Ov~ !{}w~}Mw~|N{|v~ :{}v~|s{|v~V{|t}|V{|t~s}w~| p{|v~ {{|v~|t{|v~|Vs~}W{}c~|_{}d~}c{|d~|W{|v~Y{}^~|iv~" + "}r{|v~qv~}f{|p~}q~}${}r~} v{}w~ v{}q~| ?y~}Ps~x}u~,v~k{}w~|Ww~|Su~}v|}w~X{|v~vv~|Z{}v~}y|wy|}v~}[{|}q{}x~} t{}" + "v~}y|wy|}v~}&{}w~|x{|w~}#y|r{}x~}Kw~|R{|w~ {{}p~}v|x~} H{}x~|S{}w~t{}w~|3x|x{}x~|h{|x~}j{|}|x{}x~|h{|x~}`{|w~l{" + "|w~$s~}Ps~}Ps~}Ps~}Ps~}Pr~W{}[~}g{|c~}c{}c~|a{}c~|a{}c~|a{}c~|X{}w~}M{}w~}M{}w~}M{}w~}Z{|b~}a{}s~|lv~c{|p~}q~}_" + "{|p~}q~}_{|p~}q~}_{|p~}q~}_{|p~}q~}+{|p~}q~}w~|g{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}e{}v~jv~}a{}w~}Lu~r{" + "|v~V{|w~J{}x~}Q{}x~|w{}x~Vx~|w{}u~}Vv|vv|U{}x~}x|}w~ Bw~|K{|w~|R{|x~}w{|x~}Vu|vv|S{|w~K{|w~|Qx~}v{}x~Uv|vv|T{|}" + "t~}|Tx~|w{|u~|S{}x~}Jw~}Qw~vw~Vx~|w{}u~}Vv|vv| Dw~|Kw~|Qw~v{}x~|Vv|vv|Pw~|Vw~}Hv|uv| G{|t}|P{|t}|P{|t}|P{|t}|P{" + "|t}|Lw~|xw~c{|[~} iy~}\"u~|S{|l~a{}l~|x{}l~]{}t~ ={|^~} .{|u~}|u{|}w~}$v~}R{}x~}vw~}S{}x~}t{}x~}Xy|y}y~y}x" + "|cw~}u{}w~o{|w~^u~}t{|}y~|Q{}x~}Kw~|N{|w~|T{}sx~s{} 4{}x~}Y{}v~}|v{}u~\\m~}X{}v~y}|wy|s~]{}x~}x|v{|}t~}Sr~}\\{" + "|v~k|Z{|t~}|v{|y}y~|`h|u~^t~|u{|}u~|^u~}|v{|}v~} iv~y|v{|t~]{|o~y}p~|[{|r~|Z{}w~}q|}s~]{|s~}|t{|}u~}g{}w~}r|y" + "}q~}_{}w~}h|_{}w~}j|`{|s~}|s{|}t~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}o{}u~|^{}w~}V{}r~k{|r~|h{}r~lv~d{|t~}|uy|s~_{}w~}" + "s|y}t~}a{|t~}|uy|s~a{}w~}s|y}s~]{}u~}|ty|}v~dn|}v~}n|g{|v~h{}w~}gv~}f{}w~}ov~|n{|t~}mv~|l{}v~|o{|v~|bv~}l{}v~dc" + "|u~}]{|w~}N{}w~D{|w~|T{}o~| x{|w~!w~} `{|w~|${}w~ w~} >w~}Dv~ Ov~ !{}w~|Mw~|M{}w~ :v~|q{}w~|Xp~}X{}v~|p{|" + "}| o{}w~| v~|r{|v~W{|r~|X{}v~}i|^{}w~}h|d{|s~}y|xy|}s~}[{|y}u~y}y|]{}w~}h|v~|iv~}r{|v~qv~}g{|t~}|uy|s~&{}p" + "~} w{}w~ w{}o~| @y~}Q{}v~}|u{|}y~,{|w~}m{|w~}Vw~|T{|v~|s{|}~({|w~}|o{|}w~|P{}x~| w{|w~}|o{|}w~|(x~}tw~ rw~K{}x" + "~|Rw~ {{}o~}w{|x~} H{}x~|T{|w~r{}x~}-{}x~|hw~|d{}x~|hw~|_{}x~|mw~|%{|r~|R{|r~|R{|r~|R{|r~|R{|r~|R{}r~|Y{|v~|y{|" + "v~}h|h{|s~}|t{|}u~}c{}w~}h|`{}w~}h|`{}w~}h|`{}w~}h|W{}w~}M{}w~}M{}w~}M{}w~}Z{|v~r|x}q~b{}r~lv~d{|t~}|uy|s~a{|t~" + "}|uy|s~a{|t~}|uy|s~a{|t~}|uy|s~a{|t~}|uy|s~-{|t~}|u{|}q~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}dv~}l{}v~`" + "{}w~}M{|v~p{}w~|V{}x~}L{}x~}Q{|x~|ux~}Wx~|v{|w~} {{}q~| Aw~|Lw~|Qw~u{}x~| y{|x~}Lw~|Q{}x~tx~}#{|}r~}Rx~u{|}y~}|" + "Q{}x~}L{}x~}Q{}x~|v{|x~}Wx~|v{}w~} j{|w~L{}x~}Q{}x~|u{}x~ x{}x~}Uw~} b{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|V{|}p~}|" + "P{|w~|xx|av~|fv~| j{|y~|#{}t~Sk~|c{|k~}y{|k~}_{|s~} ?{}t~}y| u{|u~|p{}y~}$v~}R{}x~}vw~}Sw~|tw~|[{|}m~}|h{" + "|w~sw~|p{}x~|_{}v~|q{|}|Q{}x~}L{}w~Lw~}U{}y~|ux~u{|y~}U{|x}| `w~|Z{|v~}s{|v~}]w~y}y|{}w~}X{}x~|p{|u~|^y}|n{|u~" + "|U{}x~y}w~}\\{|w~}K{|u~}o{}|Mv~|_{}v~}q{|u~_{}v~}r{|v~| jy~}|qu~|_{}t~}y|s{|}t~}\\{}w~}w~}Z{}w~}o{|u~}_{|t~|n" + "{|}x~}g{}w~}n{|}t~}`{}w~}L{}w~}P{|t~}m{|}w~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}p{}u~|]{}w~}V{}w~}w~|l{}r~|h{}r~|mv~e{|" + "u~}|p{|t~`{}w~}q{|}u~|c{|u~}|p{|t~b{}w~}p{}u~|_{|u~|n{|}y~W{|v~|Z{|v~h{}w~}g{|v~fv~|o{}w~}n{}x~}w~mv~|kv~}ov~}a" + "{|v~|n{|v~|M{}v~}\\{|w~}N{|w~|E{|w~|U{}v~}{|u~| x{|x~}\"w~} `{|w~|$v~ w~} >w~}Dv~ Ov~ !v~Lw~|M{}w~| <{|w~" + "}p{|w~}Xn~|Zv~ _{|v~ !{|w~}p{}w~}X{}w~}w~}W{}v~|M{}w~}R{|t~|p{|t~|_{|}l~}|`{}w~}hv~|iv~}r{|v~qv~}h{|u~}|p{|" + "t~({}n~} x{}w~ x{}m~| Ay~}R{|v~}p{}+{}w~|nv~Uw~|T{}w~| x{|w~|k{|w~|Q{|x~| x{|w~|k{|w~|*{|x~rx~|R{|w}Fw~Kw~|S{}" + "x~| {|n~}w{|x~} H{}x~|T{}x~}qw~|.{}x~|i{}x~}c{}x~|i{}x~}^{}x~|n{}x~}${}w~}w~}R{}w~}w~}R{}w~}w~}R{}w~}w~}R{}w~}w" + "~}Rv~|w~}Y{}w~}x{|v~U{|t~|n{|}x~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~n{|}s~c{}r~|mv~e{|u~}|p{|" + "t~c{|u~}|p{|t~c{|u~}|p{|t~c{|u~}|p{|t~c{|u~}|p{|t~/{|u~}|p{}t~}e{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}d{|v" + "~|n{|v~|`{}w~}M{}w~}ow~}U{}x~|N{|w~Px~}t{|x~|Xx|sy| w{}s~| @{|w~M{}x~|Q{}x~|tw~ x{}x~}N{}x~|Q{|x~|t{|x~|&{}t~}v" + "~} t{}x~|N{|x~}Q{|x~}t{}x~|Xx|sy| g{|x~}N{|x~}Q{|x~}sx~} {{|x~}Tw~} d{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|j~|R{|w~Z{}w~}" + "g{}w~} Ay|J{}y~#{|s~}Tk~}c{}j~|{}j~_q~| A{}u~} q{}v~|n{}~}$v~}R{}x~}vw~}Sw~t{|w~\\{|h~|i{}x~}s{}x~}q{|x~}^" + "v~|C{}x~}Lw~}L{}w~V{|v~|wx~w{|v~|V{}w~ a{|w~Yv~}q{|v~|^{}y|u{}w~}Xy}|m{|u~M{|v~}V{|w~|}w~}\\{|w~}Ku~|?{|v~^u~o" + "{}v~|a{|v~}p{}v~ j{~|nv~}`u~}|l{|}u~]v~{v~Z{}w~}mu~_u~}j{|y~}g{}w~}l{|}u~}a{}w~}L{}w~}Q{|u~}i{|}y~|g{}w~}hv~|" + "Y{}w~}M{}w~}W{}w~}q{}u~|\\{}w~}V{}w~|w~}lw~|v~|h{}q~mv~f{|u~}m{|u~}a{}w~}o{}v~}d{|u~}m{|u~}c{}w~}o{|u~_{}v~|j{|" + "W{|v~|Z{|v~h{}w~}fv~|h{}v~n{}w~}nw~|w~|o{|v~j{|v~}q{}v~_{}v~nv~}M{|u~[{|w~}Mw~}E{|w~|V{}v~}x{|u~| vw~} `{|w~|$" + "w~} w~} >w~}Dv~ Ov~ !v~Lw~|M{}w~| <{}w~|ow~}Xm~|[v~ ^v~| \"v~|p{|v~Xv~{v~V{}v~|N{}w~}Ru~}l{}u~|b{|g~}" + "|b{}w~}hv~|iv~}r{|v~qv~}i{|u~}m{|u~}*{}l~} y{}w~ y{}k~| By~}R{}v~ y{|w~}o{|w~}Uw~|T{}w~ x{|x~}g{}x~|R{|x~} y{|" + "x~}g{}x~|+{}y~}r{}y~}R{}w~Fx~}M{|}w~ Mm~}w{|x~} H{}x~|Tw~p{}x~|.{}x~|j{|w~b{}x~|j{|w~]w~n{|w~#v~{v~Rv~{v~Rv~{v~" + "Rv~{v~Rv~{v~S{|w~}{}w~|Zv~|x{|v~Uu~}j{|y~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~k{}t~d{}q~mv~f{|" + "u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}e{|u~}m{|u~}1{|u~}m{|u~}e{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w" + "~}c{}v~nv~}_{}w~}Mv~n{}w~Tw}N{|x}P{|x}r{|x} F{|}x~}| ={|x}|O{|x}|Px}|s{|x}| xw|Nw|Pw|rw|'{|v~}|y{|v~} tw}Nw}P{|" + "x}rx}| 6w|Nw|Ox|rw| Nw~} e{}h~}\\{}h~}\\{}h~}\\{}h~}\\{}h~}S{|w~Z{|v~gv~| Ay~}L{|y~}${|q~}V{|j~ci~}|i~|a{}p~|" + "Oy|Uw|jw|Vu|Wv|kw|b{}v~} p{|v~|l{|}$v~}R{}x~}vw~}T{|x~}t{|x~}]{|g~|i{}x~|s{|w~qw~|^v~B{}x~}M{|w~|L{|w~}V{|}" + "w~}xx~x{}w~}|U{}w~ a{}w~Z{|v~o{}w~}U{}w~}X{|j{}v~|M{}v~Vw~}{}w~}\\{|w~}L{|v~|>v~}_{|v~|nv~}a{}v~nv~| \\{}w~}" + "b{|u~|h{|}v~|`{|w~}{}w~|[{}w~}m{|v~|a{}v~}gy}g{}w~}j{}u~|b{}w~}L{}w~}Q{}v~}f{|~|g{}w~}hv~|Y{}w~}M{}w~}W{}w~}r{}" + "u~|[{}w~}V{}w~y|w~m{|w~{v~|h{}w~}v~|nv~f{}v~}ju~|b{}w~}nu~d{}v~}ju~|d{}w~}n{}v~|`v~}D{|v~|Z{|v~h{}w~}f{}w~}hv~}" + "n{|v~o{|w~{}x~}o{}w~}i{}v~|s{|v~|^v~}p{}v~M{|u~|[{|w~}M{}x~}E{|w~|W{}v~|v{|u~| ww~} `{|w~|$w~} w~} >w~}Dv~ " + "Ov~ !v~Lw~|M{|w~| <{}w~|ow~}Xy~}w|}t~[v~| _{}w~} #{|w~}n{}w~|Z{|w~}{}w~|Vu~|O{}w~}S{}v~}j{}u~c{}d~|c{}w~" + "}hv~|iv~}r{|v~qv~}i{}v~}ju~|,{}v~y}w~|v~} {{}w~ {{}v~y}w~|u~| Cy~}R{}w~}R{|ey|_{}w~|pv~Tw~|T{}w~ y{|x~}e{}x~|\\" + "{|}p~} {{|x~}e{}x~|,{}y~}r{}y~}R{}w~G{}x~|Rq~| N{|m~}w{|x~} H{}x~|U{|w~p{|x~}.{}x~|j{}x~|b{}x~|j{}x~|_{|w~|n{}" + "x~|${|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{|w~}{}w~|T{}w~|{|w~}[{|v~w{|v~V{}v~}gy}c{}w~}M{}w~}M{}w~}M{}w~" + "}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~j{|u~}e{}w~}v~|nv~f{}v~}ju~|f{}v~}ju~|f{}v~}ju~|f{}v~}ju~|f{}v~}ju~|c{}d{}|d{}v~}" + "k{}u~|f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}bv~}p{}v~^{}m~y}|Yv~o{|}w~ Py~}|u{|v~} 2w~} f{" + "}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~T{|w~Yv~|i{|v~ A{}x~}M{}y~|$o~|W{|j~ch~}i~}" + "b{}n~T{|}t~y}|Zw~}kw~}X{}u~|X{}w~|m{}w~|d{|v~| ov~}j{|$v~}R{}x~}vw~}T{}x~}t{}x~}]u~}|{|y~|y{|y}x~|iw~|rw~r{" + "}x~}]v~B{}x~}Mv~Jv~T{|}w~|{x~{|w~}|S{}w~ aw~}Z{}w~}o{|v~U{}w~}Ev~}M{|v~W{}w~y{}w~}\\{|w~}Lv~}>{|v~|_{|v~m{}w~}" + "av~|n{|v~ 8{|y}6{|~|4{}v~c{|v~}d{|v~`{}w~|{|w~}[{}w~}lv~|b{|v~}e{|g{}w~}i{}u~b{}w~}L{}w~}R{|v~}dy|g{}w~}hv~|Y{}" + "w~}M{}w~}W{}w~}s{}u~Y{}w~}V{}w~|{w~|nw~}{v~|h{}w~y|v~nv~g{|v~}i{|u~b{}w~}n{|v~|f{|v~}i{|u~d{}w~}n{|v~|a{|v~C{|v" + "~|Z{|v~h{}w~}f{|v~|j{|v~|mv~|p{|w~{|x~}ov~|hv~}sv~}]{|v~|r{|v~|Mu~|Z{|w~}M{|w~E{|w~|X{}v~|t{|u~| xw~} `{|w~|$w" + "~} w~} >w~}Dv~ Ov~ !w~}Lw~|M{|w~| {|v~]{|v~m{}w~}b{|w~}l{}w~}W{|v}M{}v~D{}r~}6{|r~}|>{|v~|e{}w~|^{|w~|dv~w{|v~\\{}w~}lv~|c{}v~N{}w~}g{}v~|d{" + "}w~}L{}w~}S{}v~L{}w~}hv~|Y{}w~}M{}w~}W{}w~}vu~}V{}w~}V{}w~|yw~}pw~}yv~|h{}w~|y{}w~}pv~h{}v~e{}v~|d{}w~}mv~}g{}v" + "~e{}v~|f{}w~}mv~}a{|v~C{|v~|Z{|v~h{}w~}dv~|l{|v~k{|v~q{|w~x{}x~}q{}w~}e{}v~wv~}Y{|v~|v{|v~|N{|v~}W{|w~}L{|w~F{|" + "w~|[{}v~l{}v~ S{|}k~|Zw~}y{|o~}V{|k~|\\{|o~}y{|w~|\\{|m~}X{}k~}Y{|o~}y{|w~|`w~}y{|o~}Sv~Lv~Tw~}o{|v~}Wv~_w~}y{|" + "o~|v{|o~|ew~}y{|o~}Y{|}n~}|[w~}y{|o~}Y{|o~}y{|w~|Zw~}y{|r~|[{}j~[{}i~]{|w~|m{}w~|b{}w~|k{|w~}i{|w~}q{|u~|q{|w~|" + "h{|v~|o{|v~}b{}w~|k{|w~}`d~Uw~}Lw~|M{|w~| n{|o~}vw~|av~o{}w~|M{|v~[{|o~}|U{}k~}]w~}y{|o~}_u~|k{|w~}Wu~X{|w~|m{" + "}w~|dv~|h{|v~_{}x~}x{}s~}__~|dv~t{}w~t{|w~}\\{}n~}Y{|}e~}f{|`~b{|w~}l{}w~|\\v~w{|v~T{|u~R{}w~}U{}v~dv~}i{}u~u{|" + "v~u{|u~|g{}w~}hv~|iv~}r{|v~qv~|k{}v~e{}v~|c{~}I{|y~}w{}w~w{|y~}I{}~|U{}w~T{}~|k{}~|\\y~}w{}w~w{|y~| v~}P{}k~Z{|" + "v~S{|v~}x{|}v~}|y{|v~}^{|w~}u{|w~}Rw~|S{|u~}${}y~|v{}v~}|wy|}y~u{|y~}c{|x~}r{|x~}Q{|q{| W{}y~|uw~vy|v~u{|y~}-w~" + "|v{|w~Q{}w~K{|w~|I{|w~'{|w~|m{}w~|a{}m~}w{|x~} H{}x~|U{|x~}p{|x~}]{|q{|X{}x~|m{|w~_{}x~|m{|w~]{|}w~}q{|w~Pv~|Sv" + "~w{|v~Vv~w{|v~Vv~w{|v~Vv~w{|v~Vv~w{|v~W{|v~vv~^{|v~|v{|v~X{}v~J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z" + "{|v~g{|v~}g{}w~|y{}w~}pv~h{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|j{}v~e{}v~|g{|u~l{}v~}g{}v~kw~}{}v~g{|v~h{" + "}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}`{|v~|v{|v~|\\{}w~}s|y}t~}_w~}u{|v~|Y{|}k~|Z{|}k~|Z{|}k~|Z{|}k~|Z{|}k~|Z{|" + "}k~|d{|}k~|v{|m~}_{|k~|[{|m~}W{|m~}W{|m~}W{|m~}Rv~Lv~Lv~Lv~Q{|}l~\\w~}y{|o~}Y{|}n~}|X{|}n~}|X{|}n~}|X{|}n~}|X{|" + "}n~}|S{}u~S{|}n~}{|x~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|b{}w~|k{|w~}aw~}y{|o~}^{}w~|k{|w~} X{|w~}" + "t{}w~t{|w~}f{|w~}h{|w~}f{|w~}yy|p{|}y{|w~}f{|w~}ly|y{|w~}f{|w~}h{|w~}X{}x~}X{|v~kv~| Cv~|Lx~&{|i~|Y{|m~}bU~|e{}" + "h~\\{|u~}|xy|}u~^w~}kw~}Yr~}X{}w~}ov~d{}w~ lv~| lv~}R{}x~}vw~}^{}Z~f{|w~|v{|y~|`w~|s{|w~tw~|[{|v~|D{}x~}Nw~" + "}H{}w~|Q{|t~|N{}w~ c{|w~|Zv~|lv~|W{}w~}E{}w~}M{}w~}Z{|w~|w{}w~}\\{|w~}N{|v~={}w~}\\v~|nv~|b{}w~}l{}v~W{}v~M{}v" + "~G{|}p~|6{|o~}@u~e{|w~|\\{}w~e{|w~}v{}w~|]{}w~}m{|v~|cv~}N{}w~}g{|v~}d{}w~}L{}w~}Sv~}L{}w~}hv~|Y{}w~}M{}w~}W{}w" + "~}x{|u~}U{}w~}V{}w~|y{}w~q{|w~|yv~|h{}w~|y{|v~pv~hv~}e{|v~}d{}w~}mv~}gv~}e{|v~}f{}w~}mv~}a{|v~|D{|v~|Z{|v~h{}w~" + "}d{}w~}l{}w~}jv~|r{|w~x{|x~}qv~|e{|v~}y{}v~W{}v~vv~}N{|u~V{|w~}Kw~|G{|w~|\\{}w~}j{}v~ T{}i~}[w~}{}m~}X{}j~|]{}m" + "~}{|w~|]{}j~Y{}k~}Z{}m~}{|w~|`w~}{|l~Tv~Lv~Tw~}p{}v~}Vv~_w~}{|m~|x{|m~|fw~}{|m~}[{|j~|\\w~}{}m~}[{}m~}{|w~|Zw~}" + "{|q~|\\{}i~[{}i~]{|w~|m{}w~|b{|w~}k{}w~|hw~}q{|u~}q{}w~|g{}v~ov~}a{|w~}k{}w~|`d~Uw~}Lw~|M{|w~| Gy|l{|Z{}m~}x{|w" + "~`v~p{|v~Kv~Z{|m~|X{}j~}]w~}{|l~`t~|l{}w~|X{|u~}Y{|w~|m{}w~|e{}v~f{}w~}b{|v~}y{|q~}`_~|dv~t{}w~t{|w~}^{|k~}[{|c" + "~}f{|`~b{}w~}l{}w~}]{|w~}vv~|T{|v~}S{}w~}Uv~}d{}v~j{|u~t{|v~t{|u~g{}w~}hv~|iv~}r{|v~r{|v~|kv~}e{|v~}dx~}I{|}v{}" + "w~v{|}I{}x~|V{}w~U{}x~|m{}x~|\\{|v{}w~vy| {{v~}R{|i~Z{|v~R{|v~}|q~}|v~}\\v~u{}w~Qw~|R{|t~|'{|y~}v{}w~}p{|t{}y~|" + "d{}x~|r{|x~}Ry}r{|~ X{|y~}tw~sw~|u{}y~|.{|w~}x|}w~|Q{}w~L{|w~|G{|x~}({|w~|m{}w~|a{}m~}w{|x~} H{}x~|U{|w~p{|x~}]" + "{~|r{|}Y{}x~|mw~|_{}x~|m{}x~|[{|w~|r{}x~|Pv~|T{|w~}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{|w~}v{}w~|X{}w~}" + "v{}w~}_{}w~}u{|v~Xv~}J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~fu~g{}w~|y{|v~pv~hv~}e{|v~}jv~}e{|v~}" + "jv~}e{|v~}jv~}e{|v~}jv~}e{|v~}f{|u~n{}v~}fv~}l{}x~}y{|v~|h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}_{}v~vv~}[" + "{}w~}q{|}u~|`w~}uv~W{}i~}[{}i~}[{}i~}[{}i~}[{}i~}[{}i~}e{}i~}x{}k~}a{}j~|\\{}j~Y{}j~Y{}j~Y{}j~Sv~Lv~Lv~Lv~R{}j~" + "}]w~}{|m~}[{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|j~|T{}u~T{|f~`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|b{|w~}k{}w~|a" + "w~}{}m~}_{|w~}k{}w~| Xw~}s{}w~s{}w~fw~}f{}w~fw~}y{|y~|r{|y~}y{}w~fw~}l{|y~}y{}w~fw~}f{}w~X{}x~}Wv~|m{|v~ C{}w~}" + "[{|}|o{|y~|&g~|Y{}n~|b{}V~e{|g~}]v~}r{|v~}_w~}kw~}Z{|r~}X{|v~p{|w~}dw~} pw|v~l| {{v~}R{}x~}vw~}^{}Z~f{|w~|v" + "{|y~|`{}x~}s{|x~}u{}x~}Y{}v~|E{}x~}O{|w~}H{}w~|S{|}r~}|P{}w~ c{|w~Yv~|lv~|W{}w~}Ev~|N{|v~|Zw~}v{}w~}\\{|w~}|}v" + "~y}|X{}w~}>{|v~|\\{}w~}o{|v~a{}w~}l{}v~W{}v~M{}v~J{|}p~}|2{|}p~}|D{}v~|e{}x~}p{|}w~}|vx|uw~|f{}w~|v{|w~}]{}w~}m" + "{}v~c{|v~|N{}w~}fv~}d{}w~}L{}w~}T{|v~|L{}w~}hv~|Y{}w~}M{}w~}W{}w~}y{|u~}T{}w~}V{}w~|y{|w~|r{}x~}xv~|h{}w~|x{}w~" + "}qv~i{|v~|dv~}d{}w~}mv~}h{|v~|dv~}f{}w~}n{|v~|`u~D{|v~|Z{|v~h{}w~}d{|v~m{|v~|j{}w~}r{}x~}x{|w~qv~|d{}v~y|v~|Vv~" + "}x{}v~Mu~|V{|w~}K{}x~}G{|w~|]{}w~}h{|v~ U{}u~v}s~}\\w~}|v~w}t~}Zr~v}v~|^{}t~w}v~}|w~|^{}t~v}t~Zv}v~s}[{}t~w}v~}" + "|w~|`w~}|u~x}t~}Uv~Lv~Tw~}q{}v~|Uv~_w~}|v~x}s~y{|v~x}s~fw~}|u~x}t~}]{|s~x}s~|]w~}|v~w}t~}]{|t~w}v~}|w~|Zw~}|t~}" + "x~|]{}t~u}u~[{|x}v~q}]{|w~|m{}w~|av~kv~g{}w~q{}t~qv~e{}v~q{}v~_v~|m{|v~_d~Uw~}Lw~|M{|w~| J{|}v~}r{}v~}|_{}u~w}u" + "~|y{}x~}`v~q{|v~}K{}w~|\\{}w~}p~}Z{}s~w}u~}]w~}|u~x}t~}as~m{|v~W{}t~Y{|w~|m{}w~|ev~|f{|v~c{|u~}yn~a_~|dv~t{}w~t" + "{|w~}_{|t~w}t~}]{|b~}f{|`~b{}w~|l{}w~}]{}w~|v{|w~}S{|v~}T{}w~}Uv~|d{|v~|k{}v~|t{|v~s{}v~|h{}w~}hv~|i{}w~}r{|v~r" + "{|v~|l{|v~|dv~}ev~}C{}w~C{}v~|W{}w~V{}v~n{|v~|W{}w~ sv~}S{|s~}y~x}v~Z{|v~Q{|e~}[{|w~}w{|w~}Qw~|R{}r~|){}y~|w{|w" + "~}g{|y~}dw~q{}x~}S{}~}s{}y~ X{}y~|tw~s{}x~}u{|y~}-{}p~}P{}w~M{|w~|F{|x~}({|w~|m{}w~|a{}m~}w{|x~} H{}x~|Tw~p{}x~" + "|]y~}s{|y~Z{}x~|n{|x~}^{}x~|n{|w~Y{|x~}s{|x~}Ov~|T{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}X{}w~|v{|w~}Xv" + "~u{|v~_v~|u{|v~Y{|v~|J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{}v~g{}w~|x{}w~}qv~i{|v~|dv~}k{|v~|d" + "v~}k{|v~|dv~}k{|v~|dv~}k{|v~|dv~}e{|u~p{}v~}f{|v~|m{}w~wv~}h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}^v~}x{}v" + "~Z{}w~}o{}v~}`w~}v{|w~|W{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}\\{}u~v}s~}f{}u~v}s~}{s~w}t~}cr~v}" + "v~|]{}t~v}t~[{}t~v}t~[{}t~v}t~[{}t~v}t~Tv~Lv~Lv~Lv~S{}h~|^w~}|u~x}t~}]{|s~x}s~|\\{|s~x}s~|\\{|s~x}s~|\\{|s~x}s~" + "|\\{|s~x}s~|U{}u~U{|s~x}q~|`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|av~|m{|v~`w~}|v~w}t~}_v~|m{|v~ X{|w~" + "r{}w~rw~}h{|w~dw~}h{|w~y{|w~|t{|w~}yw~}h{|w~l{|w~}yw~}h{|w~dw~}Y{}x~}W{}w~}m{}w~} Xg|}v~s|e{|}x~}o{}y~&{}f~Y{|o" + "~}a{|V~f{|e~}_{|w~}p{|v~_w~}kw~}Z{}w~}v~Wv~|q{}w~}e{|w~ pc~} {{v~}R{|x}|v{|x}|^{}Z~f{|w~|v{|y~|`{|w~s{}x~}v" + "{|w~Wu~|F{|x}|O{}w~|H{|w~}U{|}w~|x~|w~}|R{}w~ c{}x~}Yv~|lv~|W{}w~}F{|v~N{|v~}Z{}w~u{}w~}\\{|k~}Z{}w~}x{|}u~y}|" + "L{}v~Zv~|pv~}a{|v~l{}v~|X{}v~M{}v~M{|}p~}|,{|}p~}|H{}v~|e{|w~q{|q~}y{}x~|v{|x~}fv~tv~]{}w~}n{}v~|c{|v~|N{}w~}f{" + "}v~d{}w~}L{}w~}T{}v~|L{}w~}hv~|Y{}w~}M{}w~}W{}w~}{|u~}S{}w~}V{}w~|xw~}rw~|xv~|h{}w~|x{|v~|rv~i{|v~|d{}v~d{}w~}n" + "{|v~|h{|v~|d{}v~f{}w~}n{}v~|`{}v~}|F{|v~|Z{|v~h{}w~}cv~|n{}v~i{}w~}rw~|ww~|s{|v~b{}q~}U{|v~|{|v~|N{}v~|U{|w~}K{" + "|w~G{|w~|^{}w~}f{|v~ V{}y~}|r{|u~|]r~|u{|u~}\\{}u~}s{|}y~|_{|u~|u{|}s~|_{}v~}|t{}v~}Vw~}T{|u~|u{|}s~|`r~|u{|u~|" + "Vv~Lv~Tw~}ru~|Tv~_r~|v{|}v~}{w~|u{}v~}gr~|u{|u~|^u~}|v{|}u~]r~|u{|u~|_{|u~|u{|}s~|Zr~}|v{|\\v~}|r{|}y~Wv~S{|w~|" + "m{}w~|a{}w~|m{|w~}g{}w~|rs~qw~}dv~}s{|v~|_{}w~}m{}w~|Nu~Uw~}Lw~|M{|w~| K{}r~u{|r~}a{|v~}|v{}v~yw~|`v~r{|u~|K{|w" + "~|]{}w~|xy|}t~}[u~}|s{|}~}]r~|u{|u~|ay|v~|n{}w~|X{|s~|Z{|w~|m{}w~|f{|v~dv~|e{|u~}|{|v~y|}v~}bx}u~q}u~x}|dv~t{}w" + "~t{|w~}_u~|u{|u~|_{|u~}|v{|}t~v}f{|q}u~p}b{}w~|l{|v~]v~tv~R{}v~}U{}w~}V{|v~|cv~}l{|v~}s{|v~s{|v~}h{}w~}hv~|i{}v" + "~r{|v~r{|v~|l{|v~|d{}v~fu~|C{}w~C{|u~|X{}w~W{}v~}m{}v~|X{}w~ sv~}T{|u~}|yy~}x{|}y~Z{|v~P{|g~}Y{}w~|xv~Pw~|T{|v~" + "}u~}*x~v{}w~ex~dw~qw~}U{|x~}t{}x~ Xx~sw~s{}x~}tx~,{|r~|O{}w~N{|w~|Dw~({|w~|m{}w~|a{|m~}w{|x~} H{}x~|T{}x~}qw~|]" + "x~}t{|x~|\\{}x~|nw~]{}x~|nw~|Xw~sw~|Ov~|Tv~tv~Xv~tv~Xv~tv~Xv~tv~Xv~tv~Y{|w~}tv~|a{|v~t{|v~Y{|v~|J{}w~}M{}w~}M{}" + "w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|x{|v~|rv~i{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{" + "}v~d{|u~r{}v~}e{|v~|n{}w~v{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}^{|v~|{|v~|Z{}w~}nu~`w~}v{}w~V{}y~}|r" + "{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|]{}y~}|r{|u~|g{}y~}|r{|o~}|u{|}v~}e{}u~}s{|}y~|^{}v~}|" + "t{}v~}]{}v~}|t{}v~}]{}v~}|t{}v~}]{}v~}|t{}v~}Uv~Lv~Lv~Lv~T{}u~}|v{|}v~}^r~|u{|u~|^u~}|v{|}u~\\u~}|v{|}u~\\u~}|v" + "{|}u~\\u~}|v{|}u~\\u~}|v{|}u~U{}u~Uu~}|u{}u~|_{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{}w~}m{}w~|`r~|u{" + "|u~|`{}w~}m{}w~| Xw~|r{}w~r{|w~hw~|d{|w~hw~|yu~|v{|u~y{|w~hw~|m{|u~y{|w~hw~|d{|w~Y{}x~}Vv~mv~| XZ~}g{}t~oy~}'{}" + "e~}Y{}p~_W~|fc~|`v~n{}w~|`w~}kw~}Zv~|}w~|X{}w~}qv~|e{}x~} q{|c~| {{v~} y{|x~}t{}x~}]{|w~}v{|y~|_w~|u{|w~|vw" + "~|Wt~ p{}w~|H{|v~V{}w~}yx~y{}w~}S{}w~ cw~|Z{|v~k{}w~}W{}w~}Fv~}Qy|u~}Z{|w~|u{}w~}\\{|i~|\\v~|y{}p~}|Nv~}Z{|v~|" + "s{|v~}`{|v~lu~|X{}v~M{}v~P{|}p~}|b{|Z~}b{|}p~}|L{}v~}d{}x~|r{|n~{}x~|uw~|h{}w~}t{}w~|^{}w~}q{|}u~}b{}v~M{}w~}f{" + "}v~d{}w~}L{}w~}T{}v~K{}w~}hv~|Y{}w~}M{}w~}W{}w~}|u~}R{}w~}V{}w~|x{|w~s{}w~wv~|h{}w~|w{}w~}rv~i{}v~c{}v~d{}w~}n{" + "}v~|h{}v~c{}v~f{}w~}o{|u~_{|t~}|H{|v~|Z{|v~h{}w~}c{}v~nv~}i{|v~s{|w~|w{}x~}s{}w~}b{|q~S{}v~|v~}N{}v~}T{|w~}K{|w" + "~|H{|w~| s{}|m{}w~}]t~}q{}v~|^{}v~}ny|_u~q{}t~|`{|v~|q{|v~|Ww~}Tu~q{|t~|`t~}r{|v~}Vv~Lv~Tw~}t{|u~Rv~_t~}r{}v~}" + "y~}r{}v~gt~}r{|v~}_{}v~|r{|v~}^s~q{}v~_{}v~|r{}t~|Zs~T{|w~}m{|Wv~S{|w~|m{}w~|a{|w~}mv~|g{|w~}s{|s~|s{|w~|d{|v~|" + "u{|v~}]v~mv~N{}v~Tw~}Lw~|M{|w~| L{}p~w{|p~}bv~}s{}w~y|w~_v~wx|}t~}J{|w~}^{}w~r{}u~|]{|v~|Ot~}r{|v~}_{|v~nv~W{}s" + "~}Z{|w~|m{}w~|f{}w~}d{}w~}eu~}x{|w~|x{}v~|`{|w~}q{|w~}`v~t{}w~t{|w~}`{}v~q{}v~_u~}r{|v~}V{|w~}Wv~|l{|v~^{}w~}t{" + "}w~|R{}v~}V{}w~}V{|v~bv~}l{|v~|s{|v~r{}v~h{}w~}hv~|i{}v~r{|v~r{}v~k{}v~c{}v~gu~|B{}w~B{|u~|Y{}w~X{}v~}k{}v~|Y{}" + "w~ sv~}Tu~|wy~}u{|Z{|v~O{|u~}|x{|}v~}_{|p~}y{|p~}Ww~|Tw~}y{|t~|,y~}vw~|e{}y~dw~|s{}w~}V{|w~}u{}w~ Xy~}sw~s{}x~}" + "t{}y~*y}x~}|[m|}w~l|^{}w~C{|x~}({|w~|m{}w~|`m~}w{|x~} H{}x~|T{|w~|s{}x~}\\w~}u{|w~|]{}x~|o{}x~}]{}x~|o{}x~}Ww~t" + "{}x~}Nv~|U{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~}t{}w~|Z{}w~|t{|w~}av~}t{|v~Y{}v~I{}w~}M{}w~}M{}w" + "~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|w{}w~}rv~i{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~c{|" + "u~t{}v~}d{}v~n{|w~|v{|v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}]{}v~|v~}Y{}w~}n{|v~|aw~}vv~V{}|m{}w~}]{}|m" + "{}w~}]{}|m{}w~}]{}|m{}w~}]{}|m{}w~}]{}|m{}w~}g{}|m{}r~|q{|v~|g{}v~}ny|_{|v~|q{|v~|_{|v~|q{|v~|_{|v~|q{|v~|_{|v~" + "|q{|v~|Vv~Lv~Lv~Lv~U{|v~}q{|v~|_t~}r{|v~}_{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|v~}^{}v~|r{|v~}V{}u~V{}v~" + "|r{|v~}_{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|`v~mv~_s~q{}v~_v~mv~ X{|w~q{}w~q{}x~|j{|w~b{}x~|j{|w~wu~" + "|x{|u~|x{}x~|j{|w~m{|u~|x{}x~|j{|w~b{}x~|Z{}x~}V{}w~|o{|v~ WZ~}gx~}w~|q{}y~|({|c~}_v|{}r~u|d{}X~f{}b~|b{|w~}mw~" + "}`w~}kw~}[{|v~{}w~}X{|w~}r{|v~d{}x~| q{}c~ yv~} y{}x~}t{}x~}\\v~}w{|y~|_{}w~|vw~}v{|x~}X{|r~ qv~Fv~X{}w~}|x" + "x~x{|}w~}U{}w~ d{|w~Y{|v~k{}w~}W{}w~}G{}v~|Xm~}Y{}x~}t{}w~}\\{|h~}]v~y|l~}P{|v~|Y{|u~u|}v~}_{|v~|n{|u~|X{}v~M{" + "}v~R{|o~}|`{|Z~}_{|}p~}|P{}v~}cw~r{|l~}x~|u{|x~|hv~|t{|v~^{}e~}a{}v~M{}w~}f{|v~|e{}d~|_{}g~|d{}v~K{}^~|Y{}w~}M{" + "}w~}W{}p~|Q{}w~}V{}w~|ww~|tw~}wv~|h{}w~|vv~|sv~i{}v~c{|v~|e{}w~}o{|u~g{}v~c{|v~|g{}w~}p{|u~|^{}q~y}|M{|v~|Z{|v~" + "h{}w~}c{|v~|p{|v~gv~|t{|w~v{|x~}sv~|a{|s~|Rq~}N{}v~}S{|w~}Jw~}H{|w~| bv~|^t~ov~}^v~}P{|v~|p{}u~|`v~|o{|v~Ww~}U" + "{|v~o{}u~|`u~}p{|v~Vv~Lv~Tw~}u{|v~}Qv~_u~}pt~}pv~|hu~}p{|v~`{|v~|p{|v~|_t~ov~}a{|v~|p{}u~|Zt~S{}w~Gv~S{|w~|m{}w" + "~|`v~|o{|v~ev~s{|x~y}x~}s{}w~|c{}v~uv~}\\{}w~|o{|w~}O{}v~|U{|w~}Lw~|M{|w~} M{|x~}x|}w~}xv~}x|}x~|d{}v~qw~y}x~}_" + "v~x{}q~}I{|w~}_{|w~|q{|u~]{}w~|Nu~}p{|v~^{}w~|p{|w~}X{|q~Z{|w~|m{}w~|fv~|d{|v~f{|v~}w{}w~|wu~`{|w~}q{|w~}`v~t{}" + "w~t{|w~}a{|v~ov~}a{|v~}p{}v~|W{|w~}Wv~}l|}v~^v~|t{|v~Q{}v~}W{}w~}V{|v~b{}w~}l{}v~r{|v~r{}v~|i{}w~}hv~|i{|v~|s{|" + "v~r{}v~k{}v~xi~}y{|v~|iu~|A{}w~A{|u~|Z{}w~Y{}v~}i{}v~|Z{}w~ sv}|U{}v~|vy~}S{|v~O{|w~}s{|v~_{|o~|{o~}Ww~|U{}x~}v" + "{}u~}.{|y~|w{|w~d{|y~|e{}w~t{}v~}W{|v~|v{}w~}cY|8{|y~|sw~sw~|t{|y~| `{|Z~}_{}x~}C{|w~}({|w~|m{}w~|`{|n~}w{|x~} " + "H{}x~|Sv~|u{}w~|\\{}v~v{|v~|^{}x~|p{|w~\\{}x~|p{|w~W{|x~}u{|w~Mv}|Uv~|t{|v~Zv~|t{|v~Zv~|t{|v~Zv~|t{|v~Zv~|t{|v~" + "Zv~rv~b{|v~s{|c~l{}v~I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}Z{|v~ev~}h{}w~|vv~|sv~i{}v~c{|v~|l{}v~c{|v" + "~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|c{|u~v{}v~}c{}v~o{|w~|u{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}\\q~" + "}X{}w~}mv~}aw~}vv~Ev~|Mv~|Mv~|Mv~|Mv~|Mv~|Ws~|o{}w~}gv~}Ov~|o{|v~_v~|o{|v~_v~|o{|v~_v~|o{|v~Vv~Lv~Lv~Lv~Uv~}o{}" + "w~}_u~}p{|v~`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|`{|v~|p{|v~|Wt|W{|v~|q{}u~|`{|w~|m{}w~|a{|w~|m{}w~|" + "a{|w~|m{}w~|a{|w~|m{}w~|`{}w~|o{|w~}_t~ov~}`{}w~|o{|w~} X{}x~}q{}w~q{|x~}j{}x~}b{|x~}j{}x~}vu~|yu~|w{|x~}j{}x~}" + "mu~|w{|x~}j{}x~}b{|x~}Z{}x~}V{|v~o{}w~} WZ~}g{}|yw~}qx~'a~|c{|}t~}k~}|fY~}g{}`~b{|w~|m{}w~`w~}kw~}[{|w~}{|v~Wv~" + "r{}w~}dw~| lv~| kv~| yw~|tw~|\\{}v~}|y{|y~|^v~}y|}v~uw~X{|p~ rv~Fv~Xw~|vx~v{|w~U{}w~ d{}x~}Y{|v~k{}w~}W{}w" + "~}H{|v~}Wo~}|Y{|w~|t{}w~}\\{|v~x}|x}s~}^v~|j~}Q{}w~}V{}l~}]v~}n{}u~}X{}v~M{|v}U{|}p~}|]{|Z~}\\{}o~|S{}v~}c{|x~}" + "rv~}|w{|}t~|tx~}i{|v~rv~|_{}h~}|_v~}M{}w~}f{|v~|e{}d~|_{}g~|dv~}K{}^~|Y{}w~}M{}w~}W{}q~|P{}w~}V{}w~|w{}w~u{|w~|" + "wv~|h{}w~|v{}w~}sv~iv~}c{|v~|e{}w~}p{|u~|gv~}c{|v~|g{}w~}sy|}u~}\\{}m~}|Q{|v~|Z{|v~h{}w~}bv~}p{}w~}g{}w~}t{}x~}" + "v{|w~sv~|`{}u~}Q{|r~|O{|u~R{|w~}J{}w~H{|w~| b{|w~}^u~|o{|v~_{}v~Ov~}nu~|a{}w~}m{}w~|Xw~}Uv~|nu~|`u~nv~|Wv~Lv~T" + "w~}v{}v~}Pv~_u~o{}u~|p{}w~}hu~nv~|a{}w~}n{}w~}_u~|o{|v~a{}w~}nu~|Zu~|S{}w~Gv~S{|w~|m{}w~|`{}w~}o{}w~}e{}w~s{}x~" + "}|w~sv~a{}v~w{}v~[{|w~}ov~|P{}v~|T{|w~}Lw~|M{|w~}:{|4x~|v{|w~}{}x~}u{}x~dv~}q{}s~|_v~x{}r~}S{|y}~y}|w{|w~}_w~}o" + "{|v~}^{}w~Mu~nv~|_{|w~}pv~|X{}w~}v~|[{|w~|m{}w~|g{|v~bv~|g{}v~v{}w~v{|v~|a{|w~}q{|w~}`v~t{}w~t{|w~}a{}w~|o{|v~a" + "{}v~nv~}W{|w~}W`~_{|v~rv~|Q{}v~|X{}w~}V{|v~b{}w~}lu~r{|v~r{|v~|i{}w~}hv~|hv~}s{|v~rv~}kv~}xi~}y{|v~|ju~|@{}w~@{" + "|u~|[{}w~Z{}v~}g{}v~|[{}w~ Gv~}uy~}S{|v~Ow~}q{|w~|`{|n~}o~}Ww~|Uw~|t{}u~|0{|y~|w{|x~}d{|y~|e{|v~}w|t~}X{|v~|vv~" + "}c{|Z~}8{|y~|sw~t{}w~s{|y~| `{|Z~}`{}x~}M{|~}|v{|}v~'{|w~|m{}w~|_{}o~}w{|x~}Vv}| s{}x~|S{|v~}|{y|}w~}Z{}v~|w{|v" + "~}_{}x~|pw~|o{}w~m{}x~|p{}x~|vy|}w~y}|g{|w~|u{}x~|o{}w~3{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{|v~rv~|\\{}w~}" + "r{}w~|c{}w~}s{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w~|v{}w~}sv~iv~}c{|v~|lv~}c{|" + "v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|b{|u~x{}v~}bv~}p{|w~}t{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}\\{|r~|" + "X{}w~}mv~}aw~}v{}w~}F{|w~}M{|w~}M{|w~}M{|w~}M{|w~}M{|w~}W{|u~}m{}w~h{}v~O{}w~}m{}w~|a{}w~}m{}w~|a{}w~}m{}w~|a{}" + "w~}m{}w~|Wv~Lv~Lv~Lv~V{}v~n{|v~_u~nv~|a{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~},{}w~}q{}t~}`" + "{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|`{|w~}ov~|_u~|o{|v~`{|w~}ov~| X{}x~|q{}w~q{|w~j{}x~|b{|w~j{}x~|u" + "u~|u~|v{|w~j{}x~|nu~|v{|w~j{}x~|b{|w~Zw~}Uv~|q{|v~ VZ~}c{}w~r{|y~}({}`~d{}^~|h{|Z~g{|_~}c{}w~l{|w~`w~}kw~}[{}w~" + "|yv~|X{}w~|sv~|dV~} 2v~| k{}w~| {{|w~t{|w~Zs~y}y~|^{|o~|v{}x~}rx|e{|v~y}u~n{|w~},{|v~Fv~|Y{|~}tx~t{}~|U{}w~ " + " dw~|Y{|v~k{}w~}W{}w~}Hu~Vp~}|Y{|w~}s{}w~}\\{|~}|q{}t~|`{|q~}|xy|t~|Rv~|U{|}p~|[{}v~|ot~} V{|}p~}|Z{|Z~}Z{|}p~}" + "|W{}v~|b{}x~|s{}w~|s{|u~|tw~i{}w~}r{}w~}_{}g~}|`v~}M{}w~}f{|v~|e{}d~|_{}g~|dv~}K{}^~|Y{}w~}M{}w~}W{}q~O{}w~}V{}" + "w~|w{|w~|v{}w~vv~|h{}w~|uv~|tv~iv~}c{|v~|e{}w~}sy|s~fv~}c{|v~|g{}f~}Z{}k~}S{|v~|Z{|v~h{}w~}b{|v~pv~|g{}w~}tw~|u" + "w~|u{|v~_{}u~O{}t~|O{|u~|R{|w~}J{|w~|I{|w~| aw~}^v~}m{}w~}`v~|P{|v~m{}v~|av~l{|w~}Xw~}V{|v~m{|v~|`v~}n{}w~|Wv~" + "Lv~Tw~}w{}v~}Ov~_v~}o{|v~}o{|w~}hv~}n{}w~|av~|n{|v~|`u~mv~|bv~m{}v~|Zv~}R{}w~Gv~S{|w~|m{}w~|`{|v~ov~d{}w~|tw~|{" + "w~|u{|w~}`v~}y{|v~|Z{}w~|q{|v~P{}v~|Sv~|Lw~|Lv~|W{|y}w~}|iy}5{|y~}sw~|x~}s{}y~|f{|v~|ps~^v~x{}q~}|W{|r~|y{|w~}`" + "{}w~m{}v~^{}w~Mv~}n{}w~|^{}w~q{|v~Wv~y|w~}[{|w~|m{}w~|g{}v~b{}w~}h{|v~|v{}w~u{}w~}a{|w~}q{|w~}`v~t{}w~t{|w~}av~" + "mv~|c{|v~|n{|v~W{|w~}W`~_{}w~}r{}w~}Q{|v~}X{}w~}V{|v~b{}w~}lv~}r{|v~r{|v~|i{}w~}hv~|h{}v~s{|v~s{|v~|kv~}xi~}y{|" + "v~|ku~|?{}w~?{|u~|\\{}w~[{}v~}e{}v~|\\{}w~ H{}v~ty~}S{|v~P{|w~o{}w~_s|}r~s|Vw~|V{|w~r{|u~0{|y~v{}x~}d{|y~|d{}o~" + "|x~}Y{}v~v{|v~|b{|Z~}8{|y~rw~u}v~|s{|y~| `{|Z~}a{}l~|X{|m~|'{|w~|m{}w~|^o~}w{|x~}W{|v~| xm~}W{|n~}X{|v~|vv~}e{}" + "n~}v{}x~}o{|v~m{}x~|q{|w~w{|o~|t{|~}y|w{|}v~u{|x~}o{|v~3{}w~}r{}w~}\\{}w~}r{}w~}\\{}w~}r{}w~}\\{}w~}r{}w~}\\{}w" + "~}r{}w~}\\v~|r{|w~}cv~|s{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w~|uv~|tv~iv~}c{|v" + "~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|a{|u~|}v~}av~}pw~}s{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}[" + "{}t~|W{}w~}mv~}aw~}v{}v~|Fw~}Lw~}Lw~}Lw~}Lw~}Lw~}Vu~l{|w~|iv~|Ov~l{|w~}av~l{|w~}av~l{|w~}av~l{|w~}Wv~Lv~Lv~Lv~V" + "v~|mv~|`v~}n{}w~|av~|n{|v~|av~|n{|v~|av~|n{|v~|av~|n{|v~|av~|n{|v~|-v~|r{|x~}v~`{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{" + "}w~|a{|w~|m{}w~|_{}w~|q{|v~^u~mv~|`{}w~|q{|v~ Ww~p{}w~pw~jw~yd|yw~jw~t{|p~|tw~jw~nu~|tw~jw~pv~}qw~Zw~|U{}w~}q{}" + "w~} F{}w~}W{|w~|s{}y~|){|_~}f{}\\~|h{}\\~|g{}^~c{}w~l{|w~|aw~}kw~}[v~x{}w~}X{|w~}t{|v~cV~} 2v~| k{}w~| {{|x~" + "}t{|x~}Z{|o~}y|`{|}r~|v{|w~t{}u~}|hv~}y{}u~o{|w~|,{|v~F{}w~|X{|sx~s{|T{}w~ e{|w~X{|v~k{}w~}W{}w~}Iu~|Vm~|[{}w~" + "r{}w~}L{}u~`{|r~|s{|u~S{}v~V{|}m~}|\\u~p{}t~} Y{|}p~}|VY|W{|}p~}|[{|v~|aw~rw~}q{|v~|t{}x~iv~q{|v~_{}e~}av~}M{}w" + "~}f{|v~|e{}d~|_{}g~|dv~}m{}n~|h{}^~|Y{}w~}M{}w~}W{}q~}P{}w~}V{}w~|vw~}vw~}vv~|h{}w~|u{}v~tv~iv~}bv~|e{}e~|fv~}b" + "v~|g{}g~}X{|}k~}U{|v~|Z{|v~h{}w~}av~|r{|v~f{|v~u{|w~|u{}x~}u{}w~}`{|t~|O{}v~}Nu~|Q{|w~}Iw~}I{|w~| a{}w~^v~|m{|" + "w~}a{|v~O{|w~}lv~|b{|w~}kv~Xw~}V{|w~}lv~|`v~|n{|w~}Wv~Lv~Tw~}x{}v~|Nv~_v~|nv~|nv~hv~|n{|w~}b{|v~lv~|`v~}m{|w~}c" + "{|w~}m{|v~|Zv~|R{}w~|Hv~S{|w~|m{}w~|_{}w~|q{|w~}d{|w~}u{|w~y{}x~|u{|w~|`{|v~y|v~}Y{|w~}q{}w~|Q{|v~}S{}v~Kw~|L{}" + "w~}Y{|p~}|n{|y~}5{}y~r{|t~qy~}f{}v~ot~}^v~x{}o~}Y{}p~|{|w~|`w~}lv~|_{|w~}Nv~|n{|w~}^{|w~|r{}w~|X{}w~}yv~[{|w~|m" + "{}w~|gv~}b{}v~h{|v~u{}w~u{|v~a{|w~}q{|w~}`v~t{}w~t{|w~}b{|w~}m{|w~}c{|v~lv~|X{|w~}W`~_v~|r{|v~Qu~W{}w~}V{|v~b{}" + "w~}lv~}r{|v~qv~|i{}w~}hv~|h{|v~|t{|v~s{}v~jv~}xi~}xv~|lu~[|]{}w~\\\\|u~|]{}w~\\{}v~}c|u~|]{}w~ H{}w~}ty~}X{}g~|" + "[{}x~}nw~Vs~|Nw~|V{}x~}pv~}1{}y~v{}x~}d{|y~}c{}r~}{|x~}Z{}w~}v{|v~|a{|Z~}8{}y~rn~}q{|y~} `{|Z~}a{}l~|X{|o~}|&{|" + "w~|m{}w~|]{}q~}w{|x~}W{|v~| xm~}V{|}q~|V{|v~|v{}w~}fm~}vw~o{|u~rm~}vw~|w{}n~|u{|m~|uw~|p{|u~3v~q{|v~\\v~q{|v~\\" + "v~q{|v~\\v~q{|v~\\v~q{|v~]{|v~pv~|e{}w~}r{|c~lv~}I{}d~|`{}d~|`{}d~|`{}d~|W{}w~}M{}w~}M{}w~}M{}w~}_{}i~}nv~}h{}w" + "~|u{}v~tv~iv~}bv~|lv~}bv~|lv~}bv~|lv~}bv~|lv~}bv~|`{|p~}`v~}q{}x~}qv~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}" + "w~}Z{}v~}V{}w~}mv~}aw~}uu~}G{}w~L{}w~L{}w~L{}w~L{}w~L{}w~V{}w~}kw~}j{|v~O{|w~}kv~b{|w~}kv~b{|w~}kv~b{|w~}kv~Wv~" + "Lv~Lv~Lv~W{|v~l{}w~}`v~|n{|w~}b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|.{|v~r{|w~{}w~|a{|w~|m{}w~|a{|w~|m{}" + "w~|a{|w~|m{}w~|a{|w~|m{}w~|_{|w~}q{}w~|^v~}m{|w~}`{|w~}q{}w~| Ww~yd~|{w~jw~yd~|{w~jw~s{|r~|sw~jw~ou~|sw~jw~pv~}" + "qw~Zw~|U{|v~qv~| G{}w~}Uw~}sx~({}^~g{}Z~g]~}f{|_~|cw~}l{|w~|aw~}kw~}\\{|v~x{|v~Wv~t{}w~}cV~} 2v~| k{}w~| {{}" + "x~}t{}x~}Y{|}m~}`{|}w~}|tw~|v{|q~}j{}v~w{}u~p{}w~|,{|w~}F{}w~|Ox~Z{|Z~} t{}x~}X{|v~k{}w~}W{}w~}J{}v~|Ut|}t~}]{" + "|w~|r{}w~}K{}v~|a{|s~p{|v~}Tv~}W{}i~}]{}u~|t{|}s~} Z{|q~}| e{|}q~}\\v~}`x~}s{}w~ov~|t{}x~|k{|w~}p{}w~|`{}w~}p|}" + "t~|cv~}M{}w~}f{|v~|e{}w~}i|^{}w~}l|cv~}m{}n~|h{}w~}h|v~|Y{}w~}M{}w~}W{}w~}u~}Q{}w~}V{}w~|v{}w~w{|w~uv~|h{}w~|tv" + "~|uv~iv~}c{|v~|e{}f~|ev~}c{|v~|g{}i~}S{|}m~}V{|v~|Z{|v~h{}w~}a{}w~}rv~}ev~|v{|w~t{|w~uv~|`r~O{|v~|O{}v~}P{|w~}I" + "{}w~I{|w~| a{}w~^v~|lv~a{}w~}O{}w~|lv~|b{|w~|k{}w~Xw~}V{}w~|lv~|`v~m{|w~}Wv~Lv~Tw~}yu~|Mv~_v~mv~mv~hv~m{|w~}b{" + "}w~}l{}w~}`v~|m{|v~c{}w~|lv~|Zv~Q{}v~|Iv~S{|w~|m{}w~|_{|w~}q{}w~|cv~u{}x~}y{}x~}u{}w~^{}q~}Wv~qv~Q{|v~}Uy|}v~|K" + "w~|L{|u~}|^{|k~}|s{|}x~}5y~}q{}v~|q{}y~f{}w~}o{}u~|^v~ty|}s~[{|u~y}v~y|w~|a{|w~}l{}w~}^{}w~|Ov~m{|w~}]w~}rv~Wv~" + "|y{}w~}\\{|w~|m{}w~|gv~|b{|v~h{}w~}u{}w~tv~a{|w~}q{|w~}`v~t{}w~t{|w~}b{}w~|m{|v~c{}w~}l{}w~}X{|w~}W`~`{|w~}pv~|" + "S{}v~|W{}w~}V{|v~bv~}lv~}r{|v~r{|v~|i{}w~}hv~|gu~t{|v~t{|v~}jv~}xh|y{|v~|mT~]{}w~]T~|^{}w~]{}U~|^{}w~ Hv~|ty~}X" + "{}g~|[w~|nw~|W{}u~}Mw~|V{}w~ov~1{|y~v{}x~}d{|y~|ay}x~y}ww|[{}w~}v{|v~|`{|Z~}8{|y~ro~o{|y~| Q{}w~R{}l~|V{|y}v~y}" + "|${|w~|m{}w~|\\{|}s~}w{|x~}W{|v~| xm~}T{|y}w~}|S{|v~|v{}w~}gm~}w{}x~}oy~y}x~rm~}w{}x~}v{}~}y|w{|v~u{|o~}t{}x~}o", + "t~^v|V{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{|w~}p{}w~|^{}w~}p{}w~}ev~|r{|v~h|lv~}I{}w~}i|_{}w~}i|_{}" + "w~}i|_{}w~}i|V{}w~}M{}w~}M{}w~}M{}w~}_v}u~r}nv~}h{}w~|tv~|uv~iv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|" + "_{|r~}_v~}r{}w~q{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}mv~}aw~}u{|t~|I{}w~L{}w~L{}w~L{}w~" + "L{}w~L{}w~V{}w~|kv~j{}w~}O{|w~|k{}w~b{|w~|k{}w~b{|w~|k{}w~b{|w~|k{}w~Wv~Lv~Lv~Lv~W{}w~}l{|w~}`v~m{|w~}b{}w~}l{}" + "w~}b{}w~}l{}w~}b{}w~}l{}w~}b{}w~}l{}w~}b{}w~}l{}w~}eY|f{}w~}rw~y{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|" + "m{}w~|^v~qv~]v~|m{|v~_v~qv~ Vw~yd~|{}x~|kw~yd~|{}x~|kw~r{|t~|r{}x~|kw~pu~|r{}x~|kw~pv~}q{}x~|[w~|T{}w~|s{|v~ G{" + "}v~T{}w~t{|y~}(]~|i{|Y~}h{|_~}d{|a~}bw~}kw~|aw~}kw~}\\{}w~}wv~|Xv~|u{}w~|cV~} 2v~| k{}w~| {{w~|tw~|W{|}m~}T{" + "}x~}v{|o~}l{|v~|v{}u~q{}w~+{|w~}F{}w~|Ox~Z{|Z~}+m| ww~|X{|v~k{}w~}W{}w~}K{}v~}K{|}v~}^w~}q{}w~}Ju~a{|t~|o{}v~U{" + "|v~|X{}u~}|wy|u~}]t~}y|{y|}q~} Z{|t~}| _{|}t~}\\v~`{|x~}s{}x~}o{|w~|t{}x~|kv~|p{|w~}`{}w~}n{|u~cv~}M{}w~}f{|v~|" + "e{}w~}L{}w~}Tv~}m{}n~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}|u~}R{}w~}V{}w~|v{|w~|x{}x~}uv~|h{}w~|t{|v~uv~iv~}c{|v~|e{}h~" + "}cv~}c{|v~|g{}h~}Qy|y}p~W{|v~|Z{|v~h{}w~}a{|v~s{|v~|e{}w~}v{}x~}t{|w~uv~|a{}r~}P{|v~|P{}v~}O{|w~}I{|w~|J{|w~| " + "n{|y}l~^v~kv~a{}w~|Ov~|l{}w~|b{}w~|k{}w~|Yw~}Vv~|l{}w~|`v~m{|w~}Wv~Lv~Tw~}|u~Kv~_v~mv~mv~hv~m{|w~}b{}w~|l{|v~`v" + "~kv~c{}w~|l{}w~|Zv~Pu~}|Kv~S{|w~|m{}w~|^v~qv~b{}w~u{}x~|y{|w~uv~]{}r~V{}w~|s{|w~}R{|v~}X{|q~}Jw~|K{|q~}c{}g~}w|" + "}u~}5y~}pw~}p{}y~fv~|o{}u~]v~p{|t~\\v~}w{|w~}w~|a{}w~|l{|w~}]{}w~}y|Rv~m{|w~}]{}w~s{}w~}X{}w~}x{|v~\\{|w~|m{}w~" + "|h{|v~|b{|v~|i{}w~|u{}w~tv~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~kv~c{}w~|l{|w~}X{|w~}Wv~jv~`v~|p{}w~}T{}v~|V{}w~}V{|v~" + "|cv~|lv~}r{|v~r{|v~|i{}w~}hv~|g{}v~}u{|v~tu~|jv~}c{|v~|n{|T~]{}w~]T~}^{}w~]T~}^{}w~ I{|v~sy~}X{}g~|[w~m{}x~|Vu~" + "|#{|w~|p{|w~|2{|y~|w{|x~}d{|y~|3v~}v{}v~|Aw~}8{|y~|sw~x{|w~}p{|y~| Q{}w~ p{|w~|m{}w~|Y{|}v~}w{|x~}W{|v~| jv~}" + "v{}v~|W{|w~o{}y~{}x~r{}n~}x{|w~uy|rw~|ty|t}|s{|w~o{}y~|}x~^{}w~|Wv~|p{|w~}^v~|p{|w~}^v~|p{|w~}^v~|p{|w~}^v~|p{|" + "w~}^v~|p{|v~f{|v~q{|v~Yv~}I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~ev~}h{}w~|t{|v~uv~iv~}c{|v~|lv~}" + "c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|^{|t~}^v~}s{}w~p{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w" + "~}n{|v~|aw~}t{}t~}W{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~Y{|y}l~c{|y}l~j{}w~j{}w~|O{}w~|k{}w~|c{}w~|k{}w~|c{}w~|k{}" + "w~|c{}w~|k{}w~|Xv~Lv~Lv~Lv~W{}w~|l{|v~`v~m{|w~}b{}w~|l{|v~b{}w~|l{|v~b{}w~|l{|v~b{}w~|l{|v~b{}w~|l{|v~f{|Z~}f{}" + "w~|s{}x~|y{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|^{}w~|s{|w~}]v~kv~_{}w~|s{|w~} Vw~yd~|{}x~|kw~yd" + "~|{}x~|kw~qt~|r{}x~|kw~qu~|q{}x~|kw~pv~}q{}x~|[w~|T{|w~}s{}w~} H{|v~|T{|w~|u{}y~({|]~}i{}X~g{|`~b{}b~aw~}kw~}aw" + "~}kw~}\\v~|w{}w~}X{}w~}uv~bw~}Z| 5x|v~}p| v{}w~| {|w~t{|w~S{|}n~|Vw~uv~|y{|}w~}m{}w~}t{}u~rw~}+{|w~}F{}w~|Ox" + "~Z{|Z~},{|m~ x{|w~|X{|v~k{}w~}W{}w~}L{}v~}H{}v~}`{}w~p{}w~}J{}v~`t~n{|v~|V{}v~X{}v~}q{}v~}^{|j~|v~| Z{|t~| ]{|}" + "u~}]{|w~}`{|x~|sw~|o{|w~|t{}x~|l{|v~nv~`{}w~}lv~}dv~}M{}w~}f{|v~|e{}w~}L{}w~}Tv~}m{}n~|h{}w~}hv~|Y{}w~}M{}w~}W{" + "}w~}{|t~S{}w~}V{}w~|u{}x~}y{|w~|uv~|h{}w~|sv~|vv~iv~}c{|v~|e{}k~}|av~}c{|v~|g{}w~}t|y}u~}M{|}s~}X{|v~|Z{|v~h{}w" + "~}`v~}t{}v~d{}w~}vw~|sw~|w{|v~a{|v~}v~|Q{|v~|Q{|u~N{|w~}Hw~|J{|w~| p{}h~|_v~k{}w~|bv~|Ov~k{}w~|bv~j}v~|Yw~}Vv~" + "k{}w~|`w~}m{|w~}Wv~Lv~Tq~}Jv~_w~}mv~mv~hw~}m{|w~}bv~|l{|v~`v~kv~|dv~k{}w~|Zv~P{}r~}y|Pv~S{|w~|m{}w~|^{}w~|s{|w~" + "}b{|w~|vw~|xw~|w{|w~}\\s~|Uv~sv~|Ru~W{|s~}|Iw~|I{|}t~}d{|u~}w|}g~}5{|y~|p{|x~|p{}y~fv~|o{|v~}]v~n{}v~|^{}w~|ts~" + "`v~|l{|v~\\{}p~}Xw~}m{|w~}]{|w~|tv~|Xv~|wv~|]{|w~|m{}w~|h{|v~|q{}x~}q{|v~|iv~|u{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{" + "|w~}bv~kv~|dv~|l{|v~X{|w~}Wv~|l{|v~a{|v~nv~U{|v~}U{}w~}Uv~}d{|v~|l{}v~r{|v~r{|v~|i{}w~}hv~|fu~|v{|v~u{}v~}iv~}c" + "{|v~|n{|T~]{}w~]T~}^{}w~]T~}^{}w~ rw|V{|w~}sy~}X{|w}u~q}Zw~m{}x~|V{}v~\"{|v~ow~|2{|y~|w{|w~d{|y~|4{}w~}v{|v~?w~" + "}8{|y~|sw~vw~}q{|y~| Q{}w~ p{|w~|m{}w~|Ux~}w{|x~}W{|v~| i{}w~|v{|v~Ww~|p{|y~|{}x~`{}x~|j{|x~}bw~|p{|y~}{}x~^{" + "}w~|X{|v~nv~_{|v~nv~_{|v~nv~_{|v~nv~_{|v~nv~_{|w~}nv~|g{}w~}q{|v~Yv~}I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}" + "M{}w~}Z{|v~ev~}h{}w~|sv~|vv~iv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|lv~}c{|v~|]{}u~|^v~}t{|w~|p{|v~|i{|v~h{}w~}" + "f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}n{}v~|aw~}s{|s~|[{}h~|\\{}h~|\\{}h~|\\{}h~|\\{}h~|\\{}h~|f{}h~j}v~" + "jv~|Ov~j}v~|cv~j}v~|cv~j}v~|cv~j}v~|Xv~Lv~Lv~Lv~Wv~|l{|v~`w~}m{|w~}bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v" + "~f{|Z~}fv~|t{}x~|wv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|]v~sv~|]v~kv~|_v~sv~| Vw~yd~|{w~jw~yd~|{w~j" + "w~rr~|sw~jw~ru~|pw~jw~pv~}qw~Zw~|Sv~sv~ H{|v~|Rw~}uy~}({|]~}i{}X~|g{}b~|a{}d~|aw~}kw~}aw~}kw~}]{|v~v{|v~X{|v~v{" + "|w~}b{}x~} pf~ v{|w~ {{|w~t{|x~}P{|y~}r~W{}x~|v{}w~u{}w~mv~r{}u~t{|w~|+{|v~F{}w~|Ox~Z{|Z~},{|m~ x{}w~W{|v~k" + "{}w~}W{}w~}M{}v~}F{}v~a{|w~|p{}w~}Iv~|au~}mv~}Vv~|Y{|v~}o{|v~|]{}m~|{v~| Z{|r~}| c{|}r~}]{|w~}`{|x~|sw~|nw~|t{}" + "x~k{}w~}n{}w~}a{}w~}l{|v~|e{}v~M{}w~}f{}v~d{}w~}L{}w~}T{}v~mr|v~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}y{|t~T{}w~}V{}w~|u" + "{|w~y{}w~tv~|h{}w~|s{|v~vv~i{}v~c{|v~|e{}w~}r|]{}v~c{|v~|g{}w~}q{}v~}K{|t~|Y{|v~|Z{|v~h{}w~}`{}v~tv~|d{|v~w{|w~" + "|s{}x~}w{}w~}av~}{}v~Q{|v~|R{|u~M{|w~}H{}x~}J{|w~| r{|f~|_w~}k{}w~|bv~|Ov~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~" + "Lv~Tq~Iv~_w~}mv~mv~hw~}m{|w~}bv~jv~`v~k{}w~|dv~k{}w~|Zw~}O{}o~}|Sv~S{|w~|m{}w~|^{|w~}s{}w~|b{|w~}w{|w~w{}x~}w{|" + "w~|\\{|u~}T{}w~|u{|w~}Ru~V{|s~}|Iw~|J{|}s~}d{|w~|s{|}k~|3y~}p{|x~}p{}y~fv~mv~|]v~m{}v~_{|w~}rt~`v~jv~Z{}r~}Xw~}" + "m{|w~}\\w~}u{|w~}X{|w~}v{}w~}]{|w~|m{}w~|h{|v~|q{}x~}pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~k{}w~|dv~jv" + "~X{|w~}W{}w~|l{|v~a{}w~}n{}w~}W{|u~T{}w~}U{}w~}d{}v~k{}v~|s{|v~r{}v~h{}w~}hv~|f{|u~|w{|v~v{}u~h{}v~c{|v~|n{|T~]" + "{}w~]T~|^{}w~]{}U~}^{}w~ s{|w~V{|w~}sy~}S{|v~Pw~|nw~|V{|w~}!{}v~|q{}x~|1y~}vw~|e{}y~ci|]{}w~u{|w~|?w~}7y~}sw~v{" + "|w~|r{}y~ P{}w~ p{|w~|m{}w~|Ux~}w{|x~}W{|v~| Fi|U{|w~|u{}w~X{}x~}p{|y~}y{}x~a{|w~i{|x~}c{}x~}p{|y~}y{}x~^{}w~|" + "X{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~}n{}w~}`{}w~|n{}w~}h{|v~p{|v~Y{}v~I{}w~}M{}w~}M{}w~}M{}w~}" + "D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|s{|v~vv~i{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|l{}v~c{|v~|^{}s~|_" + "{}v~u{|w~|o{|v~|i{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{|v~|V{}w~}o{|u~`w~}q{}t~|^{|f~|^{|f~|^{|f~|^{|f~|" + "^{|f~|^{|f~|h{|P~jv~|O`~|c`~|c`~|c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~f{|Z~}fv~|u{}x~}" + "vv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|]{}w~|u{|w~}\\v~k{}w~|_{}w~|u{|w~} Uw~yq}w~r}yw~jw~yd|yw~jw~" + "sp~|tw~jw~su~|ow~jw~pv~}qw~Zw~|S{}w~}u{|w~} Hv~|Q{}w~|w{|y~|({|\\~iW~|f{}d~|_e~|`w~}kw~}aw~}kw~|]{}w~}uv~Wv~|w{" + "}w~|b{}x~} q{|g~| v{|w~({}Z~X{|y~|{|}u~}Y{|w~uw~|tw~}o{|w~}q{}u~u{}w~*{|v~F{}w~|*m|}w~l|,{|m~ xw~}W{|v~k{}w" + "~}W{}w~}N{}v~}Dv~|bw~}o{}w~}Iv~|au~|m{}w~}W{|v~X{}v~m{}v~\\{|p~}xv~| Y{}p~}| i{|}p~}|]{}w~}`{|x~|sw~mw~|t{}x~kv" + "~}n|}v~a{}w~}kv~}e{}v~M{}w~}f{}v~d{}w~}L{}w~}T{}v~dv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}x{|t~U{}w~}V{}w~|tw~|{w~}tv~|" + "h{}w~|rv~}wv~i{}v~c{}v~d{}w~}T{}v~c{}v~f{}w~}p{}v~|Ju~}Y{|v~|Z{|v~h{}w~}_v~|v{|v~bv~|x{|w~r{}w~wv~|b{}v~xv~}R{|" + "v~|Ru~|M{|w~}H{|w~J{|w~| s{|q~t}v~|_w~}k{}w~|bv~Nv~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tp~Jv~_w~}mv~mv~hw~}" + "m{|w~}bv~jv~`w~}k{}w~|dv~k{}w~|Zw~}N{|m~|Uv~S{|w~|m{}w~|]v~t{|v~`v~w{}x~}w{|x~}w{}w~[{|u~|T{|w~}u{}w~|S{}v~|V{|" + "x}t~}Jw~|K{|s~y}|d{|y~}n{|}p~}1y~}p{}w~p{}y~fv~mv~\\v~lv~|`{}w~|r{|v~}`v~jv~\\{|p~}Xw~}m{|w~}\\{}w~u{}w~|Xv~|v{" + "|v~]{|w~|m{}w~|h{|v~p{}w~pv~}iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bw~}k{}w~|dv~jv~X{|w~}W{}w~|l{|w~}av~|n{|v" + "~Wu~|T{}w~}U{}v~dv~}k{|v~}s{|v~s{|v~}h{}w~}hv~|e{}u~|x{|v~w{}u~|h{}v~c{}v~l{|u~}\\|]{}w~][|u~|]{}w~\\{}v~}c|u~}" + "]{}w~ s{|w~V{|w~}sy~}S{|v~P{}x~}o{|w~`{|a~}+u~|rw~|1y~}v{}w~ex~d{|j~}]{}w~}v{|v~|@w~}7y~}sw~u{}w~rx~ P{}w~ p{|" + "w~|m{}w~|Ux~}w{|x~} w{|j~}V{|v~|v{}w~}Xw~oy~}x{}x~aw~|i{|x~|cw~ox~x{}x~^{}w~|Xv~}n|}v~`v~}n|}v~`v~}n|}v~`v~}n|" + "}v~`v~}n|}v~a{|b~h{}v~p|}v~Y{}v~I{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{|v~|h{}w~|rv~}wv~i{}v~c{" + "}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~k{}v~c{}v~^{}q~|`{}v~v{|w~}n{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}Z{" + "|v~|V{}w~}p{|u~|`w~}p{|t~}`{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|_{|q~t}v~|i{|q~t}`~|kv~N`~|c`~|c`~|" + "c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~f{|Z~}fv~u{|x~}uv~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m" + "{}w~|a{|w~|m{}w~|]{|w~}u{}w~|\\w~}k{}w~|_{|w~}u{}w~| U{}x~|q{}w~q{|w~j{}x~|b{|w~j{}x~|uu~|u~|v{|w~j{}x~|uu~|o{|" + "w~j{}x~|qv}|r{|w~[{|w~|S{|v~uv~| TZ~}a{|w~}wx~'{|\\~iW~|ee~|^{|g~}_w~}kw~}aw~}kw~|]v~|u{}w~|X{}w~}wv~|b{|w~| " + " r{}g~ u{|w~({}Z~X{|y~|w{}v~|Zw~|v{|w~s{|w~o{|w~}p{}u~vw~})v~Fv~| w{}w~ x{|m~ y{|w~|Vv~|lv~|W{}w~}O{}v~}C{}w~}" + "c{|w~n|}w~}v|N{}w~}au~l{|v~Wv~}Xv~}m{|v~|[{|y}w~y}|x{|v~ V{|}p~}|XY|X{|}q~}|Z{}w~}`{|x~|sw~mw~|tw~l{|b~|b{}w~}k" + "{}v~e{|v~|N{}w~}fv~}d{}w~}L{}w~}T{|v~|ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}w{|t~V{}w~}V{}w~|t{}w~|w~|tv~|h{}w~|r{|v~" + "wv~i{|v~|d{}v~d{}w~}T{|v~|d{}v~f{}w~}o{}v~J{|u~Y{|v~|Z{|v~h{}w~}_{}w~}v{}w~}b{}w~}x{}x~}r{|w~wv~b{|v~|x{|v~|S{|" + "v~|S{}v~|L{|w~}Gw~|K{|w~| t{|u~}|q{}w~|_v~k{}w~|bv~Nv~k{}w~|b`~|Yw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tw~}|u~Kv~_w~}mv~" + "mv~hw~}m{|w~}bv~jv~`w~}k{}w~|dv~k{}w~|Zw~}L{|}o~}Vv~S{|w~|m{}w~|]{}w~}u{}w~}`{}w~|xw~|w{|w~wv~\\{|s~Sv~uv~S{}v~" + "|O{}v~}Kw~|L{|v~}|_{|~|j{|y}x~y}|/x~q{|v~}qx~fv~m{}x~}\\v~l{}w~|`v~pv~}`v~jv~]n~}Xw~}m{|w~}\\{|w~|vv~X{|v~t{}w~" + "|^{|w~|m{}w~|h{|v~p{}w~pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bw~}k{}w~|dv~jv~X{|w~}W{}w~}l{}w~}b{|v~lv~|Y" + "{}v~|S{}w~}U{|v~}f{|v~|ju~|t{|v~s{}v~|h{}w~}hv~|dt~}y{|v~y{|t~|g{|v~|d{}v~k{|u~|?{}w~>u~|b{|v{}w~[{}v~|e{}v~}\\" + "{}w~ s{|w~V{|w~}sy~}S{|v~P{|w~o{}x~}`{|a~}+{|u~}|u{|w~0{}y~v{|w~}g{|y~}d{|j~}\\{}v~|w{|v~}Aw~}7{}y~sw~tw~}t{|y~" + "} P{}w~ p{|w~|m{}w~|Ux~}w{|x~} w{|j~}W{|v~|vv~}X{}x~|p{}y~|x{}x~b{}x~}hw~c{}x~}p{}y~|x{}x~^v~X{|b~|b{|b~|b{|b" + "~|b{|b~|b{|b~|b{}b~}id~Y{|v~|J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~f{}v~g{}w~|r{|v~wv~i{|v~|d{}v" + "~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~k{|v~|d{}v~_{}v~}u~|a{|v~|ww~}m{}v~h{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w~}f{|v~h{}w" + "~}Z{|v~|V{}w~}sy|s~_w~}n{}u~|b{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|`{|u~}|q{}w~|j{|u" + "~}|q{}a~|kv~N`~|c`~|c`~|c`~|Xv~Lv~Lv~Lv~Wv~jv~`w~}m{|w~}bv~jv~bv~jv~bv~jv~bv~jv~bv~jv~.v~v{|w~tv~a{|w~|m{}w~|a{" + "|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|\\v~uv~[w~}k{}w~|^v~uv~ T{}x~}q{}w~q{|x~}j{}x~}b{|x~}j{}x~}vu~|{|u~|w{|x~}j{}" + "x~}vu~|n{|x~}j{}x~}b{|x~}[{|w~Qv~|w{|v~ SZ~}`v~x{|y~}'{|]~}iW~|e{|g~}\\{}i~}^w~}kw~}aw~}l{|w~|^{|v~t{|w~}X{|v~x" + "{|v~`w~} m{|v~ jw|({}Z~X{|y~|v{}w~}[{}x~}u{}x~}s{|w~o{}w~}o{}u~x{|w~|)v~Fv~ v{}w~ g{}w~Uv~|lv~|W{}w~}P{}v~" + "}B{|v~c{|_~|O{}w~}a{}v~l{|v~X{|v~|Y{|v~|lv~|N{|v~ S{|}p~|[{|Z~}[{|}p~}|X{}w~}`{|x~|sw~|nw~|u{|x~}l{}b~}b{}w~}k{" + "|v~e{|v~}N{}w~}g{|v~}d{}w~}L{}w~}T{|v~}ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}v{|t~W{}w~}V{}w~|t{|r~sv~|h{}w~|q{}w~}xv" + "~i{|v~}dv~}d{}w~}T{|v~}dv~}f{}w~}nv~}J{}v~Y{|v~|Z{|v~|i{}w~}_{|v~vv~|b{}w~}xw~|qw~|y{|v~bv~}v{}v~S{|v~|T{}v~}K{" + "|w~}G{}x~}K{|w~| tv~}n{}w~|_v~kv~|bv~|Ov~k{}w~|bv~Bw~}Vv~k{}w~|`w~}m{|w~}Wv~Lv~Tw~}{|u~|Mv~_w~}mv~mv~hw~}m{|w~" + "}bv~|kv~`v~k{}w~|dv~k{}w~|Zw~}Iy|}q~Wv~S{|w~|m{}w~|]{|v~uv~_{|w~|xw~uw~|y{|w~}\\r~}T{|w~|w{}w~}T{}v~|M{|v~Kw~|L" + "{}w~} O{}y~|rt~|s{|y~}fv~|nw~}\\v~l{|w~}`w~}p{}w~|`v~|kv~^u~}|Qw~}m{|w~}[w~}w{}w~}X{}w~|t{|w~}^{|w~|m{}w~|h{|v~" + "pv~pv~|iv~t{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~}bv~k{}w~|dv~|l{|v~X{|w~}W{|w~}l{}w~|b{}w~}l{}w~}Z{|v~}R{}w~}T{}v" + "~f{}v~i{|u~t{|v~t{|u~g{}w~}hv~|cr~}v~}s~}f{|v~}dv~}j{|u~|@{}w~?u~|b{}~|w{}w~vy~a{}v~|g{}v~}b{}~|w{}w~vy} {{}w~|" + "W{|w~}sy~}S{|v~Ow~}q{|w~|`{|a~}){}u~}vw~}0{|y~}v{}w~}p{|t{}y~|d{|j~}[{|v~|vv~}Bw~}7{|y~}tw~t{|w~|u{}y~| P{}w~ " + "p{|w~|m{}w~|Ux~}w{|x~} w{|j~}X{}v~v{|v~}X{|w~p{|y~|w{}x~bw~h{}x~|d{|w~p{|y~}w{}x~^v~X{}b~}b{}b~}b{}b~}b{}b~}b{" + "}b~}b`~j{}d~Y{|v~}J{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~fv~}g{}w~|q{}w~}xv~i{|v~}dv~}k{|v~}dv~}k" + "{|v~}dv~}k{|v~}dv~}k{|v~}dv~}`{}v~|{|u~|b{|v~}x{}x~}lv~}h{|v~|i{}w~}f{|v~|i{}w~}f{|v~|i{}w~}f{|v~|i{}w~}Z{|v~|V" + "{}e~|_w~}m{|u~bv~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|`v~}n{}w~|jv~}n{}w~Tv~|Ov~Lv~Lv~Lv~Av~Lv~Lv~Lv~" + "Wv~|l{|v~`w~}m{|w~}bv~|kv~bv~|kv~bv~|kv~bv~|kv~bv~|kv~.v~vw~|u{|v~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}" + "w~|\\{|w~|w{}w~}[v~k{}w~|^{|w~|w{}w~} T{|w~q{}w~q{}x~|j{|w~b{}x~|j{|w~wu~|x{|u~|x{}x~|j{|w~wu~|m{}x~|j{|w~b{}x~" + "|[{|w~Q{|w~}w{}w~} SZ~}`{}w~|y{}y~|'{|n~y}~|n~}i{}k~x}k~c{|i~}Z{}j~]w~}kw~}a{}w~l{|w~|^{}w~}sv~Wv~|y{}w~}`{}w~|" + " mv~| o{}Z~X{|y~|v{|w~}\\{|w~t{}x~|rw~|p{}w~}n{}u~yw~}(v~|Gv~ v{}w~ gw~}U{}w~}m{|v~V{}w~}Q{}v~}A{|v~c{|_~" + "|O{}w~}a{}v~l{|v~X{}v~X{|v~k{}w~}N{}w~} Q{|}p~}|^{|Z~}^{|}p~}|U{}w~}`{|x~}sw~|o{|w~|u{}x~|l`~b{}w~}k{|v~|eu~N{}" + "w~}g{}v~|d{}w~}L{}w~}Su~ev~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}u{|t~X{}w~}V{}w~|ss~}sv~|h{}w~|q{|v~|yv~hu~e{|v~|d{}w~}" + "Su~e{|v~|f{}w~}n{}v~|K{|v~|Z{|v~|Yv~|i{}w~}^v~|x{}v~a{|v~y{|w~|q{}x~}y{}w~}c{}v~tv~}T{|v~|U{|v~}J{|w~}G{|w~K{|w" + "~| u{|v~m{}w~|_v~kv~a{}w~|O{}w~|l{}w~|bv~|Cw~}V{}w~|l{}w~|`w~}m{|w~}Wv~Lv~Tw~}y{|u~|Nv~_w~}mv~mv~hw~}m{|w~}bv~" + "|l{|v~`v~kv~cv~|l{}w~|Zw~}D{|}u~}Xv~S{|w~|m{}w~|\\{}w~|w{|w~}^w~}y{|w~u{}x~}y{}w~|]{}q~|Tv~wv~|U{|v~}K{}w~|Lw~|" + "Lv~ N{|x~s{}x~{w~|tx~|fv~|o{|v~\\v~l{|w~}a{|w~|p{}w~_{}w~|l{|v~_{}v~|Ow~}m{|w~}[{}w~|xv~X{|v~rv~|_{|w~|m{}w~|h{" + "|v~|qv~pv~|iv~|u{}w~t{}w~|b{|w~}q{|w~}`v~t{}w~t{|w~|bv~kv~c{}w~|l{|v~X{|w~}Vv~l{}w~|bv~|l{|v~[{|v~}Q{}w~}T{|v~}" + "h{|v~|hu~}u{|v~u{|u~|g{}w~}hv~|b{}f~|du~e{|v~|i{|u~|A{}w~@u~|b{}x~|x{}w~ww~a{}v~|i{}v~}b{}x~|x{}w~w{}y~} {}w~|W" + "{|v~sy~}S{|v~O{|w~}s{}w~}^q|}v~q|'{}t~|{|w~}.x~u{}v~}|wy|}y~tx~/{|v~|v{}w~}Cw~}6x~tw~s{}w~ux~ O{}w~ p{|w~|m{}w" + "~|Ux~}w{|x~} B{}w~}v{|v~|Ww~|q{|y~}v{}x~c{}x~|i{}x~}cw~|q{|y~}v{}x~_{|v~X`~b`~b`~b`~b`~c{|`~|kc~Xu~J{}w~}M{}w~" + "}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~g{|v~}g{}w~|q{|v~|yv~hu~e{|v~|ju~e{|v~|ju~e{|v~|ju~e{|v~|ju~e{|v~|a{}" + "v~|x{|u~|bu~y{}w~l{|v~|gv~|i{}w~}ev~|i{}w~}ev~|i{}w~}ev~|i{}w~}Z{|v~|V{}f~|^w~}l{|v~|d{|v~m{}w~|a{|v~m{}w~|a{|v" + "~m{}w~|a{|v~m{}w~|a{|v~m{}w~|a{|v~m{}w~|k{|v~m{}w~T{}w~|Ov~|Mv~|Mv~|Mv~|Bv~Lv~Lv~Lv~W{}w~|l{|v~`w~}m{|w~}bv~|l{" + "|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~bv~|l{|v~.v~|x{}x~|t{|v~a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|a{|w~|m{}w~|[v~wv~|[v" + "~kv~\\v~wv~| Sw~|r{}w~r{|w~hw~|d{|w~hw~|yu~|v{|u~y{|w~hw~|yu~|m{|w~hw~|d{|w~Z{|w~Pv~wv~| SZ~}_w~}yx~%n~{|~{|o~|" + "i{|l~}|}|l~}b{}j~Xk~|]w~}kw~}a{}w~l{}w~]v~|s{}w~|X{}w~}yv~|_w~} mv~} g{}x~}t{}x~}O{|y~|uw~}\\{}x~|t{}x~|rw" + "~|p{|w~}m{}u~}w~|({}w~|H{|w~} v{}w~ h{|w~|U{}w~}m{|v~V{}w~}R{}v~}@{|v~c{|_~|Ov~|a{|v~l{}w~}Xv~}X{|v~k{}w~}Nv~|" + " N{|}p~}|a{|Z~}a{|}p~}|R{|w}|_x~}s{}x~}o{}w~|v{|w~l{}`~|c{}w~}k{|v~|e{}v~|O{}w~}gu~c{}w~}L{}w~}S{}v~|fv~|h{}w~}" + "hv~|Y{}w~}M{}w~}W{}w~}t{|t~Y{}w~}V{}w~|s{}t~rv~|h{}w~|p{}w~}yv~h{}v~|f{}v~c{}w~}S{}v~|f{}v~e{}w~}mv~}K{|v~|Z{|v" + "~|Yv~|iv~|^{}w~}xv~}`v~|{|w~p{}w~yv~|d{|v~|t{|v~|U{|v~|V{|u~I{|w~}Fw~|L{|w~| u{}w~|mv~|_v~|m{|v~a{}w~}O{}w~|lv" + "~|b{}w~|Cw~}V{}w~|lv~|`w~}m{|w~}Wv~Lv~Tw~}x{|u~|Ov~_w~}mv~mv~hw~}m{|w~}b{}w~|l{|w~}`v~kv~c{}w~|lv~|Zw~}B{|u~Xv~" + "S{|w~|m{}w~|\\{|w~}w{}w~|^v~y{}x~}u{|x~}y{}w~]{|v~|}v~T{}w~|y{|w~}U{|v~}J{|w~}Lw~|M{|w~} Mx~}v{|w~|{|w~|v{}x~e{" + "}w~|o{}v~\\v~l{|w~}a{|w~|pw~}_{}w~|l{|w~}_v~Mw~}m{|w~}[{|w~}y{|w~}X{}w~|r{}w~}_{|w~|m{}w~|h{|v~|qv~|r{|v~|i{}w~" + "|u{}w~tv~|b{|w~}q{|w~}`v~t{}w~t{}w~|bv~kv~c{}w~|l{|w~}X{|w~}Vv~lv~b{}v~jv~|\\u~P{}w~}S{}v~|iu~g{|t~|w{|v~v{}u~}" + "f{}w~}hv~|a{}h~|c{}v~|f{}v~g{|u~|B{}w~Au~|b{}v~|y{}w~xu~a{}v~|k{}v~}b{}v~|y{}w~x{}w~}!{}w~|Vv~sy~}S{|v~O{|u~}y|" + "{y|u~}T{|w~}Lw}|P{|}p~}-{|y~}u{}l~u{}y~|.{|v~|v{}w~}Dw~}6{|y~}uw~rw~}w{}y~| O{}w~ p{|w~|m{}w~|Ux~}w{|x~} C{}w" + "~}v{|v~|W{}x~}px~u{}x~d{|w~i{}x~}c{}x~}px~u{}x~_{}w~}Y{}`~|d{}`~|d{}`~|d{}`~|d{}`~|d{}w~}j|}w~}l{|c~X{}v~|K{}w~" + "}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~gu~|g{}w~|p{}w~}yv~h{}v~|f{}v~i{}v~|f{}v~i{}v~|f{}v~i{}v~|f{}v~" + "i{}v~|f{}v~a{}v~|v{|u~|c{}v~|}w~|l{}v~fv~|iv~|ev~|iv~|ev~|iv~|ev~|iv~|Z{|v~|V{}h~}\\w~}k{}w~|d{}w~|mv~|a{}w~|mv" + "~|a{}w~|mv~|a{}w~|mv~|a{}w~|mv~|a{}w~|mv~|k{}w~|mv~|U{}w~}O{}w~|M{}w~|M{}w~|M{}w~|Bv~Lv~Lv~Lv~W{}w~}l{}w~}`w~}m" + "{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}b{}w~|l{|w~}.{}w~|y{}x~|s{|w~}a{|w~|m{}w~|a{|w~|m{}w~|a{|w" + "~|m{}w~|a{|w~|m{}w~|[{}w~|y{|w~}Zv~kv~\\{}w~|y{|w~} R{|w~r{}w~rw~}h{|w~dw~}h{|w~y{|w~|t{|w~}yw~}h{|w~y{|w~|lw~}" + "h{|w~dw~}Z{|w~P{}w~|y{|w~} Rs}v~g}|_{}w~{|y~}%{|p~|{|~yp~}g{}m~{}~{}m~|a{}l~|X{|m~}\\w~}kw~}a{|w~|mv~]v~r{}w~}X" + "{|v~{|v~^{}w~} n{}v~ gw~|tw~|O{|y~|uw~}]{|x~}sw~|rw~|p{|v~l{}r~}'{|w~}H{|w~} v{}w~ h{|w~T{|v~m{}w~}V{}w~}" + "S{}v~}?{|v~c{|_~|Ov~|`v~|m{}w~}Y{|v~W{|v~k{}w~}O{|v~ J{|}p~}|d{|Z~}d{|}p~}|-w~s{|w~ov~|v{}x~|lv~|j{|v~c{}w~}k{}" + "v~cv~}O{}w~}h{}v~|c{}w~}L{}w~}Rv~}fv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}rt~Z{}w~}V{}w~|ru~}rv~|h{}w~|p{|v~|{v~h{|v~}g" + "{|v~}c{}w~}Rv~}g{|v~}e{}w~}m{|v~|L{|v~|Z{|v~|Y{}w~}j{|v~|^{|v~|{|v~_{}w~}{}x~}p{|w~yv~cv~}r{}v~U{|v~|W{|u~|I{|w" + "~}F{}x~}L{|w~| u{}w~|n{|v~|_v~}m{}w~}a{|w~}O{|w~}m{|v~|b{}w~}Cw~}V{|w~}m{|v~|`w~}m{|w~}Wv~Lv~Tw~}vu~|Pv~_w~}mv" + "~mv~hw~}m{|w~}b{|w~}l{}w~}`v~|m{|w~}c{|w~}lv~|Zw~}@v~|Yv~S{|w~}mv~|[v~wv~]{}w~|{w~|u{|w~yw~}]v~}y{}v~U{|w~}y{}w" + "~|V{|v~}I{|w~}Lw~|M{|w~} M{|w~x}v~}x{}v~x}w~|e{}w~}ou~|]v~l{|w~|a{|w~p{}w~|_{|w~}l{}w~}`{|w~}Mw~}m{|w~}Zv~y{}w~" + "|Y{|v~q{|v~_{|w~}m{}w~|gv~|r{|v~|r{|v~h{}w~}u{}w~tv~a{|w~}q{|w~}`v~t{}w~t{}w~|bv~|m{|w~}c{|w~}l{}w~}X{|w~}V{}w~" + "|n{|w~}bv~}j{}v~]{}v~|P{}w~}Ru~j{}v~|f{|t~}|y{|v~x{|t~}e{}w~}hv~|`{|}l~}`v~}g{|v~}f{|u~|C{}w~Bu~|`u~|{}w~yu~|`{" + "}v~|m{}v~}a{|u~|{}w~y{}v~}!{}w~|Vv~|ty~}S{|v~P{|g~}U{|w~}Lw~|N{|r~}+{}y~|u{|}o~}v{|y~}+v~}v{}v~Ew~}5{}y~|vw~r{|" + "w~|y{|y~} N{}w~ p{|w~}m{}w~|Ux~}w{|x~} Dv~}v{}v~|W{|w~p{}y~|u{}x~dw~|j{}w~c{|w~p{}y~|u{}x~`{}v~|Yv~|j{|v~dv~|" + "j{|v~dv~|j{|v~dv~|j{|v~dv~|j{|v~dv~|j{|v~l{}w~}n{|v~Wv~}K{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~h{" + "|v~}f{}w~|p{|v~|{v~h{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}i{|v~}g{|v~}b{}v~|t{|u~|cq~|l{|v~}f{}w~}j{|v" + "~|e{}w~}j{|v~|e{}w~}j{|v~|e{}w~}j{|v~|Z{|v~|V{}k~}|Zw~}k{}w~}d{}w~|n{|v~|a{}w~|n{|v~|a{}w~|n{|v~|a{}w~|n{|v~|a{" + "}w~|n{|v~|a{}w~|n{|v~|k{}w~|n{|v~}U{|w~}O{}w~}M{}w~}M{}w~}M{}w~}Bv~Lv~Lv~Lv~W{|v~lv~|`w~}m{|w~}b{|w~}l{}w~}b{|w" + "~}l{}w~}b{|w~}l{}w~}b{|w~}l{}w~}b{|w~}l{}w~}Xt|X{}w~}{}x~}r{}w~}a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|[{|w~}y" + "{}w~|Zv~|m{|w~}\\{|w~}y{}w~| Qw~}s{}w~s{}w~fw~}f{}w~fw~}y{|y~|r{|y~}y{}w~fw~}y{|y~|l{}w~fw~}f{}w~Y{|w~P{|v~y{}w" + "~| Kv~}J{|w~|}y~|${}r~}y{}~y{|q~f{|n~|{}~yn~}_m~|V{|o~}[w~}kw~}`w~}n{|w~}^{|w~}r{|v~Wv~{}w~}]v~| o{|v~| hw" + "~t{|w~N{|y~|uw~}]w~|s{}x~|rw~|ov~|l{}s~&{|w~}H{}w~| v{}w~ h{}x~}Sv~|nv~|V{}w~}T{}v~}>{}w~}Q{}w~}J{}v~_{}w~}mv~" + "}Y{}w~}Vv~|lv~|Ov~} G{|}p~}|0{|}o~}*{}x~rw~}q{}v~|w{}w~l{|v~hv~|d{}w~}ku~c{}v~}P{}w~}i{}u~b{}w~}L{}w~}R{}v~|gv~" + "|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}qt~[{}w~}V{}w~|r{}v~|rv~|h{}w~|o{}w~}{v~g{}v~|hu~|c{}w~}R{}v~|hu~|e{}w~}lv~}L{}v~Y" + "{|v~|Y{}v~j{}v~\\{}w~}{}w~}_{|v~{w~|ow~y|v~d{}v~pv~}V{|v~|Wu~|H{|w~}F{|w~L{|w~| u{}w~m{}v~|_u~mv~|a{|v~Nv~|n{}" + "v~|b{|v~Cw~}Uv~|n{}v~|`w~}m{|w~}Wv~Lv~Tw~}uu~|Qv~_w~}mv~mv~hw~}m{|w~}b{|v~lv~|`v~}m{}w~}c{|v~m{|v~|Zw~}@{}w~|Yv" + "~S{|w~}mv~|[{}w~|y{|w~}]{|w~}{w~sw~y|w~}^{}w~}wv~}U{}w~yv~Uv~}Gw~}Lw~|M{|w~| L{|q~}v{}q~|d{|w~}p{|u~|]v~l{}w~|a" + "{|w~pv~^{|v~lv~|`{|w~|Mw~}m{|w~}Z{}w~y|v~X{}w~}pv~|`{|w~}mv~|gv~}r{|v~}r{}v~h{|v~u{}w~u{|w~}a{|w~}q{|w~}`{}w~|u" + "{}w~tv~av~}m{}w~}c{|v~lv~|X{|w~}V{|w~}n{}w~|c{|v~i{|v~|_{}v~}O{}w~}R{|v~}l{}v~|d{|r~y}v~y}s~}d{}w~}hv~|]{|}s~y}" + "|^{}v~|hu~|e{|v~}C{}w~C{}v~|^u~|}w~{}v~|^{}v~n{|v~}_{|u~|}w~{}v~} {}w~|V{}w~}ty~}S{|v~Q{}e~}V{|w~}Lw~|L{|t~*{|x" + "~|t{|y}u~}|u{|x~|*{}w~|v{|v~Fw~}5{|x~|ww|qw|y{|x~| >{|w~}mv~|Ux~}w{|x~} Ev~}v{|v~U{}x~|q{|y~}t{}x~e{}x~}j{}w" + "~b{}x~|q{|y~}t{}x~a{}v~}Y{|v~hv~|f{|v~hv~|f{|v~hv~|f{|v~hv~|f{|v~hv~|f{}v~hv~|n{|v~|n{|v~W{}v~}L{}w~}M{}w~}M{}w" + "~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~i{|u~|f{}w~|o{}w~}{v~g{}v~|hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|h{}v~|hu~|c{}" + "v~|r{|u~|d{}s~|ku~|f{}v~j{}v~d{}v~j{}v~d{}v~j{}v~d{}v~j{}v~Y{|v~|V{}w~}r|Vw~}k{|w~|d{}w~m{}v~|a{}w~m{}v~|a{}w~m" + "{}v~|a{}w~m{}v~|a{}w~m{}v~|a{}w~m{}v~|k{}w~m{}u~U{|v~O{|v~M{|v~M{|v~M{|v~Bv~Lv~Lv~Lv~Vv~|n{|v~_w~}m{|w~}b{|v~lv" + "~|b{|v~lv~|b{|v~lv~|b{|v~lv~|b{|v~lv~|X{}u~X{|v~|x~}qv~|a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|a{|w~}mv~|Z{}w~yv~Yv~}m{}" + "w~}[{}w~yv~ P{|w~}t{}w~t{|w~}f{|w~}h{|w~}f{|w~}yy|p{|}y{|w~}f{|w~}yy|l{|w~}f{|w~}h{|w~}Y{|w~Ov~y|v~ K{}w~}Hw~}y" + "~}\"{}t~}x{}~x{|s~d{|p~}y{}~y{|p~}]o~|T{}p~Zw~}kw~}`{}w~|o{}w~|^{}w~|qv~|X{}w~|v~|]{|v~| o{}v~j{} {|x~}t{|" + "x~}N{|y~|v{}w~}^{}x~}r{}x~}rw~|o{}v~k{}u~|%v~Hv~ u{}w~ hw~|S{}v~o{}v~U{}w~}U{}v~}>{|v~}Q{}w~}Ju~_{|v~n{|v~|Z{|" + "v~|Vv~}m{|v~|P{}v~ C{}o~}4{|o~}|({|x~}s{}w~}s{}u~|x{}w~|l{}w~}h{}w~}d{}w~}l{|v~}bu~|g{|}g{}w~}j{}u~|b{}w~}L{}w~" + "}R{|u~|hv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}pt~\\{}w~}V{}w~|r{|v}qv~|h{}w~|nv~|v~g{|u~|j{}v~}b{}w~}R{|u~i{}v~}d{}w~}" + "l{|v~|M{}v~Y{|v~|Y{|v~|kv~}\\{|v~{v~|_{|v~|w~|o{}x~y}w~}e{|v~|p{|v~|W{|v~|X{}v~}G{|w~}F{|w~|M{|w~| u{}w~|nu~|_" + "u~}o{}v~_v~}O{}w~}o{|u~|av~}Dw~}U{}w~}o{|u~|`w~}m{|w~}Wv~Lv~Tw~}t{}v~|Rv~_w~}mv~mv~hw~}m{|w~}av~|n{|v~_u~mv~|bv" + "~|n{}v~|Zw~}@{}w~|Yv~Rv~n{}v~|[{|w~}y{}w~|\\w~}|x~}s{}x~y}w~|_{}v~v{|v~|V{|w~y}w~}Vu~Fw~}Lw~|M{|w~| K{|s~}t{}s~" + "|bv~p{}u~}]v~|mv~`{|w~q{}w~}]v~}n{}v~_{|w~|Mw~}m{|w~}Yw~y}w~|Xv~o{|w~}`{|v~n{|v~|g{}v~r{}u~rv~}gv~|v{}w~uv~|a{|" + "w~}q{|w~}`{|w~}u{}w~u{|v~au~mv~|bv~}n{}v~Vv~Uv~nv~b{}w~}hv~}`{|v~}N{}w~}Q{|v~}n{}v~}b{|c~}c{}w~}hv~|Z{|v~Z{|u~|" + "j{}v~}c{|w~B{}w~B{}x~|\\u~}w~}v~|\\{}x~|m{}x~}]{|u~}w~}v~} {{v~|V{|v~|uy~}S{|v~R{}v~y|q~}|u~W{|w~}Lw~|J{}u~*{|x" + "~|e{|x~|({}x~}u{|w~F{|x}|4{|x~|e{|x~| ={|v~n{|v~|Ux~}w{|x~} Ew~|u{|x~}U{|x~}p{}j~}iw~j{}w~b{|x~}p{}j~}f{}v~}" + "X{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}f{}w~}h{}w~}fv~}h{}w~}n{}w~}m{|v~Vu~|g{|}c{}w~}M{}w~}M{}w~}M{}w" + "~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~j{|u~}e{}w~|nv~|v~g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}g{|u~|j{}v~}c{" + "}v~|p{|u~|e{|t~}k{}v~}e{|v~|kv~}d{|v~|kv~}d{|v~|kv~}d{|v~|kv~}Y{|v~|V{}w~}Mw~}k{}w~|d{}w~|nu~|a{}w~|nu~|a{}w~|n" + "u~|a{}w~|nu~|a{}w~|nu~|a{}w~|nu~|k{}w~|nt~|Uv~}Ov~}Mv~}Mv~}Mv~}Cv~Lv~Lv~Lv~V{}v~nv~}_w~}m{|w~}av~|n{|v~`v~|n{|v" + "~`v~|n{|v~`v~|n{|v~`v~|n{|v~W{}u~Wr~q{|v~_v~n{}v~|`v~n{}v~|`v~n{}v~|`v~n{}v~|Z{|w~y}w~}Yu~mv~|[{|w~y}w~} O{}w~}" + "u{}w~u{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}d{}w~}j{}w~}X{}w~O{|w~y}w~} L{}w~}G{}u~|!{|}x~}|w{}~v{}w~}b{|r~|" + "x{}~w{}s~|\\{|q~}Rq~|Zw~}kw~}`{|v~p{|v~]v~p{}w~}X{|q~[{}v~} p{|v~}ly}$v}|\"{}x~}t{}x~}Yy}|s{|y~|w{|v~|_{|w~" + "q{}x~}s{|w~n{|v~}l{|u~}%{}w~|Iw~} u{}w~L{}w~} tv}|P{|w~R{|v~|pv~}U{}w~}V{}v~}={}v~|Q{}w~}K{}v~|^v~|o{}v~Y{}v~U{" + "}v~m{}v~P{|v~}U{|v}M{}w~}F{|}q~}6{|q~}|G{|w}|^w~ru~y|x{|}t~y|}v~|kv~|h{|v~d{}w~}m{|u~|b{|u~|i{|~}g{}w~}l{|}u~}a" + "{}w~}L{}w~}Q{}u~|iv~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}ot~]{}w~}V{}w~|bv~|h{}w~|n{}q~f{}u~k{}u~a{}w~}Q{}u~k{|u~c{}w~}" + "kv~}c{|}h{|v~}Y{|v~|X{}v~l{}v~|[v~}v~]v~}w~n{}r~|ev~}n{}v~W{|v~|Y{}v~}F{|w~}Ew~}M{|w~| u{}w~|o{}u~|_t~|q{|v~}_" + "{|v~|P{|v~}pt~|a{|v~|Ew~}U{|v~|pt~|`w~}m{|w~}Wv~Lv~Tw~}s{}v~|Sv~_w~}mv~mv~hw~}m{|w~}a{}v~nv~}_u~}o{}v~a{}v~o{|u" + "~|Zw~}@{}w~|Y{}w~|Sv~|p{|u~|Zv~{|v~[v~}x~}s{|r~_{|v~|u{}v~Uq~V{}v~|Fw~}Lw~|M{|w~| I{|y}~y}|r{|}x~}|`{}w~}qs~]u~" + "n{|v~`{|w~r{|v~\\{|v~nv~}_{|w~}Mw~}m{|w~}Y{}r~X{}w~}nv~`{|v~|o{}v~|g{|v~|st~|t{|v~|g{}v~v{}w~v{|v~`{|w~}q{|w~}_" + "v~|v{}w~uv~}au~}o{}v~a{|v~nv~}Vv~U{|w~}p{}w~}bv~|h{|v~`u~M{}w~}P{|u~|q{}v~}_{}g~}|b{}w~}hv~|Z{|v~Y{}u~k{}u~a{|y" + "~A{}w~A{}~|Zl~|Z{}~|k{}~}[{|l~} yv~}Uv~}uy~}S{|v~S{}v~|x{|y}x~}|wu~X{|w~}Lw~|I{|v~}*{}x~|g{|x~}&{}y~}t{|x~ T{}x" + "~|g{|x~} <{|v~|o{}v~|Ux~}w{|x~} Ex~|t{|y~}Tw~|p{}j~}j{}x~|k{}x~}aw~|p{}j~}g{}v~}Wv~|h{|v~fv~|h{|v~fv~|h{|v~f" + "v~|h{|v~fv~|h{|v~g{|v~g{|v~|ov~|m{|v~V{|u~|i{|~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~k{}t~d{}w~" + "|n{}q~f{}u~k{}u~e{}u~k{}u~e{}u~k{}u~e{}u~k{}u~e{}u~k{}u~c{}v~|n{|u~|e{}u~|l{}u~c{}v~l{}v~|c{}v~l{}v~|c{}v~l{}v~" + "|c{}v~l{}v~|Y{|v~|V{}w~}Mw~}kv~c{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|a{}w~|o{}u~|k{}w~|o{" + "}s~U{|v~|P{|v~|N{|v~|N{|v~|N{|v~|Dv~Lv~Lv~Lv~Uv~}p{}v~^w~}m{|w~}a{}v~nv~}`{}v~nv~}`{}v~nv~}`{}v~nv~}`{}v~nv~}W{" + "}u~W{}t~|qv~}_v~|p{|u~|`v~|p{|u~|`v~|p{|u~|`v~|p{|u~|Yq~Xu~}o{}v~Yq~ M{}w~}|w{}x~}v{}v~b{}w~}|m{}v~b{}w~}|m{}v~" + "b{}w~}|m{}v~b{}w~}|m{}v~W{}x~}Nq~| M{|v~F{|u~ py~|V{|}y~y}|vy~|w{|y}y~y}Y{|s~}Q{|s~|Yw~}kw~}_{}v~|s{}v~|^{|w~}p" + "{|v~X{|r~}Z{}u~} q{}v~}o{|y~}$v~}\"w~|tw~|Y{}y~}|u{|y~|x{|u~^{}x~|q{|w~s{}x~}mu~}n{|s~}&{|w~|J{|w~| u{}w~L{" + "}v~ u{|v~|P{}x~}Q{}v~|r{}v~T{}w~}W{}v~}O{}|k{}v~}P{}w~}]{}|l{}u~]{|v~|q{}v~|Yv~}U{|v~}o{}v~}Q{|v~}T{}v~M{}v~C{|" + "}t~}6{|t~}|D{}w~}^{}x~|s{|m~y}q~|k{|v~fv~|e{}w~}n{|u~}`{}u~|l{|}y~}g{}w~}n{|}t~}`{}w~}L{}w~}P{}u~}jv~|h{}w~}hv~" + "|Y{}w~}M{}w~}W{}w~}nt~^{}w~}V{}w~|bv~|h{}w~|mq~e{}u~|n{}u~|a{}w~}P{}u~|n{}u~|c{}w~}k{|v~|d{|y~}k{|u~|Y{|v~|X{|u" + "~n{|u~Z{}r~}]{}s~}n{|r~e{}v~lv~}X{|v~|Z{|u~E{|w~}E{}w~M{|w~| u{|v~p{|t~|_s~|s{|u~]u~|P{}v~}s{|s~|`u~|k{|Ww~}T{" + "}v~}s{|s~|`w~}m{|w~}Wv~Lv~Tw~}r{}v~}Tv~_w~}mv~mv~hw~}m{|w~}`v~}p{}v~|_t~|q{|v~|`v~}q{|t~|Zw~}Q{|kv~|Y{}w~}S{}v~" + "pt~|Z{}w~y}w~}[{}s~|rs~}_v~}s{}w~}V{}s~}W{}v~|Ew~}Lw~|M{|w~| r{|v~|s{}s~}^u~}ov~|_w~|s{}w~|[v~}pu~]v~|Nw~}m{|w" + "~}Y{|s~}Xv~m{}w~|a{|u~p{|u~|fv~}t{}x~}x~}t{}v~ev~}w{}w~w{|v~}`{|w~}q{|w~}_{}v~|w{}w~v{}v~`t~|q{|v~|`v~}p{}v~U{}" + "w~|Uv~|r{|v~b{|v~fv~|bu~|M{}w~}O{|u~}t{|u~}\\{|k~}|`{}w~}hv~|Z{|v~X{}u~|n{}u~|`{|@{}w~@{|Xn~|X{|i{|Y{|n~} xv~}U" + "{|v~}vy~}S{|v~T{|v~|jv~}Y{|w~}Lw~|H{|v~|*{}x~}i{}x~}${}~}s{|y~ S{}x~}i{}x~} ;{|u~p{|u~|Ux~}w{|x~} Ey~|s{|~}T" + "{}x~}o{}j~}k{|w~k{}x~}a{}x~}o{}j~}h{}v~}W{|v~fv~|h{|v~fv~|h{|v~fv~|h{|v~fv~|h{|v~fv~|h{}w~}f{}w~}p{|v~l{|v~U{}u" + "~|l{|}y~}c{}w~}M{}w~}M{}w~}M{}w~}D{}w~}M{}w~}M{}w~}M{}w~}Z{|v~n{|}s~c{}w~|mq~e{}u~|n{}u~|d{}u~|n{}u~|d{}u~|n{}u" + "~|d{}u~|n{}u~|d{}u~|n{}u~|d{}v~|l{|u~|et~|n{}u~|c{|u~n{|u~b{|u~n{|u~b{|u~n{|u~b{|u~n{|u~X{|v~|V{}w~}Mw~}x{|p{}v" + "~c{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|a{|v~p{|t~|k{|v~p{|q~j{|gu~|Pu~|k{|_u~|k{|_u~|k{|_u~|k{" + "|Vv~Lv~Lv~Lv~U{|v~}r{}v~}^w~}m{|w~}`v~}p{}v~|_v~}p{}v~|_v~}p{}v~|_v~}p{}v~|_v~}p{}v~|W{}u~Vu~|q{}v~|_{}v~pt~|`{" + "}v~pt~|`{}v~pt~|`{}v~pt~|Y{}s~}Xt~|q{|v~|Y{}s~} Lu~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|au~}p{}u~|W{}x~}N{}s~} " + "M{|v~|Ev~} py~|Jy~|M{}t~O{|u~}Xw~}kw~}_{|t~}w|}u~}]{}w~}ov~|Xr~|Y{}t~}y| tt~|r{}x~}$v~}\"w~t{|w~X{}v~}y|y{|" + "y~y|}t~|_{|x~}ow~}tw~|m{|t~|r{|}q~}&w~}J{}w~ t{}w~L{}v~ u{|v~|Pw~|Pu~|t{}v~|\\s|}w~}r|a{}v~}Nx~}|p{}t~O{}w~}]{}" + "y~}|q{}t~|\\{}v~|s{}u~Y{|v~|T{}u~|r{}u~|_{~}|r{|}u~|T{}v~M{}v~@{|}w~}6{|w~}|A{}w~}^{|w~r{|o~}{}s~}iv~}f{}w~}e{}" + "w~}q|y}s~|_{}t~|p{|}w~}g{}w~}r|y}q~}_{}w~}g|`{}w~}O{}t~}o{|}u~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}mt~_{}w~}h|i{}w~|bv~" + "|h{}w~|m{}r~dt~}|r{|t~|`{}w~}Ot~}q{|t~}b{}w~}jv~}d{|w~}|p{|}u~}X{|v~|W{}u~|q{}u~|Z{|r~|]{|s~|mr~f{|v~|l{|v~|Y{|" + "v~|[{|u~}b|^{|w~}E{|w~|N{|w~| tv~}r{}s~|_w~y}x~}|w{|}u~|]{|u~|p{|}|^t~y|x{|}w~}w~|`{|u~|n{|y~|Xw~}St~y|x{|}w~}" + "w~|`w~}m{|w~}Wv~Lv~Tw~}q{}v~}Uv~_w~}mv~mv~hw~}m{|w~}`{}v~}r{}v~}^s~}s{|v~}_{}v~}s{|s~|Zw~}Qy~}|o{}w~}X{|v~}|U{|" + "v~}s{|s~|Z{|q~Z{|s~qs~|`{}w~}qv~}Vs~|X{}v~|Dw~}Lw~|M{|w~| qu~|u{}w~|v~}_s~|s{|u~^{}w~t{}w~}Z{|v~}|t{|}v~|]{}v~" + "|ny|^w~}m{|w~}Xs~|Y{}w~}m{|w~}a{|t~|s{}t~}f{}v~}v{|w~{w~|v{}v~}e{}v~}x{}w~x{}u~_{|w~}q{|w~}^u~}|y{}w~x{}u~}`s~}" + "s{|v~}_{|v~}|t{|}v~|U{|v~}|W{|v~|t{|v~|bu~f|v~}c{}v~}h|_{}w~}Vs}t~}v{}t~s}`{|y}t~y}|]{}w~}hv~|Z{|v~Wt~}|r{|t~|#" + "{}w~ vp~| {|p~} wv~}T{}v~}wy~}v{}~Z{|v~S{}x~|hx~}X{|w~}Lw~|G{}w~}){|w~|m{|w~|\"{|}q{} R{|w~|m{|w~| XY| ${|u~}r{" + "|t~}Ux~}w{|x~} E{}qy|T{|w~c{}x~gw~|lw~}a{|w~c{}x~e{}v~}Vv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~}f{}w~}hv~|f" + "{|v~pv~}l{|v~}h|h{}t~|p{|}w~}c{}w~}g|a{}w~}g|a{}w~}g|a{}w~}g|X{}w~}M{}w~}M{}w~}M{}w~}Z{|v~r|x}q~b{}w~|m{}r~dt~}" + "|r{|t~|bt~}|r{|t~|bt~}|r{|t~|bt~}|r{|t~|bt~}|r{|t~|d{|v~|j{|v~}f{}s~}|r{|t~|a{}u~|q{}u~|a{}u~|q{}u~|a{}u~|q{}u~" + "|a{}u~|q{}u~|X{|v~|V{}w~}Mw~}xy~}y|wy|u~|bv~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~}r{}s~|`v~}r{}s~|jv~}r{}w~}" + "|u~|o{|}y~g{|u~|p{|}|_{|u~|n{|y~|`{|u~|n{|y~|`{|u~|n{|y~|`{|u~|n{|y~|Wv~Lv~Lv~Lv~T{}u~}|x{|}u~}]w~}m{|w~}`{}v~}" + "r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}^{}v~}r{}v~}V{}u~V{|v~}r{}v~}^{|v~}s{|s~|`{|v~}s{|s~|`{|v~}s{|s~|`{|v" + "~}s{|s~|Xs~|Xs~}s{|v~}Ws~| K{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~^{}u~}x|{x|}t~U{}x~}N{|s~| M" + "{|w~|D{}w~| q{|y~}K{|y~}L{}v~|N{}v~Ww~}kw~}^{|j~}\\v~|o{}w~}X{}s~W{|^~} -s~}v|}v~}$v~}#{|w~t{|x~}X{}e~|^w~|o" + "{|w~|v{}w~k{|s~}v|}t~y}v~}'{}w~Jw~} t{}w~L{}v~ u{|v~|Q{|w~O{|u~}w|}u~}\\{|e~|ab~`u~w}|x}r~|O{}w~}]{}v~w}|x}s~}Z" + "t~}w|}t~X{}w~}S{|t~y}v|}t~}^v~y}y|y}s~|S{}v~M{}v~={|}~}6{|y~}|?{}w~}]w~}q{}r~|y{}u~}h{|v~|f{|v~e{}c~|]{}s~y}v|y" + "}t~}g{}b~|^{}c~}`{}w~}N{}r~y}v|y}r~|h{}w~}hv~|Y{}w~}M{}w~}W{}w~}lt~`{}d~}i{}w~|bv~|h{}w~|lr~cr~}v|}s~}_{}w~}Ns~" + "y}v|}s~}a{}w~}j{|v~|e{|s~}u|}r~W{|v~|Vs~}v|y}t~|Xs~}\\{|s~|m{}t~}fv~}j{}v~Y{|v~|[{}\\~}^{|w~}Dw~}N{|w~| t{}u~y" + "|x{|}w~y}w~|_w~}{k~|[{|t~}|wy|}x~|^{|k~y|w~|_{|t~}|vy|y}w~|Xw~}S{|k~y|w~|`w~}m{|w~}Wv~Lv~Tw~}p{}v~}Vv~_w~}mv~mv" + "~hw~}m{|w~}_{}u~}|x{|}u~}]w~y}w~y|yy|}u~|^{}u~}|x{|}w~}w~|Zw~}Qv~}y|v{|}u~|Wm~[{}u~}w|}v~}w~|Y{}s~}Yt~}q{}t~|a{" + "}v~p{|v~|W{}t~W{}d~Uw~}Lw~|M{|w~| q{|u~}|y{|}v~{|s~br~}y|yy|}u~|^{|w~}v{}v~X{}u~}y|{y|}u~}\\{|t~}|vy|y}y~}^w~}" + "m{|w~}X{}t~Xv~|lv~|b{|s~}v|}q~x}hu~}|{y|w~}{}w~}|{|}u~c{}u~}|}w~|}t~|_{|w~}q{|v~}_{|s~}v~}s~}_w~y}w~y|yy|}u~|^{" + "}u~}y|{y|}u~}S{}r~}Z{}v~}|x{|}v~}b{|Z~c{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~Vr~}v|}s~|\"{}w~ ur~| y{|r~} vv~" + "}St~}y|y~}{y|}x~`{}b~}a{}~|f{~}W{|w~}Lw~|G{|w~}({|v~}|s{|}v~| E{|v~}|s{|}v~| X{|Z~} ${|s~}y|{y|}q~}|}Xx~}w{|x~" + "} l{}x~|c{}x~h{}x~}m{|w~|`{}x~|c{}x~f{|v~}V{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~i{|v~|f{|v~i{|v~dv~|r{|" + "v~k{|b~g{}s~y}v|y}t~}c{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|b~}a{}w~|lr~cr~}v|}s~}`r~}v|}s~}`r~}v|}" + "s~}`r~}v|}s~}`r~}v|}s~}b{|x~|h{|x~}f{}o~}v|}s~}_s~}v|y}t~|_s~}v|y}t~|_s~}v|y}t~|_s~}v|y}t~|W{|v~|V{}w~}Mw~}xk~}" + "a{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|`{}u~y|x{|}w~y}w~|j{}" + "u~y|x{|}u~y{|t~}|vy|}v~f{|t~}|wy|}x~|^{|t~}|vy|y}w~|_{|t~}|vy|y}w~|_{|t~}|vy|y}w~|_{|t~}|vy|y}w~|Wv~Lv~Lv~Lv~S{" + "}j~}\\w~}m{|w~}_{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}\\{}u~}|x{|}u~}U{}u~V{}t~}|x{|}u~}\\{" + "}u~}w|}v~}w~|_{}u~}w|}v~}w~|_{}u~}w|}v~}w~|_{}u~}w|}v~}w~|X{}t~Ww~y}w~y|yy|}u~|W{}t~ I{}h~}\\{}h~}\\{}h~}\\{}h~" + "}\\{}h~}T{}x~}Ms~ K{|y~}C{|w~ p{}x~K{}x~Kw~|L{}x~|Ww~}kw~}]{|l~}\\{|v~n{|w~}X{|s~U{}`~} -{|h~|$v~}#{}x~}t{}x" + "~}X{|}g~|^{}x~}m{}w~}y|}v~|j{|g~}y{}v~}({|w~|L{|w~| t{}w~L{}v~ u{|v~|Q{}x~}N{}k~}[{|e~|ab~`e~|N{}w~}]{}g~}Y{|i~" + "|Xv~|R{|g~}]i~|R{}v~M{}v~;y|5{|<{}w~}]{|w~|p{|v}|w{|x}|e{}v~dv~}f{}e~}|[{}d~|g{}d~}\\{}c~}`{}w~}M{}c~}|g{}w~}hv" + "~|Y{}w~}M{}w~}W{}w~}kt~a{}d~}i{}w~|bv~|h{}w~|l{|s~b{}f~|^{}w~}M{}f~|`{}w~}iv~}e{|c~V{|v~|Uf~}W{}t~|[s~l{}t~|g{}" + "v~hv~}Z{|v~|[{}\\~}^{|w~}D{}w~N{|w~| sj~{}w~|_w~}{|m~|Y{}i~|]{|m~|{|w~|^{|f~|Xw~}R{|m~|{}w~|`w~}m{|w~}Wv~Lv~Tw" + "~}o{}v~}Wv~_w~}mv~mv~hw~}m{|w~}^h~\\w~}{k~|\\k~y|w~|Zw~}Qg~}V{|n~Zk~{}w~|Y{|s~|Y{}u~}q{|t~a{|v~|o{}v~W{|u~|W{}d" + "~Uw~}Lw~|M{|w~| p{|l~|ys~be~}\\{}v~x}u~V{}j~}Z{|h~}^w~}m{|w~}X{|u~|Y{|w~}k{}w~}b{|w~}m~|s~h{|m~xm~|b{}g~|^{|w~" + "}pr~a{|f~}^w~}{k~|\\{}j~}R{|r~}Y{}l~}a{}Z~}d{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~U{}f~|!{}w~ tt~| w{|t~} uv~" + "}R{}i~`{}b~}`{|?{|w~}Lw~|Fw~}&{}t~w}t~} A{}t~w}t~} V{|Z~} ${|w~}m~|s~Xx~}w{|x~} m{|x~}b{}x~hw~lk~k{|x~}b{}x~" + "fv~}U{}v~dv~}j{}v~dv~}j{}v~dv~}j{}v~dv~}j{}v~dv~}j{}w~}d{}w~}r{}w~}k{|b~f{}d~|c{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}" + "w~}M{}w~}M{}w~}Z{|d~}|`{}w~|l{|s~b{}f~|^{}f~|^{}f~|^{}f~|^{}f~|`{|~|f{|~}f{|w~|}f~|]f~}]f~}]f~}]f~}V{|v~|V{}w~}" + "Mw~}xl~}_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|_j~{}w~|ii~w{|f~e{}i~|]{|f~|^{|f~|^{|f~|^{|f~|Wv~Lv~Lv~Lv~R{}l~" + "}[w~}m{|w~}^h~Zh~Zh~Zh~Zh~){|f~Zk~{}w~|^k~{}w~|^k~{}w~|^k~{}w~|X{|u~|Ww~}{k~|V{|u~| H{|j~|Z{|j~|Z{|j~|Z{|j~|Z{|" + "j~|S{}x~}M{}u~} I{}Ax~} pw~|Lw~|L{|y~|Jy~|Vw~}kw~}[{}o~|[{}w~}mv~Wt~}T{|}b~} +{}l~}\"v~}#w~|tw~|U{|}l~}]{|w~" + "ko~|h{|j~}|w{}u~({}w~L{}w~ s{}w~Lv~| u{|v~|Qw~}M{|m~}Z{|e~|ab~`g~}|M{}w~}]{}h~|W{|k~W{}v~P{|i~|\\k~}P{}v~Mv~| " + "i{}w~}\\{}w~Jv~}d{}v~f{}g~}|X{|}h~}e{}g~}|Z{}c~}`{}w~}L{|}g~}|e{}w~}hv~|Y{}w~}M{}w~}W{}w~}jt~b{}d~}i{}w~|bv~|h{" + "}w~|ks~a{|i~}\\{}w~}L{|i~}^{}w~}i{|v~|e{}f~}U{|v~|T{}i~|Ut~Z{}u~}l{|t~g{|v~|h{|v~|[{|v~|[{}\\~}^{|w~}D{|w~N{|w~" + "| s{|l~|{}w~|_w~}x{}q~}|W{|j~|[{}p~|y{|w~|]{|g~|Xw~}P{}q~}|y{}w~|`w~}m{|w~}Wv~Lv~Tw~}n{|v~}Xv~_w~}mv~mv~hw~}m{" + "|w~}]{}l~}[w~}{|m~|Zm~|{|w~|Zw~}Qh~|T{|o~Z{|m~|{}w~|Xs~X{}u~|pu~}av~}m{}w~}Wu~V{}d~Uw~}Lw~|M{|w~| o{|n~|w{}u~b" + "f~}Z{}p~}T{}l~}X{|i~}^w~}m{|w~}Wu~Xv~|k{|v~b{|w~y|o~|{}t~g{|o~|x{|o~}`{}i~|]{|w~}p{}s~_{}j~}|]w~}{|m~|Z{}l~}P{|" + "s~}X{}n~}`X~d{}c~}_{}w~}Vk~v{}l~|^{|v~Y{}w~}hv~|Z{|v~T{|i~} {{}w~ sv~| u{|v~} tv~}Q{}j~`{}b~}#{|w~}Lw~|G{|w~}${" + "}m~} ={}m~} T{|Z~} ${|w~y|o~|{}t~Xx~}w{|x~} mw~|b{}x~i{}x~|lk~kw~|b{}x~g{|v~Tv~}d{}v~jv~}d{}v~jv~}d{}v~jv~}d" + "{}v~jv~}d{}v~k{|v~|d{|v~rv~|k{|b~e{|}h~}a{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|g~}|]{}w~|ks~a{|i~}[" + "{|i~}[{|i~}[{|i~}[{|i~}/{|w~|y{|i~}Z{}i~|[{}i~|[{}i~|[{}i~|U{|v~|V{}w~}Mw~}xm~|^{|l~|{}w~|_{|l~|{}w~|_{|l~|{}w~" + "|_{|l~|{}w~|_{|l~|{}w~|_{|l~|{}w~|i{|l~}u{|g~d{|j~|\\{|g~|]{|g~|]{|g~|]{|g~|Wv~Lv~Lv~Lv~Q{|}p~}|Zw~}m{|w~}]{}l~" + "}X{}l~}X{}l~}X{}l~}X{}l~}){|w~}l~}Y{|m~|{}w~|^{|m~|{}w~|^{|m~|{}w~|^{|m~|{}w~|Wu~Vw~}{|m~|Tu~ E{|}p~}|V{|}p~}|V" + "{|}p~}|V{|}p~}|V{|}p~}|Qw~}Lu~| i{}y~| q{|w~}M{|w~}K{|}I{|}Uw~}kw~}Y{|y}w~y}|Yv~|m{}w~|X{}u~|Q{|}e~} *{|}p~" + "}|!v~}#w~t{|w~Py|x}y~x}y|[w~|j{}r~|e{|n~}|t{}u~){|w~|N{|w~| s{}w~Lv~ t{|v~|R{|w~|L{|}p~|Y{|e~|ab~`y|}l~}|K{}w~}" + "]{|}k~|S{}o~|Vv~}N{|m~}Z{}n~}|O{}v~Mv~ h{}w~}[v~L{|v~|d{|v~|g{}k~y}y|T{|}m~}|c{}m~x}y|W{}c~}`{}w~}J{|}k~}|c{}w" + "~}hv~|Y{}w~}M{}w~}W{}w~}it~c{}d~}i{}w~|bv~|h{}w~|k{|t~_{|m~}|[{}w~}J{|l~|]{}w~}h{}w~}c{|}k~}|T{|v~R{|}m~|S{}v~}" + "Z{|u~|kt~gv~}f{}v~[{|v~|[{}\\~}^{|w~}Cw~|O{|w~| q{}p~}x{}w~|_v}vy}w~y}|S{}m~}Xy}w~y}|w{|w}|[{|l~}|Vw~}N{|}w~y}" + "|w{}w~|`v}lw}|Wv~Lv~Tv}m{|u}Yv}_w~}mv~mv~hw~}m{|w~}\\{|n~|Zw~}x{}q~}W{}q~}|y{|w~|Zw~}Q{|}l~}P{|y}s~X{}q~}x{}w~|" + "X{}u~}X{|u~o{}v~|b{}w~}kv~}X{}w~}V{}d~Uv~Lw~|M{|w~| n{|}q~}u{|}w~bv~{}o~}|X{|r~|R{|}p~}|U{}l~}|^w~}m{|w~}W{}w~" + "}Xw}|i{|w}b{|w~|{|q~|y{|t~f{|q~|v{|q~|^{|l~}[{|w~}os~]{|}o~}|[w~}x{}q~}W{|}p~}|M{|}v~}W{|p~|`{|X~|e{}c~}_{}w~}V" + "k~v{}l~|^{|v~Y{}w~}hv~|Z{|v~R{|m~}| y{}w~ rx~| s{|x~} sv~}P{|}n~}|`{}b~}#{|w~}Lw~|Ty|pv~|\"y|}u~}y| 9y|}u~}y| " + "R{|Z~} ${|w~|{|q~|y{|t~Xx~}w{|x~} y}| q{}x~}aw}j{|w~kk~l{}x~}aw}gv~}U{|v~|d{|v~|l{|v~|d{|v~|l{|v~|d{|v~|l{|v~|" + "d{|v~|l{|v~|d{|v~|l{|v}bv}|t{}w~}j{|b~c{|}m~}|_{}c~}a{}c~}a{}c~}a{}c~}X{}w~}M{}w~}M{}w~}M{}w~}Z{|m~x}y|Z{}w~|k{" + "|t~_{|m~}|X{|m~}|X{|m~}|X{|m~}|X{|m~}|.w~}v{|}n~}|X{|}m~|X{|}m~|X{|}m~|X{|}m~|S{|v~|V{}w~}Mv|wy|}u~y}|Z{}p~}x{}" + "w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|]{}p~}x{}w~|g{}o~|r{|l~}|a{}m~}Y{|l~}|Y{|l~}|Y{|l~}|Y{|l~}|U" + "v~Lv~Lv~Lv~O{|y}v~y}|Xw~}m{|w~}\\{|n~|V{|n~|V{|n~|V{|n~|V{|n~|(w~|{|n~|V{}q~}x{}w~|\\{}q~}x{}w~|\\{}q~}x{}w~|\\" + "{}q~}x{}w~|W{}w~}Vw~}x{}q~}R{}w~} B{|t}|P{|t}|P{|t}|P{|t}|P{|t}|Nw~} 3{|~} ;f| '{|y}w~}y| 8{|y~|X{|x~}" + "h{|}w~}|ay|y}w~y}| rw~}N{}w~ ?{|w~| D{}w~I{|y}w~y}|%b|\\{|x}u~y}|!y|y}u~y}y|O{|y}w~y}| {{y|}u~y}|Vy|y}v~}y| u{|" + "w~| B{|v~| 1{|y}u~y}| o{|x}u~y}y| Fv~| 7y|y}v~y}| {{y|y}q~|#y|y}u~y}y| {{|y}v~y}y| a{|w~}C{}x~}O{|w~| oy}" + "v~}|vv|!{|}t~y}|!{|y}t~y}|Sv|Av~\"v|Lv~ Rv|mv|mv|hv|lv|Z{|y}u~}|Xw~}v{|}w~y}|T{|}w~y}|w{|w~|Zv|Ny|y}u~y}| {{|y}" + "w~}|uw|W{|u}|Wv}|o{|v}av|ju|Xv~| sv~Lw~|M{}w~| ly|}v~}|Uv~yy|}v~y}|S{|y}~y}|N{|y}v~y}|Qy|y}v~x}|[v|m{|w~}W{|w~" + "|#{|w~|x{|}w~}|v{|}y~y}c{|y}x~y}ry}x~y}|Z{|y}s~}y|G{}w~}|Zy|v~}|Ww~}v{|}w~y}|T{|y}v~y}| x{|y}w~}| Ry|y}v~y}|" + " Zy| rv~}M{|y}u~}|]`| Iw~|T{|y~}|u{|u~ 5{|w~|x{|}w~}|v{|}x~}Wx~}w{|x~} {}y~} r{|y}|Kw~|L{|y}|Hv~| E" + "{|y}u~y}| qy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|Sy|y}v~y}|+{|y~}r{|y}v~y}|R{|y}v~y}y|S{|y}v~y}y|S{|y}v~y" + "}y|S{|y}v~y}y| oy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|Zy}v~}|vv|d{|}v~y}|n{|y}u~y}y|\\{|}t~y}|U{|y}" + "t~y}|T{|y}t~y}|T{|y}t~y}|T{|y}t~y}|Rv|Lv|Lv|Lv|!v|lv|Z{|y}u~}|R{|y}u~}|R{|y}u~}|R{|y}u~}|R{|y}u~}|'{}x~|w{|y}u~" + "}|S{|y}w~}|uw|Z{|y}w~}|uw|Z{|y}w~}|uw|Z{|y}w~}|uw|Vv~|Vw~}v{|}w~y}|Qv~| Mw~| K{|y~| e{|w~Nw~" + "| ?{}w~ Cw~} .{}w~ @{|v~|d{}| Kv~| !u~| J{|w~}C{|w~O{|w~| 9w~} Iv~ bw~}9{|w~| X{|v~ rv" + "~Lw~|M{}w~| w~| D{|w~| .w~| ?{|v~}g{|x~| M{|v~ {|u~| K{|w~}Bw~|P{|w~| :{}w~} Iw~} bw~}9{" + "|w~| X{}w~| r{}w~|Mw~|Mv~ ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~|T{|l~| 4{|w~" + "|Ax~}w{|x~} {{}y~} /v~| ?x~| f{|x~ M{} %{}w~|Uw~}D{}w~| Lw~| K" + "{|y~| d{|w~Pw~| ?{|w~ C{}w~ .{|w~ ={|u~}|l{|u~| N{}v~ {{|u~| L{|q~}H{}x~}V{}q~| :v~| Iw~}" + " bw~}9{|w~| Xv~ q{}w~}Mw~|N{|v~ ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~|T{|}o~}| " + " 3{|w~|Ax~}w{|x~} {{|x~| 0v~}m{} N{|x~ e{}y~} Rv~Tw~}Dv~ S{}x~x{|w~| " + " K{|y~| c{}x~}R{}x~} >{|x~| Cw~} .{|x~| ;{}t~}|sy|}t~| N{|v~} y{|u~| M{|q~}H{|w~V" + "{}q~| ;{}v~ I{|w~} bw~}9{|w~| Y{}w~} q{|v~}|Ow~|P{|}v~} ;v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} " + " )v~}Iy~} gw~|Q{|y}v~y}| 1{|w~|Ax~}w{|x~} yx~| 0{}v~|p{|~} N{|x~| f{|x~ " + " S{}w~}Tw~}E{}w~} S{}x~|y{|w~ J{|y~| bw~|Sw~| >{}y~} K{}y~} 9{|p~x}q~}| N{|u~" + "| x{|u~ M{|q~} y{}q~| K{|}|p{|u~| I{}w~| bw~}9{|w~| Z{|v~ o{}q~}Tw~|U{|p~ :v~ S{|w~}W{|w~|#{|" + "w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~| W{|w~|Aw|vx| y{|x~} 0{|u~|s{}x~} N{|x~| " + " f{|x~| U{|v~Sw~}F{|v~ R{|x~}y{}w~ J{|y~| b{|x}|T{|x}| w{}g~}| Q" + "x|y}u~} v{|u~ N{|p} yp}| K{|x~}y|wy|}u~} J{|}v~ aw~}9{|w~| \\{|}v~} nq~}Tw~|U{|q~| :v~ S{|w~}" + "W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy~} gw~| W{|w~| :{|}w|}w~| /t~y}x|y}v~} U{|}|x{|w~| " + " f{}x~| W{|}v~}Sw~}H{|}v~} Qq~| J{|y} *{|}l~}| O{}q" + "~ tt| `{|i~} Lr~| aw~}9{|w~| `{}q~ l{}s~}Tw~|U{|s~}| 9v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~" + "} )v~}Iy~} gw~| W{|w~| :{|q~ .{|i~} U{|q~ ly}w|}w~| [{}q~Rw~}" + "L{}q~ P{}r~ M{|y}u~y}y| L{}r~| R{|j~} Ks~} `w~}9{|w~| " + " `{}r~| jy|v}|Tw~|U{|u}| 6v~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} )v~}Iy}| gw~| W{|w~| :{|r~| " + " -{|k~}| U{|r~} l{}r~} Z{}r~|Rw~}L{}r~| O{}t~ " + " k{}t~} -{|`}| `{|}m~}| Jt~} _w~}9{|w~| `{}s~| :w~| cv~ S{|w~}W{|w~|#{|w~| j{}w~ s{}" + "w~Uw~} )v~} d{|w~| 9y}w~y} ){}o~}| S{|}u~}| k{}r~ Y{}s~|Qw~" + "}L{}s~| M{}w~} j{}w~}| +{}`~} ]{|x}v~y}| Gw~y} ]w~}9{|w~" + "| `{}v~}| 8w~| cv~ S{|w~}W{|w~|#{|w~| j{}w~ s{}w~Uw~} g{|w~| 8{|}v~y}| Ly| " + " g{|y}w~}| X{}v~}|Ow~}L{}v~}| Iy| " + "l{}`~} Ww~| " + " L{}`~} Ww}| " + " r{" }; + + // Define a 104x128 binary font (huge sans). + static const char *const data_font_huge[] = { + " " + " " + " " + " " + " " + " " + " " + " " + " FY AY " + "'Z ;W @Y @Y 'Z Y @Y (Z :Y ?Y (Z 0Y ?Y (Z >X " + " " + " " + " " + " " + " )X AX '\\ )XAV 7YDY -] BY BY '[ +YEY 2X AY (\\ -YDY 'XAU 3Y AY (\\ )XAV 8YD" + "Y LY AY (\\ ,YEY #Y " + " " + " " + " " + " (X CX '^ +[CU 6ZEY .` C" + "X CY '] -ZEZ 2X CY (^ .ZEZ )[CU 2Y CY (] *[CU 7ZEZ LY CY (] -ZEZ %Y " + " " + " " + " " + " " + " 'Y EY '^ ,^FV 6ZEY /b CX DX '_ .ZEZ 2Y DX '_ /ZEZ +_FV 1X CX (_ ,^FV 7ZEZ " + " KX CX (_ .ZEZ &Y " + " " + " " + " " + " %Y GY '` .aHV 6ZEY 1e DY FX" + " 'a /ZEZ 1Y FX '` /ZEZ +aHV 0X EX '` .aHV 7ZEZ JX EX (a /ZEZ &X " + " " + " " + " " + " " + " #X GX 'XNX 0dKW 6ZEY 1f DY HX &WMX 0ZEZ 0X GX 'XMW 0ZEZ ,dLX /X GX 'WMX 0dLX 7ZEZ" + " IX GX 'WMX 0ZEZ 'X :T " + " " + " " + " " + " ;X IX 'XLX 1o 5ZEY 2ZLY " + " CX IX &WKW 0ZEZ /X HX (XLX 1ZEZ ,o .Y HX (WKX 1o 6ZEZ IY IY (WKW 0ZEZ (X X MX &WH" + "W 3VHa 4ZEY 3WDW CX LX 'WGW 2ZEZ -X LX 'WHW 2ZEZ -VHa +X KX (XHW 3VHa 5ZEZ GX KX (WGW 2ZEZ )X " + " ?b " + " " + " " + " " + " ?W MW &WFW 4VF^ 3ZEY 4WBV BW MX 'WEW 3ZEZ ,W M" + "X 'WFW 3ZEZ -VF^ )X MX 'WFW 4VF^ 4ZEZ FX MX 'WFW 3ZEZ *X ?d " + " " + " " + " " + " " + " ?W X 'WDW 5UC[ 2ZEY 4VAV AW X &WDW 4ZEZ +W NW 'WDW 4ZEZ -UC[ 'W MW 'WDW 5UC[ 3ZEZ " + "EW MW 'WDW 4ZEZ +X ?f " + " " + " " + " " + " @X \"X 'WBW 6UAW 0ZEY 4V@V B" + "X !W &WBV 4ZEZ +X !W 'WBW 5ZEZ .VAW $W W 'WBW 6UAW 1ZEZ DW W 'WBV 4ZEZ +W >f " + " " + " " + " " + " " + " ?X #W 'W@W U?V AX #W &W@V NX #W &V@W 9W \"W 'W@V .W " + "\"W 'W@V !W >XHX " + " 3Y " + " " + " " + " 6W $W &V>V U?V @W $W &W>V " + " NW $X 'V>V 8W $X (W>V /X $W 'W>V #W >XFX " + " 5Z " + " " + " ,Z " + " GZ " + " #U?V NY 7Z ,X CVCW MY " + " 7Z ,X $Z 7Z ,X >Z 6Y ,X 4Z 7Y +W 7Y @Z " + " " + " +Z " + " " + " HY \"U?V " + " MY 8Y ,Y CVBV LY 9Z ,Y #Z 9Z ,Z >Z 8Y ,Y 3Y 8Z ,Y 9Y " + " ?Z " + " *Y " + " " + " IY !U?V " + " LY :Y ,[ $R>U ,V@V MZ :Y +Z #Y 9Y +Z ?R" + ">U 8Y 9Y +Z %S?U HY :Z ,[ ;Y ?[ " + " " + " )Y " + " 8U " + " 9Y V@U JY Y @Y /X 0Y K` .X " + " ^ =ZEY @Y " + " NVAV

Y E^ /X 0_ %f 1] 'c " + " @ZEZ AY MV" + "CW X *^ +]DU 7ZEZ 5U>U JY ?Y *^ -YEZ 4Y " + " ?Y *^ .ZEZ 5[ ]DU 5Y >Y +^ ,]DU 6ZEZ Y ?Y +_ .ZEZ \"Y Z G[ G\\ @e !f JX !Y " + "LY %d :Y Y Ha /X 0b *j L] D_ " + " +g A[ LY 8Z -ZEZ \"Y 1o )V FX NZ FY " + "%Y ,X NX*Z NW 3WEW H\\ #[ !Z \"[ \"[ \"[ G[7T 8g 0Y " + "@Y +_ ,_FV 7ZEZ 5U>U IY @Y +` .YEZ 3X ?X *` /ZEZ 4[:P 8_FV 4X ?Y +` ._EU 6ZEZ NX @Y *_ .ZEZ #Y ;Y" + " FYEZ ;] GU W ,X " + " FV a \"d -g >d (d +b %b 4f Bg Ie \"e \"h " + " Ge !f IX \"Y LY &e :Y Y Jc /X 0c " + " -n $g I` .j >a ;e HU .U +b Ac 2ZEZ 'b " + " 5o -] Na (c KY .Y #_ 8Y!W'Y\"X.c$X 3XGX Mf -e +d " + ",e ,e ,e \"e=V ;k 1Y BY +XNW .aGV 7ZEZ 5V@V HX AY +XNW .YEZ 3Y AY *WNW /ZEZ 4\\>T 9`GV 3" + "X AY +XNW .`GV 6ZEZ NY AX *XNW /ZEZ $Y :Y FYEZ <_ IU (Q LZ 4Z2Z 1Q " + " &g %Z +XCX MT Y Kd /X 0e 0p " + " (m Lb 1m ,\\ 5~S E~R Ah 'Z :~]+[;Z;Z Ik LW DX DW /i ?Y(Y 4h 5ZEZ" + " ,\\ ,h 7\\ -o .` $f -h NY No %_ %c @_\"X-_\"W0h&W .\\ $\\ \"\\ #\\ #\\ )g 5~a Lm D~S I~S " + "H~R H~R 6Z !Z !Z \"Z :r 8^,Y Bk 2k 2k 2k 2k (kAX+Z(Z#Z(Z$Z(Z$Y'Y&[%[ MZ Im 1X CY *WMX /bHV 7ZEZ 5V@V G" + "X CY *WLW /YEZ 2Y CY *WLW 0ZEZ 3[AW :bHV 3Y BX *WLW 0bHV 6ZEZ MY CX *XMX 0ZEZ $X 9Y FYEZ " + " =a M~i 7U (Q N_ 9_8_ 3R )k 'Z +XCX +X@X 4T >e,X Cl &X IX *X GV " + " GX 5i 0d 2p ;u !^ ?y 2o F~S @n 4j /l N\\ 8x .r Nx 7~R E} >t KZ(Z :Z \"Z 4Z-] KZ 2_'_(^-Z" + " Ep =t 5o Au 1u N~d'Z(Z)Z MZY " + " Le /X 0e 1r +r c 3o -\\ 5~S E~R Dn *Z :~]+[;Z;Z Ko " + " Y EX EY 2m @Y)Y 6l 7ZEZ 0e 2k >e 1o 0c 'j /i X !r (b 'g Eb\"W0c#X0i(W -" + "\\ $] #\\ $] #\\ (f 6~b r F~S I~S H~R H~R 6Z !Z !Z \"Z :w =^,Y Ep 6p 7p 7o 7p ,oDY+Z(Z#Z(Z$Z(Z$Y'Y%Z%Z LZ Kp" + " 1X DX *WKW /WMYJV 6ZEZ 5V@V GY EY *WKX 0YEZ 1Y EY *XKW 1ZEZ 2[EZ :WMZKV 1Y DX *WKX 1WLYKW 6ZEZ L" + "Y EY *WKW 0ZEZ %X 8Y FYEZ >c M~h 7T (S !a Y >X 8f /X 0f 3t -s c " + " 4q /^ 6~S E~R Fr ,Z :~]+[;Z;Z Ms #[ FX F[ 4n @Y*Y 6m 7ZEZ 3k 5l Bk 4o 1f )k 0k #" + "X #u (b (i Fb#X0c#W/k+X .^ %] $^ %] $^ (d 5~b\"v H~S I~S H~R H~R 6Z !Z !Z \"Z :{ A_-Y Gt :t ;t ;s ;t " + " 0sGY*Z(Z#Z(Z$Z(Z$Y'Y$Z'[ LZ Ls 2X FX *WIW 1WJc 6ZEZ 4VBV EY FX *XJW 0YEZ 0X EX )WJW 1ZEZ 1[I^ x %_ ?y 5r F~S Ct :p" + " 6s /e *^ 9| 6z#~ =~R E} B}!Z(Z :Z \"Z 4Z/\\ HZ 2`)`(_.Z Iw @y >w Ez 9z!~d'Z(Z)[ Z;Z0]/Z4Z,Z$[(Z%~^ " + "@e 2X Gf +a MX %Y LY *i :Y Y >Y 9f /X 0g 5v " + " 0u d 6_K_ 0^ 6~S E~R Gu .Z :~]+[;Z;Z w &] GX G] 6U &o ?Y+Y 7X )n 7ZEZ " + "6p 7m Eo 6o 2h *l 1l %X #v (b )k Gb$X/c$X/l,W -^ &_ %^ &_ %^ 'b 4~b$z J~S I~S H~R H~R 6Z !Z " + "!Z \"Z :~ D_-Y Hw =v >w >w >w 4wIX)Z(Z#Z(Z$Z(Z$Y'Y$[)[ KZ Mt 1X HX )WHW 2VHb 6ZEZ 4WDW DX GX )WHW 1YE" + "Z /X GX )WHW 2ZEZ 0[M` ;VHb /X GY *WHW 3VHb 5ZEZ JX GX )WHW 2ZEZ 'Y 7Y FYEZ ?e M~f " + " 7U )U %g Bh@g :W .~T 't +Z +XCX ,X@X 3T Ak1X Er (X JX 'X IV HX 8q" + " =m 7y ?y '` ?y 6s F~S Dv Y >Y " + " :] %X &] 5]C\\ 1v Nc 7\\D\\ 1_ 6~S E~R Iy 0Z :~]+[;Z;Z!y (_ H" + "X H_ 7U 'p ?Y,Y 6X *o 7ZEZ 8t 9YH] Ht 9o 3i *XG[ 1VE[ &Y %x (b *[I[ Hb$W.c%X.VE[-X " + " ._ &_ %_ '_ %_ '` 4~c%} L~S I~S H~R H~R 6Z !Z !Z \"Z :~Q F`.Y Jz @z Az Ay Az 7zKX(Z(Z#Z(Z$Z(Z$Y'Y#[*Z JZ Na" + "J_ 2X IX )WGW 2VG` 5ZEZ 4XFX CX IX )WFW 2YEZ .X IX )WFW 3ZEZ /j 8VG` -X HX *WFW 4VG` 4ZEZ IX IX " + ")WGW 2ZEZ 'X 6Y FYEZ ?XKX M~f 7T )W 'i DiAi ;X 1~V (w -Z " + "+XCX ,X@X 3T AZI[2W Es (X KX &X IV HX 9s >m 7z @z )a ?y 7t F~R Dx >t 9v 8s 2` :~P <~Q&~S" + " A~R E} E~T$Z(Z :Z \"Z 4Z2] FZ 2a+a(`/Z K| C{ C} H| =|!~d'Z(Z(Z!Z9Z1^1Z2[0[!Z+[$~^ @X $X ;Y -e MX 'Y " + "LY +[ +Y Y >Y :[ #X #Z 6\\?[ 2v F\\ " + " 8Z@[ 2` 7~S E~R J{ 1Z :~]+[;Z;Z#} +` HX Ia 8U (q >Y-Y 6X +p 7ZEZ 9bMb ;U@Y JbMb :" + "n 3ZIZ +T@Y 2R>Y 'X %y (XLV +ZEZ IXMW%X.YMW%W-R>Y.W -` '_ &` '_ &` '` 4~c'~R N~S I~S H~R H~R 6Z !Z " + "!Z \"Z :~S Ha/Y K| B| C| D} D| 9|MX'Z(Z#Z(Z$Z(Z$Y'Y\"Z+[ JZ N]B\\ 2X JX *WEW 3UE_ 5ZEZ 3YJY AX JW )WE" + "W 2YEZ -X KX (WFW 3ZEZ .f 5UE_ ,X JX )WFW 4VF_ 4ZEZ HX KX )WEW 3ZEZ (X 5Y FYEZ @YJW M~" + "e 7U *X (j EkCk =Y 3~X )x -Z +XCX ,W?X 3T BYEY3X Ft (X KX %X JV " + " IX 9u ?m 7{ A{ *a ?y 8u F~R Ez @v :v :w 4` :~Q >~S'~U C~R E} G~V$Z(Z :Z \"Z 4Z3] EZ 2a+a(a0Z M~P D" + "| E~P I} ?}!~d'Z(Z'Z\"Z9Z1^1Z1Z0Z [,Z#~^ @X $X ;Y .g MW 'Y LY +Y )Y Y " + " >Y :Z \"X \"Z 7[=Z 3aE[ E[ 9Z>[ 3` 7~S E~R L~ 2Z :~]+[;Z;Z$" + "~P -b IX Jc 9U )r >Y.Y 5X ,]DX 7ZEZ ;\\>\\ \\ 0XDX ,R=Y MX (X %hEW (SG" + "V ,YAY JSHW%W-SGW&X GX/W ,` (a '` (a '` (a 5~d(~S N~S I~S H~R H~R 6Z !Z !Z \"Z :~T Ia/Y L~P F~P F~P F~P F~P" + " <~X&Z(Z#Z(Z$Z(Z$Y'Y\"[-[ IZ \\>Z 1X LX )VCW 4UD] 4ZEZ 2f ?X LX )WDW 3YEZ ,W KX )WDW 4ZEZ -b 2UD] *W" + " KX )WDW 5UD] 3ZEZ GW LX (VCW 4ZEZ )X 4Y FYEZ @XIX M~d 7U *Y *l GmDl ?[ " + " 6~Z *`C\\ -Z +XCX ,W?W 2T CYCY5X E]CZ (X LX $X JV IX 9]E^ @m 7aGb B^Ec ,b ?y " + "9aF[ F~R E_C_ B_E^ ;]E_ ={ 7b ;~R @cBb'~V D~R E} HeBc$Z(Z :Z \"Z 4Z4] DZ 2b-b(a0Z NbCb E} GbCb J~ Aa" + "B_!~d'Z(Z'Z#[9Z2_1Z0Z2[ N[.Z\"~^ @X $X ;Y /i MW (Y LY ,Y (Y Y >Y " + " :Y !X !Y 8[;Z 1\\ 0\\:U D[ ;ZbCh%Z(Z" + "#Z(Z$Z(Z$Y'Y![.Z HZ Z;Z 1X NX )WBV 5VBZ $e >W MX )WBW !X MX )WBW #` /UBZ (W MX )WBW 6UBZ " + " 9X MW (WCW MX 3Y GXHW M~d 8U *[ +m HnFn A] 9~\\ +^=Y" + " -Z +XCX -X@X 2U DXAX5W E\\=V (X LX #X .R@V?Q ,X :\\A\\ @m 7\\>_ CY<_ -c ?y :^=V F~Q E]>^ D]@] " + " j E~R E| Ha8^$Z(Z :Z \"Z 4Z5] CZ 2b-b(b1Z `<_ FZ@d I`=` K[@d C_:Z ~b&Z(Z'Z#Z8Z2`" + "2Z0[4[ LZ/[\"~^ @X #X Y >Y ;Z " + "!X !Y 8Z9Y 6d 4[5R CZ ;Y:Z 5b 8~R D~Q MbAb 8` =~]+[;Z;Z&`=` 1f KX Lg " + " ;U *\\=T =Y0Y 4X ,Z;R 5Z3Y &W !Y3Y 3W@W EW LX *W %jEW KV -X=X @W'X W'X EX1W ,b " + "*b (b )b )b )b 7ZH~R)a:] N~R H~R G~R H~R 6Z !Z !Z \"Z :Z>j Lb0Y N_<` J`<_ J`=` J`=` J`=` @`=e%Z(Z#Z(Z$Z(Z$Y'Y" + " Z/[ HZ !Z9Y 0W X )WAW 6VAW \"d Y >Y ;Y X !Y " + " 8Y8Y 6f 6Z2P BY j BZ(Z+[;Z;Z'_9_ 3h LX Mi <" + "U *[:R V EW KW +W %kEW KV .X;W @W'W NW(X CW2X -c *c )b " + "*c )c +c 7ZHZ 2_5[ NZ !Z Z !Z >Z !Z !Z \"Z :Z7d Mc1Y ^8_ K^8^ L_8^ L_9_ L^8_ B_9b$Z(Z#Z(Z$Z(Z$Y'Y [1[ GZ !Z" + "8Y 0W !W (V?W I` :X !W (V?W X \"X (W@W *d EX !W (W@W 0X \"X (V?W !W 1Y #d ," + "e +d +d ,e #XHW LZ#Z 7U +] -o KqHp C_ X #X " + " Y >Y ;Y X X 9Z7X 6g 7Y" + " #Z =Y8Z 7d 7[ Z )_7_ Bp EZ(Z+[;Z;Z(^5^ 5j MX Nk =U +[7P Z !Z !Z \"Z :Z3a Nc1Y!^5] L]4] N^5^ N^5^ N^5] C^5_#Z(Z#Z(Z$Z(Z$Y'Y N[2Z FZ \"Z7Y /W #W (W>V H^" + " 8X #W (W>V NW \"W (W>W .h EW \"X )W>W 0W #X (V=V \"W 0Y &j 1i 0j 1j 1i &X ` .\\5U -Z +XCX -W?W =r'X>W8X EZ ;X NY !X 1XDVDX 2X " + " &X ;[;[ BWDZ 7T2\\ \"\\ 1XMZ ?Y L\\ 2Z E[7[ G\\9[ >S5[ F`7` ?YNY Y >Y ;Y X Y :Y6Y 7i 9Y \"Y " + " >Y6Y 7YNY 6[ !Z *^3] Dt GZ(Z+[;Z;Z)]2] 6l NX m >U +Z !Y4Z 3X -Y NW(W (W " + " &X)X 8VZ !Z !Z \"Z :Z1` d2Y\"]2] N]2] ]2]!^2]!]2] E]2]\"Z(Z#Z(Z$Z(Z$Y'Y MZ3[ FZ \"Z6X .V $W 'VR4[ G^1^ AZNY Y >Y ;Y X Y :Y6Y 7j :Y \"Y " + " >Y6Z 9YMY 5[ \"Z *]1] Hy IZ(Z+[;Z;Z)\\/\\ 8n X !o ?U ,[ Y5Y 2X -Y W&W )W 'W%W 9V" + "Z " + "!Z !Z \"Z :Z/_!d2Y#]0]!]0]\"]0\\!\\/\\\"]0] F\\0]#Z(Z#Z(Z$Z(Z$Y'Y M[5[ EZ \"Y5X +P " + " %_K[ CY *r 9q 8r 9r 9q *X ;Z%Z >Q JT ,b 0q MsKs Ge " + "C^ *[0R -Z +XCX .X@X @v)X=X:W CY :X Y NX 1[HVH[ 1X 'X ;Z7Z 0Z 7P,[ ![ 3XLZ ?Y M[" + " 1Z EZ4[ I[5Z ?P1Z I^-] BYLY =Z1[ H\\(T'Z-^ JZ MZ *\\$S$Z(Z :Z \"Z 4Z:] >Z 2YMX1XMY(YNZ4Z$].\\ JZ5" + "\\!\\-\\ Z4[ GZ ;Y 9Z(Z%Z'Z4Z5XNX5Z*Z:[ F[6Z [ ;X \"X =Y 5\\C[ #Y LY -Y 'Y 8X >Y " + " >Y ;Y X Y :Y6Y 7k ;Y \"Z @Z5Y 9YLY 5[ #Z +\\.] J| KZ" + "(Z+[;Z;Z*\\-\\ :p !X \"q @U ,Z NY6Y 1X -X W#V *W (W#W :U;V +X DW LW )mEW KV" + " /X9X BW*X LW*X BW3W +YLY -YMY ,YLY -YMY ,YLY -YMZ ;ZFZ 5\\'S NZ !Z Z !Z >Z !Z !Z \"Z :Z-^\"e3Y#\\.]#].\\" + "#\\-\\#\\-\\#\\-\\ H\\.]$Z(Z#Z(Z$Z(Z$Y'Y L[6Z DZ \"Y5Y /[G[ " + " DY +u =u S LU ,c 1q MtLt Hf E] )[.Q " + " -Z +XCX .W?X Bx)X=X;X DZ :X X MY 0ZIVIZ /X 'X ;Z7[ 1Z AZ ![ 4XKZ ?Y MZ 0Z EZ3Z I[5Z " + "Z J])\\ CYLY =Z1[ I\\%R'Z+] KZ MZ +\\\"R$Z(Z :Z \"Z 4Z;] =Z 2YMX1XMY(YNZ4Z$\\,\\ KZ4[\"\\+[ Z4\\ I[ ;Y 9Z(Z$Z" + "(Z4Z5WLW5Z*[<[ DZ7[ !\\ ;X \"X =Y 6\\A[ $Y LY -Y 'Y 8X >Y >Y " + " ;Y X Y :Y6Y 7l Z !Z !Z \"Z :Z,^#YNZ3Y$\\,\\#\\,\\$\\,\\%\\+\\%\\,\\ MP" + " NP N\\-]$Z(Z#Z(Z$Z(Z$Y'Y KZ7[ Dq :Z4X /XC[ EY " + " -x @x >x ?x @x -X :Z'Z ?U MU -e 2q MtLt Ig E[ 'Z,P -Z +XCX .W?W By)" + "XZ0Z" + " J\\#Q'Z*\\ KZ MZ +[ Q$Z(Z :Z \"Z 4Z<] Y 7[>[ %Y LY -Y 'Y 8X >Y >Y ;Y X Y ;Y" + "5Y 7UH_ Z !Z !Z \"Z :Z+]#YMZ4Y%\\*\\%\\*\\&\\*[%[)[%[*\\ R!R [-_%Z(Z#Z" + "(Z$Z(Z$Y'Y K[9[ Ct =Y3X /U@[ \"Q EY .z B{ " + "B{ Az B{ /X :Z'Y >V U -g 4r NvNu Ji *\\ 5X.X 6\\ 7Z1Z M[ '[ 8Z +XCX /X@X C`MTL_)W;" + "WZ0Z " + "J[ 'Z)\\ LZ MZ ,\\ \"Z(Z :Z \"Z 4Z=] ;Z 2YLX3XLY(YMZ5Z%[([ LZ3[$\\)\\\"Z3[ IZ :Y 9Z(Z$Z)Z3Z6XLX6Z(Z>[ B[:Z !" + "\\ 9X !X >Y 8[<[ &Y LY -Y 'Y 8X >Y >Y ;Y X Y ;Y5Y " + "7RB] =\\ $Z BY2Y ;YJY 3[ &Z -[(\\!~U Z(Z+[;Z;Z,\\)\\ ?\\MXL[ $X %\\LXM\\ CU" + " ,Y *Q\"R DY9Y 0X -Y #V=_?V Cm *V LV Z !Z !Z \"Z :Z*]$YMZ4Y%[([%[(['\\)\\'\\)\\'\\)[!T#T\"\\-`&Z(Z#Z(" + "Z$Z(Z$Y'Y J[:Z Bw @Y6[ .Q<[ #S GY /`Da E`C" + "` DaD` C`Da E`C` 0X 9Y(Z ?X !U .h 4r NvNu Kk .c 9X.X 7^ 7Y1Y M[ &Z 7Z +XCX /X@X C\\" + "ITFY)W;W=X BY 9X !X KY +YNVNZ *X (X ;Z4Z 2Z @Z !Z 6YJZ ?Y Z /Z DY2Z JZ1Y ,T T MZ N[ NZ HZJ" + "Y >Z0Z K[ &Z(\\ MZ MZ ,[ !Z(Z :Z \"Z 4Z>] :Z 2YLX3XLY(YLZ6Z&['\\ MZ3[$['[\"Z2Z IZ :Y 9Z(Z#Z*Z2Z7XLX7Z'[@[ @Z;" + "[ ![ 8X !X >Y 9[:[ 'Y LY -Y 'Y 8X >Y >Y ;Y X Y ;Y" + "5Y %\\ =] %Y BY2Z =ZJY 3\\ 'Z .\\'[#cLZLb!Z(Z+[;Z;Z,['[ @\\LXK[ %X &\\KXL\\ " + " DU -Z +S$T EY:Y /X -Z %V?fBU Eo +VEg=V =VZ !Z !Z \"Z :Z)\\$YLZ5Y&\\'['['\\(['['['['['[#V%V#[-a&Z(Z#Z(Z$" + "Z(Z$Y'Y IZ;Z Ay BY9^ G[ %U HY 0]<^ G^=^ F" + "^<] E]<^ G^=^ 1X 9Z)Z @Z \"U .i 5r NvNu Lm 2h ;X.X 7^ 7Y1Y N[ &[ 7Z +XCX /W?X D[GTC" + "V)W;W=W AZ :X \"Y KY *j (X (X ZY .Y3Y 3Z '\\ MZ )Z ;Z 2^ +Y ;Y " + "X Y 6Y /Y5Y $[ =` G^ !Z IZ M\\ #Y2Z =YIZ 3\\ (Z .[%[%aIZI`\"Z(Z+[;Z;Z-[%[ B\\KXJ[" + " &X '\\JXK\\ H\\ 1Z ,U&V EY;Y /X ,Z 'V@jDV Gp +UDj?V >VZ !Z !Z \"Z :Z(\\%YLZ5Y&[&['[&[)\\&[)[%[)" + "[&[$X'X%[-b&Z(Z#Z(Z$Z(Z$Y'Y I[=[ Az CY;` 5\\ $] $\\ \"\\ #\\ $] 8\\/[ 3\\ '\\ #\\ \"[ \"[ \"[ &Z &[ ![" + " #\\ #[ ![ G[@W IYBZ J]8] I\\7\\ H]8] I]8] I\\7\\ 2X 8Y*Z @Z \"U .k 5q N~o Mm 4l =X" + ".X 7^ 7Z3Z NZ %Z 6Z +XCX /W?W D[FT@S)W;W>X AZ :X \"Y JX (f &X )X ;Z3Z 2Z @Z !Z 7" + "XHZ ?Y !Z /Z CY1Y JZ1Z 2Y Y $Z Z HY JYHY ?Z/Y L[ %Z'\\ NZ MZ -[ Z(Z :Z \"Z 4Z@\\ 7Z 2YKX5XKY(YKZ7Z'[" + "$[ NZ2Z%[%[#Z2[ JZ :Y 9Z(Z#[,Z1Z8XJW7Z%ZB[ >[>Z !\\ 7X X ?Y ;[6[ (e 7YE` (e 3aEY 8c 2r 5`DX GYEa (X NX " + "0X1Z 8Y FXD`9` YD` -c 9XD` /aEX :XD] 6g 7t BX0Y LY)Y+X6Z6X)Z/Z NX)Y I} 2Y X Y 9_>W KY5Y #[ =c h >XD` " + "AT#X 5Y 6X0X LY'Y ?RCW ?~Y!X?X?X ;d 'r!~W KZ1Y =YHY 2\\ )Z /[$[%_GZG_#Z(Z+[;Z;Z-[%[ C\\JXI[ 'X (\\IXJ\\ " + " (Y d 5Z -W(X FYV=W +X HX )^ ,Y1Y HnEW KV 0X7W BW-W HW.X M^/X )" + "Y +YHY 2YHZ 1YHY 2ZHY 1YHY 2ZHY ?ZDZ 9[ LZ !Z Z !Z >Z !Z !Z \"Z :Z'[%YKZ6Y'\\%[)[$[*[%[)[%[)[%[%Y)Z&[.d'Z(Z#" + "Z(Z$Z(Z$Y'Y H[>Z @{ DY=b ;f -f -f ,e -f -f Ae7c ;e /b )c *c *c 'Y NX NX X E[ >XD` -c )c *b *c )c '\\ &bDX L" + "X0X GX0X GX0X GX0X KY)X KYE` ?Y*Y 8[4\\ K[3[ J\\4[ I[4\\ K[3[ 3X 8Z+Z AZ !U /m 6q N~o No 6o ?X.X 8_ " + "6Y3Z Z $Z 6Z +XCX 0X@X DZET>Q)W;W>W ?Y :X \"X IY 'b $X )X ;Z2Y 2Z @Z !Z 8YHZ ?Y " + "!Z 0[ CY1Y JZ1Z 5\\ \\ 'Z!Z FY LZHZ @Z/Y L[ %Z&[ NZ MZ .[ NZ(Z :Z \"Z 4ZA\\ 6Z 2YKX6YKY(YKZ7Z'[$[ NZ" + "2Z&[#Z#Z2[ JZ :Y 9Z(Z\"Z,Z1Z8XJX8Z%[D[ ZHY 1\\ *Z /[#['^EZE^$Z(Z+[;Z;Z.[#Z C[IXH[ (X ([HXI[ (" + "Z $k 9Z .Y*Z FY=Y .X ,\\ *UAnCU J^CW -VCmAV ?W>V *X IX (a /Y1Y HnEW KV 0X7W BW.X HW.W La3X " + "(Y ,ZHY 2YGY 2ZHZ 3YGY 1YHZ 3YGY @ZCZ 9[ LZ !Z Z !Z >Z !Z !Z \"Z :Z'\\&YJY6Y'[$[)[$[*[$[+[#[+[$[&[+\\([.e'Z(" + "Z#Z(Z$Z(Z$Y'Y GZ?Z ?| EY>c >l 4l 3l 2l 3l 4l Gl=h @k 5h /h /h /h )Y Y NX Y E[ ?XFd 1g .h /h /h /h )\\ )hHX " + "LY0X HY0X GX0X GX0Y LZ+Y KYGd AY*Y 9[EXD[ M[1[ L[1[ K[1[ M[1[ 4X 8Z+Y A[ !T /n 6q N~o q 8q @X.X 8` 7" + "Y3Y Z $Z 5Z +XCX 0X@X DYDT EW;W?X ?Y :X #Y IY %^ \"X )X k 5}\"~W KY0Z ?YGZ 1[ *Z /Z\"[(]CZD^%Z(Z+[;Z;Z.[#[ CYHXGY 'X 'YGXHY 'Z &o" + " ;Z /[,[ FZ?Y -X +\\ +UBoBU LZ>W -UBnAU >W@W *X JX 'c 1Y1Y HnEW KV /W7W BW.W GW/X Lc5W 'Y ," + "YFY 4ZGY 2YFY 3YGZ 3YFY 3YGZ AZCZ 9Z KZ !Z Z !Z >Z !Z !Z \"Z :Z&[&YJZ7Y'[#[*Z\"Z+[#[+[#[+[#[&[-\\'[/YM[(Z(Z#" + "Z(Z$Z(Z$Y'Y G[A[ ?} FY?] :p 8q 8q 7q 8q 8p LqAl Do 9l 3l 3l 3l +Y Y NX Y #i @XHh 5k 2l 3l 3k 2l +\\ +lKX KY0" + "X HY0X GX0X GX0Y KY,Z KYIh CZ,Z :ZCXC[ [/[ N[.Z MZ.[ [/[ 5X 7Y,Z AZ !U /o 7p M~n s :s AX.X 8` 7Z4Y Y" + " #Z 5Z +XCX 0W?X EYCT EW;W@X >Z ;X #Y HX #Z X *X ;Z1Z 3Z @Z !Z 9XFZ ?Y \"Z /Z " + "BY2Z KZ0[ [/Z 4t =YJj 3q >kJY >o 8r ;kJY GYJk .Y NX 0X5\\ 6Y FY" + "JiBi$YJk 8o ?YJj 9kJX ;YJc Z !Z !Z \"Z :Z&[&YIZ8Y([\"[+[\"[,[\"Z+Z!Z,[\"[%[/\\" + "&Z/YL[(Z(Z#Z(Z$Z(Z$Y'Y F[BZ >Z@d GY@\\ :t ;t t TAU NX;W )P9P =UAWAYAU >XDX )X LX HY 3Y1Y HnEW KV /W7W " + "AP9P 9W0X FW0X ?Y8W &Y -YEZ 5YEY 4ZFZ 5YEY 4ZEY 5YEY BZBZ :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z%['YIZ8Y([!Z+Z![,Z![-" + "[![-[!Z$[1\\&[/XJZ(Z(Z#Z(Z$Z(Z$Y'Y EZCZ =Z;` HYA[ 8u oLX ;YLe ?u VAW?XAU ?ZHY (X MX EX 4Y1Y HnE" + "W KV /W7W AQ:Q :W0W EW1X Z !Z !Z \"Z :Z%['YHZ" + "9Y(Z Z+Z Z-[![-[![-Z [$[3\\%[0XI[)Z(Z#Z(Z$Z(Z$Y'Y E[E[ =Z9^ HYBZ 6v =v >w =w >v =v\"vIt Lt >t ;t ;t ;t /Y Y N" + "X Y *r BXKn qMY GYMp 0Y NX 0X8[ 2Y FYMoIp'YMq ?v BYMp ?qMX ;YMf ?u U@W?XAU >j (X " + " NX CX 5Y1Y HnEW KV /W7W AR;R ;W1X EW1W :XZ " + "!Z !Z \"Z :Z$Z'YHZ9Y)[ [-[ [.[ Z-Z NZ-Z [#[5\\$Z0XH[)Z(Z#Z(Z$Z(Z$Y'Y D[FZ w ?x >x ?w >w#wKv Nu ?v" + " =v =v =v 0Y Y NX Y +s BXLp >u \\ DX.X :c 7Z7Z!Y \"Z 4Z +XCX C~d&XBT DW=XB" + "X :[ >X $Y FY +f &X +X ;Z/Z 4Z AZ !Z ;YDZ ?YFP -Z?Q BZ ?Z5Z JZ/Z 5Z \"[ Gj Ii ;[\"X1Q,W\"YCZ BZ1" + "Z MZ \"Z$[!Z MZ /Z LZ(Z :Z \"Z 4ZH] 0Z 2YHX;XHY(YHZ:Z)Z N[!Z2Z([ NZ%Z2Z I[ ;Y 9Z(Z Z1Z,Z;XGW;Z N[L[ 4[H[ #\\" + " 1X MX AY BZ&Z 8^Ga AYN[H_ " + "YDY *X )b 6UDY%U V9W ,SU@W>W@T =h 'X X AW 5Y1Y HnEW KV /X9X ASZ !Z !Z \"Z :Z$Z'YGZ:Y)[ NZ-[ [.Z N[.Z NZ.[ NZ\"[7\\$[1XFZ)Z(Z#Z(" + "Z$Z(Z$Y'Y CZGZ ;Z6\\ IYCY 4^Ga ?^Ga @_Hb ?^Ga ?^Ga ?^Ga$^GaMaI`!bH\\ @aI` ?aI` ?aI` ?aI` 1Y Y NX Y ,u CXM^Nb" + " @aKa >aJa ?aJa ?aKa =`Ja 1\\ 0`Ic GY0X HY0X GX0X GX0Y IY0Z IYN[H_ FZ0Z X>Y&X#X%YJT9TIY&Y.TJY&X#X 8X 5Y0" + "Z CZ ;P4U 1w 9l J~m#z B[;[ EX.X :d 7Y7Y X )~Q #Z +XCX C~d&XBT DW=XCX 9\\ ?X $Y FY " + "-j (X +X ;Z/Z 4Z AZ \"Z :XCZ ?YM_ 5ZE^ IZ >Y6Z IZ0[ 5Z \"[ Jj Ci ?\\\"X6\\2X#YBY BZ1Z MZ \"Z$[!Z " + "MZ 0[ LZ(Z :Z \"Z 4ZI] /Z 2YHX;XHY(YGZ;Z)Z N[!Z3[([ NZ%Z2Z H[ ^ BcB] >_?W C^CYNY C]A] 4Y /]Bc GYNYD^ 2Y NX 0X;\\ 0Y FYNXC\\KYD](YNYC] A]B^ DcB] C^CYNX ;YNZDQ A\\" + ";V 5Y .Y1Y IY/Y&Y;_;Y\"Z;Z FZ0Y $[ 2Y X Y M];\\ F]E[JX IY9[ LY >ZKf =]=V CYNYC] K`2Z 5^ 9Y1Y!Z\"Z!^JZM^" + " K~Y!Y@X@Y E]C^ CaHl\"~W LY.Z BYBY .\\ 0Z 1Z M[-[>Z>[(Z(Z*Z;Z<[0[ N[$[ W@U =f &X !X @W 5Y1Y HnEW KV /X9X AT=T =W2X DW2W 8W=X $Y .YBY 8ZC" + "Z 7YBY 8ZCZ 7YBY 8ZBY FZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(YGZ:Y)[ NZ-Z MZ.Z N[/[ N[/[ NZ![9\\#[2YFZ)Z(Z#Z(Z" + "$Z(Z$Y'Y C[I[ ;Z5\\ JYCY 4X=^ @X=] @Y=] ?Y>^ @X=^ @X=^%X=l@\\\"_?W A]@\\ @]@\\ @^A\\ @^A\\ 1Y Y NX Y -w DXNY" + "C] A^C^ ?^C^ A^B] @^C^ ?^C^ 2\\ 1^C_ FY0X HY0X GX0X GX0Y IY0Y HcB] FY0Y ;X=X=Y(Y#Y'YJV;VIX&X.VJY(Y#Y 9W 4Z1" + "Z DZ =S4U 2y 9j I~l#{ BZ9Z EX.X :d 7Z8Y!Y *~R #Z +XCX C~d'YBT DX?XBW 7\\ @X $Y FY " + "/ZNVNZ *X ,X :Z/Z 4Z AZ #Z :XBZ ?o 9ZGc MZ =Z8[ HY0\\ 6Z \"[ Li >j C\\\"X8aGVBW$ZBZ CZ2Z LZ \"Z#Z!" + "Z MZ 0[ LZ(Z :Z \"Z 4ZJ] .Z 2YHXY 9Z(Z NZ2Z,Z\\ @^:T C\\?b D\\=\\ 5Y 0\\>a Ga?\\ 2Y NX 0X<\\ /Y Fa@\\MX@[(b@\\ B]?\\ Da?] D\\?a ;b 1Z6" + "S 5Y .Y1Y IZ1Z&Y;_;X![=Z DY1Y #[ 2Y X Y `>` I\\B[KX IY:\\ LY ?ZDa ?\\7R Cb?\\ F[3Y 5_ 9Y1Y\"Z Y!]IYJ] L" + "~Y!Y@X@Y F\\?\\ D^Ai\"~W LY.Z CZBZ .\\ 1Z 1Z LZ.[=Z>[(Z(Z*Z;Z<[0[ N[%\\ XAU V ?W3X CW3X 8X>W #Y /Z" + "BZ 9YAY 8ZBZ 9YAY 8ZBZ 9YAY FZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(YFZ;Y)Z MZ-Z MZ/[ MZ/[ N[/Z M[![;\\\"[3YE[*" + "Z(Z#Z(Z$Z(Z$Y'Y B[JZ :Z4[ JYCX 3U8\\ @U8\\ AV8\\ @U7\\ AU7[ @U8\\%U8h=\\$]9T B\\=\\ B\\=\\ B\\=\\ B\\<[ 2Y Y " + "NX Y .x Da?\\ C]?] A]?] B\\?] B]?] A]?] 3\\ 2]?] FY0X HY0X GX0X GX0Y IZ1Y Ha?] GY1Z ~d W5T 2{ 9i H~k$} DZ7Z FX.X :d 7Z9Z!X )~R #Z 0~d&XBT DX?XCX 6\\ " + " =Y EY 0ZMVMZ +X ,X :Z/Z 4Z B[ %\\ :XBZ ?q ;YHg Z \\ 0Z 6Y.Z CYAZ -\\ 2Z 1Z LZ.[=Z=[)Z(Z*Z;ZW>X@T ;a #X #X =W 6Y1Y GmEW KV .X;X @W@W @W3W BW4X 6W?X #Y /Y@Y :" + "ZAY 8Y@Y 9YAZ 9Y@Y 9YAZ GZ@Z ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YFZ;Y)Z M[/[ MZ/[ MZ/Z LZ/Z M[ [=\\!Z3YD[*Z(Z#Z" + "(Z$Z(Z$Y'Y AZKZ 9Z4[ JYDY 3R3[ AR3[ BS3Z @S4[ AS4[ AR3[&R3e:[&]6R C\\:[ D\\:[ D\\:[ D\\:[ 3Y Y NX Y /_B] E_<" + "[ C[;[ B\\<\\ C\\<\\ C[;\\ C\\<\\ 3\\ 3\\<\\ FY0X HY0X GX0X GX0Y HY2Z H`<[ FY2Y ;X~d#Z6U 3} :h G~k%~P EY5Y FX.X ;ZNY 6Y9Z!X *~R \"Z 0~d&YCT CXAXBW 5] " + " >Y EY 2ZKVKZ -X ,X :Z/Z 4Z BZ &] :XAZ ?s =YJk #[ ;[=[ FZ1\\ 6Z \"[ #j L~d Ki J\\!X:hKVAW%Y@Y CZ5\\ L" + "[ \"Z#Z!Z MZ 0Z KZ(Z :Z \"Z 4ZL] ,Z 2YGX=XGY(YEZ=Z*[ M[\"Z4['Z LZ&Z4[ F` BY 9Z(Z MZ4Z*Z=XEW=Z Jd .ZLZ #\\ .X" + " LX BY JQ1[ D_:[ B\\ ([9_ F[7Z 6Y 1[:_ G^9Z 3Y NX 0X>\\ -Y F^;b;Z)_:Z D[:\\ F_:[ G[9^ ;_ /Y EY .Y1Y " + "HY2Z$Y=a=Y NZ@[ BY3Z %[ 0Y X Y \"eCd L[>YLX HY>^ IY AY=] @Z &_:Z DY4Y 5a :Y1Y\"Z Z$\\GYG\\ EY9Y IY@X@Y G" + "Z9[ G\\;[ 0Y 5Y.Z DZ@Y ,\\ 3Z 1Z LZ.ZUDX!T\"XW>X@U :] !X $X Z !Z !Z \"Z :Z#Z(YEZ~d&^7U 4~ 9f E~i%~R GY4Y FX.X ;ZNZ 7Y9Y!X )~R \"Z NW?W BYCT CYBXCX 6_ ?Y EZ 5ZI" + "VIZ /X ,X :Z.Y 4Z C[ )_ :YAZ ?t >YKn %Z 9\\A\\ EZ1\\ 6Z \"[ &j I~d Hi N\\ W:jLVAW&Z@Z DZ8^ KZ !Z#[\"Z " + " MZ 0Z KZ(Z :Z \"Z 4ZM] +Z 2YGY?XFY(YEZ=Z*Z L[\"Z4['Z LZ&Z4[ Fc EY 9Z(Z MZ5Z)Z>XDW=Z Ic .[NZ #\\ -X KX CY " + " )Z D^8[ D\\ '[8^ FZ5Z 7Y 2[8^ G]8Z 3Y NX 0X?[ +Y F]9`9Y)^9Z E[8[ F^8Z GZ8^ ;^ .Y EY .Y1Y GY3Y#Y=WNX=Y M" + "ZAZ AY3Y %[ /Y X Y #gEf N[W>W?U 7W <~d BX ;W 6Y1Y GmEW KV -X=X ?YBY BW4W AW5X 5W@W !Y 0Y?Z ;Y?Y :Z@Z ;Y?Y :Z?Y ;Y" + "?Y HZ?Z <[ IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(YEZY D~P JZ !Z#[\"~Q Dy Z K~] :Z \"Z 4ZN] *Z 2YFX?XF" + "Y(YDZ>Z*Z L[\"Z5\\([ LZ&Z5\\ Eg JY 9Z(Z MZ5Z)Z>XDX>Z Ib ,f $\\ ,X KX CY (Y D]6Z D[ '[7^ GZ4Z 7Y 2Z6] " + "G]7Z 4Y NX 0X@[ *Y F]8^8Z*]7Z FZ6[ G]6Z I[7] ;] -X DY .Y1Y GY3Y#Y=WNX=X L[CZ ?Y4Y &[ .X NX Y $iGh Z:XNX" + " GYHg HY CY8\\ CY $]7Z DY6Y 4b ;Y1Y#Z MZ&[EYE[ FY9Y IY@X@Y HZ7[ I[7[ 2Y 5~V DY>Y +\\ 5Z 2Z KZ/[W>W?U K~d CX ;X " + " 6Y1Y FlEW KV -Y?Y ?ZCZ CW5X AW5W 5XAX !Y 0Y>Y Y Y ;Y?Z JZ>~Q3[ I~Q G~Q F~Q G~Q 5Z !Z !Z " + "\"Z :Z#Z(YDZ=Y*[ LZ/Z L[0Z L[0Z LZ0[ LZ L[C\\ N[5X@Z*Z(Z#Z(Z$Z(Z$Y'Y ?e 7Z3[ KYDY @Y Y !Z Y Y Y 4_4Y)[ %Z3" + "Y GZ3Y FZ4Y FZ4Y 4Y Y NX Y 1[8Z F\\7Z F[7[ EZ6[ G[6[ G[6Z EZ6[ Y D~ IZ !Z#[\"~Q Dy![ K~] :Z \"Z 4h )Z 2YFX@YFY(YDZ>Z*Z KZ\"Z5\\([ LZ&Z6\\ Ck Y 9Z(Z LZ6Z(" + "Z?XDX?Z G` *d #[ +X KX CY 'Y E]6[ F[ &Z5] GY2Y 7Y 3Z4\\ G\\6Z 4Y NX 0XA[ )Y F\\7]6Y*\\5Y G[5Z G\\5Z I" + "Z5\\ ;] -X DY .Y1Y GZ5Z#Y>XMW>Y K[E[ ?Y5Y &[ .Y NX Y $XIZHZIY!Z:XNX GYHf GY DY6[ CY $\\5Y CX6Y 5c ;Y1Y#" + "Z MZ&[EYDZ FY9Y IY@X@Y IZ5Z IZ5Z 2Y 5~V EZ>Y *[ 5Z 2Z KZ/[Z EiKh 6X /XC^ BTDX U\"YA\\ 4ZCZ N~d &U>W?X>T K~d EY :W 5Y1Y EkEW KV ,YAY =ZCZ DW6X @W6" + "X 5W@W 'Z>Y Z =Y=Y ;Y>Z =Z>Y JZ>~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z :Z#[)YDZ=Y*[ LZ/Z KZ0Z L[1[ LZ0[ L" + "Z K[E\\ M[6Y@Z*Z(Z#Z(Z$Z(Z$Y'Y >d 7Z2Z KYDY @Y Y Y NY Y !Y 4^3Z*Z $Z3Z HZ3Z HZ3Z HZ2Y 5Y Y NX Y 2[6Z G" + "\\6Y FZ5[ G[5Z GZ5[ GZ5[ G[5Z =[:_ HY0X HY0X GX0X GX0Y GZ5Y F\\5Z GY5Z Z6Y &[ .Y NX Y %WEYJYEX#Z8a GYHe FY DX4[ DY $\\5Y CY8Z 5d Y*Z KZ/Z KZ0Z L[1[ L[1[ LZ J[G\\ L[7Y?Z*Z(Z#Z(Z$Z(Z$" + "Y'Y >c 6Z2Z KYDY ?Y X NX NY Y Y 4\\1Y+[ %Z1Y HY1Y HY1Y HY1Y 5Y Y NX Y 3[5Z G[5Z HZ3Z GZ4[ HZ4Z HZ3Z GZ" + "4[ >Z9` IY0X HY0X GX0X GX0Y FY6Z F\\4Z GY6Y ;W9X9W-X JX,WD[I\\DW,W1[DW-X JX =X 1Y6Z <~d'RKY:U 5~U J" + "~T$~g'~X KY1X GX.X Z ?y DgF` *Z 2k >Z4^ 6Z \"[ 1j >~d =i -[ LW=\\C_?W)YZ=Z =YZ=Z =YZ=Z LZ=~Q3Z H~Q G~Q F~Q G~Q" + " 5Z !Z !Z \"Z Ew5[)YCZ>Y*Z KZ/Z KZ0Z KZ1[ L[1Z KZ I[I\\ K[8Y>[+Z(Z#Z(Z$Z(Z$Y'Y =a 5Z2Z KYDY ?Y Y X MX Y Y" + " 4\\1Y+Z $Y0Y IZ1Y IZ1Y IZ0X 5Y Y NX Y 3Z3Y GZ3Y HZ3Z HZ2Z IZ2Z IZ3Z GZ3Z >Z:a IY0X HY0X GX0X GX0Y FZ7Y E[" + "3Z GY6Y ;W9X9W-W HW,WC[K\\CW,W2[CW-W HW =X 1Z7Z <~d NX:U 5~V M~X%~e&~Y LX0Y HX.X =ZJY 6Y=Z W " + " NZ 3Y X@X ?]IT ?hCW 7h2X ;Y CY 7TAVAT 1X .X 8Z.Y 4Z G\\ 6g 5X=Z ?X?a EeB^ +Z /f ;[5" + "^ 4i ;~d :i 1[ LWr *Y " + "9Z(Z KZ8Z'Z@XBX@Y D\\ &` $\\ )X JX DY &X E[2Z HZ %Z3\\ IZ/X 8Y 4Z2[ GZ3Y 4Y NX 0XE\\ &Y FZ4[5Y*[4Z IZ" + "2Z H[2Y KY2[ ;[ +X DY .Y1Y FZ7Z!Y?WLX?X H[IZ ;Y7Y '[ ,Y NX NY *Q NV@WLW?U#Z8` FYHd .^FY EX2[ DX $[3Y CX8Y" + " 5YMY [/[IuI[.\\ 4X 4\\ =X =\\$\\" + " =X MZAU -Z &X8Y G~W 6X 0W<\\ FUEX MT iNW 8[D[ K~d &T=WE\\QZZeBX] ,Z 1j <[7_ 7i 8~d 7i 5[ KW=Z=" + "\\?W*Y:Y F{ FZ !Z\"Z\"~Q Dy![1j&~] :Z \"Z 4e &Z 2YDXCXDY(YBZ@Z*Z KZ\"Z[/[IuI[/\\ 3X 3\\ >X >\\\"\\ >X MZAU -Z 'X6X 5c " + "%X 1X;\\ GUEX MT NgMW 9[D[ J~d &T=m;T K~d In 4TA[ 4Y1Y BhEW 3Z DX )i 5[D[ IX9W5Z3W8WFj?TA[BX5Z KY" + ";Z @Z;Z ?Y:Y @Z;Z ?Z;Y ?Y;Z NZ<~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)YAY?Y*Z KZ/Z KZ1[ KZ1[ L[1Z KZ G[M\\ IZ8" + "X<[+Z(Z#Z(Z$Z(Z$Y'Y <_ 4Z2Z KYD[ @X NX Y NY X NX 3Z/Y-Z $Z/Y KZ/Y KZ/Y KZ/Y 6Y Y NX Y 4Z2Z HZ3Y IZ1Z I" + "Z1Z JY1Z JZ1Z IZ1Z @Z;XNZ JY0X HY0X GX0X GX0Y EY8Y D[2Z GY8Y ;X9X8W.W HW-W@hAW-X4[@W.W:[:W =X 0Z9Z I" + "[ 7YY ~m 4Z 3Y W?X >g =cAW?]'[K\\5Y ;Y CZ %V M" + "X /X 7Y-Z 5Z H[ 4l ;XZ>Z.[IuI[0\\ 2X 2\\ ?X ?\\ \\ ?X MY@U 8y ;X6X 4a $X 1X9[ HUEX MT MeLW :[D[ I~d &T=l:T " + "K~d Io 5m 3Y1Y AgEW 3Z Nl 2g 3[D[%lDX5Z>mDXFk@mAW5[ LZ:Y @Y:Z ?Y:Y @Z:Y ?Y:Z AZ:Y NZ<~Q3Z H~Q G~Q F~Q G" + "~Q 5Z !Z !Z \"Z Ew5[)YAZ@Y*Z KZ/Z KZ1[ KZ1[ L[1Z K[ Gh HZ9X;[+Z(Z#Z(Z$Z(Z$Y'Y ;] 3Z2Z KYC[ AX NX Y NY Y X" + " 3Y.Y-Z $Y.Y KY.Y KY.Y KY.Y 6Y Y NX Y 4Z1Y HY2Y IZ1Z IY0Z KZ0Z KZ1Z IY0Z @Y;XMZ JY0X HY0X GX0X GX0Y DY9Y D" + "Z0Y GY9Z ;W8X8W.W HW-W?f?W.W4[?W.W:[:W =X 0Z9Y HZ 5X_@XAa*[I\\6Y ;Y CZ %V MX /X 7Y-Z 5Z I[ 3n >X;Z ] G`9\\ .Z 4s @[9` " + " =i /i ;Z IV=Y9Z>V+Z:Z G~P JZ !Z\"Z\"~Q Dy!Z1l'~] :Z \"Z 4g (Z 2YDYEXCY(YAZAZ*Z KZ\"}$Z K['z 5r /Y 9Z(Z JZ;Z" + "$ZAW@WAZ F_ %\\ $[ &X IX EY &Y FZ0Y IZ %Y/Z IY.Y 9Y 4Y0Z GY1Y 5Y NX 0XH[ \"Y FY3Z3Y+Z2Y JZ0Z IZ0Y MY0" + "Z ;Z *Z FY .Y1Y DY9Y MYAWJXAY F[MZ 8Z:Y )[ +Z MX N[ 7g1U U<^;U&Z6^ EYHj 9gJY FX/Y CY &Z2Y BYY1Y%Z" + " J[*ZBYBZ HY9Y IY@X@Y KY0Z MY/Y 4Y 6~W GZ:Z ,[ 6Z 2Z KZ/Z;Z;Z*Z(Z([>Z?[.ZHuI[1\\ 1X 1\\ @X @\\ M\\ @X NZ" + "@U 8y ;W4X 5` #X 1X8Z HUEX MT LbJW ;ZC[ H~d &T=j8U L~d Io 5l 2Y1Y @fEW 3Z Nl 0c 0[CZ&lDW5[>mEXE\\N^" + "AlAX6\\ LZ:Z AY9Y @Z:Z AY9Y @Z:Z AY9Z!Z;~Q3Z H~Q G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)Y@ZAY*Z KZ/Z KZ1[ KZ1[ L[1Z K" + "[ Ff GZ:X:[+Z(Z#Z(Z$Z(Z$Y'Y :\\ 3Z2Z KYC\\ BY X NX NY Y X 3Y-X-Y #Y-X KY-X KY-X KY-X 6Y Y NX Y 5Z0Y HY" + "2Y IY/Y JZ0Z KZ0Z KY/Z KZ/Y AZ;WKY JY0X HY0X GX0X GX0Y DY:Z DZ0Y FY:Y :WK~KW.WK}KW-W>d>W.W5[>W.W:[:W =X /" + "Y:Z IZ 4Y=T 6~[%~b'~_%~\\ NY/X HX.X >ZHY 6Y?Y N~m 4Z 3Y !X@X ;l @[>WBe,ZG\\7Y ;Y" + " CZ %V ;~c LX 7Y-Z 5Z J\\ 2n @Y;Z N\\ G`8\\ /Z 5u A\\V+Y8Y G~R LZ !Z\"Z\"~Q" + " Dy![2l'~] :Z \"Z 4h )Z 2YCXEXCY(Y@ZBZ*Z KZ\"|#Z K['x 0q 1Y 9Z(Z IZY1Y%Z IZ*YAYBZ HY9Y IY@X@Y KY/Y MY/Y 4Y 6~W GY9Z " + "-[ 5Z 2[ LZ/Z;Z;Z*Z(Z'[?Z?[.[IuI[2~n BX B~n AX A~m AX NZ@U 8y dEW 3Z Nl ._ ,ZCZ'lEX6\\>mEWDVCZBkAX6] LY8Y BZ9Z AY8Y BZ9Z AY8Y BZ9Z!Z;~Q3Z H~Q " + "G~Q F~Q G~Q 5Z !Z !Z \"Z Ew5[)Y@ZAY*Z KZ/Z KZ1[ KZ1[ L[1Z KZ Ee FZ;Y:[+Z(Z#Z(Z$Z(Z$Y'Y :[ 2Z2Z KYB\\ CY X NX" + " NY Y Y 4Y-Y.Y #Y-X KY-X KY-Y LY-Y 7Y Y NX Y 5Z0Z IY2Y JZ/Z KZ/Y KY/Z KY/Z KZ/Y#~d$ZX /Z;Z JZ 2X>U 6~\\'~c&~^$~Z MY/X HX.X >YGZ 7Z@Y " + "N~m 4Z 3Y !X@X :n 'WBg.ZE\\8X :Y CZ %V <~e NX 6Y-Y 4Z K\\ #a AX:Z M\\ H_6[ 0Z" + " 6aI` A]?c ?f $f ?Z IW>Y7Y>V,Z8Z HZ8` MZ !Z\"Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZN] *Z 2YCXFYCY(Y@ZBZ*Z KZ\"{\"Z " + "K['v +o 2Y 9Z(Z IZq:X !U:[9U&Y5] DY?d =jLX FY/Z C[ " + ")Y1Y AX=Z 6ZIY >Y1Y%Z IZ*YAYAY HY9Y IY@X@Y KY/Y NZ/Z 5Y 5Y-Y HZ8Y .[ 4Z 1Z LZ/Z;Z;Z*Z(Z'[?Z@[-[ L[3~o BX B~o BX" + " B~o BX NZ@U 8y mFXDS?YBi?W5] CY 4Z8Y BY7Y BZ8Z CY7Y AY8Z CZ8Y!Y:Z Z !Z !Z \"Z Ew5[)Y?ZBY*Z KZ/Z KZ1[ KZ" + "1[ L[1Z KZ Dc E[=Y9[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z2Z KYB^ &i 0i 1i /i 0i 0i Ej-Y/Z $Z-Y MZ-Y MZ-Y LY-Y 7Y Y NX Y 5Y/" + "Z IY1X JZ/Z KZ/Z LY.Y LZ/Z KZ/Z$~d$Z=WIZ KY0X HY0X GX0X GX0Y CYX .Y;Y JZ 1Y?U 6~\\(~e'~]\"~X LX.X HX.X >YFY 7ZAZ N~m 4Z 3Y !W?X 9p +XCi0ZC\\9X " + " :Y CZ %V <~e NX 6Z.Y 4Z L\\ M^ CY:Z L[ H^4Z 0Z 7^A^ C_Ce ?c Mc @Z HW>X6Y>V,Y7Z HZ5^ NZ !Z\"" + "Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZM] +Z 2YBXGXBY(Y?ZCZ*Z KZ\"z![ LZ&w 'k 3Y 9Z(Z IZ=Z\"ZCX@XCZ Gc &Z &\\ $X HX FY " + " >q FY.Y JY $Y/Z JY,X 9Y 5Y.Y GY1Y 5Y NX 0XL\\ NY FY3Z3Y+Y1Y JY.Z JY/Z NY/Y ;Y (^ KY .Y1Y CY;Y KYCXIXCY " + "Bc 4Y\\IYMX FY/Z B\\ +Y1Y AY>Y 5ZIZ ?Y1Y%Z IZ*YAYAY HY9Y IY@X@Y KY/Y NZ" + "/Z 5Y 5Y-Y HZ8Z 0\\ 4Z 1Z LZ/Z;Z;Z*Z(Z&[@Z@[-[ L[4~p BX B~o BX B~p CX NY?U 8y mFWCQ;XAe>X6UNW CY 4Y7Z DZ7Y BZ8Z CY7Z CZ7" + "Y CY7Z#Z:Z Z !Z !Z \"Z :Z#[)Y?ZBY*Z KZ/Z KZ0Z KZ1[ L[1Z KZ Ca D[>Y8[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ " + "KYA^ /q 9r 9q 7q 8q 9r Mq,Y/Z $Y,Y MY,Y MY,Y MZ-Y 7Y Y NX Y 5Y.Y IY1X JZ/Z KY.Z LY.Y LZ/Z KY.Z$~d$Y=XIZ KY0X" + " HY0X GX0X GX0Y CYX .YW-Y6Y HZ2\\ Z !Z\"Z\"Z MZ 1[2l'Z(Z :Z \"Z 4ZL] ,Z 2YBXGXBY(Y?Z" + "CZ*Z KZ\"x N[ LZ&x #f 3Y 9Z(Z HZ>Z\"ZCW>WCZ Hd &Z &[ #X HX FY At FY.Y JY $Y/Z JY,Y :Y 5Y.Y GY1Y 5Y NX" + " 0XM\\ MY FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y (b Y .Y1Y CY;Y KYCWHXCY Bb 3Y=Y *[ 6e JX Ke KzF^ !U9Y7T'Z4[ CY7] @[E" + "XNX GZ.Y Ai 9Y1Y AY>Y 5YHZ ?Y1Y&[ IZ+ZAYAY HY9Y IY@X@Y KY/Y NZ.Y 5Y 5Y-Y IZ6Y 0[ 3Z 1Z LZ/Z;Z;Z*Z(Z&\\AZA[,[ L[" + "4~p BX B~o BX C~q CX NY?U 8y Z !Z !Z \"Z :Z#[)Y>ZCY*Z K" + "Z/Z KZ0Z L[1[ L[1Z KZ B_ C[>X7[+Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ KY@_ 5u XHZ KY0X HY0X GX0X GX0Y BY=Y BY.Y FY=Z 9WK~KW/WJ}JW.W:\\:W.W" + "9[:W/W9[9W >X .Z=Y JZ /X@U 6~^*~g&~Y N~V KX.Y IX.X ?ZFZ 7ZBY L~l 4Z 3Y \"X@X 3n /X" + "CZIZ2Z@\\W.Z6" + "Z IZ1[ Z !Z#[\"Z MZ 1[2l'Z(Z :Z \"Z 4ZK] -Z 2YBXHYBY(Y>ZDZ*Z KZ\"v L[ LZ&z !c 4Y 9Z(Z HZ>Z\"ZDX>XDY Ge 'Z '[ " + "\"X GX GY Dw FY.Y JY %Z/Z J~W :Y 5Y.Y GY1Y 5Y NX 0XN\\ LY FY3Y2Y+Y1Y JY.Z JY.Y Z/Y ;Y 'e $Y .Y1Y CZ=Z" + " KYDXGWDY @a 3Z>Y +[ 5d IX Ic L~d !U8X7T'Z4[ CY5\\ AZCa GY-Y @h 9Y1Y @X?Z 6ZGY ?Y1Y&[9X9Z+ZAYAZ IY9Y IY@X@Y " + "KY/Z Y-Y 5Y 5Y.Z IZ6Z 2[ 2Z 1Z M[/Z;Z<[*Z(Z%[AZB\\,[ LZ3~p BX B~o BX C~q CX NY?U 8y Z !Z !Z \"Z :Z#[)Y>ZCY*Z KZ/Z KZ0Z L[1[ L[1[ LZ A] B[?X6Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z3[ KY?" + "_ 8w ?x ?w =w >w >w$~u/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY-Y KY.Z MZ.Z MY-Y KY-Y$~d$Y?XFY KY0X HY0X GX0" + "X GX0Y BY>Z BY.Y EY>Y 8WK~KW/WJ}JW.W;]:W.W:[9W/W9[9W >X -Y>Z KZ .YAU 6~^*~g%~W L~T JX.Y IX.X ?YEZ 7Z" + "CZ L~k :y KY \"X@X 0m 1WCYEY3Y>\\=X 9Y BY %V <~e =l X 5Z.Y 4Z \\ E[ GY8Z JZ I]" + "2Z 2Z 8[7[ BqMZ ?^ C^ @Y GV=W4X>V-Y5Z IZ0[!Z !Z#[\"Z MZ 1[2l'Z(Z :Z \"Z 4ZJ] .Z 2YAXIXAY(Y=YDZ*Z L[\"s" + " I[ LZ&[Cc Na 5Y 9Z(Z HZ?Z YDX>XEZ Hg (Z (\\ \"X GX GY Fy FY.Y KZ %Z/Z J~W :Y 5Y.Y GY1Y 5Y NX 0e KY" + " FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y &h (Y .Y1Y BY=Y IXDXGWDY ?_ 1Y?Z ,[ 4b GX Ga L~c T6V6T'Z4[ CY4\\ CZ@_ GY-Y >f " + "9Y1Y @Y@Y 5YFZ @Y1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z IY5Z 3[ 1Z 1Z M[/[WEY9T -X EY1Y 1WEW 3Z 6ZCZ 7X7" + "UKV HW*W KX6ULW CY 5Y5Z FZ5Z EY4Y FZ5Z EZ5Y EY5Z%Z9Z Z !Z !Z \"Z :Z#Z(Y=ZDY*[ LZ/Z KZ0Z L[0Z " + "LZ0[ LZ A] B[@X5Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z4[ JY>` Y 8WK~KW/WJ}JW.W<_;W.W;[8W/W9[9W >X -Z?Z " + " LZ -YBU 5~^*~h%~U J~R IX.Y IX.X @ZDY 6YCZ LW 'y JY \"W?X ,j 3WCYCY4Y=\\>X 9Y CZ" + " %V <~e =l X 5Z.Y 4Z !\\ C[ IY7Z JZ I]2Z 3[ 9[5[ BoLZ ?a Ia @Y HW>X3W>V.Z4Y IZ/Z!Z !Z#[\"Z MZ 0" + "Z Z'Z(Z :Z \"Z 4ZI] /Z 2YAXIXAY(Y=ZEZ*Z L[\"o DZ LZ&Z<^ M_ 5Y 9Z(Z GZ@Z ZEX>XEZ I[MZ (Z )\\ !X GX GY " + "Gz FY.Y KZ %Y-Y J~W :Y 5Y.Y GY1Y 5Y NX 0c IY FY3Y2Y+Y1Y KZ.Z JY.Y Y.Y ;Y %j +Y .Y1Y BY=Y IYEXGXEY >] 0Y?Y ,[ " + "3` EX E_ L\\Cx NT6V6T'Z4Z BY2Z CY>^ GY-Y ;c 9Y1Y @YAZ 6ZEY @Y1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y KX.Z Y-Y 5Y 5Y.Z JZ" + "4Y 4\\ 1Z 1[ NZ.[" + "WDX:U -X EY1Y 1WEW 3Z 5YBY 7W6UKV IX*W KW6UKW CY 6Z4Y FZ5Z FZ4Z GZ4Y EY4Z GZ4Y%Y8Z <[ IZ !Z " + " Z !Z >Z !Z !Z \"Z :Z#Z(Y=ZDY*[ LZ/Z L[0Z L[0Z LZ0[ LZ B_ BZAY5Z*Z(Z#Z(Z$Z(Z$Y'Y 9Z 2Z5\\ JY=` ?{ B{ Bz @z B{ " + "B{'~x/Y #~W M~W M~W M~W 7Y Y NX Y 6Z.Y IX0X JY-Y LZ-Y MZ.Z MY-Y KY-Y$~d$Y@WDY KY0X HY0X GX0X GX0Y AY@Z AY.Y " + "DY@Z 8WK~KW/WJ}JW.W=aX ,Y?Y LZ +XBU 6~_+~i%~U I~P HX.Y IX.X @ZDZ 7YCY KX " + " (y JY \"W?W (h 5XCXAX5Z<\\@Y 9Y CZ $T ;~e =l X 5Z/Z 4Z \"\\ AZ IX6Z JZ I\\1[ 4Z 8Z3Z AmKZ" + " ?d d AZ HW>X3W>V.Z4Z JZ.Z\"[ \"Z#[\"Z MZ 0Z Z'Z(Z :Z \"Z 4ZH] 0Z 2YAYKX@Y(YWCX;U -X EY1Y 1WEW 3Z Is 0YAX 8W6UJV IW)W" + " LX7UJW CY 6Z4Z GY3Y FZ4Z GY3Y FZ4Z GY3Z'Z8Z <[ IZ !Z Z !Z >Z !Z !Z \"Z :Z#Z(Yc=W.W=[6W/X:[:X >X ,Y@Z M[ " + "+YCT 5~`,~i$~S H~P HX.Y IX.X @YCZ 7ZDY KX )y HX #X@X (TNc 6WCX@X5Y:\\AX 8Y CZ :~e" + " =l !X 4Z/Z 4Z #\\ @[ KY6Z IZ I[0Z 4Z 9Z2[ @jJZ ?f %g AZ HW>X3W>V.Y2Y JZ.Z\"[ \"Z#Z!Z MZ 0Z Z'Z(Z" + " :Z \"Z 4ZG] 1Z 2Y@XKX@Y(YWBXZ !Z !Z \"Z :Z#Z(YW.W>[5W.W:[:W =W +ZAY LZ *YDU 5~`,~i#~Q F} GX.Y IX.X AZBY 7ZEZ KX " + ")y HX 6~e 9TJ_ 7XCX?X6Y9\\BX 8Y CZ KX Nl !X 4Z/Z 4Z $\\ >Z LY5Z IZ I[0Z 5Z 8Z1Z >fHY =h " + " +i @Z HW>X3W?W/Z2Z KZ.[#[ \"Z#Z!Z MZ 0Z Z'Z(Z :Z \"Z 4ZF] 2Z 2Y@XLY@Y(Y;ZGZ*[ MZ!Z /Z M[&Z7[ K\\ 6Y 9Z(Z FZ" + "BZ MYFXY FY.Y KZ %Y-Y K~X :Y 5Y.Y GY1Y 5Y NX 0e KY FY3Y2Y+Y1Y KZ-Y JY.Y" + " Y-X ;Y !m 2Y .Y1Y AZAZ GYGXEXGY >] .ZBY -[ 1e JX Ke LU4k IU8Y8T'Y2X AY0Y EX:[ FY-Z Ah 9Y1Y >XCZ 6YBY AY1Y&" + "Z8X8Z,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Z/Y JZ2Z 8[ .Z 0[!Z,[=Z=[)Z(Z\"]FZG]'Z M[1] 1X 1\\ @X @\\ L\\ AX DX 4" + "Z?U -Z (X4X H~W ;\\;W GTDX\"U s A[D[ 6X %T>WBXZ !Z !Z \"Z :Z$[(Y;ZFY)Z M[/[ MZ/[ MZ/Z M[/Z M[ Ee EZC" + "X3[*Z(Z#Z(Z$Z(Z$Y(Z 9Z 2Z8^ IY9` Fb=Y Eb=Y Eb=X Cb>Y Eb=Y Eb=Y*b=~V/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY" + "-Y LZ-Y MY-Z MY-Y LZ-Y CZCXBY KY0X HY0X GX0X GX0Y @YBZ @Y.Y CYBY 6W8X8W.W HW-W@g@X.W?[4W.W:[:W =W *YBZ " + " MZ (XDU 5~`,~i\"~ D{ FX.Y IX.X AZBZ 7YEY IX +y GX 6~e 9TG] 8WBW>X6Y8\\DY 8Y CZ " + " KX Nl !X 4Z/Z 4Z %\\ =Z LX4Z IZ I[0Z 5Z 9Z0Z X3W?W/~S KZ-Z\"Z \"Z#Z!Z MZ 0[!Z" + "'Z(Z :Z \"Z 4ZE] 3Z 2Y?XMX?Y(Y;ZGZ)Z MZ!Z /[ N[&Z6[ K\\ 7Y 9Z(Z FZCZ LZGX^ .YCZ ." + "[ )_ KX L_ ES/e FU8Z9T'Z3X AY0Y FY:[ FY-Z Cj 9Y1Y >XCY 6ZBZ BY1Y&Z8X9[,Y@YAZ IY9Y IY@X@Y LY-Y Y-Y 5Y 5Z/Y J" + "Z2Z 9\\ .Z /Z!Z,\\>Z>[(Z(Z!]GZH^'[ N[0\\ 1X 2\\ ?X ?[ M\\ @X DX 4Z?U -Z 'W4W G~W :]>X GTDY#U s @[D[ 7" + "X %U?WAX>U ,X EY1Y 1WEW \"s 3ZC[ 9X7UHV KW(W MX7UHW CY 7~S J~S H~S I~S I~S I~S)} ;Z IZ !Z Z" + " !Z >Z !Z !Z \"Z :Z$[(Y;ZFY)Z MZ-Z MZ/[ N[/[ N[/Z MZ Eg F[EX2[*Z(Z#Z(Z$Z(Z$Y(Z 9Z 2Z9^ HY7_ G]8Y F^8Y F^8X D]8" + "Y E]8Y F^8Y+^8~V/Y #~W M~W M~W M~W 7Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y MY-Z MY-Y LZ-Y BYDXAY KY0X HY0X GX0X GX0Y" + " @ZCY ?Y.Y CYBY 5W9X8W.W HW-WAiAW,WA[3W.W9Y9W >X *ZCZ 6~d IYET 4~`,~i!| By EX.Y IX.X AYAZ 7ZFY IX " + " Z 3X 6~e 9TF\\ 9WBX=W7Z7\\EX 7Y CZ KX Nl \"X 3Z/Z 4Z &\\ ;Z M~Z %Z I[0Z 6[ 9Z/" + "Y 8ZCZ 8i 6~d 5i ;Z HW>X3W?W0~T KZ-Z\"Z \"Z$[!Z MZ 0[!Z'Z(Z :Z \"Z 4ZD] 4Z 2Y?XMX?Y(Y:ZHZ)Z N[!Z /[ NZ%Z6[" + " J[ 7Y 9Z(Y DZDZ LZGW:WGZ K[GZ +Z -\\ LX EX IY L\\6Y FY.Y KZ %Y-Y K~W 9Y 5Y.Y GY1Y 5Y NX 0XM\\ MY " + "FY3Y2Y+Y1Y KZ.Z JY.Y Y-X ;Y Ji 4Y .Y1Y @YAY FYGWDXGX >` /YCY .[ $\\ LX M\\ AR+` CT9[:U'Z3X AY0Y FY9Z FY-Z " + "D` .Y1Y >YEZ 6YAZ BY1Y&Z8X9[,ZAYAZ IY9Y IY@X@Y LY.Z Y-Y 5Y 5Z/Y KZ1Z 9[ -Z /Z\"[+[>Z>[(Z(Z ^IZJ_&[ NZ.\\ 2X 3" + "\\ >X >[ \\ ?X DX 4Z?U -Z 'X6X G~W 9^@X GUDY$T Ns ?[CZ 8X %U?WAY?U ,X EY1Y 1WEW \"s 4" + "ZCZ 7W7UGV LX)X MW7UGW CY 8~T J~T I~S J~T I~T K~T*~ ;Z IZ !Z Z !Z >Z !Z !Z \"Z :Z$[(Y:ZGY)[ NZ-Z N[.Z N[/[ N" + "[/[ NZ Fi G[FX1Z)Z(Z#Z(Z$Z(Z$Z)Z 9Z 2ZX )YCY 5~d IYFU 4~`,~i!{ @x EX.Y IX.X AY@Y 7ZGZ IX Z 3X 6~e 9TD[ ;XBX=X8" + "Z6\\GY 7Y CY JX Nl \"X 2Y/Z 4Z '\\ :Z M~Z %Z I[0Z 6Z 8Z/Z \"Z 5i 9~d 8i 8Z HW>X3W?W0~U LZ-Z\"[ " + "#Z$[!Z MZ /Z!Z'Z(Z :Z \"Z 4ZC] 5Z 2Y?XNY?Y(Y:ZHZ)[ [!Z .Z NZ%Z5[ K[ 7Y 9Z(Y DZDY KZHX:XHY K[EZ ,Z .\\ KX EX" + " IY LZ4Y FY.Y KZ %Z.Y KZ X DX 4Z?U -Z 'X6X G~W " + "8^BX FUDY%U Ns =ZCZ 9X $U@W@X?T +X EY1Y 1WEW \"s 5ZCZ 7W7UFV LW(W MX8UFW CY 8~U K~T J~U K~" + "T J~U K~T*~ ;[ JZ !Z Z !Z >Z !Z !Z \"Z :Z$Z'Y9YGY)[ [-[ [.Z N[.Z NZ.[ NZ G\\L[ GZGX0Z)Z(Z#Z(Z$Z(Y#Z)Z 9Z 2~ " + "GY4] J[4Y G[4Y G[4X EZ4Y FZ4Y G[4Y,[4X 1Y #Y Y Y Y 9Y Y NX Y 6Y-Z JX0X JY-Y LZ-Y MZ.Z MY-Y KY-Y BYEW?Y" + " KY0X HY0X GX0X GX0Y ?YDY >Y.Y BYDY 4W9X9W-X JX,WD\\J[CW,WC[2W-X JX >X )YDZ 5~d HXFU 4~_+~i z @w DX.Y" + " IX.X BZ@Y 6YGZ IY Y @~e 9TCZ ;WAX=X8Y4\\HX 6Y CY JX Mj !X 2Y/Y 3Z (\\ 9Z" + " M~Z %Z I[0Z 6Z 8Z/Z \"Z 2i <~d ;i 5Z HW>X3W@W/~U LZ-[#[ #Z$Z Z MZ /Z!Z'Z(Z :Z \"Z 4ZB] 6Z 2Y>a>Y(Y9ZIZ)[ " + "Z Z .Z [%Z4Z JZ 7Y 9Z)Z DZEZ JYHX:XIZ KZD[ -Z /\\ JX EX IY MZ3Y FY.Y JY %Z/Z JY Z !Z !Z \"Z :Z%['Y9ZHY(Z [-[ Z" + "-[ Z-Z [-Z [ H\\J[ HZHY1[)Z(Z#Z(Z$Z(Y#Z)Z 9Z 2} FY2\\ KZ3Y GZ3Y GY3Y FZ3Y GZ3Y GZ3Y,Z3X 1Y #Y Y Y Y 9Y Y " + "NX Y 6Y-Z JX0X JY-Y KY.Z MZ.Z MY-Y KY-Y BYFX?Y KY0X HY0X GX0X GX0Y >YEY >Y.Y BYEZ 4X:X9W,W JW+WE\\H[EX,X" + "E[1W,W JW =X )ZEY 4~d HYHU 2~^+~i Nx >u CX.Y IX.X BY?Z 7ZHY GX Z A~e 9TCZ ~d >i 2Z GV>X3W@W0~V LZ-[\"Z " + "#Z%[ Z MZ /[\"Z'Z(Z :Z \"Z 4ZA] 7Z 2Y>a>Y(Y9ZIZ(Z Z Z .[![%Z4[ KZ 7Y 9Z)Z CZFZ JZIX:XIZ L[CZ -Z /[ IX DX J" + "Y MY2Y FY.Y JY %Z/Z JY Y CY1Y&Z9Y9Z+ZAYAY HY9Y IY@X@Y LZ/Y N" + "Y-Y 5Y 4Y0Z LZ.Y =[ *Z .[%Z(]AZA]'Z(Z L~\"[![+\\ 5X 6\\ JTEXET J[&\\ KSDXES $Y 3Y?U -Z &Y:Y F~W 5_GX DU" + "CZ9QAU DZCZ ;X $VAW?YBU +X EY1Y 1WEW DZCZ 6W7UEV NX)X MX8UEW DY 8~V L~V L~W M~V K~V M~V" + ",~P :Z JZ !Z Z !Z >Z !Z !Z \"Z :Z%['Y8ZIY(Z Z+Z Z-[![-[![-[![ I\\H[ I[JY0[(Y(Z#Z(Z$Z)Z#Z)Z 9Z 2| EY1\\ LY2Y " + "HZ2Y HZ3Y FY2Y GY2Y GY2Y-Z2X 1Y #Y Y Y Y 9Y Y NX Y 6Z.Y IX0X JY-Y KY.Z MZ.Z MY-Y KY.Z BYGX?Z KY1Y HY0X" + " GX0X GX0Y >YFZ >Y.Y AYFY 2W:X:X,W JW+XG\\F[FW+XF[1X,W JW =X (YEY 4~d GXHU 2kNRMk*tNq Mv Y 7ZIZ GY !Z A~e 9TBY `=Y(Y8ZJZ([\"[ Z " + ".[!Z$Z3Z KZ 7Y 9Z)Z CZGZ IZIW8WIZ M[AZ .Z 0\\ IX DX JY MY2Y FY.Y JY $Y/Z JY YEY CYIWBXIX @f 0YGZ 0[ LZ NX NY 'U>WMW?V&Z4Y AY/Y HY8Y" + " EZ.Y FZ %Y1Y Y CY1Y&[:Z:Z+ZAYAY HY9Y IY@X@Y LZ/Y NZ.Y 5Y 4Y0Y KZ.Z ?\\ *Z -['['\\AZB]&Z(Z K|![!Z)\\ 6" + "X 7\\ JVFXFV J[(\\ KUEXFU %Y 3Y?U -Z %YXCU *X EY1Y 1WEW" + " F[CZ 6X8UDV NW)X MX8UDW DY 8~W N~W L~W M~V L~W M~W-~P :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z%['Y8ZIY([\"[+[" + "\"[,Z![-[!Z,[!Z I\\F[ J[KY/Z'Z)Z#Z)Z#Z)Z#Z)Z 9Z 2{ DY0[ MY1Y HY1Y HY2Y FY2Y HZ2Y HY1Y-Y2Y 1Z $Y Y Y Z :Y Y" + " NX Y 6Z.Y IX0X JZ.Y KY.Z MZ.Y LZ.Y KY.Z BYHX>Z KY1Y HY1Y GX0X GX0Y =YGY =Y.Y AYFY 2X;X:W+X LX*WH\\D[HX" + "*WG[0W+X LX =X (YFZ 4~d GYIU 2jLQLj*pNRNq Lt :q AX.Y IY0Y CZ>Y 6YIZ FX !Z A~e 9T" + "BZ >W?W;W8Z2\\MY 4Y DY JX 4X 1Z1Z 3Z +\\ 6Z M~Z %Z HZ0Z 8[ 7Y.Z #Z )i D~d Ci -Z GV=W4XAW/~W M" + "Z-[\"[ $Z&[ NZ MZ .Z\"Z'Z(Z :Z \"Z 4Z?] 9Z 2Y=_=Y(Y8ZJZ([\"[ Z -Z\"[$Z3[ L[ 8Y 9Z)Z BZHZ IZJX8XJY LZ@[ /Z 1\\" + " HX DX JY NY1Y FZ0Z JY $Y/Z JY YEY BXJXAWJY A[N[ 1YGY 0[ JY NX NY 'V@WLX@U$Y5[ BY/Y HX7X DZ.Y FY $Y1Y Z " + "/Z K_MZ BUC]BVBU A[D[ >X #VBW=XDU *X EY1Y 1WEW G[D[ 5W8UCV X*X LW8UCW EZ 8~W N~X M" + "~W N~X M~W N~X.~Q :[ KZ !Z Z !Z >Z !Z !Z \"Z :Z&[&Y7ZJY([\"[+[\"[,[\"Z+[#[+Z\"[ J\\D[ JZKX/['Z*[#[*Z#Z)Z#Z)Z" + " 9Z 2z CY/Z MY1Y HY2Z HY2Y GY1Y HY1Y HY1Y-Y2Z 2Z $Z !Z !Z !Z :Y Y NX Y 6Z.Y IX0X JZ/Z KY.Z LY.Y LZ/Z KY.Z " + " BYHW=Z KY1Y GX1Y GX1Y GX0Y =YHZ =Y/Z @YHY 1X;X;X*W LW)XJ\\B[IX*XI[0X*W LW Z 7ZJY EY !Z 1X@X &TAY ?X?W;W8Z1\\NX 3Y DY JX 5Y 0" + "Y1Z 3Z ,\\ 5Z M~Z %Z HZ0Z 8Z 6Y.Z #Z &i G~d Fi )X FV=X5XAW0~Y NZ-[!Z $Z&[ NZ MZ .[#Z'Z(Z :Z \"Z 4Z>] :Z 2" + "Y=_=Y(Y7ZKZ'Z#[ NZ -[#[$Z2[ M[ 8Y 9Z)Z BZHZ HYJX8XKZ M[?Z /Z 2\\ GX CX KY NY1Y FZ0Z JZ %Y/Z JZ =Y 4" + "Y0Z GY1Y 5Y NX 0XG\\ $Y FY3Y2Y+Y1Y JZ/Y IZ0Y MY/Y ;Y 8[ 8Y .Y1Y >ZGZ BYKXAXKY B[LZ 0YHY 1[ IY NX Z &VB" + "XKXBV$Y5[ BY/Y HX8Y CY/Z GY #Y1Y Z !Z !Z \"Z :Z&[&" + "Y7ZJY'[#Z)Z#[+[#[+[#[+[#[ K\\B[ K[MX.['Z*Z!Z*Z#Z)Z#Z)Z 9Z 2x AY.Z NY2Z HY2Z IY1Y GY1Y HY1Y HY2Z-X1Z 2Z $Z !Z !Z" + " !Z :Y Y NX Y 5Y/Z IX0X JZ/Z KZ/Y KY.Y LZ/Z KZ/Y AYIWW;W8Z0e 3Y EZ JX 5X /Z2Y 2Z -\\ 4Z M~Z %Z HZ0Z 8Z 6Z/Z $Z #j J~d Ii CW>X6Y" + "BX0~Y NZ-[![ %Z'\\ NZ MZ -Z#Z'Z(Z :Z \"Z 4Z=] ;Z 2Y<][ 0" + "Z 3\\ FX CX KY NY2Z FZ0Y IZ %Y/Z JZ =Y 4Y0Z GY1Y 5Y NX 0XF\\ %Y FY3Y2Y+Y1Y JZ/Y IZ0Y MY/Y ;Y 7Z 8Y" + " .Y2Z =YGY AYKW@XKY BZJZ 1YIY 1[ HY NX Y %WEYIYFW#Y5[ BY/Y HX8Y CY/Z GY #Y1Y ;XIY 6Y;Z EY1Y%Z:Z:Z*ZBYBZ " + "HY9Y IY@X@Y LZ/Y MY/Z 4Y 4Y2Y KZ,Z B[ 'Z +[+[#_FZF_$Z(Z Gt JZ$[%\\ 9X :\\ J\\IXI[ I\\/\\ K[HXI[ (Y 3Z@U -Z " + "%^F^ /Z X \"f >VBnCU >[D[ @X \"VCWZ !Z !Z \"Z :Z'[%Y6ZKY'[$[)[$[*[$[*[%[*[$[ K\\@[ Le.[&Z*Z!Z*Z\"Z*Z#Z*[ 9Z 2v " + "?Y.Z NY2Z HX1Z IY1Y GY1Y HY2Z HX1Z.Y1Z 1Y #Y Y Y Y :Y Y NX Y 5Y/Z IX0X IY/Z KZ/Y KY/Z KY/Z KZ/Y 7\\ 7ZKW" + ";Y IX1Y GX1Y GY2Y GY2Z YJX(XJY/X)X Y W;W7Y/c 2Y EY IX 5X /Z3Z 2Z .\\" + " 3Z M~Z &Z FY1Z 8[ 6Z/Z $Z i L~d Li @W>Y7YBW0Z*Y NZ-[![ %Z'[ MZ MZ -[$Z'Z(Z :Z \"Z 4Z<] Z !Z !Z \"Z :Z(\\%" + "Y6ZKY&[%[)\\&[)[%[)[%[)[%[ L\\>[ Ld.[&Z*Z!Z*Z\"Z+[\"Z+Z 8Z 2s YJY .X=X=Y(" + "X!X'YJWX.Y HY2Y CZW=X8ZC" + "W/Z*Z Z-Z N[ &Z(\\ MZ MZ -\\%Z'Z(Z :Z \"Z 4Z;] =Z 2Y<]Y 4Z2[ GY1Y 5Y NX 0XD\\ 'Y FY3Y2Y+Y1Y IY0Z IZ1Z MZ1Z ;Y 6Y" + " 8Y .Y2Z =ZIZ @XLX?WLY C[H[ 2YKZ 3[ EX NX Y $hFh\"Z7\\ BY0Y GX9Y BZ1Z FX \"Y1Y ;YKY 6Y9Y EY2Z%Z;[:Z*ZBYB" + "Y GY9Y IY@XAZ L[1Y LZ1Z 3Y 3Y3Y LZ*Z D[ &Z *[-[ aJZJa\"Z(Z Cl F\\'[\"\\ ;X <\\ F\\KXK\\ F\\3\\ H\\JXK\\ 'Y " + "2ZAU -Z 'z 1Z X Na ;V@jDV :ZCZ BX UDW;XIU 'X EY2Z 1WEW KZCZ 3X9U@V\"W*X LX9VAW H[ " + "8Z*Z\"Y)Y!Z*Z\"Z*Y!Z*Z\"Z*Z1Z3Z 8[ MZ !Z Z !Z >Z !Z !Z \"Z :Z(\\%Y5ZLY&[&['[&[([&[)\\'\\)[&[ L\\<[ Mc.[$Z,[!" + "[,[\"Z+Z!Z+Z 8Z 2n 7Y-Y NX1Z IY2[ IY2Z GY2Z HY2Z IY2[.Y2\\ 2Z $Z !Z !Z !Z ;Y Y NX Y 5Z0Y HX0X IZ1Z IY0Z KZ0" + "Y JZ1Z IZ1Z 7\\ 6YMX;Z IY3Z GY2Y GY2Y GY2Z ;YKY ;Z1Z >YJY .Y>X=X'Y#Y&XIU:UJY&YJU.X'Y#Y ;X &YJZ #Z JXLU" + " -dIQId%kKRKk El 2j >X.Y HY2Y CY;Z 7ZMZ BZ #Z 3X@X %TAX @WZ 2Y;[;Y(Y5ZMZ&\\([ LZ +['[\"Z0[ Z 7Y 8[,Z ?YKZ EYLX6XLY [:[ 2Z 5\\ DX BX LY NY3[ F[2Z HZ %Y1" + "[ IZ >Y 3Y2[ GY1Y 5Y NX 0XC\\ (Y FY3Y2Y+Y1Y IZ2Z H[2Z LY1Z ;Y 6Z 9Y .Y2Z Z !Z" + " !Z \"Z :Z)\\$Y5ZLY%[(\\'\\(['\\(['['['[(\\ M\\:[ Ma-[$Z,Z NZ,Z![,Z!Z,[ 8Z 2Z #Y-Y NX2[ IY2[ IY2Z GY3[ HX2[ IY2" + "[.Y2\\ 2Z $Z !Z !Z Y ;Y Y NX Y 5Z1Z HX0X IZ1Z IZ1Z JZ2Z JZ1Z IZ1Z 7\\ 6c:Z IY3Z GY3Z GY3Z GY3[ ;YKY ;[2Z =" + "YLY ,Y?X>Y&Y%Y%YIS8SJY$YJS.Y&Y%Y :X &ZKY #Z IYNU ,cISIb#jKRJi Cj 1i =X.Y GY4Y BY:Y 7ZMZ AZ " + " $[,P )W?X %TBY AXXMY DZDZ 2YLY 3[ DY X Y \"eCd NY8^ CY0Y GX:Y @Z2Z FX \"Y1Y :YMY 6Y7Y " + "FY2Z%[<\\a@V 7YBY CX NV LV BZ3Z 1WEW LYBY 2W8U?V#W+X KX9U" + "?W J[ 7Z(Y#Z)Z#Z(Z$Z)Z\"Y(Z$Z(Y2Z2Z 7\\\"P NZ !Z Z !Z >Z !Z !Z \"Z :Z*\\#Y4ZMY%\\)[%[)\\&[)\\'\\)\\'\\)[ M\\8" + "[ N`-[#Z,Z NZ,Z Z-[![-[ 8Z 2Z #Y-Y NX2[ IY2[ IY3[ GY3[ HY3[ HX2[.Y3^ 2Z $Z !Z !Z !Z ZMZ DZMW4WMZ![7Z 3Z 7\\ BX AX MY NY3" + "[ F\\4Z FZ &Z3\\ HZ ?Y 3Z4\\ GY1Y 5Y NX 0X@[ *Y FY3Y2Y+Y1Y HZ3Z H\\4Z KZ3[ ;Y 5Y 9Y -Y4[ ;YKY >YNX=WNY D[D[ " + "3YMY 3[ CY X Y !cAb MZ9^ CZ2Z GX:Y @Z3Z EX \"Y1Y :YMY 7Z7Y FZ4[$Z<\\Z !Z !Z \"Z :Z+]#Y4ZMY$[*\\%\\*[%\\+\\%\\+\\%\\+\\ N\\6[ N^-\\#[.[ N[.[ [.Z NZ-Z 7Z 2Z #Y-Y NY4\\ IY3" + "\\ IY3[ GY3[ HY4\\ HX3\\.Y3^ 2Z $Z !Z !Z !Z i i 2WZ4" + "Z EY #Y1Y 9XNZ 7Y6Z GZ4[$Z=]=['ZDYDZ FY9Y HZBXBZ K]5Z J[5[ 2Y 2Z7Y L[(Z H[ #Z '\\5[ F~ LZ(Z :Z :\\-\\ KW :X :" + "V >r >V/V @s #Z 2[CU -Z +[MeL[ 5Z X G\\ :W!V 3W@W 7V!W AZ4[ 1WEW LW@W 1W7s,X-" + "Y JX8t$\\ 7Z'Z%Z'Z$Z'Y%Z'Z$Z'Y%Z'Z4Z1Z 6\\&S NZ !Z Z !Z >Z !Z !Z \"Z :Z,]\"Y3ZNY$\\,\\#\\,\\$\\,\\$\\-\\$\\," + "\\ N\\4[ ]-\\![/Z LZ/[ N[/[ N[/[ 7Z 2Z #Y-Y NY4\\ HY5] IY4\\ GY4\\ HY4\\ HY4\\.Z5` 2Z $Z !Z !Z !Z =Y Y NX Y " + "3Z4Z GX0X H[5[ GZ4Z GZ4Z H[5[ GZ4[ 6\\ 5_9[ HZ5[ GZ5[ FY5[ FY5\\ :YNZ :\\4Z ;YNY )YAXAZ\"Z+Z!Z*Y Y*Z\"Z+Z 8" + "X $YMY %[ F^ '\\FSF\\ LcGRGc >f ,c :X.Y FZ7Y BY8Y 7e >[ %[1S -Y 'X@X ;Q:TCZ CX:X=X" + "5[.] /Y HY HX NZ GZ 'X +[8Z 0Z 4\\ 0[ 'Z M\\ CZ6[ 9Z 2[3[ '[ 0Y Y ?f f BX DW=\\C_J[.Z&Z\"Z0\\ " + "J\\(T'Z._ JZ MZ *])Z'Z(Z :Z \"Z 4Z6] BZ 2Y JY(Y3e#\\.\\ JZ )]/\\ NZ.[ NQ'[ 6Y 6[0[ =ZNZ CYNX4XNY!Z4[ 5Z 8[ @X" + " AX MY NY5] F]6Z DZ &Z5] G[ AY 2[8^ GY1Y 5Y NX 0X>[ ,Y FY3Y2Y+Y1Y H[6[ G]6Z IZ5\\ ;Y 6Y 8Y -Z6\\ ;Z" + "MZ =b=b EZ@Z 3d 5[ AY X Y L[:\\ IZ;` D[4Z FXZ5[ EY #Y1Y 9c 7Z5Y GZ5\\$[>^>['[EYE[ FY9Y HZBXCZ J]5Z " + "IZ5Z 1Y 1Y8Z LZ&Z J[ \"Z &\\8] E| KZ(Z :Z :]/] JU 9X 9T

q \"Z 1ZCU -Z ,[JaI[ 6Z X F\\ :W#V 1" + "V?V 7W#W @[5[ 1WEW LV?V 1X7s,W-Y JX7t%\\ 6Z&Z&Z'Z%Z&Z&Z'Z%Z&Z&Z&Y4Y0Z 5\\(T NZ !Z Z " + "!Z >Z !Z !Z \"Z :Z.^!Y3e#\\.\\!\\.\\#].\\#]/]#\\.\\ N\\2[ ]/]![0[ L[0[ M[0[ N\\1[ 6Z 2Z #Y-Y NY5] HY5] IZ6] GY" + "5] HY5] HY5]-Y5a 3[ %[ \"[ \"[ \"[ >Y Y NX Y 3Z5[ GX0X GZ5Z F[6[ G[6[ GZ5Z F[5Z 5\\ 4^9Z FY6\\ FY6\\ FY6\\ " + "FY6] 9c 9]6Z :d )[CXBZ Z-Z NZ-[ [-Z Z-Z 7X $YNZ %Z D] $VCSDW G`FSG` ;d +c :X.Y F[9Z CZ8Y 6d =\\ " + " '\\3T -Z (W?X ;Sd c @Z EW<_Ks-Z&Z\"Z1] J^,V'Z/_ IZ MZ )]*Z'Z(Z :Z \"Z 4Z5] CZ 2Y JY(Y2d#]0\\ IZ (]1] NZ-" + "Z NS*\\ 6Y 6[1[ Z 4c 5[ @Y X Y HS3V FZZ%ZEYF[ EY9Y GZCXD[ J^7Z H[7[ 1Y 1Z:Z KZ&Z K[ !Z %];] Bx IZ(Z :Z 9]1] HS 8X 8R :n :R+R U 6W%W ?[6\\ 1WEW LU>U 0W6s-X.X HW6t&\\ 5Z&Z'Z" + "%Z&Z&Z'Z%Z&Z&Z&Z&Z6Z0Z 4],V NZ !Z Z !Z >Z !Z !Z \"Z :Z0`!Y2d\"\\0]!]0\\!]0\\!]1]!]1] \\0[ ]1] N[2\\ L\\2[ L\\" + "2[ L[1[ 6Z 2Z #Y.Y MZ7^ HY6^ HY6] GZ6] HZ7^ HZ7^-Y6c 3[ %[ \"[ \"[ \"[ ?Y Y NX Y 3[7[ FX0X G[7[ E[7[ FZ7[ F" + "[7[ E[7[ 5\\ 4]9[ FZ8] FZ8] FZ8] FZ7] 9c 9]7[ 9b '[DXD[ N[/Z LZ/[ M[0[ N[/Z 6X $d %Z C\\ ?S 2\\ETD" + "\\ 9b )a 9X.Y E[<[ BY7Z 7c ;\\ '\\5U -Z (W?W :U>TE[ CX8X?X3\\3b 1Y IY GX NZ GZ (" + "X )[;[ /Z 5[ %Q-\\ &Z BQ/] AZ9\\ 9Z 0[6\\ (\\ /Z \"[ ;a ` =Z EX[ 4b 6[ ?Y X Y " + "FZ=b E]7Z EX=Z <[9\\ D[ %Y1Y 8a 6Y3Y H\\8]#[@WNW@[%[FYG\\ EY9Y G[DXD[ J_9[ G[9[ /Y 1Z;Z LZ%Z L\\ !Z $]=\\ >t GZ" + "(Z :Z 8]3] FQ 7X 7P 8l 8P)P :m Z 0[EU -Z .[?P?[ 8Z X D[ 9W(W -T\\8] 1WEW " + " LSZ !Z !Z \"Z :Z2a Y2d\"^3] N]3^ ]3" + "] N]3] N]3] \\.[!^3] M\\4\\ J\\4\\ K\\4\\ L\\4\\ 5Z 2Z #Y.Y MZ8_ HZ8_ HZ8^ FZ8^ HZ8_ HZ8_-Z8e-Q)\\ &\\-Q G\\-Q " + "G\\-Q G\\-Q 5Y Y NX Y 2[9\\ FX0X F[9[ D\\9[ E[8[ E[9[ D\\9[ 4\\ 3[9[ EZ9^ FZ9^ FZ9^ F[9^ 9b 8^9[ 8b &[2[" + " L\\3\\ K[2[ K[2[ L\\3\\ 6X #c &Z B\\ ?S /UATAT 4a '_ 8X.Y E\\>\\ BY6Y 7c :] (\\7V " + "-Z )X@X :W@TF[ BW7X?X3]6e 1X IY GX NZ GZ (X ([=[ .Z 6[ $S1^ &Z BS3^ @\\<\\ 8Z 0]9] FR6] .Z \"[ 8^ " + " ^ ;Z DW;lMc+Z$Z#Z4_ G_2Y'Z5c GZ MZ '^/\\'Z(Z :Z \"Z 4Z3] EZ 2Y JY(Y1c!^6^ HZ '^6^ LZ,Z X1] 5Y 5]6\\ :c Ab2a" + "\"Z0[ 7Z ;\\ >X @X NY MZ:` F_:[ B\\3P D[;` E\\1S 7Y 0\\>a GY1Y 5Y NX 0X;\\ 0Y FY3Y2Y+Y1Y F[:[ E_;\\ " + "F[;_ ;Y *S1Y 6Z .[;_ :e ;`;` G[<[ 5a 6[ >Y X Y F[?YNY F_:[ DX?Z :[;\\ B[ &Y1Y 8a 7Z3Y H]:^#\\BXNWA[#[" + "GYH\\ DY9Y F\\FXF\\ I`;[ F\\;\\ /Z 2[=Z KZ$Z N\\ Z #^A] :n DZ(Z :Z 7]5] +X Mj (k NZ 0\\FUBP ;Z /[,[ " + "9Z X CZ 8X+W *R;R 4X+X =]:^ 1WEW LR;R /X5s.W.X GW5t(\\ 4Z$Z(Z%Z'Z$Z(Z$Y'Z$Z(Z$Z" + "8Z/Z 3_2Y NZ !Z Z !Z >Z !Z !Z \"Z :Z5c NY1c!^6^ L^6^ M^6^ M]5] M^6^ \\,[#a7^ K\\6] I\\6\\ J]6\\ J\\6] 5Z 2Z #" + "Y/Z LZ:` H[:` H[:_ FZ:` GZ:` GZ:`-[:YN\\0S(\\4Q C\\0S F\\0S F\\0S F\\0S 5Y Y NX Y 1[:[ EX0X F\\;\\ C\\;[ C[:" + "[ D\\;\\ C\\;\\ 4\\ 3[:\\ DZ;_ EZ;_ EZ;_ EZ;` 8a 8_;\\ 7a %\\6\\ J\\5\\ I\\6\\ I\\6\\ J\\5\\ 5X #c 'Z " + "@[ @T JT _ %] 7X.Y D^D^ BZ6Y 6b 9_ *];X -Z )X@X :ZCTH] CX7YAX1^:h 2Y JY GX NZ" + " GZ (X (\\?\\ .Z 7\\ $W7_ %Z BV8` ?\\>] 9[ /];] ET9] -Z \"[ 5[ [ 8Z DX;jLb*Z$Z#Z7a E`7\\'Z9f FZ MZ &`4^" + "'Z(Z :Z \"Z 4Z2] FZ 2Y JY(Y1c _:_ GZ &_9^ KZ,[![6^ 4Y 4]9] 8b @a2a#[/Z 7Z ;[ =X @X NY M[\\ @]7R" + " D\\=a E]4U 7Y /]Bc GY1Y 5Y NX 0X:\\ 1Y FY3Y2Y+Y1Y E\\>] E`=\\ E\\=` ;Y *U5[ 6[ /\\>a 9c :_:` GZ:Z 4` 6[ >Y " + "X Y E[AYMZ G`<[ CX@Z 9\\=\\ A\\3Q EY1Y 7` 7Y2Z I^<_\"[BWMXC\\#]IYI\\ CY9Y F]GXG] Ia=\\ E\\=\\ .[ 2[?Z J" + "Z$Z N[ NZ \"^C^ 7g @Z(Z :Z 7_9_ +X Lh &i MZ /]HUDR ;Z .Y*Y 8Z X BZ 8Y/X (Q:Q 2X/Y " + " <^<` 2WEW LQ:Q .W MV(X/X GX NW\"\\ 3Z$Z)Z#Z(Z$Z)Z#Z(Z$Z)Z#Z8Z/Z 2`7\\ NZ !Z Z !Z >Z !Z !Z \"Z :" + "Z9f MY0b _:_ J_:_ K_:_ L_9_ L_9^ N[*[$c:^ J^:^ H^:^ I^:] H]9] 4Z 2Z #YIP7[ L[] C\\=\\ A\\=\\ 3\\ 2\\=\\ C[=` E[=` E[=" + "` E[=a 8a 8`=\\ 6` #]:] H]9] G]:] G]:] H]9] 4W !a 'Z ?Z ?U KT N] $] 7X.Y Cv AZ6Z 7a 7a " + " -_?Z -Z )W?X :^GTK_ CX5XAX0_>k 3Y JX FX NZ GZ )Y ']C] ?} I~S IZ=b %Z BZ>a =]B^ 8Z ._?^ DX" + "@_ ,Z \"[ 3Y X 5Z CW:gJ`)Z\"Z$~T Cb=_'~W E~S FZ %b:a'Z(Z :Z \"Z 4Z1] G~Q)Y JY(Y0b N`>` FZ %a?` JZ+Z!^_ 8b @a2a$[.[ 8Z <~` AX ?X Y L\\@c Fb@] ?^` H`>` I`>` Ja?a Ja?` LY(Y$f?` H_>_ F_>_ G_>_ H_>" + "_ 3Z 2Z #YIS;[ K\\?c G\\?c G\\?b E\\@c F\\@c G\\?c,\\?[L^9Y'^} I~S I~ $Z B| ;^F_ 7Z -aEa Dv +Z \"[ 0V U 2Z CX9dI^'Z\"Z$~S AfGd'~U C~S FZ $gGg&Z(Z :Z \"Z 4Z0] H" + "~Q)Y JY(Y0b McGd EZ $dGc IZ+[\"cEd 3Y 3cGc 7a ?`1a$Z,[ 9Z =~a AX ?X Y L^DZNY FYNZF_ =`CY B^EZNY CaB] 7" + "Y .qMY GY1Y 5Y NX 0X8\\ 3Y FY3Y2Y+Y1Y D_F_ CYNYE_ B^EZNX ;Y *]A^ 4k >^G[NY 8a 9_9^ H[8[ 5^ 6~P 2Y X Y " + " D^H[La NfH` AYD[ 6^E_ ?`?X EY1Y 7_ 7Y0Y IcFk(]HZLZI^ `Nk BY9Z E~Q GYNZE^ B_E_ ,e ;]G] J~c!~T FZ 3oDo @Z :Z(Z :" + "Z 5dGd )X Jd \"e KZ -`MUKY H~U IU&U 6Z X AY 5Z7Z LZ7Z ;~d 3cFk 8WEW " + " BW LV)X0X FW LW$\\ 2Z\"Z+[#Z)Z\"Z*Z\"Z*Z\"Z*Z\"Z:Z.~T*fGd N~T J~T I~S I~S 7Z !Z !Z \"Z :~U JY/a MdGc FcGd GcGd" + " HdGd HdGc JW&W$kGc FbFb DbFb FcFb FcGc 3Z 2Z #YIWB] I^DZNY F]D[NY F]D[NX E^DZNY F^DZNY F^E[NY+]D]J`@]&`BY AaA]" + " DaA] DaA] DaA] 5Y Y NX Y /_F_ CX0X D_E_ ?_F_ ?_F_ @_E_ ?_F_ 7aF_ @^FZMX D^FZMX D_GZMX D_G[NY 7_ 7YNYE_ 4^" + " dLd CdMd BdLd CdLd DeMd 2X !` %X =Y ?U LV MZ !Y 5X.Y As AZ4Y 6` 5~] )x -Z " + "*X@X 9} BX3YFZ-{L] 4Y LY FX NZ GZ )X $t >} I~S I} #Z B{ :v 7[ ,{ Cu *Z \"[ -S S 0Z BW8aG[%[\"Z$~R" + " ?~S'~T B~S FZ #~V%Z(Z :Z \"Z 4Z/] I~Q)Y JY(Y/a L~ DZ #~ HZ*Z\"~R 2Y 2} 5` ?`0_$[+Z 9Z =~a AX ?X Y KsN" + "Y FYNr ;u AqMY B{ 7Y -oLY GY1Y 5Y NX 0X7\\ 4Y FY3Y2Y+Y1Y Cv BYNr ArMX ;Y *y 2j >qMY 8a 8^9^ I[6Z 5^ 6~P 2Y X " + " Y CpK` N} ?YF[ 5w =x EY1Y 6] 7Z0Z J~Y(nJm M{ AY9\\ F~ FYMq @w *d ;r J~d!~T FZ 3oDo @Z :Z(Z :Z 4~ 'X " + " Ib c JZ ,u H~U HS$S 5Z X AY 4\\>\\ I]>\\ :~d 3~Y 8WEW CW KV)W0X FX LW" + "$[ 2[\"Z+Z!Z*Z\"Z+Z!Z*Z!Z,Z!Z:Z.~T)~S N~T J~T I~S I~S 7Z !Z !Z \"Z :~T IY/a L~ D~ E~ F~ E~ HU$U$~X D| B| D} D} " + "2Z 2Z #YIr HrMY FsMY FsMX DsNY ErMY FsMY+uH|%v @| C| C| C| 5Y Y NX Y .v BX0X Cw =w >v >w =w 8{ ?qMX CqMX C" + "qMX CqMY 6] 6YNr 3^ My Ay @y @z Ay 1X _ $V X !" + "Y JqMY FYMp 9t ApLY Az 7Y ,mKY GY1Y 5Y NX 0X6\\ 5Y FY3Y2Y+Y1Y Bt AYMp ?pLX ;Y *x 1j =oLY 8a 8]8^ IZ4Z 6" + "] 5~P 2Y X Y CoI_ N} ?[K] 3u ;w EY1Y 6] 7Y.Y JvM_'mJm Ly @Y9b K| EYLp ?u (c :p I~e\"~T FZ 3oDo @Z :Z(Z" + " :Z 2{ &X H` Ma IZ +t H~U GQ\"Q 4Z X AY 2aLb FaKa 8~d 3YNlN_ 8WEW " + "DX KV*W0o-W KW%[ 1Z Z,Z!Z+Z Z,Z!Z+Z Z,Z!Z;Z-~T'~P M~T J~T I~S I~S 7Z !Z !Z \"Z :~R GY.` K| B| C{ B{ B{ FS\"S$YM" + "{ Bz @z B{ B{ 1Z 2Z #YIq GqLY EqLY EqLX CqMY ErMY EqLY*sF{$u ?{ B{ B{ B{ 5Y Y NX Y -t AX0X Bu ;u pLX CpLX CpLX BoLY 6] 6YMp 1] Lv >w =v =v >w 0X _ #T ;X ?W MV LW LV 4X.Y ?n >Y3Z 7_ 1~Z " + " 't +Z *W?X 8y @X1j)vG] 5X MY EX NZ GZ *X !p <} I~S Iz Z By 6r 5Z )w As (Z \"[ " + " 5Z AX HZ Z%~ 9|$~P >~S FZ ~P\"Z(Z :Z \"Z 4Z-] K~Q)Y JY(Y.` Jy AZ x EZ)Z#~P 0Y /x 3_ =_0_%Z([ ;Z =~a AX " + ">X !Y JpLY FYLn 7s @nKY @y 7Y +kJY GY1Y 5Y NX 0X5\\ 6Y FY3Y2Y+Y1Y Ar @YLn =nKX ;Y *w /i x ?x @y 0Z 2Z #YIp EoKY DoKY DoKX BoLY DpLY DoKY)qCy#t =y @y @y @y 5Y Y NX Y ,r @X0X As 9s :r :s 9s 7z <" + "nKX BnKX BnKX BnKY 6] 6YLn 0\\ Jt ;s :t ;t ;s .X N] !R 9V >W NX LU KU 3X.Y >l =Y2Y 7_ /~X " + " %p )Z *W?W 4u @X/i(tE] 6Y NX DX NZ GZ *X m :} I~S Iy NZ Bw 2o 5Z 'u @r 'Z \"Z " + " 4Z AY J[ Z%} 6x\"} <~S FZ N| Z(Z :Z \"Z 4Z,] L~Q)Y JY(Y.` Hv @Z Mu DZ)[$~ /Y .u 0^ =^/_&['Z ;Z =~a AX >X" + " !Y InKY FYKl 5r ?lJY >w 7Y )hIY GY1Y 5Y NX 0X4\\ 7Y FY3Y2Y+Y1Y @p ?YKl ;lJX ;Y *v -h ;kJY 7_ 7]7\\ J[2" + "[ 7\\ 5~P 2Y X Y AkE] Nz :i .p 7u EY1Y 5[ 7Y,Y KYMiL_%iGj Hu >Y8a Hv BYJl :p $a 7k H~f\"~T FZ 3oDo @Z " + ":Z(Z :Z /u #X F\\ I] GZ )r H~U *Z X AY /p >o 4~d 3YMiK^ 8WEW EX " + "JV+W/o/X JW&Z 0[ Z-Z NZ-[ [.Z NZ,Z NZ.Z NZ=Z,~T$x I~T J~T I~S I~S 7Z !Z !Z \"Z :| BY-_ Hv p %Z \"Z " + " 4Z @X JZ MZ&{ 3u z 9~S FZ Lx MZ(Z :Z \"Z 4Z+] M~Q)Y JY(Y-_ Fr >Z Lr BZ(Z!y -Y -s /] <^.]&[&[ m >YJj 8iIX ;Y *u *f :iIY 7_ 6\\7" + "\\ K[0Z 6Z 4~P 2Y X Y ?hC\\ NYMm 8f +m 3s EY1Y 5[ 8Z,Y KYLgJ^$gEh Fs =Y8a Fr @YIi 7m !` 6i G~g#~T FZ 3o" + "Do @Z :Z(Z :Z .s \"X EZ G[ FZ 'p H~U *Z X AY ,k :k 2~d 3YLgJ^ 8WEW " + " EW IV,X/o/W IW&Z 0Z MZ/[ NZ-Z MZ.Z N[.Z MZ.Z MZ>Z,~T\"t G~T J~T I~S I~S 7Z !Z !Z \"Z :y ?Y-_ Fr 8r 9r :s :r " + " AXEr :r 8r :s :s -Z 2Z #YIn AkIY BkIY BkIX @jIY BkIY BkIY'l=t Mq :t ;t ;t ;t 3Y Y NX Y *m =X0X >m 3m 5n 5m" + " 3m 6XLm 7iHX @iHX @jIX @jIY 5[ 5YJj -Z El 3k 2l 3l 4l *X N\\ 5U ?Y Y KR HQ 1X.Y 9b 9Y1Z 7" + "] )~S \"j &Z +X@X -h ;X+c!l?\\ 6X Y DX Z FZ +X Kh 8} I~S Fr JZ As ,i 3[ $n ;m " + "#Z \"Y 3Z ?X KZ MZ&x -p Mu 4~S FZ Js JZ(Z :Z \"Z 4Z*] N~Q)Y JY(Y-_ Dn gB[ NYLj 5d (j 0q EY1Y 5Z 7Y+Z LYKdG]\"dBd Bo ;Y7` Dn >YHg 4i L^ 4e " + "E~g#~T FZ 3oDo @Z :Z(Z :Z ,n NX DX EY EZ %m G~U *Z X BZ )e 4e /~d 3YKeH] 8" + "WEW FW HV,W.o0X IW'Z /Z MZ/Z LZ.Z MZ/[ MZ.Z MZ/[ MZ>Y+~T p E~T J~T I~S I~S 7Z !Z !Z \"Z :u ;Y,^ Dn 4" + "n 5n 6o 6n @XBm 5n 4n 6o 6o +Z 2Z #YIl =gGY AhGY AhGX ?hHY @hHY @gGY%i:o Hm 7p 6o 6p 7p 1Y Y NX Y (i ;X0X " + "fGX >fGX >fGY 4Y 4YHf +Z Bg /g .g -g /g (X M[ 5T ?Z !Z JP 'X.Y 5" + "[ 6Y0Y 7] &~P Ne $Z +W?X '] 6W)a Mh<\\ 7Y !X CX Y EZ +X Id 6} I~S Cm HZ =l 'e " + "1Z i 6h !Z #Z 3Z ?Y M[ M['s &k Jo .~S FZ Gm GZ(Z :Z \"Z 4Z)] ~Q)Y JY(Y,^ Bi 9Z Gl AZ'Z Jm (Y (i )\\ " + ";].]'[#Z =Z =~a AX =X \"Y DdFY FYFb *h 6cFY 8j 0Y \"YAY GY1Y 5Y NX 0X1\\ :Y FY3Y2Y+Y1Y ;f :YFb 1cFX ;Y" + " $k ` 7cFY 6] 5[5Z KZ-[ 8Y 3~P 2Y X Y ;b=X NYJe 0` $e +l BY1Y 4Y 7Y*Y LYIaE[ b@a >k 9Y6_ Ah ;YFc 0e " + "FZ 2a D~i$~T FZ 3oDo @Z :Z(Z :Z )i LX CV CW DZ #h D~U *Z X -R9Z #[ *[ *~d 3" + "YIaE\\ 8WEW GX HV-W-o0W HW'Z 0Z L[0Z LZ/[ LZ0Z LZ/[ LZ0Z LZ?Z+~T Lj B~T J~T I~S I~S 7Z !Z !Z \"Z :o " + "5Y,^ Ai /h 0i 0i 0i >W?i 1j 0j 1j 1i (Z 2Z #YGh 9cEY ?dEY ?dEX =dFY >dFY >cEY#d5j Ch 1j 1j 1j 1j -Y Y NX Y" + " &e 9X0X :e ,f -f -e ,f 4XFe 0cEX a NU CZ N` 9X -T<[ " + " LYG]BX 5WEW %U HW NX MX GZ (d +b (b )b )a )b 9V;a " + ")c *c *c *c =a 4_ &^ %^ $^ &_ &_ :_/c RM] !R Z 5\\ " + " 9X ;X $Y HY NY 0Y 'X NY BY X !Y " + ":Y 8Y 4Y *Y 1Y EX 3Y CZ IU 3X -p " + " IY 8WEW #V &Z MV " + " 0U 'P ;Y 2Y >Z 8X " + " MT *X &X 9X DX " + " 5X ?\\%W ?Z 4\\ :X ;X $Y " + " IZ NY 0Y 'X NY BZ !X !Y :Y 8Y 4Y *Y 1Y EX 3Y " + " CZ IU 3X -o HY 8WEW \"V " + " 'Z LU 0V " + " CZ 2Y >Y 7X " + " MT )X 'X 9X DX 5W <\\(X ?" + "Z 3\\ ;Y e GX 2f KZ LY 0Y 'X !Y >" + "\\ %X &] 9Y 8Y 4Y *Y 1Y EX 3Y CZ IU 3" + "X $^ @Y 8WEW !V '\\:V ;V " + " 1W GZ 0Y @Z " + " FWHX LT 'X +W 7W " + " V 5b?c A[ -\\ ?e !f " + " f /X 0g 9Y 8Y 4Y *Y " + " 1Y EX 3Y CZ IU 3X 5Y " + " NV &\\=X ;V " + "1W GY /Y AZ EWHX " + " LT &W ,X 7V V 3~T " + " A] ,\\ @e !f d " + " %e -Y Nd @c " + " (m @c " + " +u $b -Y 'X 0d 2^ /X 0_ 1Y 8Y 4Y *Y " + " 1Y EX 3Y CZ IT 2X 5Y " + "-c !q Hd >c " + " $d ,Y Nd ?b " + " %g =" + "b *t #a ,Y 'X 0d " + " ,X /X 0Y +Y 8Y 4Y *Y 1Y EX 3Y CZ '" + "X 5Y -c Nm Fc " + " =c $c +Y Nc " + " >a " + " M\\ 8a \"~Y 1" + "r !` +Y 'X 0c 1X 1Y 8Y 4Y *Y 1Y EX 3Y " + " CZ &W 5Y -b Lj " + " Db std::printf(). + \note If configuration macro \c cimg_strict_warnings is set, this function throws a + \c CImgWarningException instead. + \warning As the first argument is a format string, it is highly recommended to write + \code + cimg::warn("%s",warning_message); + \endcode + instead of + \code + cimg::warn(warning_message); + \endcode + if \c warning_message can be arbitrary, to prevent nasty memory access. + **/ + inline void warn(const char *const format, ...) { + if (cimg::exception_mode()>=1) { + char *const message = new char[16384]; + std::va_list ap; + va_start(ap,format); + cimg_vsnprintf(message,16384,format,ap); + va_end(ap); +#ifdef cimg_strict_warnings + throw CImgWarningException(message); +#else + std::fprintf(cimg::output(),"\n%s[CImg] *** Warning ***%s%s\n",cimg::t_red,cimg::t_normal,message); +#endif + delete[] message; + } + } + + // Execute an external system command. + /** + \param command C-string containing the command line to execute. + \param module_name Module name. + \return Status value of the executed command, whose meaning is OS-dependent. + \note This function is similar to std::system() + but it does not open an extra console windows + on Windows-based systems. + **/ + inline int system(const char *const command, const char *const module_name=0, const bool is_verbose=false) { + cimg::unused(module_name); +#ifdef cimg_no_system_calls + cimg::unused(command,is_verbose); + return -1; +#else + + if (is_verbose) return std::system(command); +#if cimg_OS==1 + const unsigned int l = (unsigned int)std::strlen(command); + if (l) { + char *const ncommand = new char[l + 24]; + std::memcpy(ncommand,command,l); + std::strcpy(ncommand + l," >/dev/null 2>&1"); // Make command silent + const int out_val = std::system(ncommand); + delete[] ncommand; + return out_val; + } else return -1; +#elif cimg_OS==2 + PROCESS_INFORMATION pi; + STARTUPINFOA si; + std::memset(&pi,0,sizeof(PROCESS_INFORMATION)); + std::memset(&si,0,sizeof(STARTUPINFO)); + GetStartupInfoA(&si); + si.cb = sizeof(si); + si.wShowWindow = SW_HIDE; + si.dwFlags |= SW_HIDE | STARTF_USESHOWWINDOW; + const BOOL res = CreateProcessA((LPCSTR)module_name,(LPSTR)command,0,0,FALSE,0,0,0,&si,&pi); + if (res) { + WaitForSingleObject(pi.hProcess,INFINITE); + CloseHandle(pi.hThread); + CloseHandle(pi.hProcess); + return 0; + } else { + char* lpMsgBuf; + + // Get the error message. + DWORD errorCode = GetLastError(); + FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, + 0,errorCode,MAKELANGID(LANG_NEUTRAL,SUBLANG_DEFAULT),(LPSTR)&lpMsgBuf,0,0); + cimg::warn("cimg::system() : Command '%s' (module name '%s) failed with error %lu: %s", + module_name==0?"(null)":module_name, + command==0?"(null)":command, + errorCode,lpMsgBuf); + return -1; + } +#else + return std::system(command); +#endif +#endif + } + + //! Return a reference to a temporary variable of type T. + template + inline T& temporary(const T&) { + static T temp; + return temp; + } + + //! Exchange values of variables \c a and \c b. + template + inline void swap(T& a, T& b) { T t = a; a = b; b = t; } + + //! Exchange values of variables (\c a1,\c a2) and (\c b1,\c b2). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2) { + cimg::swap(a1,b1); cimg::swap(a2,b2); + } + + //! Exchange values of variables (\c a1,\c a2,\c a3) and (\c b1,\c b2,\c b3). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3) { + cimg::swap(a1,b1,a2,b2); cimg::swap(a3,b3); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a4) and (\c b1,\c b2,...,\c b4). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4) { + cimg::swap(a1,b1,a2,b2,a3,b3); cimg::swap(a4,b4); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a5) and (\c b1,\c b2,...,\c b5). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4); cimg::swap(a5,b5); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a6) and (\c b1,\c b2,...,\c b6). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5); cimg::swap(a6,b6); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a7) and (\c b1,\c b2,...,\c b7). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6, + T7& a7, T7& b7) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6); cimg::swap(a7,b7); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a8) and (\c b1,\c b2,...,\c b8). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6, + T7& a7, T7& b7, T8& a8, T8& b8) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6,a7,b7); cimg::swap(a8,b8); + } + + //! Return the endianness of the current architecture. + /** + \return \c false for Little Endian or \c true for Big Endian. + **/ + inline bool endianness() { + const int x = 1; + return ((unsigned char*)&x)[0]?false:true; + } + + //! Reverse endianness of all elements in a memory buffer. + /** + \param[in,out] buffer Memory buffer whose endianness must be reversed. + \param size Number of buffer elements to reverse. + **/ + template + inline void invert_endianness(T* const buffer, const cimg_ulong size) { + if (size) switch (sizeof(T)) { + case 1 : break; + case 2 : { + for (unsigned short *ptr = (unsigned short*)buffer + size; ptr>(unsigned short*)buffer; ) { + const unsigned short val = *(--ptr); + *ptr = (unsigned short)((val>>8) | ((val<<8))); + } + } break; + case 4 : { + for (unsigned int *ptr = (unsigned int*)buffer + size; ptr>(unsigned int*)buffer; ) { + const unsigned int val = *(--ptr); + *ptr = (val>>24) | ((val>>8)&0xff00) | ((val<<8)&0xff0000) | (val<<24); + } + } break; + case 8 : { + const cimg_uint64 + m0 = (cimg_uint64)0xff, m1 = m0<<8, m2 = m0<<16, m3 = m0<<24, + m4 = m0<<32, m5 = m0<<40, m6 = m0<<48, m7 = m0<<56; + for (cimg_uint64 *ptr = (cimg_uint64*)buffer + size; ptr>(cimg_uint64*)buffer; ) { + const cimg_uint64 val = *(--ptr); + *ptr = (((val&m7)>>56) | ((val&m6)>>40) | ((val&m5)>>24) | ((val&m4)>>8) | + ((val&m3)<<8) |((val&m2)<<24) | ((val&m1)<<40) | ((val&m0)<<56)); + } + } break; + default : { + for (T* ptr = buffer + size; ptr>buffer; ) { + unsigned char *pb = (unsigned char*)(--ptr), *pe = pb + sizeof(T); + for (int i = 0; i<(int)sizeof(T)/2; ++i) swap(*(pb++),*(--pe)); + } + } + } + } + inline void invert_endianness(bool* const, const cimg_ulong) {} + inline void invert_endianness(unsigned char* const, const cimg_ulong) {} + inline void invert_endianness(char* const, const cimg_ulong) {} + + //! Reverse endianness of a single variable. + /** + \param[in,out] a Variable to reverse. + \return Reference to reversed variable. + **/ + template + inline T& invert_endianness(T& a) { + invert_endianness(&a,1); + return a; + } + + // Conversion functions to get more precision when trying to store 'unsigned int' values as 'float'. + inline unsigned int float2uint(const float value) { + int tmp = 0; + std::memcpy(&tmp,&value,sizeof(float)); + if (tmp>=0) return (unsigned int)value; + unsigned int u; + // use memcpy instead of assignment to avoid undesired optimizations by C++-compiler. + std::memcpy(&u,&value,sizeof(float)); + return ((u)<<2)>>2; // set sign & exponent bit to 0 + } + + inline float uint2float(const unsigned int value) { + if (value<(1U<<19)) return (float)value; // Consider 'uint32' safely stored as floats until 19bits (i.e 524287) + float f; + const unsigned int v = value | (3U<<(8*sizeof(unsigned int)-2)); // set sign & exponent bit to 1 + // use memcpy instead of simple assignment to avoid undesired optimizations by C++-compiler. + std::memcpy(&f,&v,sizeof(float)); + return f; + } + + //! Return the value of a system timer, with a millisecond precision. + /** + \note The timer does not necessarily starts from \c 0. + **/ + inline cimg_uint64 time() { +#if cimg_OS==1 + struct timeval st_time; + gettimeofday(&st_time,0); + return (cimg_uint64)st_time.tv_sec*1000 + (cimg_uint64)st_time.tv_usec/1000; +#elif cimg_OS==2 + ULARGE_INTEGER ul; + FILETIME ft; + GetSystemTimeAsFileTime(&ft); + ul.LowPart = ft.dwLowDateTime; + ul.HighPart = ft.dwHighDateTime; + return (cimg_uint64)ul.QuadPart/10000; +#else + return 0; +#endif + } + + // Implement a tic/toc mechanism to display elapsed time of algorithms. + inline cimg_uint64 tictoc(const bool is_tic); + + //! Start tic/toc timer for time measurement between code instructions. + /** + \return Current value of the timer (same value as time()). + **/ + inline cimg_uint64 tic() { + return cimg::tictoc(true); + } + + //! End tic/toc timer and displays elapsed time from last call to tic(). + /** + \return Time elapsed (in ms) since last call to tic(). + **/ + inline cimg_uint64 toc() { + return cimg::tictoc(false); + } + + //! Sleep for a given numbers of milliseconds. + /** + \param milliseconds Number of milliseconds to wait for. + \note This function frees the CPU resources during the sleeping time. + It can be used to temporize your program properly, without wasting CPU time. + **/ + inline void sleep(const unsigned int milliseconds) { +#if cimg_OS==1 + struct timespec tv; + tv.tv_sec = milliseconds/1000; + tv.tv_nsec = (milliseconds%1000)*1000000; + nanosleep(&tv,0); +#elif cimg_OS==2 + Sleep(milliseconds); +#else + cimg::unused(milliseconds); +#endif + } + + inline unsigned int wait(const unsigned int milliseconds, cimg_uint64 *const p_timer) { + if (!*p_timer) *p_timer = cimg::time(); + const cimg_uint64 current_time = cimg::time(); + if (current_time<*p_timer || current_time>=*p_timer + milliseconds) { *p_timer = current_time; return 0; } + const unsigned int time_diff = (unsigned int)(*p_timer + milliseconds - current_time); + *p_timer = current_time + time_diff; + cimg::sleep(time_diff); + return time_diff; + } + + //! Wait for a given number of milliseconds since the last call to wait(). + /** + \param milliseconds Number of milliseconds to wait for. + \return Number of milliseconds elapsed since the last call to wait(). + \note Same as sleep() with a waiting time computed with regard to the last call + of wait(). It may be used to temporize your program properly, without wasting CPU time. + **/ + inline unsigned int wait(const unsigned int milliseconds) { + cimg::mutex(3); + static cimg_uint64 timer = cimg::time(); + cimg::mutex(3,0); + return cimg::wait(milliseconds,&timer); + } + + // Custom random number generator (allow re-entrance). + inline cimg_uint64& rng() { // Used as a shared global number for rng + static cimg_uint64 rng = 0xB16B00B5U; + return rng; + } + + inline unsigned int _rand(cimg_uint64 *const p_rng) { + *p_rng = *p_rng*1103515245 + 12345U; + return (unsigned int)*p_rng; + } + + inline unsigned int _rand() { + cimg::mutex(4); + const unsigned int res = cimg::_rand(&cimg::rng()); + cimg::mutex(4,0); + return res; + } + + inline void srand(cimg_uint64 *const p_rng) { +#if cimg_OS==1 || defined(__BORLANDC__) + *p_rng = cimg::time() + (cimg_uint64)getpid(); +#elif cimg_OS==2 + *p_rng = cimg::time() + (cimg_uint64)_getpid(); +#endif + } + + inline void srand() { + cimg::mutex(4); + cimg::srand(&cimg::rng()); + cimg::mutex(4,0); + } + + inline void srand(const cimg_uint64 seed) { + cimg::mutex(4); + cimg::rng() = seed; + cimg::mutex(4,0); + } + + inline double rand(const double val_min, const double val_max, cimg_uint64 *const p_rng) { + return val_min + (val_max - val_min)*cimg::_rand(p_rng)/~0U; + } + + inline double rand(const double val_min, const double val_max) { + cimg::mutex(4); + const double res = cimg::rand(val_min,val_max,&cimg::rng()); + cimg::mutex(4,0); + return res; + } + + inline double rand(const double val_max, cimg_uint64 *const p_rng) { + return val_max*cimg::_rand(p_rng)/(double)~0U; + } + + inline double rand(const double val_max=1) { + cimg::mutex(4); + const double res = cimg::rand(val_max,&cimg::rng()); + cimg::mutex(4,0); + return res; + } + + inline double grand(cimg_uint64 *const p_rng) { + double x1, w; + do { + const double x2 = cimg::rand(-1,1,p_rng); + x1 = cimg::rand(-1,1,p_rng); + w = x1*x1 + x2*x2; + } while (w<=0 || w>=1.); + return x1*std::sqrt((-2*std::log(w))/w); + } + + inline double grand() { + cimg::mutex(4); + const double res = cimg::grand(&cimg::rng()); + cimg::mutex(4,0); + return res; + } + + inline unsigned int prand(const double z, cimg_uint64 *const p_rng) { + if (z<=1.e-10) return 0; + if (z>100) return (unsigned int)((std::sqrt(z) * cimg::grand(p_rng)) + z); + unsigned int k = 0; + const double y = std::exp(-z); + for (double s = 1.; s>=y; ++k) s*=cimg::rand(1,p_rng); + return k - 1; + } + + inline unsigned int prand(const double z) { + cimg::mutex(4); + const unsigned int res = cimg::prand(z,&cimg::rng()); + cimg::mutex(4,0); + return res; + } + + //! Cut (i.e. clamp) value in specified interval. + template + inline T cut(const T& val, const t& val_min, const t& val_max) { + return val<=val_min?(T)val_min:val>=val_max?(T)val_max:val; + } + + //! Bitwise-rotate value on the left. + template + inline T rol(const T& a, const unsigned int n=1) { + return n?(T)((a<>((sizeof(T)<<3) - n))):a; + } + + inline float rol(const float a, const unsigned int n=1) { + return (float)rol((int)a,n); + } + + inline double rol(const double a, const unsigned int n=1) { + return (double)rol((cimg_long)a,n); + } + + inline double rol(const long double a, const unsigned int n=1) { + return (double)rol((cimg_long)a,n); + } + +#ifdef cimg_use_half + inline half rol(const half a, const unsigned int n=1) { + return (half)rol((int)a,n); + } +#endif + + //! Bitwise-rotate value on the right. + template + inline T ror(const T& a, const unsigned int n=1) { + return n?(T)((a>>n)|(a<<((sizeof(T)<<3) - n))):a; + } + + inline float ror(const float a, const unsigned int n=1) { + return (float)ror((int)a,n); + } + + inline double ror(const double a, const unsigned int n=1) { + return (double)ror((cimg_long)a,n); + } + + inline double ror(const long double a, const unsigned int n=1) { + return (double)ror((cimg_long)a,n); + } + +#ifdef cimg_use_half + inline half ror(const half a, const unsigned int n=1) { + return (half)ror((int)a,n); + } +#endif + + //! Return absolute value of a value. + template + inline T abs(const T& a) { + return a>=0?a:-a; + } + inline bool abs(const bool a) { + return a; + } + inline int abs(const unsigned char a) { + return (int)a; + } + inline int abs(const unsigned short a) { + return (int)a; + } + inline int abs(const unsigned int a) { + return (int)a; + } + inline int abs(const int a) { + return std::abs(a); + } + inline cimg_int64 abs(const cimg_uint64 a) { + return (cimg_int64)a; + } + inline double abs(const double a) { + return std::fabs(a); + } + inline float abs(const float a) { + return (float)std::fabs((double)a); + } + + //! Return hyperbolic arcosine of a value. + inline double acosh(const double x) { +#if cimg_use_cpp11==1 && !defined(_MSC_VER) + return std::acosh(x); +#else + return std::log(x + std::sqrt(x*x - 1)); +#endif + } + + //! Return hyperbolic arcsine of a value. + inline double asinh(const double x) { +#if cimg_use_cpp11==1 && !defined(_MSC_VER) + return std::asinh(x); +#else + return std::log(x + std::sqrt(x*x + 1)); +#endif + } + + //! Return hyperbolic arctangent of a value. + inline double atanh(const double x) { +#if cimg_use_cpp11==1 && !defined(_MSC_VER) + return std::atanh(x); +#else + return 0.5*std::log((1. + x)/(1. - x)); +#endif + } + + //! Return the sinc of a given value. + inline double sinc(const double x) { + return x?std::sin(x)/x:1; + } + + //! Return base-2 logarithm of a value. + inline double log2(const double x) { +#if cimg_use_cpp11==1 && !defined(_MSC_VER) + return std::log2(x); +#else + const double base2 = std::log(2.); + return std::log(x)/base2; +#endif + } + + //! Return square of a value. + template + inline T sqr(const T& val) { + return val*val; + } + + // Return inverse of error function. + template + inline T erfinv(const T& val) { + const T + sgn = val<0?-1:1, + x = (1 - val)*(1 + val), + lnx = std::log(x), + tt1 = (T)(2/(cimg::PI*0.147) + 0.5*lnx), + tt2 = lnx/(T)0.147; + return sgn*std::sqrt(-tt1 + std::sqrt(tt1*tt1 - tt2)); + } + + //! Return cubic root of a value. + template + inline double cbrt(const T& x) { +#if cimg_use_cpp11==1 + return std::cbrt(x); +#else + return x>=0?std::pow((double)x,1./3):-std::pow(-(double)x,1./3); +#endif + } + + template + inline T pow3(const T& val) { + return val*val*val; + } + template + inline T pow4(const T& val) { + return val*val*val*val; + } + + //! Return the minimum between three values. + template + inline t min(const t& a, const t& b, const t& c) { + return std::min(std::min(a,b),c); + } + + //! Return the minimum between four values. + template + inline t min(const t& a, const t& b, const t& c, const t& d) { + return std::min(std::min(a,b),std::min(c,d)); + } + + //! Return the minabs between two values. + template + inline t minabs(const t& a, const t& b) { + return cimg::abs(b) + inline t minabs(const t& a, const t& b, const t& abs_b) { + return abs_b + inline t max(const t& a, const t& b, const t& c) { + return std::max(std::max(a,b),c); + } + + //! Return the maximum between four values. + template + inline t max(const t& a, const t& b, const t& c, const t& d) { + return std::max(std::max(a,b),std::max(c,d)); + } + + //! Return the maxabs between two values. + template + inline t maxabs(const t& a, const t& b) { + return cimg::abs(b)>cimg::abs(a)?b:a; + } + + template + inline t maxabs(const t& a, const t& b, const t& abs_b) { + return abs_b>cimg::abs(a)?b:a; + } + + //! Return the sign of a value. + template + inline T sign(const T& x) { + return (T)(cimg::type::is_nan(x)?0:x<0?-1:x>0); + } + + //! Return the nearest power of 2 higher than given value. + template + inline cimg_uint64 nearest_pow2(const T& x) { + cimg_uint64 i = 1; + while (x>i) i<<=1; + return i; + } + + //! Return the modulo of a value. + /** + \param x Input value. + \param m Modulo value. + \note This modulo function accepts negative and floating-points modulo numbers, as well as variables of any type. + **/ + template + inline T mod(const T& x, const T& m) { + if (!m) { + if (cimg::type::is_float()) return cimg::type::nan(); + else throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + } + const double dx = (double)x, dm = (double)m; + if (!cimg::type::is_finite(dm)) return x; + if (cimg::type::is_finite(dx)) return (T)(dx - dm * std::floor(dx / dm)); + return (T)0; + } + inline int mod(const bool x, const bool m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return x?1:0; + } + inline int mod(const unsigned char x, const unsigned char m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return x%m; + } + inline int mod(const char x, const char m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); +#if defined(CHAR_MAX) && CHAR_MAX==255 + return x%m; +#else + return x>=0?x%m:(x%m?m + x%m:0); +#endif + } + inline int mod(const unsigned short x, const unsigned short m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return (int)(x%m); + } + inline int mod(const short x, const short m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return (int)(x>=0?x%m:(x%m?m + x%m:0)); + } + inline int mod(const unsigned int x, const unsigned int m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return (int)(x%m); + } + inline int mod(const int x, const int m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return (int)(x>=0?x%m:(x%m?m + x%m:0)); + } + inline cimg_int64 mod(const cimg_uint64 x, const cimg_uint64 m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return (cimg_int64)(x%m); + } + inline cimg_int64 mod(const cimg_int64 x, const cimg_int64 m) { + if (!m) throw CImgArgumentException("cimg::mod(): Specified modulo value is 0."); + return (cimg_int64)(x>=0?x%m:(x%m?m + x%m:0)); + } + + //! Return the min-mod of two values. + /** + \note minmod(\p a,\p b) is defined to be: + - minmod(\p a,\p b) = min(\p a,\p b), if \p a and \p b have the same sign. + - minmod(\p a,\p b) = 0, if \p a and \p b have different signs. + **/ + template + inline T minmod(const T& a, const T& b) { + return a*b<=0?0:(a>0?(a + inline T round(const T& x) { + return (T)std::floor((_cimg_Tfloat)x + 0.5f); + } + + template + inline int uiround(const T x) { + return cimg::type::is_float()?(int)(x + 0.5f):(int)x; + } + + //! Return rounded value. + /** + \param x Value to be rounded. + \param y Rounding precision. + \param rounding_type Type of rounding operation (\c 0 = nearest, \c -1 = backward, \c 1 = forward). + \return Rounded value, having the same type as input value \c x. + **/ + template + inline T round(const T& x, const double y, const int rounding_type=0) { + if (y<=0) return x; + if (y==1) switch (rounding_type) { + case 0 : return cimg::round(x); + case 1 : return (T)std::ceil((_cimg_Tfloat)x); + default : return (T)std::floor((_cimg_Tfloat)x); + } + const double sx = (double)x/y, floor = std::floor(sx), delta = sx - floor; + return (T)(y*(rounding_type<0?floor:rounding_type>0?std::ceil(sx):delta<0.5?floor:std::ceil(sx))); + } + + // Code to compute fast median from 2,3,5,7,9,13,25 and 49 values. + // (contribution by RawTherapee: http://rawtherapee.com/). + template + inline T median(T val0, T val1) { + return (val0 + val1)/2; + } + + template + inline T median(T val0, T val1, T val2) { + return std::max(std::min(val0,val1),std::min(val2,std::max(val0,val1))); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4) { + T tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); + val3 = std::max(val0,tmp); val1 = std::min(val1,val4); tmp = std::min(val1,val2); val2 = std::max(val1,val2); + val1 = tmp; tmp = std::min(val2,val3); + return std::max(val1,tmp); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6) { + T tmp = std::min(val0,val5); + val5 = std::max(val0,val5); val0 = tmp; tmp = std::min(val0,val3); val3 = std::max(val0,val3); val0 = tmp; + tmp = std::min(val1,val6); val6 = std::max(val1,val6); val1 = tmp; tmp = std::min(val2,val4); + val4 = std::max(val2,val4); val2 = tmp; val1 = std::max(val0,val1); tmp = std::min(val3,val5); + val5 = std::max(val3,val5); val3 = tmp; tmp = std::min(val2,val6); val6 = std::max(val2,val6); + val3 = std::max(tmp,val3); val3 = std::min(val3,val6); tmp = std::min(val4,val5); val4 = std::max(val1,tmp); + tmp = std::min(val1,tmp); val3 = std::max(tmp,val3); + return std::min(val3,val4); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8) { + T tmp = std::min(val1,val2); + val2 = std::max(val1,val2); val1 = tmp; tmp = std::min(val4,val5); + val5 = std::max(val4,val5); val4 = tmp; tmp = std::min(val7,val8); + val8 = std::max(val7,val8); val7 = tmp; tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); + val4 = std::max(val3,val4); val3 = tmp; tmp = std::min(val6,val7); + val7 = std::max(val6,val7); val6 = tmp; tmp = std::min(val1,val2); + val2 = std::max(val1,val2); val1 = tmp; tmp = std::min(val4,val5); + val5 = std::max(val4,val5); val4 = tmp; tmp = std::min(val7,val8); + val8 = std::max(val7,val8); val3 = std::max(val0,val3); val5 = std::min(val5,val8); + val7 = std::max(val4,tmp); tmp = std::min(val4,tmp); val6 = std::max(val3,val6); + val4 = std::max(val1,tmp); val2 = std::min(val2,val5); val4 = std::min(val4,val7); + tmp = std::min(val4,val2); val2 = std::max(val4,val2); val4 = std::max(val6,tmp); + return std::min(val4,val2); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8, T val9, T val10, T val11, + T val12) { + T tmp = std::min(val1,val7); + val7 = std::max(val1,val7); val1 = tmp; tmp = std::min(val9,val11); val11 = std::max(val9,val11); val9 = tmp; + tmp = std::min(val3,val4); val4 = std::max(val3,val4); val3 = tmp; tmp = std::min(val5,val8); + val8 = std::max(val5,val8); val5 = tmp; tmp = std::min(val0,val12); val12 = std::max(val0,val12); + val0 = tmp; tmp = std::min(val2,val6); val6 = std::max(val2,val6); val2 = tmp; tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val2,val3); val3 = std::max(val2,val3); val2 = tmp; + tmp = std::min(val4,val6); val6 = std::max(val4,val6); val4 = tmp; tmp = std::min(val8,val11); + val11 = std::max(val8,val11); val8 = tmp; tmp = std::min(val7,val12); val12 = std::max(val7,val12); val7 = tmp; + tmp = std::min(val5,val9); val9 = std::max(val5,val9); val5 = tmp; tmp = std::min(val0,val2); + val2 = std::max(val0,val2); val0 = tmp; tmp = std::min(val3,val7); val7 = std::max(val3,val7); val3 = tmp; + tmp = std::min(val10,val11); val11 = std::max(val10,val11); val10 = tmp; tmp = std::min(val1,val4); + val4 = std::max(val1,val4); val1 = tmp; tmp = std::min(val6,val12); val12 = std::max(val6,val12); val6 = tmp; + tmp = std::min(val7,val8); val8 = std::max(val7,val8); val7 = tmp; val11 = std::min(val11,val12); + tmp = std::min(val4,val9); val9 = std::max(val4,val9); val4 = tmp; tmp = std::min(val6,val10); + val10 = std::max(val6,val10); val6 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); val3 = tmp; + tmp = std::min(val5,val6); val6 = std::max(val5,val6); val5 = tmp; val8 = std::min(val8,val9); + val10 = std::min(val10,val11); tmp = std::min(val1,val7); val7 = std::max(val1,val7); val1 = tmp; + tmp = std::min(val2,val6); val6 = std::max(val2,val6); val2 = tmp; val3 = std::max(val1,val3); + tmp = std::min(val4,val7); val7 = std::max(val4,val7); val4 = tmp; val8 = std::min(val8,val10); + val5 = std::max(val0,val5); val5 = std::max(val2,val5); tmp = std::min(val6,val8); val8 = std::max(val6,val8); + val5 = std::max(val3,val5); val7 = std::min(val7,val8); val6 = std::max(val4,tmp); tmp = std::min(val4,tmp); + val5 = std::max(tmp,val5); val6 = std::min(val6,val7); + return std::max(val5,val6); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, + T val5, T val6, T val7, T val8, T val9, + T val10, T val11, T val12, T val13, T val14, + T val15, T val16, T val17, T val18, T val19, + T val20, T val21, T val22, T val23, T val24) { + T tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); + val3 = tmp; tmp = std::min(val2,val4); val4 = std::max(val2,val4); val2 = std::min(tmp,val3); + val3 = std::max(tmp,val3); tmp = std::min(val6,val7); val7 = std::max(val6,val7); val6 = tmp; + tmp = std::min(val5,val7); val7 = std::max(val5,val7); val5 = std::min(tmp,val6); val6 = std::max(tmp,val6); + tmp = std::min(val9,val10); val10 = std::max(val9,val10); val9 = tmp; tmp = std::min(val8,val10); + val10 = std::max(val8,val10); val8 = std::min(tmp,val9); val9 = std::max(tmp,val9); + tmp = std::min(val12,val13); val13 = std::max(val12,val13); val12 = tmp; tmp = std::min(val11,val13); + val13 = std::max(val11,val13); val11 = std::min(tmp,val12); val12 = std::max(tmp,val12); + tmp = std::min(val15,val16); val16 = std::max(val15,val16); val15 = tmp; tmp = std::min(val14,val16); + val16 = std::max(val14,val16); val14 = std::min(tmp,val15); val15 = std::max(tmp,val15); + tmp = std::min(val18,val19); val19 = std::max(val18,val19); val18 = tmp; tmp = std::min(val17,val19); + val19 = std::max(val17,val19); val17 = std::min(tmp,val18); val18 = std::max(tmp,val18); + tmp = std::min(val21,val22); val22 = std::max(val21,val22); val21 = tmp; tmp = std::min(val20,val22); + val22 = std::max(val20,val22); val20 = std::min(tmp,val21); val21 = std::max(tmp,val21); + tmp = std::min(val23,val24); val24 = std::max(val23,val24); val23 = tmp; tmp = std::min(val2,val5); + val5 = std::max(val2,val5); val2 = tmp; tmp = std::min(val3,val6); val6 = std::max(val3,val6); val3 = tmp; + tmp = std::min(val0,val6); val6 = std::max(val0,val6); val0 = std::min(tmp,val3); val3 = std::max(tmp,val3); + tmp = std::min(val4,val7); val7 = std::max(val4,val7); val4 = tmp; tmp = std::min(val1,val7); + val7 = std::max(val1,val7); val1 = std::min(tmp,val4); val4 = std::max(tmp,val4); tmp = std::min(val11,val14); + val14 = std::max(val11,val14); val11 = tmp; tmp = std::min(val8,val14); val14 = std::max(val8,val14); + val8 = std::min(tmp,val11); val11 = std::max(tmp,val11); tmp = std::min(val12,val15); + val15 = std::max(val12,val15); val12 = tmp; tmp = std::min(val9,val15); val15 = std::max(val9,val15); + val9 = std::min(tmp,val12); val12 = std::max(tmp,val12); tmp = std::min(val13,val16); + val16 = std::max(val13,val16); val13 = tmp; tmp = std::min(val10,val16); val16 = std::max(val10,val16); + val10 = std::min(tmp,val13); val13 = std::max(tmp,val13); tmp = std::min(val20,val23); + val23 = std::max(val20,val23); val20 = tmp; tmp = std::min(val17,val23); val23 = std::max(val17,val23); + val17 = std::min(tmp,val20); val20 = std::max(tmp,val20); tmp = std::min(val21,val24); + val24 = std::max(val21,val24); val21 = tmp; tmp = std::min(val18,val24); val24 = std::max(val18,val24); + val18 = std::min(tmp,val21); val21 = std::max(tmp,val21); tmp = std::min(val19,val22); + val22 = std::max(val19,val22); val19 = tmp; val17 = std::max(val8,val17); tmp = std::min(val9,val18); + val18 = std::max(val9,val18); val9 = tmp; tmp = std::min(val0,val18); val18 = std::max(val0,val18); + val9 = std::max(tmp,val9); tmp = std::min(val10,val19); val19 = std::max(val10,val19); val10 = tmp; + tmp = std::min(val1,val19); val19 = std::max(val1,val19); val1 = std::min(tmp,val10); + val10 = std::max(tmp,val10); tmp = std::min(val11,val20); val20 = std::max(val11,val20); val11 = tmp; + tmp = std::min(val2,val20); val20 = std::max(val2,val20); val11 = std::max(tmp,val11); + tmp = std::min(val12,val21); val21 = std::max(val12,val21); val12 = tmp; tmp = std::min(val3,val21); + val21 = std::max(val3,val21); val3 = std::min(tmp,val12); val12 = std::max(tmp,val12); + tmp = std::min(val13,val22); val22 = std::max(val13,val22); val4 = std::min(val4,val22); + val13 = std::max(val4,tmp); tmp = std::min(val4,tmp); val4 = tmp; tmp = std::min(val14,val23); + val23 = std::max(val14,val23); val14 = tmp; tmp = std::min(val5,val23); val23 = std::max(val5,val23); + val5 = std::min(tmp,val14); val14 = std::max(tmp,val14); tmp = std::min(val15,val24); + val24 = std::max(val15,val24); val15 = tmp; val6 = std::min(val6,val24); tmp = std::min(val6,val15); + val15 = std::max(val6,val15); val6 = tmp; tmp = std::min(val7,val16); val7 = std::min(tmp,val19); + tmp = std::min(val13,val21); val15 = std::min(val15,val23); tmp = std::min(val7,tmp); + val7 = std::min(tmp,val15); val9 = std::max(val1,val9); val11 = std::max(val3,val11); + val17 = std::max(val5,val17); val17 = std::max(val11,val17); val17 = std::max(val9,val17); + tmp = std::min(val4,val10); val10 = std::max(val4,val10); val4 = tmp; tmp = std::min(val6,val12); + val12 = std::max(val6,val12); val6 = tmp; tmp = std::min(val7,val14); val14 = std::max(val7,val14); + val7 = tmp; tmp = std::min(val4,val6); val6 = std::max(val4,val6); val7 = std::max(tmp,val7); + tmp = std::min(val12,val14); val14 = std::max(val12,val14); val12 = tmp; val10 = std::min(val10,val14); + tmp = std::min(val6,val7); val7 = std::max(val6,val7); val6 = tmp; tmp = std::min(val10,val12); + val12 = std::max(val10,val12); val10 = std::max(val6,tmp); tmp = std::min(val6,tmp); + val17 = std::max(tmp,val17); tmp = std::min(val12,val17); val17 = std::max(val12,val17); val12 = tmp; + val7 = std::min(val7,val17); tmp = std::min(val7,val10); val10 = std::max(val7,val10); val7 = tmp; + tmp = std::min(val12,val18); val18 = std::max(val12,val18); val12 = std::max(val7,tmp); + val10 = std::min(val10,val18); tmp = std::min(val12,val20); val20 = std::max(val12,val20); val12 = tmp; + tmp = std::min(val10,val20); + return std::max(tmp,val12); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, + T val7, T val8, T val9, T val10, T val11, T val12, T val13, + T val14, T val15, T val16, T val17, T val18, T val19, T val20, + T val21, T val22, T val23, T val24, T val25, T val26, T val27, + T val28, T val29, T val30, T val31, T val32, T val33, T val34, + T val35, T val36, T val37, T val38, T val39, T val40, T val41, + T val42, T val43, T val44, T val45, T val46, T val47, T val48) { + T tmp = std::min(val0,val32); + val32 = std::max(val0,val32); val0 = tmp; tmp = std::min(val1,val33); val33 = std::max(val1,val33); val1 = tmp; + tmp = std::min(val2,val34); val34 = std::max(val2,val34); val2 = tmp; tmp = std::min(val3,val35); + val35 = std::max(val3,val35); val3 = tmp; tmp = std::min(val4,val36); val36 = std::max(val4,val36); val4 = tmp; + tmp = std::min(val5,val37); val37 = std::max(val5,val37); val5 = tmp; tmp = std::min(val6,val38); + val38 = std::max(val6,val38); val6 = tmp; tmp = std::min(val7,val39); val39 = std::max(val7,val39); val7 = tmp; + tmp = std::min(val8,val40); val40 = std::max(val8,val40); val8 = tmp; tmp = std::min(val9,val41); + val41 = std::max(val9,val41); val9 = tmp; tmp = std::min(val10,val42); val42 = std::max(val10,val42); + val10 = tmp; tmp = std::min(val11,val43); val43 = std::max(val11,val43); val11 = tmp; + tmp = std::min(val12,val44); val44 = std::max(val12,val44); val12 = tmp; tmp = std::min(val13,val45); + val45 = std::max(val13,val45); val13 = tmp; tmp = std::min(val14,val46); val46 = std::max(val14,val46); + val14 = tmp; tmp = std::min(val15,val47); val47 = std::max(val15,val47); val15 = tmp; + tmp = std::min(val16,val48); val48 = std::max(val16,val48); val16 = tmp; tmp = std::min(val0,val16); + val16 = std::max(val0,val16); val0 = tmp; tmp = std::min(val1,val17); val17 = std::max(val1,val17); + val1 = tmp; tmp = std::min(val2,val18); val18 = std::max(val2,val18); val2 = tmp; tmp = std::min(val3,val19); + val19 = std::max(val3,val19); val3 = tmp; tmp = std::min(val4,val20); val20 = std::max(val4,val20); val4 = tmp; + tmp = std::min(val5,val21); val21 = std::max(val5,val21); val5 = tmp; tmp = std::min(val6,val22); + val22 = std::max(val6,val22); val6 = tmp; tmp = std::min(val7,val23); val23 = std::max(val7,val23); val7 = tmp; + tmp = std::min(val8,val24); val24 = std::max(val8,val24); val8 = tmp; tmp = std::min(val9,val25); + val25 = std::max(val9,val25); val9 = tmp; tmp = std::min(val10,val26); val26 = std::max(val10,val26); + val10 = tmp; tmp = std::min(val11,val27); val27 = std::max(val11,val27); val11 = tmp; + tmp = std::min(val12,val28); val28 = std::max(val12,val28); val12 = tmp; tmp = std::min(val13,val29); + val29 = std::max(val13,val29); val13 = tmp; tmp = std::min(val14,val30); val30 = std::max(val14,val30); + val14 = tmp; tmp = std::min(val15,val31); val31 = std::max(val15,val31); val15 = tmp; + tmp = std::min(val32,val48); val48 = std::max(val32,val48); val32 = tmp; tmp = std::min(val16,val32); + val32 = std::max(val16,val32); val16 = tmp; tmp = std::min(val17,val33); val33 = std::max(val17,val33); + val17 = tmp; tmp = std::min(val18,val34); val34 = std::max(val18,val34); val18 = tmp; + tmp = std::min(val19,val35); val35 = std::max(val19,val35); val19 = tmp; tmp = std::min(val20,val36); + val36 = std::max(val20,val36); val20 = tmp; tmp = std::min(val21,val37); val37 = std::max(val21,val37); + val21 = tmp; tmp = std::min(val22,val38); val38 = std::max(val22,val38); val22 = tmp; + tmp = std::min(val23,val39); val39 = std::max(val23,val39); val23 = tmp; tmp = std::min(val24,val40); + val40 = std::max(val24,val40); val24 = tmp; tmp = std::min(val25,val41); val41 = std::max(val25,val41); + val25 = tmp; tmp = std::min(val26,val42); val42 = std::max(val26,val42); val26 = tmp; + tmp = std::min(val27,val43); val43 = std::max(val27,val43); val27 = tmp; tmp = std::min(val28,val44); + val44 = std::max(val28,val44); val28 = tmp; tmp = std::min(val29,val45); val45 = std::max(val29,val45); + val29 = tmp; tmp = std::min(val30,val46); val46 = std::max(val30,val46); val30 = tmp; + tmp = std::min(val31,val47); val47 = std::max(val31,val47); val31 = tmp; tmp = std::min(val0,val8); + val8 = std::max(val0,val8); val0 = tmp; tmp = std::min(val1,val9); val9 = std::max(val1,val9); val1 = tmp; + tmp = std::min(val2,val10); val10 = std::max(val2,val10); val2 = tmp; tmp = std::min(val3,val11); + val11 = std::max(val3,val11); val3 = tmp; tmp = std::min(val4,val12); val12 = std::max(val4,val12); val4 = tmp; + tmp = std::min(val5,val13); val13 = std::max(val5,val13); val5 = tmp; tmp = std::min(val6,val14); + val14 = std::max(val6,val14); val6 = tmp; tmp = std::min(val7,val15); val15 = std::max(val7,val15); val7 = tmp; + tmp = std::min(val16,val24); val24 = std::max(val16,val24); val16 = tmp; tmp = std::min(val17,val25); + val25 = std::max(val17,val25); val17 = tmp; tmp = std::min(val18,val26); val26 = std::max(val18,val26); + val18 = tmp; tmp = std::min(val19,val27); val27 = std::max(val19,val27); val19 = tmp; + tmp = std::min(val20,val28); val28 = std::max(val20,val28); val20 = tmp; tmp = std::min(val21,val29); + val29 = std::max(val21,val29); val21 = tmp; tmp = std::min(val22,val30); val30 = std::max(val22,val30); + val22 = tmp; tmp = std::min(val23,val31); val31 = std::max(val23,val31); val23 = tmp; + tmp = std::min(val32,val40); val40 = std::max(val32,val40); val32 = tmp; tmp = std::min(val33,val41); + val41 = std::max(val33,val41); val33 = tmp; tmp = std::min(val34,val42); val42 = std::max(val34,val42); + val34 = tmp; tmp = std::min(val35,val43); val43 = std::max(val35,val43); val35 = tmp; + tmp = std::min(val36,val44); val44 = std::max(val36,val44); val36 = tmp; tmp = std::min(val37,val45); + val45 = std::max(val37,val45); val37 = tmp; tmp = std::min(val38,val46); val46 = std::max(val38,val46); + val38 = tmp; tmp = std::min(val39,val47); val47 = std::max(val39,val47); val39 = tmp; + tmp = std::min(val8,val32); val32 = std::max(val8,val32); val8 = tmp; tmp = std::min(val9,val33); + val33 = std::max(val9,val33); val9 = tmp; tmp = std::min(val10,val34); val34 = std::max(val10,val34); + val10 = tmp; tmp = std::min(val11,val35); val35 = std::max(val11,val35); val11 = tmp; + tmp = std::min(val12,val36); val36 = std::max(val12,val36); val12 = tmp; tmp = std::min(val13,val37); + val37 = std::max(val13,val37); val13 = tmp; tmp = std::min(val14,val38); val38 = std::max(val14,val38); + val14 = tmp; tmp = std::min(val15,val39); val39 = std::max(val15,val39); val15 = tmp; + tmp = std::min(val24,val48); val48 = std::max(val24,val48); val24 = tmp; tmp = std::min(val8,val16); + val16 = std::max(val8,val16); val8 = tmp; tmp = std::min(val9,val17); val17 = std::max(val9,val17); + val9 = tmp; tmp = std::min(val10,val18); val18 = std::max(val10,val18); val10 = tmp; + tmp = std::min(val11,val19); val19 = std::max(val11,val19); val11 = tmp; tmp = std::min(val12,val20); + val20 = std::max(val12,val20); val12 = tmp; tmp = std::min(val13,val21); val21 = std::max(val13,val21); + val13 = tmp; tmp = std::min(val14,val22); val22 = std::max(val14,val22); val14 = tmp; + tmp = std::min(val15,val23); val23 = std::max(val15,val23); val15 = tmp; tmp = std::min(val24,val32); + val32 = std::max(val24,val32); val24 = tmp; tmp = std::min(val25,val33); val33 = std::max(val25,val33); + val25 = tmp; tmp = std::min(val26,val34); val34 = std::max(val26,val34); val26 = tmp; + tmp = std::min(val27,val35); val35 = std::max(val27,val35); val27 = tmp; tmp = std::min(val28,val36); + val36 = std::max(val28,val36); val28 = tmp; tmp = std::min(val29,val37); val37 = std::max(val29,val37); + val29 = tmp; tmp = std::min(val30,val38); val38 = std::max(val30,val38); val30 = tmp; + tmp = std::min(val31,val39); val39 = std::max(val31,val39); val31 = tmp; tmp = std::min(val40,val48); + val48 = std::max(val40,val48); val40 = tmp; tmp = std::min(val0,val4); val4 = std::max(val0,val4); + val0 = tmp; tmp = std::min(val1,val5); val5 = std::max(val1,val5); val1 = tmp; tmp = std::min(val2,val6); + val6 = std::max(val2,val6); val2 = tmp; tmp = std::min(val3,val7); val7 = std::max(val3,val7); val3 = tmp; + tmp = std::min(val8,val12); val12 = std::max(val8,val12); val8 = tmp; tmp = std::min(val9,val13); + val13 = std::max(val9,val13); val9 = tmp; tmp = std::min(val10,val14); val14 = std::max(val10,val14); + val10 = tmp; tmp = std::min(val11,val15); val15 = std::max(val11,val15); val11 = tmp; + tmp = std::min(val16,val20); val20 = std::max(val16,val20); val16 = tmp; tmp = std::min(val17,val21); + val21 = std::max(val17,val21); val17 = tmp; tmp = std::min(val18,val22); val22 = std::max(val18,val22); + val18 = tmp; tmp = std::min(val19,val23); val23 = std::max(val19,val23); val19 = tmp; + tmp = std::min(val24,val28); val28 = std::max(val24,val28); val24 = tmp; tmp = std::min(val25,val29); + val29 = std::max(val25,val29); val25 = tmp; tmp = std::min(val26,val30); val30 = std::max(val26,val30); + val26 = tmp; tmp = std::min(val27,val31); val31 = std::max(val27,val31); val27 = tmp; + tmp = std::min(val32,val36); val36 = std::max(val32,val36); val32 = tmp; tmp = std::min(val33,val37); + val37 = std::max(val33,val37); val33 = tmp; tmp = std::min(val34,val38); val38 = std::max(val34,val38); + val34 = tmp; tmp = std::min(val35,val39); val39 = std::max(val35,val39); val35 = tmp; + tmp = std::min(val40,val44); val44 = std::max(val40,val44); val40 = tmp; tmp = std::min(val41,val45); + val45 = std::max(val41,val45); val41 = tmp; tmp = std::min(val42,val46); val46 = std::max(val42,val46); + val42 = tmp; tmp = std::min(val43,val47); val47 = std::max(val43,val47); val43 = tmp; + tmp = std::min(val4,val32); val32 = std::max(val4,val32); val4 = tmp; tmp = std::min(val5,val33); + val33 = std::max(val5,val33); val5 = tmp; tmp = std::min(val6,val34); val34 = std::max(val6,val34); + val6 = tmp; tmp = std::min(val7,val35); val35 = std::max(val7,val35); val7 = tmp; + tmp = std::min(val12,val40); val40 = std::max(val12,val40); val12 = tmp; tmp = std::min(val13,val41); + val41 = std::max(val13,val41); val13 = tmp; tmp = std::min(val14,val42); val42 = std::max(val14,val42); + val14 = tmp; tmp = std::min(val15,val43); val43 = std::max(val15,val43); val15 = tmp; + tmp = std::min(val20,val48); val48 = std::max(val20,val48); val20 = tmp; tmp = std::min(val4,val16); + val16 = std::max(val4,val16); val4 = tmp; tmp = std::min(val5,val17); val17 = std::max(val5,val17); + val5 = tmp; tmp = std::min(val6,val18); val18 = std::max(val6,val18); val6 = tmp; + tmp = std::min(val7,val19); val19 = std::max(val7,val19); val7 = tmp; tmp = std::min(val12,val24); + val24 = std::max(val12,val24); val12 = tmp; tmp = std::min(val13,val25); val25 = std::max(val13,val25); + val13 = tmp; tmp = std::min(val14,val26); val26 = std::max(val14,val26); val14 = tmp; + tmp = std::min(val15,val27); val27 = std::max(val15,val27); val15 = tmp; tmp = std::min(val20,val32); + val32 = std::max(val20,val32); val20 = tmp; tmp = std::min(val21,val33); val33 = std::max(val21,val33); + val21 = tmp; tmp = std::min(val22,val34); val34 = std::max(val22,val34); val22 = tmp; + tmp = std::min(val23,val35); val35 = std::max(val23,val35); val23 = tmp; tmp = std::min(val28,val40); + val40 = std::max(val28,val40); val28 = tmp; tmp = std::min(val29,val41); val41 = std::max(val29,val41); + val29 = tmp; tmp = std::min(val30,val42); val42 = std::max(val30,val42); val30 = tmp; + tmp = std::min(val31,val43); val43 = std::max(val31,val43); val31 = tmp; tmp = std::min(val36,val48); + val48 = std::max(val36,val48); val36 = tmp; tmp = std::min(val4,val8); val8 = std::max(val4,val8); + val4 = tmp; tmp = std::min(val5,val9); val9 = std::max(val5,val9); val5 = tmp; tmp = std::min(val6,val10); + val10 = std::max(val6,val10); val6 = tmp; tmp = std::min(val7,val11); val11 = std::max(val7,val11); val7 = tmp; + tmp = std::min(val12,val16); val16 = std::max(val12,val16); val12 = tmp; tmp = std::min(val13,val17); + val17 = std::max(val13,val17); val13 = tmp; tmp = std::min(val14,val18); val18 = std::max(val14,val18); + val14 = tmp; tmp = std::min(val15,val19); val19 = std::max(val15,val19); val15 = tmp; + tmp = std::min(val20,val24); val24 = std::max(val20,val24); val20 = tmp; tmp = std::min(val21,val25); + val25 = std::max(val21,val25); val21 = tmp; tmp = std::min(val22,val26); val26 = std::max(val22,val26); + val22 = tmp; tmp = std::min(val23,val27); val27 = std::max(val23,val27); val23 = tmp; + tmp = std::min(val28,val32); val32 = std::max(val28,val32); val28 = tmp; tmp = std::min(val29,val33); + val33 = std::max(val29,val33); val29 = tmp; tmp = std::min(val30,val34); val34 = std::max(val30,val34); + val30 = tmp; tmp = std::min(val31,val35); val35 = std::max(val31,val35); val31 = tmp; + tmp = std::min(val36,val40); val40 = std::max(val36,val40); val36 = tmp; tmp = std::min(val37,val41); + val41 = std::max(val37,val41); val37 = tmp; tmp = std::min(val38,val42); val42 = std::max(val38,val42); + val38 = tmp; tmp = std::min(val39,val43); val43 = std::max(val39,val43); val39 = tmp; + tmp = std::min(val44,val48); val48 = std::max(val44,val48); val44 = tmp; tmp = std::min(val0,val2); + val2 = std::max(val0,val2); val0 = tmp; tmp = std::min(val1,val3); val3 = std::max(val1,val3); val1 = tmp; + tmp = std::min(val4,val6); val6 = std::max(val4,val6); val4 = tmp; tmp = std::min(val5,val7); + val7 = std::max(val5,val7); val5 = tmp; tmp = std::min(val8,val10); val10 = std::max(val8,val10); val8 = tmp; + tmp = std::min(val9,val11); val11 = std::max(val9,val11); val9 = tmp; tmp = std::min(val12,val14); + val14 = std::max(val12,val14); val12 = tmp; tmp = std::min(val13,val15); val15 = std::max(val13,val15); + val13 = tmp; tmp = std::min(val16,val18); val18 = std::max(val16,val18); val16 = tmp; + tmp = std::min(val17,val19); val19 = std::max(val17,val19); val17 = tmp; tmp = std::min(val20,val22); + val22 = std::max(val20,val22); val20 = tmp; tmp = std::min(val21,val23); val23 = std::max(val21,val23); + val21 = tmp; tmp = std::min(val24,val26); val26 = std::max(val24,val26); val24 = tmp; + tmp = std::min(val25,val27); val27 = std::max(val25,val27); val25 = tmp; tmp = std::min(val28,val30); + val30 = std::max(val28,val30); val28 = tmp; tmp = std::min(val29,val31); val31 = std::max(val29,val31); + val29 = tmp; tmp = std::min(val32,val34); val34 = std::max(val32,val34); val32 = tmp; + tmp = std::min(val33,val35); val35 = std::max(val33,val35); val33 = tmp; tmp = std::min(val36,val38); + val38 = std::max(val36,val38); val36 = tmp; tmp = std::min(val37,val39); val39 = std::max(val37,val39); + val37 = tmp; tmp = std::min(val40,val42); val42 = std::max(val40,val42); val40 = tmp; + tmp = std::min(val41,val43); val43 = std::max(val41,val43); val41 = tmp; tmp = std::min(val44,val46); + val46 = std::max(val44,val46); val44 = tmp; tmp = std::min(val45,val47); val47 = std::max(val45,val47); + val45 = tmp; tmp = std::min(val2,val32); val32 = std::max(val2,val32); val2 = tmp; tmp = std::min(val3,val33); + val33 = std::max(val3,val33); val3 = tmp; tmp = std::min(val6,val36); val36 = std::max(val6,val36); val6 = tmp; + tmp = std::min(val7,val37); val37 = std::max(val7,val37); val7 = tmp; tmp = std::min(val10,val40); + val40 = std::max(val10,val40); val10 = tmp; tmp = std::min(val11,val41); val41 = std::max(val11,val41); + val11 = tmp; tmp = std::min(val14,val44); val44 = std::max(val14,val44); val14 = tmp; + tmp = std::min(val15,val45); val45 = std::max(val15,val45); val15 = tmp; tmp = std::min(val18,val48); + val48 = std::max(val18,val48); val18 = tmp; tmp = std::min(val2,val16); val16 = std::max(val2,val16); + val2 = tmp; tmp = std::min(val3,val17); val17 = std::max(val3,val17); val3 = tmp; + tmp = std::min(val6,val20); val20 = std::max(val6,val20); val6 = tmp; tmp = std::min(val7,val21); + val21 = std::max(val7,val21); val7 = tmp; tmp = std::min(val10,val24); val24 = std::max(val10,val24); + val10 = tmp; tmp = std::min(val11,val25); val25 = std::max(val11,val25); val11 = tmp; + tmp = std::min(val14,val28); val28 = std::max(val14,val28); val14 = tmp; tmp = std::min(val15,val29); + val29 = std::max(val15,val29); val15 = tmp; tmp = std::min(val18,val32); val32 = std::max(val18,val32); + val18 = tmp; tmp = std::min(val19,val33); val33 = std::max(val19,val33); val19 = tmp; + tmp = std::min(val22,val36); val36 = std::max(val22,val36); val22 = tmp; tmp = std::min(val23,val37); + val37 = std::max(val23,val37); val23 = tmp; tmp = std::min(val26,val40); val40 = std::max(val26,val40); + val26 = tmp; tmp = std::min(val27,val41); val41 = std::max(val27,val41); val27 = tmp; + tmp = std::min(val30,val44); val44 = std::max(val30,val44); val30 = tmp; tmp = std::min(val31,val45); + val45 = std::max(val31,val45); val31 = tmp; tmp = std::min(val34,val48); val48 = std::max(val34,val48); + val34 = tmp; tmp = std::min(val2,val8); val8 = std::max(val2,val8); val2 = tmp; tmp = std::min(val3,val9); + val9 = std::max(val3,val9); val3 = tmp; tmp = std::min(val6,val12); val12 = std::max(val6,val12); val6 = tmp; + tmp = std::min(val7,val13); val13 = std::max(val7,val13); val7 = tmp; tmp = std::min(val10,val16); + val16 = std::max(val10,val16); val10 = tmp; tmp = std::min(val11,val17); val17 = std::max(val11,val17); + val11 = tmp; tmp = std::min(val14,val20); val20 = std::max(val14,val20); val14 = tmp; + tmp = std::min(val15,val21); val21 = std::max(val15,val21); val15 = tmp; tmp = std::min(val18,val24); + val24 = std::max(val18,val24); val18 = tmp; tmp = std::min(val19,val25); val25 = std::max(val19,val25); + val19 = tmp; tmp = std::min(val22,val28); val28 = std::max(val22,val28); val22 = tmp; + tmp = std::min(val23,val29); val29 = std::max(val23,val29); val23 = tmp; tmp = std::min(val26,val32); + val32 = std::max(val26,val32); val26 = tmp; tmp = std::min(val27,val33); val33 = std::max(val27,val33); + val27 = tmp; tmp = std::min(val30,val36); val36 = std::max(val30,val36); val30 = tmp; + tmp = std::min(val31,val37); val37 = std::max(val31,val37); val31 = tmp; tmp = std::min(val34,val40); + val40 = std::max(val34,val40); val34 = tmp; tmp = std::min(val35,val41); val41 = std::max(val35,val41); + val35 = tmp; tmp = std::min(val38,val44); val44 = std::max(val38,val44); val38 = tmp; + tmp = std::min(val39,val45); val45 = std::max(val39,val45); val39 = tmp; tmp = std::min(val42,val48); + val48 = std::max(val42,val48); val42 = tmp; tmp = std::min(val2,val4); val4 = std::max(val2,val4); + val2 = tmp; tmp = std::min(val3,val5); val5 = std::max(val3,val5); val3 = tmp; tmp = std::min(val6,val8); + val8 = std::max(val6,val8); val6 = tmp; tmp = std::min(val7,val9); val9 = std::max(val7,val9); val7 = tmp; + tmp = std::min(val10,val12); val12 = std::max(val10,val12); val10 = tmp; tmp = std::min(val11,val13); + val13 = std::max(val11,val13); val11 = tmp; tmp = std::min(val14,val16); val16 = std::max(val14,val16); + val14 = tmp; tmp = std::min(val15,val17); val17 = std::max(val15,val17); val15 = tmp; + tmp = std::min(val18,val20); val20 = std::max(val18,val20); val18 = tmp; tmp = std::min(val19,val21); + val21 = std::max(val19,val21); val19 = tmp; tmp = std::min(val22,val24); val24 = std::max(val22,val24); + val22 = tmp; tmp = std::min(val23,val25); val25 = std::max(val23,val25); val23 = tmp; + tmp = std::min(val26,val28); val28 = std::max(val26,val28); val26 = tmp; tmp = std::min(val27,val29); + val29 = std::max(val27,val29); val27 = tmp; tmp = std::min(val30,val32); val32 = std::max(val30,val32); + val30 = tmp; tmp = std::min(val31,val33); val33 = std::max(val31,val33); val31 = tmp; + tmp = std::min(val34,val36); val36 = std::max(val34,val36); val34 = tmp; tmp = std::min(val35,val37); + val37 = std::max(val35,val37); val35 = tmp; tmp = std::min(val38,val40); val40 = std::max(val38,val40); + val38 = tmp; tmp = std::min(val39,val41); val41 = std::max(val39,val41); val39 = tmp; + tmp = std::min(val42,val44); val44 = std::max(val42,val44); val42 = tmp; tmp = std::min(val43,val45); + val45 = std::max(val43,val45); val43 = tmp; tmp = std::min(val46,val48); val48 = std::max(val46,val48); + val46 = tmp; val1 = std::max(val0,val1); val3 = std::max(val2,val3); val5 = std::max(val4,val5); + val7 = std::max(val6,val7); val9 = std::max(val8,val9); val11 = std::max(val10,val11); + val13 = std::max(val12,val13); val15 = std::max(val14,val15); val17 = std::max(val16,val17); + val19 = std::max(val18,val19); val21 = std::max(val20,val21); val23 = std::max(val22,val23); + val24 = std::min(val24,val25); val26 = std::min(val26,val27); val28 = std::min(val28,val29); + val30 = std::min(val30,val31); val32 = std::min(val32,val33); val34 = std::min(val34,val35); + val36 = std::min(val36,val37); val38 = std::min(val38,val39); val40 = std::min(val40,val41); + val42 = std::min(val42,val43); val44 = std::min(val44,val45); val46 = std::min(val46,val47); + val32 = std::max(val1,val32); val34 = std::max(val3,val34); val36 = std::max(val5,val36); + val38 = std::max(val7,val38); val9 = std::min(val9,val40); val11 = std::min(val11,val42); + val13 = std::min(val13,val44); val15 = std::min(val15,val46); val17 = std::min(val17,val48); + val24 = std::max(val9,val24); val26 = std::max(val11,val26); val28 = std::max(val13,val28); + val30 = std::max(val15,val30); val17 = std::min(val17,val32); val19 = std::min(val19,val34); + val21 = std::min(val21,val36); val23 = std::min(val23,val38); val24 = std::max(val17,val24); + val26 = std::max(val19,val26); val21 = std::min(val21,val28); val23 = std::min(val23,val30); + val24 = std::max(val21,val24); val23 = std::min(val23,val26); + return std::max(val23,val24); + } + + //! Return sqrt(x^2 + y^2). + template + inline T hypot(const T x, const T y) { +#if cimg_use_cpp11==1 && !defined(_MSC_VER) + return std::hypot(x,y); +#else + return std::sqrt(x*x + y*y); +#endif + } + + //! Return sqrt(x^2 + y^2 + z^2). + template + inline T hypot(const T x, const T y, const T z) { + return std::sqrt(x*x + y*y + z*z); + } + + //! Return the factorial of n + inline double factorial(const int n) { + if (n<0) return cimg::type::nan(); + if (n<2) return 1; + double res = 2; + for (int i = 3; i<=n; ++i) res*=i; + return res; + } + + //! Return the number of permutations of k objects in a set of n objects. + inline double permutations(const int k, const int n, const bool with_order) { + if (n<0 || k<0) return cimg::type::nan(); + if (k>n) return 0; + double res = 1; + for (int i = n; i>=n - k + 1; --i) res*=i; + return with_order?res:res/cimg::factorial(k); + } + + inline double _fibonacci(int exp) { + double + base = (1 + std::sqrt(5.))/2, + result = 1/std::sqrt(5.); + while (exp) { + if (exp&1) result*=base; + exp>>=1; + base*=base; + } + return result; + } + + //! Calculate fibonacci number. + // (Precise up to n = 78, less precise for n>78). + inline double fibonacci(const int n) { + if (n<0) return cimg::type::nan(); + if (n<3) return 1; + if (n<11) { + cimg_uint64 fn1 = 1, fn2 = 1, fn = 0; + for (int i = 3; i<=n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; } + return (double)fn; + } + if (n<75) // precise up to n = 74, faster than the integer calculation above for n>10 + return (double)((cimg_uint64)(_fibonacci(n) + 0.5)); + + if (n<94) { // precise up to n = 78, less precise for n>78 up to n = 93, overflows for n>93 + cimg_uint64 + fn1 = ((cimg_uint64)303836)<<32 | 3861581201UL, // 1304969544928657ULL (avoid C++98 warning with ULL) + fn2 = ((cimg_uint64)187781)<<32 | 2279239217UL, // 806515533049393ULL + fn = 0; + for (int i = 75; i<=n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; } + return (double)fn; + } + return _fibonacci(n); // Not precise, but better than the wrong overflowing calculation + } + + //! Calculate greatest common divisor of two integers. + template + inline T gcd(T a, T b) { + if (a<0) a = -a; + if (b<0) b = -b; + while (a) { const T c = a; a = b%a; b = c; } + return b; + } + + //! Calculate least common multiple of two integers. + template + inline T lcm(T a, T b) { + if (a<0) a = -a; + if (!a && !b) return 0; + return a*(b/gcd(a,b)); + } + + //! Convert character to lower case. + inline char lowercase(const char x) { + return (char)((x<'A'||x>'Z')?x:x - 'A' + 'a'); + } + inline double lowercase(const double x) { + return (double)((x<'A'||x>'Z')?x:x - 'A' + 'a'); + } + + //! Convert C-string to lower case. + inline void lowercase(char *const str) { + if (str) for (char *ptr = str; *ptr; ++ptr) *ptr = lowercase(*ptr); + } + + //! Convert character to upper case. + inline char uppercase(const char x) { + return (char)((x<'a'||x>'z')?x:x - 'a' + 'A'); + } + + inline double uppercase(const double x) { + return (double)((x<'a'||x>'z')?x:x - 'a' + 'A'); + } + + //! Convert C-string to upper case. + inline void uppercase(char *const str) { + if (str) for (char *ptr = str; *ptr; ++ptr) *ptr = uppercase(*ptr); + } + + //! Return \c true if input character is blank (space, tab, or non-printable character). + inline bool is_blank(const char c) { + return (unsigned char)c<=' '; + } + + // Return \c true if specified argument is in set \c [a-zA-Z0-9_]. + inline bool is_varchar(const char c) { + return (c>='a' && c<='z') || (c>='A' && c<='Z') || (c>='0' && c<='9') || c=='_'; + } + + //! Return \c true if argument \p str can be considered as a regular variable name. + inline bool is_varname(const char *const str, const unsigned int length=~0U) { + if (*str>='0' && *str<='9') return false; + for (unsigned int l = 0; lstd::atof() extended to manage the retrieval of fractions from C-strings, + as in "1/2". + **/ + inline double atof(const char *const str) { + double x = 0, y = 1; + return str && cimg_sscanf(str,"%lf/%lf",&x,&y)>0?x/y:0; + } + + //! Compare the first \p length characters of two C-strings, ignoring the case. + /** + \param str1 C-string. + \param str2 C-string. + \param length Number of characters to compare. + \return \c 0 if the two strings are equal, something else otherwise. + \note This function has to be defined since it is not provided by all C++-compilers (not ANSI). + **/ + inline int strncasecmp(const char *const str1, const char *const str2, const int length) { + if (!length) return 0; + if (!str1) return str2?-1:0; + const char *nstr1 = str1, *nstr2 = str2; + int k, diff = 0; + for (k = 0; kp && str[q]==delimiter; ) { --q; if (!is_iterative) break; } + } + const int n = q - p + 1; + if (n!=l) { std::memmove(str,str + p,(unsigned int)n); str[n] = 0; return true; } + return false; + } + + //! Remove white spaces on the start and/or end of a C-string. + inline bool strpare(char *const str, const bool is_symmetric, const bool is_iterative) { + if (!str) return false; + const int l = (int)std::strlen(str); + int p, q; + if (is_symmetric) for (p = 0, q = l - 1; pp && is_blank(str[q]); ) { --q; if (!is_iterative) break; } + } + const int n = q - p + 1; + if (n!=l) { std::memmove(str,str + p,(unsigned int)n); str[n] = 0; return true; } + return false; + } + + //! Replace reserved characters (for Windows filename) by another character. + /** + \param[in,out] str C-string to work with (modified at output). + \param[in] c Replacement character. + **/ + inline void strwindows_reserved(char *const str, const char c='_') { + for (char *s = str; *s; ++s) { + const char i = *s; + if (i=='<' || i=='>' || i==':' || i=='\"' || i=='/' || i=='\\' || i=='|' || i=='?' || i=='*') *s = c; + } + } + + //! Replace escape sequences in C-strings by character values. + /** + \param[in,out] str C-string to work with (modified at output). + **/ + inline void strunescape(char *const str) { +#define cimg_strunescape(ci,co) case ci : *nd = co; ++ns; break; + + unsigned char val = 0; + for (char *ns = str, *nd = str; *ns || (bool)(*nd = 0); ++nd) if (*ns=='\\') switch (*(++ns)) { + cimg_strunescape('a','\a'); + cimg_strunescape('b','\b'); + cimg_strunescape('e',0x1B); + cimg_strunescape('f','\f'); + cimg_strunescape('n','\n'); + cimg_strunescape('r','\r'); + cimg_strunescape('t','\t'); + cimg_strunescape('v','\v'); + cimg_strunescape('\\','\\'); + cimg_strunescape('\'','\''); + cimg_strunescape('\"','\"'); + cimg_strunescape('\?','\?'); + case '0' : case '1' : case '2' : case '3' : case '4' : case '5' : case '6' : case '7' : + val = (unsigned char)(*(ns++) - '0'); + if (*ns>='0' && *ns<='7') (val<<=3)|=*(ns++) - '0'; + if (*ns>='0' && *ns<='7') (val<<=3)|=*(ns++) - '0'; + *nd = (char)val; + break; + case 'x' : { + char c = lowercase(*(++ns)); + if ((c>='0' && c<='9') || (c>='a' && c<='f')) { + val = (unsigned char)(c<='9'?c - '0':c - 'a' + 10); + c = lowercase(*(++ns)); + if ((c>='0' && c<='9') || (c>='a' && c<='f')) { + (val<<=4)|=(c<='9'?c - '0':c - 'a' + 10); + ++ns; + } + *nd = (char)val; + } else *nd = c; + } break; + case 'u' : { // UTF-8 BMP + char c1, c2, c3, c4; + if ((((c1 = lowercase(ns[1]))>='0' && c1<='9') || (c1>='a' && c1<='f')) && + (((c2 = lowercase(ns[2]))>='0' && c2<='9') || (c2>='a' && c2<='f')) && + (((c3 = lowercase(ns[3]))>='0' && c3<='9') || (c3>='a' && c3<='f')) && + (((c4 = lowercase(ns[4]))>='0' && c4<='9') || (c4>='a' && c4<='f'))) { + c1 = (c1<='9'?c1 - '0':c1 - 'a' + 10); + c2 = (c2<='9'?c2 - '0':c2 - 'a' + 10); + c3 = (c3<='9'?c3 - '0':c3 - 'a' + 10); + c4 = (c4<='9'?c4 - '0':c4 - 'a' + 10); + const unsigned int ival = + ((unsigned int)c1<<12) | ((unsigned int)c2<<8) | ((unsigned int)c3<<4) | c4; + if (ival<=0x007f) *nd = (char)ival; + else if (ival<=0x07ff) { + *(nd++) = (char)((ival>>6)|0xc0); + *nd = (char)((ival&0x3f)|0x80); + } else { + *(nd++) = (char)((ival>>12)|0xe0); + *(nd++) = (char)(((ival>>6)&0x3f)|0x80); + *nd = (char)((ival&0x3f)|0x80); + } + ns+=5; + } else *nd = *(ns++); + } break; + case 'U' : { // UTF-8 astral planes + char c1, c2, c3, c4, c5, c6, c7, c8; + if ((((c1 = lowercase(ns[1]))>='0' && c1<='9') || (c1>='a' && c1<='f')) && + (((c2 = lowercase(ns[2]))>='0' && c2<='9') || (c2>='a' && c2<='f')) && + (((c3 = lowercase(ns[3]))>='0' && c3<='9') || (c3>='a' && c3<='f')) && + (((c4 = lowercase(ns[4]))>='0' && c4<='9') || (c4>='a' && c4<='f')) && + (((c5 = lowercase(ns[5]))>='0' && c5<='9') || (c5>='a' && c5<='f')) && + (((c6 = lowercase(ns[6]))>='0' && c6<='9') || (c6>='a' && c6<='f')) && + (((c7 = lowercase(ns[7]))>='0' && c7<='9') || (c7>='a' && c7<='f')) && + (((c8 = lowercase(ns[8]))>='0' && c8<='9') || (c8>='a' && c8<='f'))) { + c1 = (c1<='9'?c1 - '0':c1 - 'a' + 10); + c2 = (c2<='9'?c2 - '0':c2 - 'a' + 10); + c3 = (c3<='9'?c3 - '0':c3 - 'a' + 10); + c4 = (c4<='9'?c4 - '0':c4 - 'a' + 10); + c5 = (c5<='9'?c5 - '0':c5 - 'a' + 10); + c6 = (c6<='9'?c6 - '0':c6 - 'a' + 10); + c7 = (c7<='9'?c7 - '0':c7 - 'a' + 10); + c8 = (c8<='9'?c8 - '0':c8 - 'a' + 10); + const unsigned int ival = + ((unsigned int)c1<<28) | ((unsigned int)c2<<24) | ((unsigned int)c3<<20) | ((unsigned int)c4<<16) | + ((unsigned int)c5<<12) | ((unsigned int)c6<<8) | ((unsigned int)c7<<4) | (unsigned int)c8; + if (ival<=0x007f) *nd = (char)ival; + else if (ival<=0x07ff) { + *(nd++) = (char)((ival>>6)|0xc0); + *nd = (char)((ival&0x3f)|0x80); + } else if (ival<=0xffff) { + *(nd++) = (char)((ival>>12)|0xe0); + *(nd++) = (char)(((ival>>6)&0x3f)|0x80); + *nd = (char)((ival&0x3f)|0x80); + } else { + *(nd++) = (char)((ival>>18)|0xf0); + *(nd++) = (char)(((ival>>12)&0x3f)|0x80); + *(nd++) = (char)(((ival>>6)&0x3f)|0x80); + *nd = (char)((ival&0x3f)|0x80); + } + ns+=9; + } else *nd = *(ns++); + } break; + default : if (*ns) *nd = *(ns++); + } + else *nd = *(ns++); + } + + // Return a temporary string describing the size of a memory buffer. + inline const char *strbuffersize(const cimg_ulong size); + + // Return string that identifies the running OS. + inline const char *stros() { +#if defined(linux) || defined(__linux) || defined(__linux__) + static const char *const str = "Linux"; +#elif defined(sun) || defined(__sun) + static const char *const str = "Sun OS"; +#elif defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined (__DragonFly__) + static const char *const str = "BSD"; +#elif defined(sgi) || defined(__sgi) + static const char *const str = "Irix"; +#elif defined(__MACOSX__) || defined(__APPLE__) + static const char *const str = "Mac OS"; +#elif defined(unix) || defined(__unix) || defined(__unix__) + static const char *const str = "Generic Unix"; +#elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || \ + defined(WIN64) || defined(_WIN64) || defined(__WIN64__) + static const char *const str = "Windows"; +#else + const char + *const _str1 = std::getenv("OSTYPE"), + *const _str2 = _str1?_str1:std::getenv("OS"), + *const str = _str2?_str2:"Unknown OS"; +#endif + return str; + } + + //! Return the basename of a filename. + inline const char* basename(const char *const s, const char separator=cimg_file_separator) { + const char *p = 0, *np = s; + while (np>=s && (p=np)) np = std::strchr(np,separator) + 1; + return p; + } + + // Return a random filename. + inline const char* filenamerand() { + cimg::mutex(6); + static char randomid[9]; + for (unsigned int k = 0; k<8; ++k) { + const int v = (int)cimg::rand(65535)%3; + randomid[k] = (char)(v==0?('0' + ((int)cimg::rand(65535)%10)): + (v==1?('a' + ((int)cimg::rand(65535)%26)): + ('A' + ((int)cimg::rand(65535)%26)))); + } + cimg::mutex(6,0); + return randomid; + } + + // Convert filename as a Windows-style filename (short path name). + inline void winformat_string(char *const str) { + if (str && *str) { +#if cimg_OS==2 + char *const nstr = new char[MAX_PATH]; + if (GetShortPathNameA(str,nstr,MAX_PATH)) std::strcpy(str,nstr); + delete[] nstr; +#endif + } + } + + // Open a file (similar to std:: fopen(), but with wide character support on Windows). + inline std::FILE *std_fopen(const char *const path, const char *const mode); + + + //! Open a file. + /** + \param path Path of the filename to open. + \param mode C-string describing the opening mode. + \return Opened file. + \note Same as std::fopen() but throw a \c CImgIOException when + the specified file cannot be opened, instead of returning \c 0. + **/ + inline std::FILE *fopen(const char *const path, const char *const mode) { + if (!path) + throw CImgArgumentException("cimg::fopen(): Specified file path is (null)."); + if (!mode) + throw CImgArgumentException("cimg::fopen(): File '%s', specified mode is (null).", + path); + std::FILE *res = 0; + if (*path=='-' && (!path[1] || path[1]=='.')) { + res = (*mode=='r')?cimg::_stdin():cimg::_stdout(); +#if cimg_OS==2 + if (*mode && mode[1]=='b') { // Force stdin/stdout to be in binary mode +#ifdef __BORLANDC__ + if (setmode(_fileno(res),0x8000)==-1) res = 0; +#else + if (_setmode(_fileno(res),0x8000)==-1) res = 0; +#endif + } +#endif + } else res = cimg::std_fopen(path,mode); + if (!res) throw CImgIOException("cimg::fopen(): Failed to open file '%s' with mode '%s'.", + path,mode); + return res; + } + + //! Close a file. + /** + \param file File to close. + \return \c 0 if file has been closed properly, something else otherwise. + \note Same as std::fclose() but display a warning message if + the file has not been closed properly. + **/ + inline int fclose(std::FILE *file) { + if (!file) { warn("cimg::fclose(): Specified file is (null)."); return 0; } + if (file==cimg::_stdin(false) || file==cimg::_stdout(false)) return 0; + const int errn = std::fclose(file); + if (errn!=0) warn("cimg::fclose(): Error code %d returned during file closing.", + errn); + return errn; + } + + //! Version of 'fseek()' that supports >=64bits offsets everywhere (for Windows). + inline int fseek(FILE *stream, cimg_long offset, int origin) { +#if defined(WIN64) || defined(_WIN64) || defined(__WIN64__) + return _fseeki64(stream,(__int64)offset,origin); +#else + return std::fseek(stream,offset,origin); +#endif + } + + //! Version of 'ftell()' that supports >=64bits offsets everywhere (for Windows). + inline cimg_long ftell(FILE *stream) { +#if defined(WIN64) || defined(_WIN64) || defined(__WIN64__) + return (cimg_long)_ftelli64(stream); +#else + return (cimg_long)std::ftell(stream); +#endif + } + + // Get the file or directory attributes with support for UTF-8 paths (Windows only). +#if cimg_OS==2 + inline DWORD win_getfileattributes(const char *const path); +#endif + + //! Check if a path is a directory. + /** + \param path Specified path to test. + **/ + inline bool is_directory(const char *const path) { + if (!path || !*path) return false; +#if cimg_OS==1 + struct stat st_buf; + return (!stat(path,&st_buf) && S_ISDIR(st_buf.st_mode)); +#elif cimg_OS==2 + const DWORD res = win_getfileattributes(path); + return res!=INVALID_FILE_ATTRIBUTES && (res&FILE_ATTRIBUTE_DIRECTORY); +#else + return false; +#endif + } + + //! Check if a path is a file. + /** + \param path Specified path to test. + **/ + inline bool is_file(const char *const path) { + if (!path || !*path) return false; +#if cimg_OS==2 + const DWORD res = cimg::win_getfileattributes(path); + return res!=INVALID_FILE_ATTRIBUTES && !(res&FILE_ATTRIBUTE_DIRECTORY); +#elif cimg_OS==1 + struct stat st_buf; + return (!stat(path,&st_buf) && (S_ISREG(st_buf.st_mode) || S_ISFIFO(st_buf.st_mode) || + S_ISCHR(st_buf.st_mode) || S_ISBLK(st_buf.st_mode))); +#else + std::FILE *const file = cimg::std_fopen(path,"rb"); + if (!file) return false; + cimg::fclose(file); + return !is_directory(path); +#endif + } + + //! Get file size. + /** + \param filename Specified filename to get size from. + \return File size or '-1' if file does not exist. + **/ + inline cimg_int64 fsize(std::FILE *const file) { + if (!file) return (cimg_int64)-1; + const long pos = std::ftell(file); + std::fseek(file,0,SEEK_END); + const cimg_int64 siz = (cimg_int64)std::ftell(file); + std::fseek(file,pos,SEEK_SET); + return siz; + } + + inline cimg_int64 fsize(const char *const filename) { + std::FILE *const file = cimg::std_fopen(filename,"rb"); + const cimg_int64 siz = fsize(file); + cimg::fclose(file); + return siz; + } + + //! Get last write time of a given file or directory (multiple-attributes version). + /** + \param path Specified path to get attributes from. + \param[in,out] attr Type of requested time attributes. + Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } + Replaced by read attributes after return (or -1 if an error occurred). + \param nb_attr Number of attributes to read/write. + \return Latest read attribute. + **/ + template + inline int fdate(const char *const path, T *attr, const unsigned int nb_attr) { +#define _cimg_fdate_err() for (unsigned int i = 0; i + inline int date(T *attr, const unsigned int nb_attr) { + int res = -1; + cimg::mutex(6); +#if cimg_OS==2 + SYSTEMTIME st; + GetLocalTime(&st); + for (unsigned int i = 0; itm_year + 1900: + attr[i]==1?st->tm_mon + 1: + attr[i]==2?st->tm_mday: + attr[i]==3?st->tm_wday: + attr[i]==4?st->tm_hour: + attr[i]==5?st->tm_min: + attr[i]==6?st->tm_sec: + attr[i]==7?_st.tv_usec/1000:-1); + attr[i] = (T)res; + } +#endif + cimg::mutex(6,0); + return res; + } + + //! Get current local time (single-attribute version). + /** + \param attr Type of requested time attribute. + Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second | + 7=millisecond } + \return Specified attribute or -1 if an error occurred. + **/ + inline int date(unsigned int attr) { + int out = (int)attr; + return date(&out,1); + } + + // Get/set path to the \c curl binary. + inline const char *curl_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c dcraw binary. + inline const char *dcraw_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the FFMPEG's \c ffmpeg binary. + inline const char *ffmpeg_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the GraphicsMagick's \c gm binary. + inline const char* graphicsmagick_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c gunzip binary. + inline const char *gunzip_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c gzip binary. + inline const char *gzip_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the ImageMagick's \c convert binary. + inline const char* imagemagick_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the Medcon's \c medcon binary. + inline const char* medcon_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to store temporary files. + inline const char* temporary_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c wget binary. + inline const char *wget_path(const char *const user_path=0, const bool reinit_path=false); + +#if cimg_OS==2 + // Get/set path to the \c powershell binary. + inline const char *powershell_path(const char *const user_path=0, const bool reinit_path=false); +#endif + + //! Split filename into two C-strings \c body and \c extension. + /** + filename and body must not overlap! + **/ + inline const char *split_filename(const char *const filename, char *const body=0) { + if (!filename) { if (body) *body = 0; return ""; } + const char * p = std::strrchr(filename,'.'); + if (!p || std::strchr(p,'/') || std::strchr(p,'\\')) { // No extension. + if (body) std::strcpy(body,filename); + return filename + std::strlen(filename); + } + const unsigned int l = (unsigned int)(p - filename); + if (body) { if (l) std::memcpy(body,filename,l); body[l] = 0; } + return p + 1; + } + + // Generate a numbered version of a filename. + inline char* number_filename(const char *const filename, const int number, + const unsigned int digits, char *const str); + + //! Read data from file. + /** + \param[out] ptr Pointer to memory buffer that will contain the binary data read from file. + \param nmemb Number of elements to read. + \param stream File to read data from. + \return Number of read elements. + \note Same as std::fread() but may display warning message if all elements could not be read. + **/ + template + inline size_t fread(T *const ptr, const size_t nmemb, std::FILE *stream) { + if (!ptr || !stream) + throw CImgArgumentException("cimg::fread(): Invalid reading request of %u %s%s from file %p to buffer %p.", + nmemb,cimg::type::string(),nmemb>1?"s":"",stream,ptr); + if (!nmemb) return 0; + const size_t wlimitT = 63*1024*1024, wlimit = wlimitT/sizeof(T); + size_t to_read = nmemb, al_read = 0, l_to_read = 0, l_al_read = 0; + do { + l_to_read = (to_read*sizeof(T))0); + if (to_read>0) + warn("cimg::fread(): Only %lu/%lu elements could be read from file.", + (unsigned long)al_read,(unsigned long)nmemb); + return al_read; + } + + //! Write data to file. + /** + \param ptr Pointer to memory buffer containing the binary data to write on file. + \param nmemb Number of elements to write. + \param[out] stream File to write data on. + \return Number of written elements. + \note Similar to std::fwrite but may display warning messages if all elements could not be written. + **/ + template + inline size_t fwrite(const T *ptr, const size_t nmemb, std::FILE *stream) { + if (!ptr || !stream) + throw CImgArgumentException("cimg::fwrite(): Invalid writing request of %u %s%s from buffer %p to file %p.", + nmemb,cimg::type::string(),nmemb>1?"s":"",ptr,stream); + if (!nmemb) return 0; + const size_t wlimitT = 63*1024*1024, wlimit = wlimitT/sizeof(T); + size_t to_write = nmemb, al_write = 0, l_to_write = 0, l_al_write = 0; + do { + l_to_write = (to_write*sizeof(T))0); + if (to_write>0) + warn("cimg::fwrite(): Only %lu/%lu elements could be written in file.", + (unsigned long)al_write,(unsigned long)nmemb); + return al_write; + } + + //! Create an empty file. + /** + \param file Input file (can be \c 0 if \c filename is set). + \param filename Filename, as a C-string (can be \c 0 if \c file is set). + **/ + inline void fempty(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException("cimg::fempty(): Specified filename is (null)."); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + if (!file) cimg::fclose(nfile); + } + + // Try to guess format from an image file. + inline const char *ftype(std::FILE *const file, const char *const filename); + + // Get or set load from network mode (can be { 0=disabled | 1=enabled }). + inline bool& network_mode(const bool value, const bool is_set) { + static bool mode = true; + if (is_set) { cimg::mutex(0); mode = value; cimg::mutex(0,0); } + return mode; + } + + inline bool& network_mode() { + return network_mode(false,false); + } + + // Load file from network as a local temporary file. + inline char *load_network(const char *const url, char *const filename_local, + const unsigned int timeout=0, const bool try_fallback=false, + const char *const referer=0, const char *const user_agent=0); + + //! Return options specified on the command line. + inline const char* option(const char *const name, const int argc, const char *const *const argv, + const char *const _default, const char *const usage, const bool reset_static) { + static bool first = true, visu = false; + if (reset_static) { first = true; return 0; } + const char *res = 0; + if (first) { + first = false; + visu = cimg::option("-h",argc,argv,(char*)0,(char*)0,false)!=0; + visu |= cimg::option("-help",argc,argv,(char*)0,(char*)0,false)!=0; + visu |= cimg::option("--help",argc,argv,(char*)0,(char*)0,false)!=0; + } + if (!name && visu) { + if (usage) { + std::fprintf(cimg::output(),"\n %s%s%s",cimg::t_red,cimg::basename(argv[0]),cimg::t_normal); + std::fprintf(cimg::output(),": %s",usage); + std::fprintf(cimg::output()," (%s, %s)\n\n",cimg_date,cimg_time); + } + if (_default) std::fprintf(cimg::output(),"%s\n",_default); + } + if (name) { + if (argc>0) { + int k = 0; + while (k Operating System: %s%-13s%s %s('cimg_OS'=%d)%s\n", + cimg::t_bold, + cimg_OS==1?"Unix":(cimg_OS==2?"Windows":"Unknown"), + cimg::t_normal,cimg::t_green, + cimg_OS, + cimg::t_normal); + + std::fprintf(cimg::output()," > CPU endianness: %s%s Endian%s\n", + cimg::t_bold, + cimg::endianness()?"Big":"Little", + cimg::t_normal); + + std::fprintf(cimg::output()," > Verbosity mode: %s%-13s%s %s('cimg_verbosity'=%d)%s\n", + cimg::t_bold, + cimg_verbosity==0?"Quiet": + cimg_verbosity==1?"Console": + cimg_verbosity==2?"Dialog": + cimg_verbosity==3?"Console+Warnings":"Dialog+Warnings", + cimg::t_normal,cimg::t_green, + cimg_verbosity, + cimg::t_normal); + + std::fprintf(cimg::output()," > Stricts warnings: %s%-13s%s %s('cimg_strict_warnings' %s)%s\n", + cimg::t_bold, +#ifdef cimg_strict_warnings + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Support for C++11: %s%-13s%s %s('cimg_use_cpp11'=%d)%s\n", + cimg::t_bold, + cimg_use_cpp11?"Yes":"No", + cimg::t_normal,cimg::t_green, + (int)cimg_use_cpp11, + cimg::t_normal); + + std::fprintf(cimg::output()," > Using VT100 messages: %s%-13s%s %s('cimg_use_vt100' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_vt100 + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Display type: %s%-13s%s %s('cimg_display'=%d)%s\n", + cimg::t_bold, + cimg_display==0?"No display":cimg_display==1?"X11":cimg_display==2?"Windows GDI":"Unknown", + cimg::t_normal,cimg::t_green, + (int)cimg_display, + cimg::t_normal); + +#if cimg_display==1 + std::fprintf(cimg::output()," > Using XShm for X11: %s%-13s%s %s('cimg_use_xshm' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_xshm + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using XRand for X11: %s%-13s%s %s('cimg_use_xrandr' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_xrandr + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); +#endif + std::fprintf(cimg::output()," > Using OpenMP: %s%-13s%s %s('cimg_use_openmp' %s)%s\n", + cimg::t_bold, +#if cimg_use_openmp!=0 + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + std::fprintf(cimg::output()," > Using PNG library: %s%-13s%s %s('cimg_use_png' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_png + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + std::fprintf(cimg::output()," > Using JPEG library: %s%-13s%s %s('cimg_use_jpeg' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_jpeg + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using TIFF library: %s%-13s%s %s('cimg_use_tiff' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_tiff + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using Magick++ library: %s%-13s%s %s('cimg_use_magick' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_magick + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using FFTW3 library: %s%-13s%s %s('cimg_use_fftw3' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_fftw3 + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using LAPACK library: %s%-13s%s %s('cimg_use_lapack' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_lapack + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + char *const tmp = new char[1024]; + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::curl_path()); + std::fprintf(cimg::output()," > Path of 'curl': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::dcraw_path()); + std::fprintf(cimg::output()," > Path of 'dcraw': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::ffmpeg_path()); + std::fprintf(cimg::output()," > Path of 'ffmpeg': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::graphicsmagick_path()); + std::fprintf(cimg::output()," > Path of 'graphicsmagick': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::gunzip_path()); + std::fprintf(cimg::output()," > Path of 'gunzip': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::gzip_path()); + std::fprintf(cimg::output()," > Path of 'gzip': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::imagemagick_path()); + std::fprintf(cimg::output()," > Path of 'imagemagick': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::medcon_path()); + std::fprintf(cimg::output()," > Path of 'medcon': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::temporary_path()); + std::fprintf(cimg::output()," > Temporary path: %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::wget_path()); + std::fprintf(cimg::output()," > Path of 'wget': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); +#if cimg_OS==2 + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::powershell_path()); + std::fprintf(cimg::output()," > Path of 'powershell_path': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); +#endif + + std::fprintf(cimg::output(),"\n"); + delete[] tmp; + } + + // Declare LAPACK function signatures if LAPACK support is enabled. +#ifdef cimg_use_lapack + template + inline void getrf(int &N, T *lapA, int *IPIV, int &INFO) { + dgetrf_(&N,&N,lapA,&N,IPIV,&INFO); + } + + inline void getrf(int &N, float *lapA, int *IPIV, int &INFO) { + sgetrf_(&N,&N,lapA,&N,IPIV,&INFO); + } + + template + inline void getri(int &N, T *lapA, int *IPIV, T* WORK, int &LWORK, int &INFO) { + dgetri_(&N,lapA,&N,IPIV,WORK,&LWORK,&INFO); + } + + inline void getri(int &N, float *lapA, int *IPIV, float* WORK, int &LWORK, int &INFO) { + sgetri_(&N,lapA,&N,IPIV,WORK,&LWORK,&INFO); + } + + template + inline void gesvd(char &JOB, int &M, int &N, T *lapA, int &MN, + T *lapS, T *lapU, T *lapV, T *WORK, int &LWORK, int &INFO) { + dgesvd_(&JOB,&JOB,&M,&N,lapA,&MN,lapS,lapU,&M,lapV,&N,WORK,&LWORK,&INFO); + } + + inline void gesvd(char &JOB, int &M, int &N, float *lapA, int &MN, + float *lapS, float *lapU, float *lapV, float *WORK, int &LWORK, int &INFO) { + sgesvd_(&JOB,&JOB,&M,&N,lapA,&MN,lapS,lapU,&M,lapV,&N,WORK,&LWORK,&INFO); + } + + template + inline void getrs(char &TRANS, int &N, T *lapA, int *IPIV, T *lapB, int &INFO) { + int one = 1; + dgetrs_(&TRANS,&N,&one,lapA,&N,IPIV,lapB,&N,&INFO); + } + + inline void getrs(char &TRANS, int &N, float *lapA, int *IPIV, float *lapB, int &INFO) { + int one = 1; + sgetrs_(&TRANS,&N,&one,lapA,&N,IPIV,lapB,&N,&INFO); + } + + template + inline void syev(char &JOB, char &UPLO, int &N, T *lapA, T *lapW, T *WORK, int &LWORK, int &INFO) { + dsyev_(&JOB,&UPLO,&N,lapA,&N,lapW,WORK,&LWORK,&INFO); + } + + inline void syev(char &JOB, char &UPLO, int &N, float *lapA, float *lapW, float *WORK, int &LWORK, int &INFO) { + ssyev_(&JOB,&UPLO,&N,lapA,&N,lapW,WORK,&LWORK,&INFO); + } + + template + inline void sgels(char & TRANS, int &M, int &N, int &NRHS, T* lapA, int &LDA, + T* lapB, int &LDB, T* WORK, int &LWORK, int &INFO) { + dgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO); + } + + inline void sgels(char & TRANS, int &M, int &N, int &NRHS, float* lapA, int &LDA, + float* lapB, int &LDB, float* WORK, int &LWORK, int &INFO) { + sgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO); + } + +#endif + + } // namespace cimg { ... + + /*------------------------------------------------ + # + # + # Definition of mathematical operators and + # external functions. + # + # + -------------------------------------------------*/ + +#define _cimg_create_operator(typ) \ + template \ + inline CImg::type> operator+(const typ val, const CImg& img) { \ + return img + val; \ + } \ + template \ + inline CImg::type> operator-(const typ val, const CImg& img) { \ + typedef typename cimg::superset::type Tt; \ + return CImg(img._width,img._height,img._depth,img._spectrum,val)-=img; \ + } \ + template \ + inline CImg::type> operator*(const typ val, const CImg& img) { \ + return img*val; \ + } \ + template \ + inline CImg::type> operator/(const typ val, const CImg& img) { \ + return val*img.get_invert(); \ + } \ + template \ + inline CImg::type> operator&(const typ val, const CImg& img) { \ + return img & val; \ + } \ + template \ + inline CImg::type> operator|(const typ val, const CImg& img) { \ + return img | val; \ + } \ + template \ + inline CImg::type> operator^(const typ val, const CImg& img) { \ + return img ^ val; \ + } \ + template \ + inline bool operator==(const typ val, const CImg& img) { \ + return img == val; \ + } \ + template \ + inline bool operator!=(const typ val, const CImg& img) { \ + return img != val; \ + } + + _cimg_create_operator(bool) + _cimg_create_operator(unsigned char) + _cimg_create_operator(char) + _cimg_create_operator(signed char) + _cimg_create_operator(unsigned short) + _cimg_create_operator(short) + _cimg_create_operator(unsigned int) + _cimg_create_operator(int) + _cimg_create_operator(cimg_uint64) + _cimg_create_operator(cimg_int64) + _cimg_create_operator(float) + _cimg_create_operator(double) + _cimg_create_operator(long double) + + template + inline CImg<_cimg_Tfloat> operator+(const char *const expression, const CImg& img) { + return img + expression; + } + + template + inline CImg<_cimg_Tfloat> operator-(const char *const expression, const CImg& img) { + return CImg<_cimg_Tfloat>(img,false).fill(expression,true)-=img; + } + + template + inline CImg<_cimg_Tfloat> operator*(const char *const expression, const CImg& img) { + return img*expression; + } + + template + inline CImg<_cimg_Tfloat> operator/(const char *const expression, const CImg& img) { + return expression*img.get_invert(); + } + + template + inline CImg operator&(const char *const expression, const CImg& img) { + return img & expression; + } + + template + inline CImg operator|(const char *const expression, const CImg& img) { + return img | expression; + } + + template + inline CImg operator^(const char *const expression, const CImg& img) { + return img ^ expression; + } + + template + inline bool operator==(const char *const expression, const CImg& img) { + return img==expression; + } + + template + inline bool operator!=(const char *const expression, const CImg& img) { + return img!=expression; + } + + template + inline CImg transpose(const CImg& instance) { + return instance.get_transpose(); + } + + template + inline CImg<_cimg_Tfloat> invert(const CImg& instance, const bool use_LU=false, const float lambda=0) { + return instance.get_invert(use_LU,lambda); + } + +#define _cimg_create_pointwise_function(name) \ + template \ + inline CImg<_cimg_Tfloat> name(const CImg& instance) { \ + return instance.get_##name(); \ + } + + _cimg_create_pointwise_function(sqr) + _cimg_create_pointwise_function(sqrt) + _cimg_create_pointwise_function(erf) + _cimg_create_pointwise_function(exp) + _cimg_create_pointwise_function(log) + _cimg_create_pointwise_function(log2) + _cimg_create_pointwise_function(log10) + _cimg_create_pointwise_function(abs) + _cimg_create_pointwise_function(sign) + _cimg_create_pointwise_function(cos) + _cimg_create_pointwise_function(sin) + _cimg_create_pointwise_function(sinc) + _cimg_create_pointwise_function(tan) + _cimg_create_pointwise_function(acos) + _cimg_create_pointwise_function(asin) + _cimg_create_pointwise_function(atan) + _cimg_create_pointwise_function(cosh) + _cimg_create_pointwise_function(sinh) + _cimg_create_pointwise_function(tanh) + _cimg_create_pointwise_function(acosh) + _cimg_create_pointwise_function(asinh) + _cimg_create_pointwise_function(atanh) + + /*----------------------------------- + # + # Define the CImgDisplay structure + # + ----------------------------------*/ + //! Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events). + /** + CImgDisplay methods rely on a low-level graphic library to perform: it can be either \b X-Window + (X11, for Unix-based systems) or \b GDI32 (for Windows-based systems). + If both libraries are missing, CImgDisplay will not be able to display images on screen, and will enter + a minimal mode where warning messages will be outputted each time the program is trying to call one of the + CImgDisplay method. + + The configuration variable \c cimg_display tells about the graphic library used. + It is set automatically by \CImg when one of these graphic libraries has been detected. + But, you can override its value if necessary. Valid choices are: + - 0: Disable display capabilities. + - 1: Use \b X-Window (X11) library. + - 2: Use \b GDI32 library. + + Remember to link your program against \b X11 or \b GDI32 libraries if you use CImgDisplay. + **/ + struct CImgDisplay { + cimg_uint64 _timer, _fps_frames, _fps_timer; + unsigned int _width, _height, _normalization; + float _fps_fps, _min, _max; + bool _is_fullscreen; + char *_title; + unsigned int _window_width, _window_height, _button, *_keys, *_released_keys; + int _window_x, _window_y, _mouse_x, _mouse_y, _wheel; + bool _is_closed, _is_resized, _is_moved, _is_event, + _is_keyESC, _is_keyF1, _is_keyF2, _is_keyF3, _is_keyF4, _is_keyF5, _is_keyF6, _is_keyF7, + _is_keyF8, _is_keyF9, _is_keyF10, _is_keyF11, _is_keyF12, _is_keyPAUSE, _is_key1, _is_key2, + _is_key3, _is_key4, _is_key5, _is_key6, _is_key7, _is_key8, _is_key9, _is_key0, + _is_keyBACKSPACE, _is_keyINSERT, _is_keyHOME, _is_keyPAGEUP, _is_keyTAB, _is_keyQ, _is_keyW, _is_keyE, + _is_keyR, _is_keyT, _is_keyY, _is_keyU, _is_keyI, _is_keyO, _is_keyP, _is_keyDELETE, + _is_keyEND, _is_keyPAGEDOWN, _is_keyCAPSLOCK, _is_keyA, _is_keyS, _is_keyD, _is_keyF, _is_keyG, + _is_keyH, _is_keyJ, _is_keyK, _is_keyL, _is_keyENTER, _is_keySHIFTLEFT, _is_keyZ, _is_keyX, + _is_keyC, _is_keyV, _is_keyB, _is_keyN, _is_keyM, _is_keySHIFTRIGHT, _is_keyARROWUP, _is_keyCTRLLEFT, + _is_keyAPPLEFT, _is_keyALT, _is_keySPACE, _is_keyALTGR, _is_keyAPPRIGHT, _is_keyMENU, _is_keyCTRLRIGHT, + _is_keyARROWLEFT, _is_keyARROWDOWN, _is_keyARROWRIGHT, _is_keyPAD0, _is_keyPAD1, _is_keyPAD2, _is_keyPAD3, + _is_keyPAD4, _is_keyPAD5, _is_keyPAD6, _is_keyPAD7, _is_keyPAD8, _is_keyPAD9, _is_keyPADADD, _is_keyPADSUB, + _is_keyPADMUL, _is_keyPADDIV; + + //@} + //--------------------------- + // + //! \name Plugins + //@{ + //--------------------------- + +#ifdef cimgdisplay_plugin +#include cimgdisplay_plugin +#endif +#ifdef cimgdisplay_plugin1 +#include cimgdisplay_plugin1 +#endif +#ifdef cimgdisplay_plugin2 +#include cimgdisplay_plugin2 +#endif +#ifdef cimgdisplay_plugin3 +#include cimgdisplay_plugin3 +#endif +#ifdef cimgdisplay_plugin4 +#include cimgdisplay_plugin4 +#endif +#ifdef cimgdisplay_plugin5 +#include cimgdisplay_plugin5 +#endif +#ifdef cimgdisplay_plugin6 +#include cimgdisplay_plugin6 +#endif +#ifdef cimgdisplay_plugin7 +#include cimgdisplay_plugin7 +#endif +#ifdef cimgdisplay_plugin8 +#include cimgdisplay_plugin8 +#endif + + //@} + //-------------------------------------------------------- + // + //! \name Constructors / Destructor / Instance Management + //@{ + //-------------------------------------------------------- + + //! Destructor. + /** + \note If the associated window is visible on the screen, it is closed by the call to the destructor. + **/ + ~CImgDisplay() { + assign(); + delete[] _keys; + delete[] _released_keys; + } + + //! Construct an empty display. + /** + \note Constructing an empty CImgDisplay instance does not make a window appearing on the screen, until + display of valid data is performed. + \par Example + \code + CImgDisplay disp; // Does actually nothing + ... + disp.display(img); // Construct new window and display image in it + \endcode + **/ + CImgDisplay(): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(cimg::type::min()),_window_y(cimg::type::min()), + _mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(); + } + + //! Construct a display with specified dimensions. + /** \param width Window width. + \param height Window height. + \param title Window title. + \param normalization Normalization type + (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). + \param is_fullscreen Tells if fullscreen mode is enabled. + \param is_closed Tells if associated window is initially visible or not. + \note A black background is initially displayed on the associated window. + **/ + CImgDisplay(const unsigned int width, const unsigned int height, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(cimg::type::min()),_window_y(cimg::type::min()), + _mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(width,height,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display from an image. + /** \param img Image used as a model to create the window. + \param title Window title. + \param normalization Normalization type + (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). + \param is_fullscreen Tells if fullscreen mode is enabled. + \param is_closed Tells if associated window is initially visible or not. + \note The pixels of the input image are initially displayed on the associated window. + **/ + template + explicit CImgDisplay(const CImg& img, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(cimg::type::min()),_window_y(cimg::type::min()), + _mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(img,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display from an image list. + /** \param list The images list to display. + \param title Window title. + \param normalization Normalization type + (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). + \param is_fullscreen Tells if fullscreen mode is enabled. + \param is_closed Tells if associated window is initially visible or not. + \note All images of the list, appended along the X-axis, are initially displayed on the associated window. + **/ + template + explicit CImgDisplay(const CImgList& list, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(cimg::type::min()),_window_y(cimg::type::min()), + _mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(list,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display as a copy of an existing one. + /** + \param disp Display instance to copy. + \note The pixel buffer of the input window is initially displayed on the associated window. + **/ + CImgDisplay(const CImgDisplay& disp): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(cimg::type::min()),_window_y(cimg::type::min()), + _mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(disp); + } + + //! Take a screenshot. + /** + \param[out] img Output screenshot. Can be empty on input + **/ + template + static void screenshot(CImg& img) { + return screenshot(0,0,cimg::type::max(),cimg::type::max(),img); + } + +#if cimg_display==0 + + static void _no_display_exception() { + throw CImgDisplayException("CImgDisplay(): No display available."); + } + + //! Destructor - Empty constructor \inplace. + /** + \note Replace the current instance by an empty display. + **/ + CImgDisplay& assign() { + return flush(); + } + + //! Construct a display with specified dimensions \inplace. + /** + **/ + CImgDisplay& assign(const unsigned int width, const unsigned int height, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false) { + cimg::unused(width,height,title,normalization,is_fullscreen,is_closed); + _no_display_exception(); + return assign(); + } + + //! Construct a display from an image \inplace. + /** + **/ + template + CImgDisplay& assign(const CImg& img, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false) { + _no_display_exception(); + return assign(img._width,img._height,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display from an image list \inplace. + /** + **/ + template + CImgDisplay& assign(const CImgList& list, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false) { + _no_display_exception(); + return assign(list._width,list._width,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display as a copy of another one \inplace. + /** + **/ + CImgDisplay& assign(const CImgDisplay &disp) { + _no_display_exception(); + return assign(disp._width,disp._height); + } + +#endif + + //! Return a reference to an empty display. + /** + \note Can be useful for writing function prototypes where one of the argument (of type CImgDisplay&) + must have a default value. + \par Example + \code + void foo(CImgDisplay& disp=CImgDisplay::empty()); + \endcode + **/ + static CImgDisplay& empty() { + static CImgDisplay _empty; + return _empty.assign(); + } + + //! Return a reference to an empty display \const. + static const CImgDisplay& const_empty() { + static const CImgDisplay _empty; + return _empty; + } + +#define cimg_fitscreen(dx,dy,dz) CImgDisplay::_fitscreen(dx,dy,dz,-25,-85,false), \ + CImgDisplay::_fitscreen(dx,dy,dz,-25,-85,true) + static unsigned int _fitscreen(const unsigned int dx, const unsigned int dy, const unsigned int dz, + const int dmin, const int dmax, const bool return_y) { + const int + u = CImgDisplay::screen_width(), + v = CImgDisplay::screen_height(); + const float + mw = dmin<0?cimg::round(u*-dmin/100.f):(float)dmin, + mh = dmin<0?cimg::round(v*-dmin/100.f):(float)dmin, + Mw = dmax<0?cimg::round(u*-dmax/100.f):(float)dmax, + Mh = dmax<0?cimg::round(v*-dmax/100.f):(float)dmax; + float + w = (float)std::max(1U,dx), + h = (float)std::max(1U,dy); + if (dz>1) { w+=dz; h+=dz; } + if (wMw) { h = h*Mw/w; w = Mw; } + if (h>Mh) { w = w*Mh/h; h = Mh; } + if (wdisp = img is equivalent to disp.display(img). + **/ + template + CImgDisplay& operator=(const CImg& img) { + return display(img); + } + + //! Display list of images on associated window. + /** + \note disp = list is equivalent to disp.display(list). + **/ + template + CImgDisplay& operator=(const CImgList& list) { + return display(list); + } + + //! Construct a display as a copy of another one \inplace. + /** + \note Equivalent to assign(const CImgDisplay&). + **/ + CImgDisplay& operator=(const CImgDisplay& disp) { + return assign(disp); + } + + //! Return \c false if display is empty, \c true otherwise. + /** + \note if (disp) { ... } is equivalent to if (!disp.is_empty()) { ... }. + **/ + operator bool() const { + return !is_empty(); + } + + //@} + //------------------------------------------ + // + //! \name Instance Checking + //@{ + //------------------------------------------ + + //! Return \c true if display is empty, \c false otherwise. + /** + **/ + bool is_empty() const { + return !(_width && _height); + } + + //! Return \c true if display is closed (i.e. not visible on the screen), \c false otherwise. + /** + \note + - When a user physically closes the associated window, the display is set to closed. + - A closed display is not destroyed. Its associated window can be show again on the screen using show(). + **/ + bool is_closed() const { + return _is_closed; + } + + //! Return \c true if display is visible (i.e. not closed by the user), \c false otherwise. + bool is_visible() const { + return !is_closed(); + } + + //! Return \c true if associated window has been resized on the screen, \c false otherwise. + /** + **/ + bool is_resized() const { + return _is_resized; + } + + //! Return \c true if associated window has been moved on the screen, \c false otherwise. + /** + **/ + bool is_moved() const { + return _is_moved; + } + + //! Return \c true if any event has occurred on the associated window, \c false otherwise. + /** + **/ + bool is_event() const { + return _is_event; + } + + //! Return \c true if current display is in fullscreen mode, \c false otherwise. + /** + **/ + bool is_fullscreen() const { + return _is_fullscreen; + } + + //! Return \c true if any key is being pressed on the associated window, \c false otherwise. + /** + \note The methods below do the same only for specific keys. + **/ + bool is_key() const { + return _is_keyESC || _is_keyF1 || _is_keyF2 || _is_keyF3 || + _is_keyF4 || _is_keyF5 || _is_keyF6 || _is_keyF7 || + _is_keyF8 || _is_keyF9 || _is_keyF10 || _is_keyF11 || + _is_keyF12 || _is_keyPAUSE || _is_key1 || _is_key2 || + _is_key3 || _is_key4 || _is_key5 || _is_key6 || + _is_key7 || _is_key8 || _is_key9 || _is_key0 || + _is_keyBACKSPACE || _is_keyINSERT || _is_keyHOME || + _is_keyPAGEUP || _is_keyTAB || _is_keyQ || _is_keyW || + _is_keyE || _is_keyR || _is_keyT || _is_keyY || + _is_keyU || _is_keyI || _is_keyO || _is_keyP || + _is_keyDELETE || _is_keyEND || _is_keyPAGEDOWN || + _is_keyCAPSLOCK || _is_keyA || _is_keyS || _is_keyD || + _is_keyF || _is_keyG || _is_keyH || _is_keyJ || + _is_keyK || _is_keyL || _is_keyENTER || + _is_keySHIFTLEFT || _is_keyZ || _is_keyX || _is_keyC || + _is_keyV || _is_keyB || _is_keyN || _is_keyM || + _is_keySHIFTRIGHT || _is_keyARROWUP || _is_keyCTRLLEFT || + _is_keyAPPLEFT || _is_keyALT || _is_keySPACE || _is_keyALTGR || + _is_keyAPPRIGHT || _is_keyMENU || _is_keyCTRLRIGHT || + _is_keyARROWLEFT || _is_keyARROWDOWN || _is_keyARROWRIGHT || + _is_keyPAD0 || _is_keyPAD1 || _is_keyPAD2 || + _is_keyPAD3 || _is_keyPAD4 || _is_keyPAD5 || + _is_keyPAD6 || _is_keyPAD7 || _is_keyPAD8 || + _is_keyPAD9 || _is_keyPADADD || _is_keyPADSUB || + _is_keyPADMUL || _is_keyPADDIV; + } + + //! Return \c true if key specified by given keycode is being pressed on the associated window, \c false otherwise. + /** + \param keycode Keycode to test. + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + \par Example + \code + CImgDisplay disp(400,400); + while (!disp.is_closed()) { + if (disp.key(cimg::keyTAB)) { ... } // Equivalent to 'if (disp.is_keyTAB())' + disp.wait(); + } + \endcode + **/ + bool is_key(const unsigned int keycode) const { +#define _cimg_iskey_test(k) if (keycode==cimg::key##k) return _is_key##k; + _cimg_iskey_test(ESC); _cimg_iskey_test(F1); _cimg_iskey_test(F2); _cimg_iskey_test(F3); + _cimg_iskey_test(F4); _cimg_iskey_test(F5); _cimg_iskey_test(F6); _cimg_iskey_test(F7); + _cimg_iskey_test(F8); _cimg_iskey_test(F9); _cimg_iskey_test(F10); _cimg_iskey_test(F11); + _cimg_iskey_test(F12); _cimg_iskey_test(PAUSE); _cimg_iskey_test(1); _cimg_iskey_test(2); + _cimg_iskey_test(3); _cimg_iskey_test(4); _cimg_iskey_test(5); _cimg_iskey_test(6); + _cimg_iskey_test(7); _cimg_iskey_test(8); _cimg_iskey_test(9); _cimg_iskey_test(0); + _cimg_iskey_test(BACKSPACE); _cimg_iskey_test(INSERT); _cimg_iskey_test(HOME); + _cimg_iskey_test(PAGEUP); _cimg_iskey_test(TAB); _cimg_iskey_test(Q); _cimg_iskey_test(W); + _cimg_iskey_test(E); _cimg_iskey_test(R); _cimg_iskey_test(T); _cimg_iskey_test(Y); + _cimg_iskey_test(U); _cimg_iskey_test(I); _cimg_iskey_test(O); _cimg_iskey_test(P); + _cimg_iskey_test(DELETE); _cimg_iskey_test(END); _cimg_iskey_test(PAGEDOWN); + _cimg_iskey_test(CAPSLOCK); _cimg_iskey_test(A); _cimg_iskey_test(S); _cimg_iskey_test(D); + _cimg_iskey_test(F); _cimg_iskey_test(G); _cimg_iskey_test(H); _cimg_iskey_test(J); + _cimg_iskey_test(K); _cimg_iskey_test(L); _cimg_iskey_test(ENTER); + _cimg_iskey_test(SHIFTLEFT); _cimg_iskey_test(Z); _cimg_iskey_test(X); _cimg_iskey_test(C); + _cimg_iskey_test(V); _cimg_iskey_test(B); _cimg_iskey_test(N); _cimg_iskey_test(M); + _cimg_iskey_test(SHIFTRIGHT); _cimg_iskey_test(ARROWUP); _cimg_iskey_test(CTRLLEFT); + _cimg_iskey_test(APPLEFT); _cimg_iskey_test(ALT); _cimg_iskey_test(SPACE); _cimg_iskey_test(ALTGR); + _cimg_iskey_test(APPRIGHT); _cimg_iskey_test(MENU); _cimg_iskey_test(CTRLRIGHT); + _cimg_iskey_test(ARROWLEFT); _cimg_iskey_test(ARROWDOWN); _cimg_iskey_test(ARROWRIGHT); + _cimg_iskey_test(PAD0); _cimg_iskey_test(PAD1); _cimg_iskey_test(PAD2); + _cimg_iskey_test(PAD3); _cimg_iskey_test(PAD4); _cimg_iskey_test(PAD5); + _cimg_iskey_test(PAD6); _cimg_iskey_test(PAD7); _cimg_iskey_test(PAD8); + _cimg_iskey_test(PAD9); _cimg_iskey_test(PADADD); _cimg_iskey_test(PADSUB); + _cimg_iskey_test(PADMUL); _cimg_iskey_test(PADDIV); + return false; + } + + //! Return \c true if key specified by given keycode is being pressed on the associated window, \c false otherwise. + /** + \param keycode C-string containing the keycode label of the key to test. + \note Use it when the key you want to test can be dynamically set by the user. + \par Example + \code + CImgDisplay disp(400,400); + const char *const keycode = "TAB"; + while (!disp.is_closed()) { + if (disp.is_key(keycode)) { ... } // Equivalent to 'if (disp.is_keyTAB())' + disp.wait(); + } + \endcode + **/ + bool& is_key(const char *const keycode) { + static bool f = false; + f = false; +#define _cimg_iskey_test2(k) if (!cimg::strcasecmp(keycode,#k)) return _is_key##k; + _cimg_iskey_test2(ESC); _cimg_iskey_test2(F1); _cimg_iskey_test2(F2); _cimg_iskey_test2(F3); + _cimg_iskey_test2(F4); _cimg_iskey_test2(F5); _cimg_iskey_test2(F6); _cimg_iskey_test2(F7); + _cimg_iskey_test2(F8); _cimg_iskey_test2(F9); _cimg_iskey_test2(F10); _cimg_iskey_test2(F11); + _cimg_iskey_test2(F12); _cimg_iskey_test2(PAUSE); _cimg_iskey_test2(1); _cimg_iskey_test2(2); + _cimg_iskey_test2(3); _cimg_iskey_test2(4); _cimg_iskey_test2(5); _cimg_iskey_test2(6); + _cimg_iskey_test2(7); _cimg_iskey_test2(8); _cimg_iskey_test2(9); _cimg_iskey_test2(0); + _cimg_iskey_test2(BACKSPACE); _cimg_iskey_test2(INSERT); _cimg_iskey_test2(HOME); + _cimg_iskey_test2(PAGEUP); _cimg_iskey_test2(TAB); _cimg_iskey_test2(Q); _cimg_iskey_test2(W); + _cimg_iskey_test2(E); _cimg_iskey_test2(R); _cimg_iskey_test2(T); _cimg_iskey_test2(Y); + _cimg_iskey_test2(U); _cimg_iskey_test2(I); _cimg_iskey_test2(O); _cimg_iskey_test2(P); + _cimg_iskey_test2(DELETE); _cimg_iskey_test2(END); _cimg_iskey_test2(PAGEDOWN); + _cimg_iskey_test2(CAPSLOCK); _cimg_iskey_test2(A); _cimg_iskey_test2(S); _cimg_iskey_test2(D); + _cimg_iskey_test2(F); _cimg_iskey_test2(G); _cimg_iskey_test2(H); _cimg_iskey_test2(J); + _cimg_iskey_test2(K); _cimg_iskey_test2(L); _cimg_iskey_test2(ENTER); + _cimg_iskey_test2(SHIFTLEFT); _cimg_iskey_test2(Z); _cimg_iskey_test2(X); _cimg_iskey_test2(C); + _cimg_iskey_test2(V); _cimg_iskey_test2(B); _cimg_iskey_test2(N); _cimg_iskey_test2(M); + _cimg_iskey_test2(SHIFTRIGHT); _cimg_iskey_test2(ARROWUP); _cimg_iskey_test2(CTRLLEFT); + _cimg_iskey_test2(APPLEFT); _cimg_iskey_test2(ALT); _cimg_iskey_test2(SPACE); _cimg_iskey_test2(ALTGR); + _cimg_iskey_test2(APPRIGHT); _cimg_iskey_test2(MENU); _cimg_iskey_test2(CTRLRIGHT); + _cimg_iskey_test2(ARROWLEFT); _cimg_iskey_test2(ARROWDOWN); _cimg_iskey_test2(ARROWRIGHT); + _cimg_iskey_test2(PAD0); _cimg_iskey_test2(PAD1); _cimg_iskey_test2(PAD2); + _cimg_iskey_test2(PAD3); _cimg_iskey_test2(PAD4); _cimg_iskey_test2(PAD5); + _cimg_iskey_test2(PAD6); _cimg_iskey_test2(PAD7); _cimg_iskey_test2(PAD8); + _cimg_iskey_test2(PAD9); _cimg_iskey_test2(PADADD); _cimg_iskey_test2(PADSUB); + _cimg_iskey_test2(PADMUL); _cimg_iskey_test2(PADDIV); + return f; + } + + //! Return \c true if specified key sequence has been typed on the associated window, \c false otherwise. + /** + \param keycodes_sequence Buffer of keycodes to test. + \param length Number of keys in the \c keycodes_sequence buffer. + \param remove_sequence Tells if the key sequence must be removed from the key history, if found. + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + \par Example + \code + CImgDisplay disp(400,400); + const unsigned int key_seq[] = { cimg::keyCTRLLEFT, cimg::keyD }; + while (!disp.is_closed()) { + if (disp.is_key_sequence(key_seq,2)) { ... } // Test for the 'CTRL+D' keyboard event + disp.wait(); + } + \endcode + **/ + bool is_key_sequence(const unsigned int *const keycodes_sequence, const unsigned int length, + const bool remove_sequence=false) { + if (keycodes_sequence && length) { + const unsigned int + *const ps_end = keycodes_sequence + length - 1, + *const pk_end = (unsigned int*)_keys + 1 + 128 - length, + k = *ps_end; + for (unsigned int *pk = (unsigned int*)_keys; pk[0,255]. + If the range of values of the data to display is different, a normalization may be required for displaying + the data in a correct way. The normalization type can be one of: + - \c 0: Value normalization is disabled. It is then assumed that all input data to be displayed by the + CImgDisplay instance have values in range [0,255]. + - \c 1: Value normalization is always performed (this is the default behavior). + Before displaying an input image, its values will be (virtually) stretched + in range [0,255], so that the contrast of the displayed pixels will be maximum. + Use this mode for images whose minimum and maximum values are not prescribed to known values + (e.g. float-valued images). + Note that when normalized versions of images are computed for display purposes, the actual values of these + images are not modified. + - \c 2: Value normalization is performed once (on the first image display), then the same normalization + coefficients are kept for next displayed frames. + - \c 3: Value normalization depends on the pixel type of the data to display. For integer pixel types, + the normalization is done regarding the minimum/maximum values of the type (no normalization occurs then + for unsigned char). + For float-valued pixel types, the normalization is done regarding the minimum/maximum value of the image + data instead. + **/ + unsigned int normalization() const { + return _normalization; + } + + //! Return title of the associated window as a C-string. + /** + \note Window title may be not visible, depending on the used window manager or if the current display is + in fullscreen mode. + **/ + const char *title() const { + return _title?_title:""; + } + + //! Return width of the associated window. + /** + \note The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance) + may be different from the actual width of the associated window. + **/ + int window_width() const { + return (int)_window_width; + } + + //! Return height of the associated window. + /** + \note The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) + may be different from the actual height of the associated window. + **/ + int window_height() const { + return (int)_window_height; + } + + //! Return X-coordinate of the associated window. + /** + \note The returned coordinate corresponds to the location of the upper-left corner of the associated window. + **/ + int window_x() const { + return _window_x; + } + + //! Return Y-coordinate of the associated window. + /** + \note The returned coordinate corresponds to the location of the upper-left corner of the associated window. + **/ + int window_y() const { + return _window_y; + } + + //! Return X-coordinate of the mouse pointer. + /** + \note + - If the mouse pointer is outside window area, \c -1 is returned. + - Otherwise, the returned value is in the range [0,width()-1]. + **/ + int mouse_x() const { + return _mouse_x; + } + + //! Return Y-coordinate of the mouse pointer. + /** + \note + - If the mouse pointer is outside window area, \c -1 is returned. + - Otherwise, the returned value is in the range [0,height()-1]. + **/ + int mouse_y() const { + return _mouse_y; + } + + //! Return current state of the mouse buttons. + /** + \note Three mouse buttons can be managed. If one button is pressed, its corresponding bit in the returned + value is set: + - bit \c 0 (value \c 0x1): State of the left mouse button. + - bit \c 1 (value \c 0x2): State of the right mouse button. + - bit \c 2 (value \c 0x4): State of the middle mouse button. + + Several bits can be activated if more than one button are pressed at the same time. + \par Example + \code + CImgDisplay disp(400,400); + while (!disp.is_closed()) { + if (disp.button()&1) { // Left button clicked + ... + } + if (disp.button()&2) { // Right button clicked + ... + } + if (disp.button()&4) { // Middle button clicked + ... + } + disp.wait(); + } + \endcode + **/ + unsigned int button() const { + return _button; + } + + //! Return current state of the mouse wheel. + /** + \note + - The returned value can be positive or negative depending on whether the mouse wheel has been scrolled + forward or backward. + - Scrolling the wheel forward add \c 1 to the wheel value. + - Scrolling the wheel backward subtract \c 1 to the wheel value. + - The returned value cumulates the number of forward of backward scrolls since the creation of the display, + or since the last reset of the wheel value (using set_wheel()). It is strongly recommended to quickly reset + the wheel counter when an action has been performed regarding the current wheel value. + Otherwise, the returned wheel value may be for instance \c 0 despite the fact that many scrolls have been done + (as many in forward as in backward directions). + \par Example + \code + CImgDisplay disp(400,400); + while (!disp.is_closed()) { + if (disp.wheel()) { + int counter = disp.wheel(); // Read the state of the mouse wheel + ... // Do what you want with 'counter' + disp.set_wheel(); // Reset the wheel value to 0 + } + disp.wait(); + } + \endcode + **/ + int wheel() const { + return _wheel; + } + + //! Return one entry from the pressed keys history. + /** + \param pos Index to read from the pressed keys history (index \c 0 corresponds to latest entry). + \return Keycode of a pressed key or \c 0 for a released key. + \note + - Each CImgDisplay stores a history of the pressed keys in a buffer of size \c 128. When a new key is pressed, + its keycode is stored in the pressed keys history. When a key is released, \c 0 is put instead. + This means that up to the 64 last pressed keys may be read from the pressed keys history. + When a new value is stored, the pressed keys history is shifted so that the latest entry is always + stored at position \c 0. + - Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + **/ + unsigned int& key(const unsigned int pos=0) const { + static unsigned int key0; + return pos<128?_keys[pos]:(key0 = 0); + + } + + //! Return one entry from the released keys history. + /** + \param pos Index to read from the released keys history (index \c 0 corresponds to latest entry). + \return Keycode of a released key or \c 0 for a pressed key. + \note + - Each CImgDisplay stores a history of the released keys in a buffer of size \c 128. When a new key is released, + its keycode is stored in the pressed keys history. When a key is pressed, \c 0 is put instead. + This means that up to the 64 last released keys may be read from the released keys history. + When a new value is stored, the released keys history is shifted so that the latest entry is always + stored at position \c 0. + - Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + **/ + unsigned int& released_key(const unsigned int pos=0) const { + static unsigned int key0; + return pos<128?_released_keys[pos]:(key0 = 0); + } + + //! Return keycode corresponding to the specified string. + /** + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + \par Example + \code + const unsigned int keyTAB = CImgDisplay::keycode("TAB"); // Return cimg::keyTAB + \endcode + **/ + static unsigned int keycode(const char *const keycode) { +#define _cimg_keycode(k) if (!cimg::strcasecmp(keycode,#k)) return cimg::key##k; + _cimg_keycode(ESC); _cimg_keycode(F1); _cimg_keycode(F2); _cimg_keycode(F3); + _cimg_keycode(F4); _cimg_keycode(F5); _cimg_keycode(F6); _cimg_keycode(F7); + _cimg_keycode(F8); _cimg_keycode(F9); _cimg_keycode(F10); _cimg_keycode(F11); + _cimg_keycode(F12); _cimg_keycode(PAUSE); _cimg_keycode(1); _cimg_keycode(2); + _cimg_keycode(3); _cimg_keycode(4); _cimg_keycode(5); _cimg_keycode(6); + _cimg_keycode(7); _cimg_keycode(8); _cimg_keycode(9); _cimg_keycode(0); + _cimg_keycode(BACKSPACE); _cimg_keycode(INSERT); _cimg_keycode(HOME); + _cimg_keycode(PAGEUP); _cimg_keycode(TAB); _cimg_keycode(Q); _cimg_keycode(W); + _cimg_keycode(E); _cimg_keycode(R); _cimg_keycode(T); _cimg_keycode(Y); + _cimg_keycode(U); _cimg_keycode(I); _cimg_keycode(O); _cimg_keycode(P); + _cimg_keycode(DELETE); _cimg_keycode(END); _cimg_keycode(PAGEDOWN); + _cimg_keycode(CAPSLOCK); _cimg_keycode(A); _cimg_keycode(S); _cimg_keycode(D); + _cimg_keycode(F); _cimg_keycode(G); _cimg_keycode(H); _cimg_keycode(J); + _cimg_keycode(K); _cimg_keycode(L); _cimg_keycode(ENTER); + _cimg_keycode(SHIFTLEFT); _cimg_keycode(Z); _cimg_keycode(X); _cimg_keycode(C); + _cimg_keycode(V); _cimg_keycode(B); _cimg_keycode(N); _cimg_keycode(M); + _cimg_keycode(SHIFTRIGHT); _cimg_keycode(ARROWUP); _cimg_keycode(CTRLLEFT); + _cimg_keycode(APPLEFT); _cimg_keycode(ALT); _cimg_keycode(SPACE); _cimg_keycode(ALTGR); + _cimg_keycode(APPRIGHT); _cimg_keycode(MENU); _cimg_keycode(CTRLRIGHT); + _cimg_keycode(ARROWLEFT); _cimg_keycode(ARROWDOWN); _cimg_keycode(ARROWRIGHT); + _cimg_keycode(PAD0); _cimg_keycode(PAD1); _cimg_keycode(PAD2); + _cimg_keycode(PAD3); _cimg_keycode(PAD4); _cimg_keycode(PAD5); + _cimg_keycode(PAD6); _cimg_keycode(PAD7); _cimg_keycode(PAD8); + _cimg_keycode(PAD9); _cimg_keycode(PADADD); _cimg_keycode(PADSUB); + _cimg_keycode(PADMUL); _cimg_keycode(PADDIV); + return 0; + } + + //! Return the current refresh rate, in frames per second. + /** + \note Returns a significant value when the current instance is used to display successive frames. + It measures the delay between successive calls to frames_per_second(). + **/ + float frames_per_second() { + if (!_fps_timer) _fps_timer = cimg::time(); + const float delta = (float)((cimg::time() - _fps_timer)/1000.f); + ++_fps_frames; + if (delta>=1) { + _fps_fps = _fps_frames/delta; + _fps_frames = 0; + _fps_timer = cimg::time(); + } + return _fps_fps; + } + + // Move current display window so that its content stays inside the current screen. + CImgDisplay& move_inside_screen() { + if (is_empty()) return *this; + const int + x0 = window_x(), + y0 = window_y(), + x1 = x0 + window_width() - 1, + y1 = y0 + window_height() - 1, + sw = CImgDisplay::screen_width(), + sh = CImgDisplay::screen_height(); + if (x0<0 || y0<0 || x1>=sw || y1>=sh) + move(std::max(0,std::min(x0,sw - x1 + x0)), + std::max(0,std::min(y0,sh - y1 + y0))); + return *this; + } + + //@} + //--------------------------------------- + // + //! \name Window Manipulation + //@{ + //--------------------------------------- + +#if cimg_display==0 + + //! Display image on associated window. + /** + \param img Input image to display. + \note This method returns immediately. + **/ + template + CImgDisplay& display(const CImg& img) { + return assign(img); + } + +#endif + + //! Display list of images on associated window. + /** + \param list List of images to display. + \param axis Axis used to append the images along, for the visualization (can be \c x, \c y, \c z or \c c). + \param align Relative position of aligned images when displaying lists with images of different sizes + (\c 0 for upper-left, \c 0.5 for centering and \c 1 for lower-right). + \note This method returns immediately. + **/ + template + CImgDisplay& display(const CImgList& list, const char axis='x', const float align=0) { + if (list._width==1) { + const CImg& img = list[0]; + if (img._depth==1 && (img._spectrum==1 || img._spectrum>=3) && _normalization!=1) return display(img); + } + CImgList::ucharT> visu(list._width); + unsigned int dims = 0; + cimglist_for(list,l) { + const CImg& img = list._data[l]; + img._get_select(*this,_normalization,(img._width - 1)/2,(img._height - 1)/2, + (img._depth - 1)/2).move_to(visu[l]); + dims = std::max(dims,visu[l]._spectrum); + } + cimglist_for(list,l) if (visu[l]._spectrumimg.width() become equal, as well as height() and + img.height(). + - The associated window is also resized to specified dimensions. + **/ + template + CImgDisplay& resize(const CImg& img, const bool force_redraw=true) { + return resize(img._width,img._height,force_redraw); + } + + //! Resize display to the size of another CImgDisplay instance. + /** + \param disp Input display to take size from. + \param force_redraw Tells if the previous window content must be resized and updated as well. + \note + - Calling this method ensures that width() and disp.width() become equal, as well as height() and + disp.height(). + - The associated window is also resized to specified dimensions. + **/ + CImgDisplay& resize(const CImgDisplay& disp, const bool force_redraw=true) { + return resize(disp.width(),disp.height(),force_redraw); + } + + // [internal] Render pixel buffer with size (wd,hd) from source buffer of size (ws,hs). + template + static void _render_resize(const T *ptrs, const unsigned int ws, const unsigned int hs, + t *ptrd, const unsigned int wd, const unsigned int hd) { + typedef typename cimg::last::type ulongT; + const ulongT one = (ulongT)1; + CImg off_x(wd), off_y(hd + 1); + if (wd==ws) off_x.fill(1); + else { + ulongT *poff_x = off_x._data, curr = 0; + for (unsigned int x = 0; xstd::printf(). + \warning As the first argument is a format string, it is highly recommended to write + \code + disp.set_title("%s",window_title); + \endcode + instead of + \code + disp.set_title(window_title); + \endcode + if \c window_title can be arbitrary, to prevent nasty memory access. + **/ + CImgDisplay& set_title(const char *const format, ...) { + return assign(0,0,format); + } + +#endif + + //! Enable or disable fullscreen mode. + /** + \param is_fullscreen Tells is the fullscreen mode must be activated or not. + \param force_redraw Tells if the previous window content must be displayed as well. + \note + - When the fullscreen mode is enabled, the associated window fills the entire screen but the size of the + current display is not modified. + - The screen resolution may be switched to fit the associated window size and ensure it appears the largest + as possible. + For X-Window (X11) users, the configuration flag \c cimg_use_xrandr has to be set to allow the screen + resolution change (requires the X11 extensions to be enabled). + **/ + CImgDisplay& set_fullscreen(const bool is_fullscreen, const bool force_redraw=true) { + if (is_empty() || _is_fullscreen==is_fullscreen) return *this; + return toggle_fullscreen(force_redraw); + } + +#if cimg_display==0 + + //! Toggle fullscreen mode. + /** + \param force_redraw Tells if the previous window content must be displayed as well. + \note Enable fullscreen mode if it was not enabled, and disable it otherwise. + **/ + CImgDisplay& toggle_fullscreen(const bool force_redraw=true) { + return assign(_width,_height,0,3,force_redraw); + } + + //! Show mouse pointer. + /** + \note Depending on the window manager behavior, this method may not succeed + (no exceptions are thrown nevertheless). + **/ + CImgDisplay& show_mouse() { + return assign(); + } + + //! Hide mouse pointer. + /** + \note Depending on the window manager behavior, this method may not succeed + (no exceptions are thrown nevertheless). + **/ + CImgDisplay& hide_mouse() { + return assign(); + } + + //! Move mouse pointer to a specified location. + /** + \note Depending on the window manager behavior, this method may not succeed + (no exceptions are thrown nevertheless). + **/ + CImgDisplay& set_mouse(const int pos_x, const int pos_y) { + return assign(pos_x,pos_y); + } + +#endif + + //! Simulate a mouse button release event. + /** + \note All mouse buttons are considered released at the same time. + **/ + CImgDisplay& set_button() { + _button = 0; + _is_event = true; +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + return *this; + } + + //! Simulate a mouse button press or release event. + /** + \param button Buttons event code, where each button is associated to a single bit. + \param is_pressed Tells if the mouse button is considered as pressed or released. + **/ + CImgDisplay& set_button(const unsigned int button, const bool is_pressed=true) { + const unsigned int buttoncode = button==1U?1U:button==2U?2U:button==3U?4U:0U; + if (is_pressed) _button |= buttoncode; else _button &= ~buttoncode; + _is_event = buttoncode?true:false; + if (buttoncode) { +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + } + return *this; + } + + //! Flush all mouse wheel events. + /** + \note Make wheel() to return \c 0, if called afterwards. + **/ + CImgDisplay& set_wheel() { + _wheel = 0; + _is_event = true; +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + return *this; + } + + //! Simulate a wheel event. + /** + \param amplitude Amplitude of the wheel scrolling to simulate. + \note Make wheel() to return \c amplitude, if called afterwards. + **/ + CImgDisplay& set_wheel(const int amplitude) { + _wheel+=amplitude; + _is_event = amplitude?true:false; + if (amplitude) { +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + } + return *this; + } + + //! Flush all key events. + /** + \note Make key() to return \c 0, if called afterwards. + **/ + CImgDisplay& set_key() { + std::memset((void*)_keys,0,128*sizeof(unsigned int)); + std::memset((void*)_released_keys,0,128*sizeof(unsigned int)); + _is_keyESC = _is_keyF1 = _is_keyF2 = _is_keyF3 = _is_keyF4 = _is_keyF5 = _is_keyF6 = _is_keyF7 = _is_keyF8 = + _is_keyF9 = _is_keyF10 = _is_keyF11 = _is_keyF12 = _is_keyPAUSE = _is_key1 = _is_key2 = _is_key3 = _is_key4 = + _is_key5 = _is_key6 = _is_key7 = _is_key8 = _is_key9 = _is_key0 = _is_keyBACKSPACE = _is_keyINSERT = + _is_keyHOME = _is_keyPAGEUP = _is_keyTAB = _is_keyQ = _is_keyW = _is_keyE = _is_keyR = _is_keyT = _is_keyY = + _is_keyU = _is_keyI = _is_keyO = _is_keyP = _is_keyDELETE = _is_keyEND = _is_keyPAGEDOWN = _is_keyCAPSLOCK = + _is_keyA = _is_keyS = _is_keyD = _is_keyF = _is_keyG = _is_keyH = _is_keyJ = _is_keyK = _is_keyL = + _is_keyENTER = _is_keySHIFTLEFT = _is_keyZ = _is_keyX = _is_keyC = _is_keyV = _is_keyB = _is_keyN = + _is_keyM = _is_keySHIFTRIGHT = _is_keyARROWUP = _is_keyCTRLLEFT = _is_keyAPPLEFT = _is_keyALT = _is_keySPACE = + _is_keyALTGR = _is_keyAPPRIGHT = _is_keyMENU = _is_keyCTRLRIGHT = _is_keyARROWLEFT = _is_keyARROWDOWN = + _is_keyARROWRIGHT = _is_keyPAD0 = _is_keyPAD1 = _is_keyPAD2 = _is_keyPAD3 = _is_keyPAD4 = _is_keyPAD5 = + _is_keyPAD6 = _is_keyPAD7 = _is_keyPAD8 = _is_keyPAD9 = _is_keyPADADD = _is_keyPADSUB = _is_keyPADMUL = + _is_keyPADDIV = false; + _is_event = true; +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + return *this; + } + + //! Simulate a keyboard press/release event. + /** + \param keycode Keycode of the associated key. + \param is_pressed Tells if the key is considered as pressed or released. + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + **/ + CImgDisplay& set_key(const unsigned int keycode, const bool is_pressed=true) { +#define _cimg_set_key(k) if (keycode==cimg::key##k) _is_key##k = is_pressed; + _cimg_set_key(ESC); _cimg_set_key(F1); _cimg_set_key(F2); _cimg_set_key(F3); + _cimg_set_key(F4); _cimg_set_key(F5); _cimg_set_key(F6); _cimg_set_key(F7); + _cimg_set_key(F8); _cimg_set_key(F9); _cimg_set_key(F10); _cimg_set_key(F11); + _cimg_set_key(F12); _cimg_set_key(PAUSE); _cimg_set_key(1); _cimg_set_key(2); + _cimg_set_key(3); _cimg_set_key(4); _cimg_set_key(5); _cimg_set_key(6); + _cimg_set_key(7); _cimg_set_key(8); _cimg_set_key(9); _cimg_set_key(0); + _cimg_set_key(BACKSPACE); _cimg_set_key(INSERT); _cimg_set_key(HOME); + _cimg_set_key(PAGEUP); _cimg_set_key(TAB); _cimg_set_key(Q); _cimg_set_key(W); + _cimg_set_key(E); _cimg_set_key(R); _cimg_set_key(T); _cimg_set_key(Y); + _cimg_set_key(U); _cimg_set_key(I); _cimg_set_key(O); _cimg_set_key(P); + _cimg_set_key(DELETE); _cimg_set_key(END); _cimg_set_key(PAGEDOWN); + _cimg_set_key(CAPSLOCK); _cimg_set_key(A); _cimg_set_key(S); _cimg_set_key(D); + _cimg_set_key(F); _cimg_set_key(G); _cimg_set_key(H); _cimg_set_key(J); + _cimg_set_key(K); _cimg_set_key(L); _cimg_set_key(ENTER); + _cimg_set_key(SHIFTLEFT); _cimg_set_key(Z); _cimg_set_key(X); _cimg_set_key(C); + _cimg_set_key(V); _cimg_set_key(B); _cimg_set_key(N); _cimg_set_key(M); + _cimg_set_key(SHIFTRIGHT); _cimg_set_key(ARROWUP); _cimg_set_key(CTRLLEFT); + _cimg_set_key(APPLEFT); _cimg_set_key(ALT); _cimg_set_key(SPACE); _cimg_set_key(ALTGR); + _cimg_set_key(APPRIGHT); _cimg_set_key(MENU); _cimg_set_key(CTRLRIGHT); + _cimg_set_key(ARROWLEFT); _cimg_set_key(ARROWDOWN); _cimg_set_key(ARROWRIGHT); + _cimg_set_key(PAD0); _cimg_set_key(PAD1); _cimg_set_key(PAD2); + _cimg_set_key(PAD3); _cimg_set_key(PAD4); _cimg_set_key(PAD5); + _cimg_set_key(PAD6); _cimg_set_key(PAD7); _cimg_set_key(PAD8); + _cimg_set_key(PAD9); _cimg_set_key(PADADD); _cimg_set_key(PADSUB); + _cimg_set_key(PADMUL); _cimg_set_key(PADDIV); + if (is_pressed) { + if (*_keys) + std::memmove((void*)(_keys + 1),(void*)_keys,127*sizeof(unsigned int)); + *_keys = keycode; + if (*_released_keys) { + std::memmove((void*)(_released_keys + 1),(void*)_released_keys,127*sizeof(unsigned int)); + *_released_keys = 0; + } + } else { + if (*_keys) { + std::memmove((void*)(_keys + 1),(void*)_keys,127*sizeof(unsigned int)); + *_keys = 0; + } + if (*_released_keys) + std::memmove((void*)(_released_keys + 1),(void*)_released_keys,127*sizeof(unsigned int)); + *_released_keys = keycode; + } + _is_event = keycode?true:false; + if (keycode) { +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + } + return *this; + } + + //! Flush all display events. + /** + \note Remove all passed events from the current display. + **/ + CImgDisplay& flush() { + set_key().set_button().set_wheel(); + _is_resized = _is_moved = _is_event = false; + _fps_timer = _fps_frames = _timer = 0; + _fps_fps = 0; + return *this; + } + + //! Wait for any user event occurring on the current display. + CImgDisplay& wait() { + wait(*this); + return *this; + } + + //! Wait for a given number of milliseconds since the last call to wait(). + /** + \param milliseconds Number of milliseconds to wait for. + \note Similar to cimg::wait(). + **/ + CImgDisplay& wait(const unsigned int milliseconds) { + cimg::wait(milliseconds,&_timer); + return *this; + } + + //! Wait for any event occurring on the display \c disp1. + static void wait(CImgDisplay& disp1) { + disp1._is_event = false; + while (!disp1._is_closed && !disp1._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1 or \c disp2. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2) { + disp1._is_event = disp2._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed) && + !disp1._is_event && !disp2._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2 or \c disp3. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3) { + disp1._is_event = disp2._is_event = disp3._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3 or \c disp4. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4 or \c disp5. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, + CImgDisplay& disp5) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event) + wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp6. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp7. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp8. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = disp8._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed || !disp8._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event && !disp8._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp9. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event) wait_all(); + } + + //! Wait for any event occurring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp10. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9, + CImgDisplay& disp10) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = disp10._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed || !disp10._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event && !disp10._is_event) + wait_all(); + } + +#if cimg_display==0 + + //! Wait for any window event occurring in any opened CImgDisplay. + static void wait_all() { + return _no_display_exception(); + } + + //! Render image into internal display buffer. + /** + \param img Input image data to render. + \note + - Convert image data representation into the internal display buffer (architecture-dependent structure). + - The content of the associated window is not modified, until paint() is called. + - Should not be used for common CImgDisplay uses, since display() is more useful. + **/ + template + CImgDisplay& render(const CImg& img) { + return assign(img); + } + + //! Paint internal display buffer on associated window. + /** + \note + - Update the content of the associated window with the internal display buffer, e.g. after a render() call. + - Should not be used for common CImgDisplay uses, since display() is more useful. + **/ + CImgDisplay& paint() { + return assign(); + } + + + //! Take a snapshot of the current screen content. + /** + \param x0 X-coordinate of the upper left corner. + \param y0 Y-coordinate of the upper left corner. + \param x1 X-coordinate of the lower right corner. + \param y1 Y-coordinate of the lower right corner. + \param[out] img Output screenshot. Can be empty on input + **/ + template + static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { + cimg::unused(x0,y0,x1,y1,&img); + _no_display_exception(); + } + + //! Take a snapshot of the associated window content. + /** + \param[out] img Output snapshot. Can be empty on input. + **/ + template + const CImgDisplay& snapshot(CImg& img) const { + cimg::unused(img); + _no_display_exception(); + return *this; + } +#endif + + // X11-based implementation + //-------------------------- +#if cimg_display==1 + + Atom _wm_window_atom, _wm_protocol_atom; + Window _window, _background_window; + Colormap _colormap; + XImage *_image; + void *_data; + +#ifdef cimg_use_xshm + XShmSegmentInfo *_shminfo; +#endif + + static int screen_width() { + Display *const dpy = cimg::X11_attr().display; + int res = 0; + if (!dpy) { + Display *const _dpy = XOpenDisplay(0); + if (!_dpy) + throw CImgDisplayException("CImgDisplay::screen_width(): Failed to open X11 display."); + res = DisplayWidth(_dpy,DefaultScreen(_dpy)); + XCloseDisplay(_dpy); + } else { + +#ifdef cimg_use_xrandr + if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) + res = cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].width; + else res = DisplayWidth(dpy,DefaultScreen(dpy)); +#else + res = DisplayWidth(dpy,DefaultScreen(dpy)); +#endif + } + return res; + } + + static int screen_height() { + Display *const dpy = cimg::X11_attr().display; + int res = 0; + if (!dpy) { + Display *const _dpy = XOpenDisplay(0); + if (!_dpy) + throw CImgDisplayException("CImgDisplay::screen_height(): Failed to open X11 display."); + res = DisplayHeight(_dpy,DefaultScreen(_dpy)); + XCloseDisplay(_dpy); + } else { + +#ifdef cimg_use_xrandr + if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) + res = cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].height; + else res = DisplayHeight(dpy,DefaultScreen(dpy)); +#else + res = DisplayHeight(dpy,DefaultScreen(dpy)); +#endif + } + return res; + } + + static void wait_all() { + if (!cimg::X11_attr().display) return; + pthread_mutex_lock(&cimg::X11_attr().wait_event_mutex); + pthread_cond_wait(&cimg::X11_attr().wait_event,&cimg::X11_attr().wait_event_mutex); + pthread_mutex_unlock(&cimg::X11_attr().wait_event_mutex); + } + + void _handle_events(const XEvent *const pevent) { + Display *const dpy = cimg::X11_attr().display; + XEvent event = *pevent; + switch (event.type) { + case ClientMessage : { + if ((int)event.xclient.message_type==(int)_wm_protocol_atom && + (int)event.xclient.data.l[0]==(int)_wm_window_atom) { + XUnmapWindow(cimg::X11_attr().display,_window); + _is_closed = _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } + } break; + case ConfigureNotify : { + while (XCheckWindowEvent(dpy,_window,StructureNotifyMask,&event)) {} + const unsigned int nw = event.xconfigure.width, nh = event.xconfigure.height; + const int nx = event.xconfigure.x, ny = event.xconfigure.y; + if (nw && nh && (nw!=_window_width || nh!=_window_height)) { + _window_width = nw; _window_height = nh; _mouse_x = _mouse_y = -1; + XResizeWindow(dpy,_window,_window_width,_window_height); + _is_resized = _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } + if (nx!=_window_x || ny!=_window_y) { + _window_x = nx; + _window_y = ny; + _is_moved = _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } + } break; + case Expose : { + while (XCheckWindowEvent(dpy,_window,ExposureMask,&event)) {} + _paint(false); + if (_is_fullscreen) { + XWindowAttributes attr; + do { + XGetWindowAttributes(dpy,_window,&attr); + if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); } + } while (attr.map_state!=IsViewable); + XSetInputFocus(dpy,_window,RevertToParent,CurrentTime); + } + } break; + case ButtonPress : { + do { + _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + switch (event.xbutton.button) { + case 1 : set_button(1); break; + case 3 : set_button(2); break; + case 2 : set_button(3); break; + } + } while (XCheckWindowEvent(dpy,_window,ButtonPressMask,&event)); + } break; + case ButtonRelease : { + do { + _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + switch (event.xbutton.button) { + case 1 : set_button(1,false); break; + case 3 : set_button(2,false); break; + case 2 : set_button(3,false); break; + case 4 : set_wheel(1); break; + case 5 : set_wheel(-1); break; + } + } while (XCheckWindowEvent(dpy,_window,ButtonReleaseMask,&event)); + } break; + case KeyPress : { + char tmp = 0; KeySym ksym; + XLookupString(&event.xkey,&tmp,1,&ksym,0); + set_key((unsigned int)ksym,true); + } break; + case KeyRelease : { + char keys_return[32]; // Check that the key has been physically unpressed + XQueryKeymap(dpy,keys_return); + const unsigned int kc = event.xkey.keycode, kc1 = kc/8, kc2 = kc%8; + const bool is_key_pressed = kc1>=32?false:(keys_return[kc1]>>kc2)&1; + if (!is_key_pressed) { + char tmp = 0; KeySym ksym; + XLookupString(&event.xkey,&tmp,1,&ksym,0); + set_key((unsigned int)ksym,false); + } + } break; + case EnterNotify: { + while (XCheckWindowEvent(dpy,_window,EnterWindowMask,&event)) {} + _mouse_x = event.xmotion.x; + _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + } break; + case LeaveNotify : { + while (XCheckWindowEvent(dpy,_window,LeaveWindowMask,&event)) {} + _mouse_x = _mouse_y = -1; _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } break; + case MotionNotify : { + while (XCheckWindowEvent(dpy,_window,PointerMotionMask,&event)) {} + _mouse_x = event.xmotion.x; + _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } break; + } + } + + static void* _events_thread(void *arg) { // Thread to manage events for all opened display windows + Display *const dpy = cimg::X11_attr().display; + XEvent event; + pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,0); + pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,0); + if (!arg) for ( ; ; ) { + cimg_lock_display(); + bool event_flag = XCheckTypedEvent(dpy,ClientMessage,&event); + if (!event_flag) event_flag = XCheckMaskEvent(dpy, + ExposureMask | StructureNotifyMask | ButtonPressMask | + KeyPressMask | PointerMotionMask | EnterWindowMask | + LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask,&event); + if (event_flag) + for (unsigned int i = 0; i_is_closed && event.xany.window==cimg::X11_attr().wins[i]->_window) + cimg::X11_attr().wins[i]->_handle_events(&event); + cimg_unlock_display(); + pthread_testcancel(); + cimg::sleep(8); + } + return 0; + } + + void _set_colormap(Colormap& cmap, const unsigned int dim) { + XColor *const colormap = new XColor[256]; + switch (dim) { + case 1 : { // colormap for greyscale images + for (unsigned int index = 0; index<256; ++index) { + colormap[index].pixel = index; + colormap[index].red = colormap[index].green = colormap[index].blue = (unsigned short)(index<<8); + colormap[index].flags = DoRed | DoGreen | DoBlue; + } + } break; + case 2 : { // colormap for RG images + for (unsigned int index = 0, r = 8; r<256; r+=16) + for (unsigned int g = 8; g<256; g+=16) { + colormap[index].pixel = index; + colormap[index].red = colormap[index].blue = (unsigned short)(r<<8); + colormap[index].green = (unsigned short)(g<<8); + colormap[index++].flags = DoRed | DoGreen | DoBlue; + } + } break; + default : { // colormap for RGB images + for (unsigned int index = 0, r = 16; r<256; r+=32) + for (unsigned int g = 16; g<256; g+=32) + for (unsigned int b = 32; b<256; b+=64) { + colormap[index].pixel = index; + colormap[index].red = (unsigned short)(r<<8); + colormap[index].green = (unsigned short)(g<<8); + colormap[index].blue = (unsigned short)(b<<8); + colormap[index++].flags = DoRed | DoGreen | DoBlue; + } + } + } + XStoreColors(cimg::X11_attr().display,cmap,colormap,256); + delete[] colormap; + } + + void _map_window() { + Display *const dpy = cimg::X11_attr().display; + bool is_exposed = false, is_mapped = false; + XWindowAttributes attr; + XEvent event; + XMapRaised(dpy,_window); + do { // Wait for the window to be mapped + XWindowEvent(dpy,_window,StructureNotifyMask | ExposureMask,&event); + switch (event.type) { + case MapNotify : is_mapped = true; break; + case Expose : is_exposed = true; break; + } + } while (!is_exposed || !is_mapped); + do { // Wait for the window to be visible + XGetWindowAttributes(dpy,_window,&attr); + if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); } + } while (attr.map_state!=IsViewable); + _window_x = attr.x; + _window_y = attr.y; + } + + void _paint(const bool wait_expose=true) { + if (_is_closed || !_image) return; + Display *const dpy = cimg::X11_attr().display; + if (wait_expose) { // Send an expose event sticked to display window to force repaint + XEvent event; + event.xexpose.type = Expose; + event.xexpose.serial = 0; + event.xexpose.send_event = 1; + event.xexpose.display = dpy; + event.xexpose.window = _window; + event.xexpose.x = 0; + event.xexpose.y = 0; + event.xexpose.width = width(); + event.xexpose.height = height(); + event.xexpose.count = 0; + XSendEvent(dpy,_window,0,0,&event); + } else { // Repaint directly (may be called from the expose event) + GC gc = DefaultGC(dpy,DefaultScreen(dpy)); + +#ifdef cimg_use_xshm + if (_shminfo) XShmPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height,1); + else XPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height); +#else + XPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height); +#endif + } + } + + template + void _resize(T pixel_type, const unsigned int ndimx, const unsigned int ndimy, const bool force_redraw) { + Display *const dpy = cimg::X11_attr().display; + cimg::unused(pixel_type); + +#ifdef cimg_use_xshm + if (_shminfo) { + XShmSegmentInfo *const nshminfo = new XShmSegmentInfo; + XImage *const nimage = XShmCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)), + cimg::X11_attr().nb_bits,ZPixmap,0,nshminfo,ndimx,ndimy); + if (!nimage) { delete nshminfo; return; } + else { + nshminfo->shmid = shmget(IPC_PRIVATE,ndimx*ndimy*sizeof(T),IPC_CREAT | 0777); + if (nshminfo->shmid==-1) { XDestroyImage(nimage); delete nshminfo; return; } + else { + nshminfo->shmaddr = nimage->data = (char*)shmat(nshminfo->shmid,0,0); + if (nshminfo->shmaddr==(char*)-1) { + shmctl(nshminfo->shmid,IPC_RMID,0); XDestroyImage(nimage); delete nshminfo; return; + } else { + nshminfo->readOnly = 0; + cimg::X11_attr().is_shm_enabled = true; + XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm); + XShmAttach(dpy,nshminfo); + XFlush(dpy); + XSetErrorHandler(oldXErrorHandler); + if (!cimg::X11_attr().is_shm_enabled) { + shmdt(nshminfo->shmaddr); + shmctl(nshminfo->shmid,IPC_RMID,0); + XDestroyImage(nimage); + delete nshminfo; + return; + } else { + T *const ndata = (T*)nimage->data; + if (force_redraw) _render_resize((T*)_data,_width,_height,ndata,ndimx,ndimy); + else std::memset(ndata,0,sizeof(T)*ndimx*ndimy); + XShmDetach(dpy,_shminfo); + XDestroyImage(_image); + shmdt(_shminfo->shmaddr); + shmctl(_shminfo->shmid,IPC_RMID,0); + delete _shminfo; + _shminfo = nshminfo; + _image = nimage; + _data = (void*)ndata; + } + } + } + } + } else +#endif + { + T *ndata = (T*)std::malloc(ndimx*ndimy*sizeof(T)); + if (force_redraw) _render_resize((T*)_data,_width,_height,ndata,ndimx,ndimy); + else std::memset(ndata,0,sizeof(T)*ndimx*ndimy); + _data = (void*)ndata; + XDestroyImage(_image); + _image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)), + cimg::X11_attr().nb_bits,ZPixmap,0,(char*)_data,ndimx,ndimy,8,0); + } + } + + void _init_fullscreen() { + if (!_is_fullscreen || _is_closed) return; + Display *const dpy = cimg::X11_attr().display; + _background_window = 0; + +#ifdef cimg_use_xrandr + int foo; + if (XRRQueryExtension(dpy,&foo,&foo)) { + XRRRotations(dpy,DefaultScreen(dpy),&cimg::X11_attr().curr_rotation); + if (!cimg::X11_attr().resolutions) { + cimg::X11_attr().resolutions = XRRSizes(dpy,DefaultScreen(dpy),&foo); + cimg::X11_attr().nb_resolutions = (unsigned int)foo; + } + if (cimg::X11_attr().resolutions) { + cimg::X11_attr().curr_resolution = 0; + for (unsigned int i = 0; i=_width && nh>=_height && + nw<=(unsigned int)(cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].width) && + nh<=(unsigned int)(cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].height)) + cimg::X11_attr().curr_resolution = i; + } + if (cimg::X11_attr().curr_resolution>0) { + XRRScreenConfiguration *config = XRRGetScreenInfo(dpy,DefaultRootWindow(dpy)); + XRRSetScreenConfig(dpy,config,DefaultRootWindow(dpy), + cimg::X11_attr().curr_resolution,cimg::X11_attr().curr_rotation,CurrentTime); + XRRFreeScreenConfigInfo(config); + XSync(dpy,0); + } + } + } + if (!cimg::X11_attr().resolutions) + cimg::warn(_cimgdisplay_instance + "init_fullscreen(): Xrandr extension not supported by the X server.", + cimgdisplay_instance); +#endif + + const unsigned int sx = screen_width(), sy = screen_height(); + if (sx==_width && sy==_height) return; + XSetWindowAttributes attr_set; + + attr_set.background_pixel = XBlackPixel(dpy,XDefaultScreen(dpy)); + attr_set.override_redirect = 1; + _background_window = XCreateWindow(dpy,DefaultRootWindow(dpy),0,0,sx,sy,0,0, + InputOutput,CopyFromParent,CWBackPixel | CWOverrideRedirect,&attr_set); + XEvent event; + XSelectInput(dpy,_background_window,StructureNotifyMask); + XMapRaised(dpy,_background_window); + do XWindowEvent(dpy,_background_window,StructureNotifyMask,&event); + while (event.type!=MapNotify); + + XWindowAttributes attr; + do { + XGetWindowAttributes(dpy,_background_window,&attr); + if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); } + } while (attr.map_state!=IsViewable); + } + + void _desinit_fullscreen() { + if (!_is_fullscreen) return; + Display *const dpy = cimg::X11_attr().display; + XUngrabKeyboard(dpy,CurrentTime); + +#ifdef cimg_use_xrandr + if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) { + XRRScreenConfiguration *config = XRRGetScreenInfo(dpy,DefaultRootWindow(dpy)); + XRRSetScreenConfig(dpy,config,DefaultRootWindow(dpy),0,cimg::X11_attr().curr_rotation,CurrentTime); + XRRFreeScreenConfigInfo(config); + XSync(dpy,0); + cimg::X11_attr().curr_resolution = 0; + } +#endif + if (_background_window) XDestroyWindow(dpy,_background_window); + _background_window = 0; + _is_fullscreen = false; + } + + static int _assign_xshm(Display *dpy, XErrorEvent *error) { + cimg::unused(dpy,error); + cimg::X11_attr().is_shm_enabled = false; + return 0; + } + + void _assign(const unsigned int dimw, const unsigned int dimh, const char *const ptitle=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + cimg::mutex(14); + + // Allocate space for window title + const char *const nptitle = ptitle?ptitle:""; + const unsigned int s = (unsigned int)std::strlen(nptitle) + 1; + char *const tmp_title = s?new char[s]:0; + if (s) std::memcpy(tmp_title,nptitle,s*sizeof(char)); + + // Destroy previous display window if existing + if (!is_empty()) assign(); + + // Open X11 display and retrieve graphical properties. + Display* &dpy = cimg::X11_attr().display; + if (!dpy) { + dpy = XOpenDisplay(0); + if (!dpy) + throw CImgDisplayException(_cimgdisplay_instance + "assign(): Failed to open X11 display.", + cimgdisplay_instance); + + cimg::X11_attr().nb_bits = DefaultDepth(dpy,DefaultScreen(dpy)); + if (cimg::X11_attr().nb_bits!=8 && cimg::X11_attr().nb_bits!=16 && + cimg::X11_attr().nb_bits!=24 && cimg::X11_attr().nb_bits!=32) + throw CImgDisplayException(_cimgdisplay_instance + "assign(): Invalid %u bits screen mode detected " + "(only 8, 16, 24 and 32 bits modes are managed).", + cimgdisplay_instance, + cimg::X11_attr().nb_bits); + XVisualInfo vtemplate; + vtemplate.visualid = XVisualIDFromVisual(DefaultVisual(dpy,DefaultScreen(dpy))); + int nb_visuals; + XVisualInfo *vinfo = XGetVisualInfo(dpy,VisualIDMask,&vtemplate,&nb_visuals); + if (vinfo && vinfo->red_maskblue_mask) cimg::X11_attr().is_blue_first = true; + cimg::X11_attr().byte_order = ImageByteOrder(dpy); + XFree(vinfo); + + cimg_lock_display(); + cimg::X11_attr().events_thread = new pthread_t; + pthread_create(cimg::X11_attr().events_thread,0,_events_thread,0); + } else cimg_lock_display(); + + // Set display variables. + _width = std::min(dimw,(unsigned int)screen_width()); + _height = std::min(dimh,(unsigned int)screen_height()); + _normalization = normalization_type<4?normalization_type:3; + _is_fullscreen = fullscreen_flag; + _window_x = _window_y = cimg::type::min(); + _is_closed = closed_flag; + _title = tmp_title; + flush(); + + // Create X11 window (and LUT, if 8bits display) + if (_is_fullscreen) { + if (!_is_closed) _init_fullscreen(); + const unsigned int sx = screen_width(), sy = screen_height(); + XSetWindowAttributes attr_set; + attr_set.override_redirect = 1; + _window = XCreateWindow(dpy,DefaultRootWindow(dpy),(sx - _width)/2,(sy - _height)/2,_width,_height,0,0, + InputOutput,CopyFromParent,CWOverrideRedirect,&attr_set); + } else + _window = XCreateSimpleWindow(dpy,DefaultRootWindow(dpy),0,0,_width,_height,0,0L,0L); + + XSelectInput(dpy,_window, + ExposureMask | StructureNotifyMask | ButtonPressMask | KeyPressMask | PointerMotionMask | + EnterWindowMask | LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask); + + XStoreName(dpy,_window,_title?_title:" "); + if (cimg::X11_attr().nb_bits==8) { + _colormap = XCreateColormap(dpy,_window,DefaultVisual(dpy,DefaultScreen(dpy)),AllocAll); + _set_colormap(_colormap,3); + XSetWindowColormap(dpy,_window,_colormap); + } + + static const char *const _window_class = cimg_appname; + XClassHint *const window_class = XAllocClassHint(); + window_class->res_name = (char*)_window_class; + window_class->res_class = (char*)_window_class; + XSetClassHint(dpy,_window,window_class); + XFree(window_class); + + _window_width = _width; + _window_height = _height; + + // Create XImage +#ifdef cimg_use_xshm + _shminfo = 0; + if (XShmQueryExtension(dpy)) { + _shminfo = new XShmSegmentInfo; + _image = XShmCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits, + ZPixmap,0,_shminfo,_width,_height); + if (!_image) { delete _shminfo; _shminfo = 0; } + else { + _shminfo->shmid = shmget(IPC_PRIVATE,_image->bytes_per_line*_image->height,IPC_CREAT|0777); + if (_shminfo->shmid==-1) { XDestroyImage(_image); delete _shminfo; _shminfo = 0; } + else { + _shminfo->shmaddr = _image->data = (char*)(_data = shmat(_shminfo->shmid,0,0)); + if (_shminfo->shmaddr==(char*)-1) { + shmctl(_shminfo->shmid,IPC_RMID,0); XDestroyImage(_image); delete _shminfo; _shminfo = 0; + } else { + _shminfo->readOnly = 0; + cimg::X11_attr().is_shm_enabled = true; + XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm); + XShmAttach(dpy,_shminfo); + XSync(dpy,0); + XSetErrorHandler(oldXErrorHandler); + if (!cimg::X11_attr().is_shm_enabled) { + shmdt(_shminfo->shmaddr); shmctl(_shminfo->shmid,IPC_RMID,0); XDestroyImage(_image); + delete _shminfo; _shminfo = 0; + } + } + } + } + } + if (!_shminfo) +#endif + { + const cimg_ulong buf_size = (cimg_ulong)_width*_height*(cimg::X11_attr().nb_bits==8?1: + (cimg::X11_attr().nb_bits==16?2:4)); + _data = std::malloc(buf_size); + _image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits, + ZPixmap,0,(char*)_data,_width,_height,8,0); + } + + _wm_window_atom = XInternAtom(dpy,"WM_DELETE_WINDOW",0); + _wm_protocol_atom = XInternAtom(dpy,"WM_PROTOCOLS",0); + XSetWMProtocols(dpy,_window,&_wm_window_atom,1); + + if (_is_fullscreen) XGrabKeyboard(dpy,_window,1,GrabModeAsync,GrabModeAsync,CurrentTime); + cimg::X11_attr().wins[cimg::X11_attr().nb_wins++]=this; + if (!_is_closed) _map_window(); else _window_x = _window_y = cimg::type::min(); + cimg_unlock_display(); + cimg::mutex(14,0); + } + + CImgDisplay& assign() { + if (is_empty()) return flush(); + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + + // Remove display window from event thread list. + unsigned int i; + for (i = 0; ishmaddr); + shmctl(_shminfo->shmid,IPC_RMID,0); + delete _shminfo; + _shminfo = 0; + } +#endif + + XDestroyImage(_image); + if (cimg::X11_attr().nb_bits==8) XFreeColormap(dpy,_colormap); + XDestroyWindow(dpy,_window); + XSync(dpy,0); + _window = 0; _colormap = 0; _data = 0; _image = 0; + + // Reset display variables. + delete[] _title; + _width = _height = _normalization = _window_width = _window_height = 0; + _window_x = _window_y = cimg::type::min(); + _is_fullscreen = false; + _is_closed = true; + _min = _max = 0; + _title = 0; + flush(); + + cimg_unlock_display(); + return *this; + } + + CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!dimw || !dimh) return assign(); + _assign(dimw,dimh,title,normalization_type,fullscreen_flag,closed_flag); + _min = _max = 0; + std::memset(_data,0,(cimg::X11_attr().nb_bits==8?sizeof(unsigned char): + (cimg::X11_attr().nb_bits==16?sizeof(unsigned short):sizeof(unsigned int)))* + (size_t)_width*_height); + return paint(); + } + + template + CImgDisplay& assign(const CImg& img, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!img) return assign(); + CImg tmp; + const CImg& nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return render(nimg).paint(); + } + + template + CImgDisplay& assign(const CImgList& list, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!list) return assign(); + CImg tmp; + const CImg img = list>'x', &nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return render(nimg).paint(); + } + + CImgDisplay& assign(const CImgDisplay& disp) { + if (!disp) return assign(); + _assign(disp._width,disp._height,disp._title,disp._normalization,disp._is_fullscreen,disp._is_closed); + std::memcpy(_data,disp._data,(cimg::X11_attr().nb_bits==8?sizeof(unsigned char): + cimg::X11_attr().nb_bits==16?sizeof(unsigned short): + sizeof(unsigned int))*(size_t)_width*_height); + return paint(); + } + + CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw=true) { + if (!nwidth || !nheight || (is_empty() && (nwidth<0 || nheight<0))) return assign(); + if (is_empty()) return assign(nwidth,nheight); + Display *const dpy = cimg::X11_attr().display; + const unsigned int + tmpdimx = (nwidth>0)?nwidth:(-nwidth*width()/100), + tmpdimy = (nheight>0)?nheight:(-nheight*height()/100), + dimx = tmpdimx?tmpdimx:1, + dimy = tmpdimy?tmpdimy:1; + if (_width!=dimx || _height!=dimy || _window_width!=dimx || _window_height!=dimy) { + show(); + cimg_lock_display(); + if (_window_width!=dimx || _window_height!=dimy) { + XWindowAttributes attr; + for (unsigned int i = 0; i<10; ++i) { + XResizeWindow(dpy,_window,dimx,dimy); + XGetWindowAttributes(dpy,_window,&attr); + if (attr.width==(int)dimx && attr.height==(int)dimy) break; + cimg::wait(5,&_timer); + } + } + if (_width!=dimx || _height!=dimy) switch (cimg::X11_attr().nb_bits) { + case 8 : { unsigned char pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } break; + case 16 : { unsigned short pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } break; + default : { unsigned int pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } + } + _window_width = _width = dimx; _window_height = _height = dimy; + cimg_unlock_display(); + } + _is_resized = false; + if (_is_fullscreen) move((screen_width() - _width)/2,(screen_height() - _height)/2); + if (force_redraw) return paint(); + return *this; + } + + CImgDisplay& toggle_fullscreen(const bool force_redraw=true) { + if (is_empty()) return *this; + if (force_redraw) { + const cimg_ulong buf_size = (cimg_ulong)_width*_height* + (cimg::X11_attr().nb_bits==8?1:(cimg::X11_attr().nb_bits==16?2:4)); + void *image_data = std::malloc(buf_size); + std::memcpy(image_data,_data,buf_size); + assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + std::memcpy(_data,image_data,buf_size); + std::free(image_data); + return paint(); + } + return assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + } + + CImgDisplay& show() { + if (is_empty() || !_is_closed) return *this; + cimg_lock_display(); + _is_closed = false; + if (_is_fullscreen) _init_fullscreen(); + _map_window(); + cimg_unlock_display(); + return paint(); + } + + CImgDisplay& close() { + if (is_empty() || _is_closed) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + if (_is_fullscreen) _desinit_fullscreen(); + XUnmapWindow(dpy,_window); + _window_x = _window_y = cimg::type::min(); + _is_closed = true; + cimg_unlock_display(); + return *this; + } + + CImgDisplay& move(const int posx, const int posy) { + if (is_empty()) return *this; + show(); + if (_window_x!=posx || _window_y!=posy) { + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XMoveWindow(dpy,_window,posx,posy); + _window_x = posx; + _window_y = posy; + cimg_unlock_display(); + } + _is_moved = false; + return paint(); + } + + CImgDisplay& show_mouse() { + if (is_empty()) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XUndefineCursor(dpy,_window); + cimg_unlock_display(); + return *this; + } + + CImgDisplay& hide_mouse() { + if (is_empty()) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + static const char pix_data[8] = {}; + XColor col; + col.red = col.green = col.blue = 0; + Pixmap pix = XCreateBitmapFromData(dpy,_window,pix_data,8,8); + Cursor cur = XCreatePixmapCursor(dpy,pix,pix,&col,&col,0,0); + XFreePixmap(dpy,pix); + XDefineCursor(dpy,_window,cur); + cimg_unlock_display(); + return *this; + } + + CImgDisplay& set_mouse(const int posx, const int posy) { + if (is_empty() || _is_closed) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XWarpPointer(dpy,0L,_window,0,0,0,0,posx,posy); + _mouse_x = posx; _mouse_y = posy; + _is_moved = false; + XSync(dpy,0); + cimg_unlock_display(); + return *this; + } + + CImgDisplay& set_title(const char *const format, ...) { + if (is_empty()) return *this; + char *const tmp = new char[1024]; + va_list ap; + va_start(ap, format); + cimg_vsnprintf(tmp,1024,format,ap); + va_end(ap); + if (!std::strcmp(_title,tmp)) { delete[] tmp; return *this; } + delete[] _title; + const unsigned int s = (unsigned int)std::strlen(tmp) + 1; + _title = new char[s]; + std::memcpy(_title,tmp,s*sizeof(char)); + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XStoreName(dpy,_window,tmp); + cimg_unlock_display(); + delete[] tmp; + return *this; + } + + template + CImgDisplay& display(const CImg& img) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "display(): Empty specified image.", + cimgdisplay_instance); + if (is_empty()) return assign(img); + return render(img).paint(false); + } + + CImgDisplay& paint(const bool wait_expose=true) { + if (is_empty()) return *this; + cimg_lock_display(); + _paint(wait_expose); + cimg_unlock_display(); + return *this; + } + + template + CImgDisplay& render(const CImg& img, const bool flag8=false) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "render(): Empty specified image.", + cimgdisplay_instance); + if (is_empty()) return *this; + if (img._depth!=1) return render(img.get_projections2d((img._width - 1)/2,(img._height - 1)/2, + (img._depth - 1)/2)); + if (cimg::X11_attr().nb_bits==8 && (img._width!=_width || img._height!=_height)) + return render(img.get_resize(_width,_height,1,-100,1)); + if (cimg::X11_attr().nb_bits==8 && !flag8 && img._spectrum==3) { + static const CImg::ucharT> default_colormap = CImg::ucharT>::default_LUT256(); + return render(img.get_index(default_colormap,1,false)); + } + + const T + *data1 = img._data, + *data2 = (img._spectrum>1)?img.data(0,0,0,1):data1, + *data3 = (img._spectrum>2)?img.data(0,0,0,2):data1; + + if (cimg::X11_attr().is_blue_first) cimg::swap(data1,data3); + cimg_lock_display(); + + if (!_normalization || (_normalization==3 && cimg::type::string()==cimg::type::string())) { + _min = _max = 0; + switch (cimg::X11_attr().nb_bits) { + case 8 : { // 256 colormap, no normalization + _set_colormap(_colormap,img._spectrum); + unsigned char + *const ndata = (img._width==_width && img._height==_height)?(unsigned char*)_data: + new unsigned char[(size_t)img._width*img._height], + *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + (*ptrd++) = (unsigned char)*(data1++); + break; + case 2 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++); + (*ptrd++) = (R&0xf0) | (G>>4); + } break; + default : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++), + B = (unsigned char)*(data3++); + (*ptrd++) = (R&0xe0) | ((G>>5)<<2) | (B>>6); + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned char*)_data,_width,_height); + delete[] ndata; + } + } break; + case 16 : { // 16 bits colors, no normalization + unsigned short *const ndata = (img._width==_width && img._height==_height)?(unsigned short*)_data: + new unsigned short[(size_t)img._width*img._height]; + unsigned char *ptrd = (unsigned char*)ndata; + const unsigned int M = 248; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++), G = val>>2; + ptrd[0] = (val&M) | (G>>3); + ptrd[1] = (G<<5) | (G>>1); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++), G = val>>2; + ptrd[0] = (G<<5) | (G>>1); + ptrd[1] = (val&M) | (G>>3); + ptrd+=2; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd[1] = (G<<5); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = (G<<5); + ptrd[1] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd+=2; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd[1] = (G<<5) | ((unsigned char)*(data3++)>>3); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = (G<<5) | ((unsigned char)*(data3++)>>3); + ptrd[1] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd+=2; + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned short*)_data,_width,_height); + delete[] ndata; + } + } break; + default : { // 24 bits colors, no normalization + unsigned int *const ndata = (img._width==_width && img._height==_height)?(unsigned int*)_data: + new unsigned int[(size_t)img._width*img._height]; + if (sizeof(int)==4) { // 32 bits int uses optimized version + unsigned int *ptrd = ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++); + *(ptrd++) = (val<<16) | (val<<8) | val; + } + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++); + *(ptrd++) = (val<<16) | (val<<8) | val; + } + break; + case 2 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data1++)<<16) | ((unsigned char)*(data2++)<<8); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data2++)<<16) | ((unsigned char)*(data1++)<<8); + break; + default : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data1++)<<16) | ((unsigned char)*(data2++)<<8) | + (unsigned char)*(data3++); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data3++)<<24) | ((unsigned char)*(data2++)<<16) | + ((unsigned char)*(data1++)<<8); + } + } else { + unsigned char *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)*(data1++); + ptrd[2] = 0; + ptrd[3] = 0; + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = 0; + ptrd[2] = (unsigned char)*(data1++); + ptrd[3] = 0; + ptrd+=4; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) cimg::swap(data1,data2); + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)*(data2++); + ptrd[2] = (unsigned char)*(data1++); + ptrd[3] = 0; + ptrd+=4; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)*(data1++); + ptrd[2] = (unsigned char)*(data2++); + ptrd[3] = (unsigned char)*(data3++); + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = (unsigned char)*(data3++); + ptrd[1] = (unsigned char)*(data2++); + ptrd[2] = (unsigned char)*(data1++); + ptrd[3] = 0; + ptrd+=4; + } + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned int*)_data,_width,_height); + delete[] ndata; + } + } + } + } else { + if (_normalization==3) { + if (sizeof(T)>1 && cimg::type::string()!=cimg::type::string()) _min = (float)img.min_max(_max); + else { _min = (float)cimg::type::min(); _max = (float)cimg::type::max(); } + } else if ((_min>_max) || _normalization==1) _min = (float)img.min_max(_max); + const float delta = _max - _min, mm = 255/(delta?delta:1.f); + switch (cimg::X11_attr().nb_bits) { + case 8 : { // 256 colormap, with normalization + _set_colormap(_colormap,img._spectrum); + unsigned char *const ndata = (img._width==_width && img._height==_height)?(unsigned char*)_data: + new unsigned char[(size_t)img._width*img._height]; + unsigned char *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char R = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = R; + } break; + case 2 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm); + (*ptrd++) = (R&0xf0) | (G>>4); + } break; + default : + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm), + B = (unsigned char)((*(data3++) - _min)*mm); + *(ptrd++) = (R&0xe0) | ((G>>5)<<2) | (B>>6); + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned char*)_data,_width,_height); + delete[] ndata; + } + } break; + case 16 : { // 16 bits colors, with normalization + unsigned short *const ndata = (img._width==_width && img._height==_height)?(unsigned short*)_data: + new unsigned short[(size_t)img._width*img._height]; + unsigned char *ptrd = (unsigned char*)ndata; + const unsigned int M = 248; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm), G = val>>2; + ptrd[0] = (val&M) | (G>>3); + ptrd[1] = (G<<5) | (val>>3); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm), G = val>>2; + ptrd[0] = (G<<5) | (val>>3); + ptrd[1] = (val&M) | (G>>3); + ptrd+=2; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd[1] = (G<<5); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = (G<<5); + ptrd[1] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd+=2; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd[1] = (G<<5) | ((unsigned char)((*(data3++) - _min)*mm)>>3); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = (G<<5) | ((unsigned char)((*(data3++) - _min)*mm)>>3); + ptrd[1] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd+=2; + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned short*)_data,_width,_height); + delete[] ndata; + } + } break; + default : { // 24 bits colors, with normalization + unsigned int *const ndata = (img._width==_width && img._height==_height)?(unsigned int*)_data: + new unsigned int[(size_t)img._width*img._height]; + if (sizeof(int)==4) { // 32 bits int uses optimized version + unsigned int *ptrd = ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = (val<<16) | (val<<8) | val; + } + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = (val<<24) | (val<<16) | (val<<8); + } + break; + case 2 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data1++) - _min)*mm)<<16) | + ((unsigned char)((*(data2++) - _min)*mm)<<8); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data2++) - _min)*mm)<<16) | + ((unsigned char)((*(data1++) - _min)*mm)<<8); + break; + default : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data1++) - _min)*mm)<<16) | + ((unsigned char)((*(data2++) - _min)*mm)<<8) | + (unsigned char)((*(data3++) - _min)*mm); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data3++) - _min)*mm)<<24) | + ((unsigned char)((*(data2++) - _min)*mm)<<16) | + ((unsigned char)((*(data1++) - _min)*mm)<<8); + } + } else { + unsigned char *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + ptrd[0] = 0; + ptrd[1] = val; + ptrd[2] = val; + ptrd[3] = val; + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + ptrd[0] = val; + ptrd[1] = val; + ptrd[2] = val; + ptrd[3] = 0; + ptrd+=4; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) cimg::swap(data1,data2); + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)((*(data2++) - _min)*mm); + ptrd[2] = (unsigned char)((*(data1++) - _min)*mm); + ptrd[3] = 0; + ptrd+=4; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)((*(data1++) - _min)*mm); + ptrd[2] = (unsigned char)((*(data2++) - _min)*mm); + ptrd[3] = (unsigned char)((*(data3++) - _min)*mm); + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = (unsigned char)((*(data3++) - _min)*mm); + ptrd[1] = (unsigned char)((*(data2++) - _min)*mm); + ptrd[2] = (unsigned char)((*(data1++) - _min)*mm); + ptrd[3] = 0; + ptrd+=4; + } + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned int*)_data,_width,_height); + delete[] ndata; + } + } + } + } + cimg_unlock_display(); + return *this; + } + + template + static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { + img.assign(); + Display *dpy = cimg::X11_attr().display; + cimg_lock_display(); + if (!dpy) { + dpy = XOpenDisplay(0); + if (!dpy) + throw CImgDisplayException("CImgDisplay::screenshot(): Failed to open X11 display."); + } + Window root = DefaultRootWindow(dpy); + XWindowAttributes gwa; + XGetWindowAttributes(dpy,root,&gwa); + const int width = gwa.width, height = gwa.height; + int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1; + if (_x0>_x1) cimg::swap(_x0,_x1); + if (_y0>_y1) cimg::swap(_y0,_y1); + + XImage *image = 0; + if (_x1>=0 && _x0=0 && _y0red_mask, + green_mask = image->green_mask, + blue_mask = image->blue_mask; + img.assign(image->width,image->height,1,3); + T *pR = img.data(0,0,0,0), *pG = img.data(0,0,0,1), *pB = img.data(0,0,0,2); + cimg_forXY(img,x,y) { + const unsigned long pixel = XGetPixel(image,x,y); + *(pR++) = (T)((pixel & red_mask)>>16); + *(pG++) = (T)((pixel & green_mask)>>8); + *(pB++) = (T)(pixel & blue_mask); + } + XDestroyImage(image); + } + } + if (!cimg::X11_attr().display) XCloseDisplay(dpy); + cimg_unlock_display(); + if (img.is_empty()) + throw CImgDisplayException("CImgDisplay::screenshot(): Failed to take screenshot " + "with coordinates (%d,%d)-(%d,%d).", + x0,y0,x1,y1); + } + + template + const CImgDisplay& snapshot(CImg& img) const { + if (is_empty()) { img.assign(); return *this; } + const unsigned char *ptrs = (unsigned char*)_data; + img.assign(_width,_height,1,3); + T + *data1 = img.data(0,0,0,0), + *data2 = img.data(0,0,0,1), + *data3 = img.data(0,0,0,2); + if (cimg::X11_attr().is_blue_first) cimg::swap(data1,data3); + switch (cimg::X11_attr().nb_bits) { + case 8 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = *(ptrs++); + *(data1++) = (T)(val&0xe0); + *(data2++) = (T)((val&0x1c)<<3); + *(data3++) = (T)(val<<6); + } + } break; + case 16 : { + if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + val0 = ptrs[0], + val1 = ptrs[1]; + ptrs+=2; + *(data1++) = (T)(val0&0xf8); + *(data2++) = (T)((val0<<5) | ((val1&0xe0)>>5)); + *(data3++) = (T)(val1<<3); + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned short + val0 = ptrs[0], + val1 = ptrs[1]; + ptrs+=2; + *(data1++) = (T)(val1&0xf8); + *(data2++) = (T)((val1<<5) | ((val0&0xe0)>>5)); + *(data3++) = (T)(val0<<3); + } + } break; + default : { + if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ++ptrs; + *(data1++) = (T)ptrs[0]; + *(data2++) = (T)ptrs[1]; + *(data3++) = (T)ptrs[2]; + ptrs+=3; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + *(data3++) = (T)ptrs[0]; + *(data2++) = (T)ptrs[1]; + *(data1++) = (T)ptrs[2]; + ptrs+=3; + ++ptrs; + } + } + } + return *this; + } + + // Windows-based implementation. + //------------------------------- +#elif cimg_display==2 + + bool _is_mouse_tracked, _is_cursor_visible; + HANDLE _thread, _is_created, _mutex; + HWND _window, _background_window; + CLIENTCREATESTRUCT _ccs; + unsigned int *_data; + DEVMODE _curr_mode; + BITMAPINFO _bmi; + HDC _hdc; + + static int screen_width() { + DEVMODE mode; + mode.dmSize = sizeof(DEVMODE); + mode.dmDriverExtra = 0; + EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&mode); + return (int)mode.dmPelsWidth; + } + + static int screen_height() { + DEVMODE mode; + mode.dmSize = sizeof(DEVMODE); + mode.dmDriverExtra = 0; + EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&mode); + return (int)mode.dmPelsHeight; + } + + static void wait_all() { + WaitForSingleObject(cimg::Win32_attr().wait_event,INFINITE); + } + + static LRESULT APIENTRY _handle_events(HWND window, UINT msg, WPARAM wParam, LPARAM lParam) { +#ifdef _WIN64 + CImgDisplay *const disp = (CImgDisplay*)GetWindowLongPtr(window,GWLP_USERDATA); +#else + CImgDisplay *const disp = (CImgDisplay*)GetWindowLong(window,GWL_USERDATA); +#endif + MSG st_msg; + switch (msg) { + case WM_CLOSE : + disp->_mouse_x = disp->_mouse_y = -1; + disp->_window_x = disp->_window_y = cimg::type::min(); + disp->set_button().set_key(0).set_key(0,false)._is_closed = true; + ReleaseMutex(disp->_mutex); + ShowWindow(disp->_window,SW_HIDE); + disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + return 0; + case WM_SIZE : { + while (PeekMessage(&st_msg,window,WM_SIZE,WM_SIZE,PM_REMOVE)) {} + WaitForSingleObject(disp->_mutex,INFINITE); + const unsigned int nw = LOWORD(lParam),nh = HIWORD(lParam); + if (nw && nh && (nw!=disp->_width || nh!=disp->_height)) { + disp->_window_width = nw; + disp->_window_height = nh; + disp->_mouse_x = disp->_mouse_y = -1; + disp->_is_resized = disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + } + ReleaseMutex(disp->_mutex); + } break; + case WM_MOVE : { + while (PeekMessage(&st_msg,window,WM_SIZE,WM_SIZE,PM_REMOVE)) {} + WaitForSingleObject(disp->_mutex,INFINITE); + const int nx = (int)(short)(LOWORD(lParam)), ny = (int)(short)(HIWORD(lParam)); + if (nx!=disp->_window_x || ny!=disp->_window_y) { + disp->_window_x = nx; + disp->_window_y = ny; + disp->_is_moved = disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + } + ReleaseMutex(disp->_mutex); + } break; + case WM_PAINT : + disp->paint(); + cimg_lock_display(); + if (disp->_is_cursor_visible) while (ShowCursor(TRUE)<0); else while (ShowCursor(FALSE_WIN)>=0); + cimg_unlock_display(); + break; + case WM_ERASEBKGND : + // return 0; + break; + case WM_KEYDOWN : + disp->set_key((unsigned int)wParam); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_KEYUP : + disp->set_key((unsigned int)wParam,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_MOUSEMOVE : { + while (PeekMessage(&st_msg,window,WM_MOUSEMOVE,WM_MOUSEMOVE,PM_REMOVE)) {} + disp->_mouse_x = LOWORD(lParam); + disp->_mouse_y = HIWORD(lParam); +#if (_WIN32_WINNT>=0x0400) && !defined(NOTRACKMOUSEEVENT) + if (!disp->_is_mouse_tracked) { + TRACKMOUSEEVENT tme; + tme.cbSize = sizeof(TRACKMOUSEEVENT); + tme.dwFlags = TME_LEAVE; + tme.hwndTrack = disp->_window; + if (TrackMouseEvent(&tme)) disp->_is_mouse_tracked = true; + } +#endif + if (disp->_mouse_x<0 || disp->_mouse_y<0 || disp->_mouse_x>=disp->width() || disp->_mouse_y>=disp->height()) + disp->_mouse_x = disp->_mouse_y = -1; + disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + cimg_lock_display(); + if (disp->_is_cursor_visible) while (ShowCursor(TRUE)<0); else while (ShowCursor(FALSE_WIN)>=0); + cimg_unlock_display(); + } break; + case WM_MOUSELEAVE : { + disp->_mouse_x = disp->_mouse_y = -1; + disp->_is_mouse_tracked = false; + cimg_lock_display(); + while (ShowCursor(TRUE)<0) {} + cimg_unlock_display(); + } break; + case WM_LBUTTONDOWN : + disp->set_button(1); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_RBUTTONDOWN : + disp->set_button(2); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_MBUTTONDOWN : + disp->set_button(3); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_LBUTTONUP : + disp->set_button(1,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_RBUTTONUP : + disp->set_button(2,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_MBUTTONUP : + disp->set_button(3,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case 0x020A : // WM_MOUSEWHEEL: + disp->set_wheel((int)((short)HIWORD(wParam))/120); + SetEvent(cimg::Win32_attr().wait_event); + } + return DefWindowProc(window,msg,wParam,lParam); + } + + static DWORD WINAPI _events_thread(void* arg) { + CImgDisplay *const disp = (CImgDisplay*)(((void**)arg)[0]); + const char *const title = (const char*)(((void**)arg)[1]); + MSG msg; + delete[] (void**)arg; + disp->_bmi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); + disp->_bmi.bmiHeader.biWidth = disp->width(); + disp->_bmi.bmiHeader.biHeight = -disp->height(); + disp->_bmi.bmiHeader.biPlanes = 1; + disp->_bmi.bmiHeader.biBitCount = 32; + disp->_bmi.bmiHeader.biCompression = BI_RGB; + disp->_bmi.bmiHeader.biSizeImage = 0; + disp->_bmi.bmiHeader.biXPelsPerMeter = 1; + disp->_bmi.bmiHeader.biYPelsPerMeter = 1; + disp->_bmi.bmiHeader.biClrUsed = 0; + disp->_bmi.bmiHeader.biClrImportant = 0; + disp->_data = new unsigned int[(size_t)disp->_width*disp->_height]; + if (!disp->_is_fullscreen) { // Normal window + RECT rect; + rect.left = rect.top = 0; rect.right = (LONG)disp->_width - 1; rect.bottom = (LONG)disp->_height - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + const int + border1 = (int)((rect.right - rect.left + 1 - disp->_width)/2), + border2 = (int)(rect.bottom - rect.top + 1 - disp->_height - border1), + ww = disp->width() + 2*border1, + wh = disp->height() + border1 + border2, + sw = CImgDisplay::screen_width(), + sh = CImgDisplay::screen_height(); + int + wx = (int)cimg::round(cimg::rand(0,sw - ww -1)), + wy = (int)cimg::round(cimg::rand(64,sh - wh - 65)); + if (wx + ww>=sw) wx = sw - ww; + if (wy + wh>=sh) wy = sh - wh; + if (wx<0) wx = 0; + if (wy<0) wy = 0; + disp->_window = CreateWindowA("MDICLIENT",title?title:" ", + (DWORD)(WS_OVERLAPPEDWINDOW | (disp->_is_closed?0:WS_VISIBLE)), + wx,wy,ww,wh,0,0,0,&(disp->_ccs)); + if (!disp->_is_closed) { + GetWindowRect(disp->_window,&rect); + disp->_window_x = rect.left; + disp->_window_y = rect.top; + } else disp->_window_x = disp->_window_y = cimg::type::min(); + } else { // Fullscreen window + const unsigned int + sx = (unsigned int)screen_width(), + sy = (unsigned int)screen_height(); + disp->_window = CreateWindowA("MDICLIENT",title?title:" ", + (DWORD)(WS_POPUP | (disp->_is_closed?0:WS_VISIBLE)), + (int)(sx - disp->_width)/2, + (int)(sy - disp->_height)/2, + disp->width(),disp->height(),0,0,0,&(disp->_ccs)); + disp->_window_x = disp->_window_y = 0; + } + SetForegroundWindow(disp->_window); + disp->_hdc = GetDC(disp->_window); + disp->_window_width = disp->_width; + disp->_window_height = disp->_height; + disp->flush(); +#ifdef _WIN64 + SetWindowLongPtr(disp->_window,GWLP_USERDATA,(LONG_PTR)disp); + SetWindowLongPtr(disp->_window,GWLP_WNDPROC,(LONG_PTR)_handle_events); +#else + SetWindowLong(disp->_window,GWL_USERDATA,(LONG)disp); + SetWindowLong(disp->_window,GWL_WNDPROC,(LONG)_handle_events); +#endif + SetEvent(disp->_is_created); + while (GetMessage(&msg,0,0,0)) DispatchMessage(&msg); + return 0; + } + + CImgDisplay& _update_window_pos() { + if (_is_closed) _window_x = _window_y = cimg::type::min(); + else { + RECT rect; + rect.left = rect.top = 0; rect.right = (LONG)_width - 1; rect.bottom = (LONG)_height - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + GetWindowRect(_window,&rect); + _window_x = rect.left; + _window_y = rect.top; + } + return *this; + } + + void _init_fullscreen() { + _background_window = 0; + if (!_is_fullscreen || _is_closed) _curr_mode.dmSize = 0; + else { +/* DEVMODE mode; + unsigned int imode = 0, ibest = 0, bestbpp = 0, bw = ~0U, bh = ~0U; + for (mode.dmSize = sizeof(DEVMODE), mode.dmDriverExtra = 0; EnumDisplaySettings(0,imode,&mode); ++imode) { + const unsigned int nw = mode.dmPelsWidth, nh = mode.dmPelsHeight; + if (nw>=_width && nh>=_height && mode.dmBitsPerPel>=bestbpp && nw<=bw && nh<=bh) { + bestbpp = mode.dmBitsPerPel; + ibest = imode; + bw = nw; bh = nh; + } + } + if (bestbpp) { + _curr_mode.dmSize = sizeof(DEVMODE); _curr_mode.dmDriverExtra = 0; + EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&_curr_mode); + EnumDisplaySettings(0,ibest,&mode); + ChangeDisplaySettings(&mode,0); + } else _curr_mode.dmSize = 0; +*/ + _curr_mode.dmSize = 0; + const unsigned int + sx = (unsigned int)screen_width(), + sy = (unsigned int)screen_height(); + if (sx!=_width || sy!=_height) { + CLIENTCREATESTRUCT background_ccs = { 0,0 }; + _background_window = CreateWindowA("MDICLIENT","",WS_POPUP | WS_VISIBLE, + 0,0,(int)sx,(int)sy,0,0,0,&background_ccs); + SetForegroundWindow(_background_window); + } + } + } + + void _desinit_fullscreen() { + if (!_is_fullscreen) return; + if (_background_window) DestroyWindow(_background_window); + _background_window = 0; + if (_curr_mode.dmSize) ChangeDisplaySettings(&_curr_mode,0); + _is_fullscreen = false; + } + + CImgDisplay& _assign(const unsigned int dimw, const unsigned int dimh, const char *const ptitle=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + + // Allocate space for window title + const char *const nptitle = ptitle?ptitle:""; + const unsigned int s = (unsigned int)std::strlen(nptitle) + 1; + char *const tmp_title = s?new char[s]:0; + if (s) std::memcpy(tmp_title,nptitle,s*sizeof(char)); + + // Destroy previous window if existing + if (!is_empty()) assign(); + + // Set display variables + _width = std::min(dimw,(unsigned int)screen_width()); + _height = std::min(dimh,(unsigned int)screen_height()); + _normalization = normalization_type<4?normalization_type:3; + _is_fullscreen = fullscreen_flag; + _window_x = _window_y = cimg::type::min(); + _is_closed = closed_flag; + _is_cursor_visible = true; + _is_mouse_tracked = false; + _title = tmp_title; + flush(); + if (_is_fullscreen) _init_fullscreen(); + + // Create event thread + void *const arg = (void*)(new void*[2]); + ((void**)arg)[0] = (void*)this; + ((void**)arg)[1] = (void*)_title; + _mutex = CreateMutex(0,FALSE_WIN,0); + _is_created = CreateEvent(0,FALSE_WIN,FALSE_WIN,0); + _thread = CreateThread(0,0,_events_thread,arg,0,0); + WaitForSingleObject(_is_created,INFINITE); + return *this; + } + + CImgDisplay& assign() { + if (is_empty()) return flush(); + DestroyWindow(_window); + TerminateThread(_thread,0); + delete[] _data; + delete[] _title; + _data = 0; + _title = 0; + if (_is_fullscreen) _desinit_fullscreen(); + _width = _height = _normalization = _window_width = _window_height = 0; + _window_x = _window_y = cimg::type::min(); + _is_fullscreen = false; + _is_closed = true; + _min = _max = 0; + _title = 0; + flush(); + return *this; + } + + CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!dimw || !dimh) return assign(); + _assign(dimw,dimh,title,normalization_type,fullscreen_flag,closed_flag); + _min = _max = 0; + std::memset(_data,0,sizeof(unsigned int)*_width*_height); + return paint(); + } + + template + CImgDisplay& assign(const CImg& img, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!img) return assign(); + CImg tmp; + const CImg& nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return display(nimg); + } + + template + CImgDisplay& assign(const CImgList& list, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!list) return assign(); + CImg tmp; + const CImg img = list>'x', &nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return display(nimg); + } + + CImgDisplay& assign(const CImgDisplay& disp) { + if (!disp) return assign(); + _assign(disp._width,disp._height,disp._title,disp._normalization,disp._is_fullscreen,disp._is_closed); + std::memcpy(_data,disp._data,sizeof(unsigned int)*_width*_height); + return paint(); + } + + CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw=true) { + if (!nwidth || !nheight || (is_empty() && (nwidth<0 || nheight<0))) return assign(); + if (is_empty()) return assign((unsigned int)nwidth,(unsigned int)nheight); + const unsigned int + tmpdimx = (nwidth>0)?nwidth:(-nwidth*_width/100), + tmpdimy = (nheight>0)?nheight:(-nheight*_height/100), + dimx = tmpdimx?tmpdimx:1, + dimy = tmpdimy?tmpdimy:1; + if (_width!=dimx || _height!=dimy || _window_width!=dimx || _window_height!=dimy) { + if (_window_width!=dimx || _window_height!=dimy) { + RECT rect; rect.left = rect.top = 0; rect.right = (LONG)dimx - 1; rect.bottom = (LONG)dimy - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + const int cwidth = rect.right - rect.left + 1, cheight = rect.bottom - rect.top + 1; + SetWindowPos(_window,0,0,0,cwidth,cheight,SWP_NOMOVE | SWP_NOZORDER | SWP_NOCOPYBITS); + } + if (_width!=dimx || _height!=dimy) { + unsigned int *const ndata = new unsigned int[dimx*dimy]; + if (force_redraw) _render_resize(_data,_width,_height,ndata,dimx,dimy); + else std::memset(ndata,0x80,sizeof(unsigned int)*dimx*dimy); + delete[] _data; + _data = ndata; + _bmi.bmiHeader.biWidth = (LONG)dimx; + _bmi.bmiHeader.biHeight = -(int)dimy; + _width = dimx; + _height = dimy; + } + _window_width = dimx; _window_height = dimy; + show(); + } + _is_resized = false; + if (_is_fullscreen) move((screen_width() - width())/2,(screen_height() - height())/2); + if (force_redraw) return paint(); + return *this; + } + + CImgDisplay& toggle_fullscreen(const bool force_redraw=true) { + if (is_empty()) return *this; + if (force_redraw) { + const cimg_ulong buf_size = (cimg_ulong)_width*_height*4; + void *odata = std::malloc(buf_size); + if (odata) { + std::memcpy(odata,_data,buf_size); + assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + std::memcpy(_data,odata,buf_size); + std::free(odata); + } + return paint(); + } + return assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + } + + CImgDisplay& show() { + if (is_empty() || !_is_closed) return *this; + _is_closed = false; + if (_is_fullscreen) _init_fullscreen(); + ShowWindow(_window,SW_SHOW); + _update_window_pos(); + return paint(); + } + + CImgDisplay& close() { + if (is_empty() || _is_closed) return *this; + _is_closed = true; + if (_is_fullscreen) _desinit_fullscreen(); + ShowWindow(_window,SW_HIDE); + _window_x = _window_y = cimg::type::min(); + return *this; + } + + CImgDisplay& move(const int posx, const int posy) { + if (is_empty()) return *this; + if (_window_x!=posx || _window_y!=posy) { + SetWindowPos(_window,0,posx,posy,0,0,SWP_NOSIZE | SWP_NOZORDER); + _window_x = posx; + _window_y = posy; + } + show(); + _is_moved = false; + return *this; + } + + CImgDisplay& show_mouse() { + if (is_empty()) return *this; + _is_cursor_visible = true; + return *this; + } + + CImgDisplay& hide_mouse() { + if (is_empty()) return *this; + _is_cursor_visible = false; + return *this; + } + + CImgDisplay& set_mouse(const int posx, const int posy) { + if (is_empty() || _is_closed || posx<0 || posy<0) return *this; + if (!_is_closed) { + _update_window_pos(); + const int res = (int)SetCursorPos(_window_x + posx,_window_y + posy); + if (res) { _mouse_x = posx; _mouse_y = posy; } + } + return *this; + } + + CImgDisplay& set_title(const char *const format, ...) { + if (is_empty()) return *this; + char *const tmp = new char[1024]; + va_list ap; + va_start(ap, format); + cimg_vsnprintf(tmp,1024,format,ap); + va_end(ap); + if (!std::strcmp(_title,tmp)) { delete[] tmp; return *this; } + delete[] _title; + const unsigned int s = (unsigned int)std::strlen(tmp) + 1; + _title = new char[s]; + std::memcpy(_title,tmp,s*sizeof(char)); + SetWindowTextA(_window, tmp); + delete[] tmp; + return *this; + } + + template + CImgDisplay& display(const CImg& img) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "display(): Empty specified image.", + cimgdisplay_instance); + if (is_empty()) return assign(img); + return render(img).paint(); + } + + CImgDisplay& paint() { + if (_is_closed) return *this; + WaitForSingleObject(_mutex,INFINITE); + SetDIBitsToDevice(_hdc,0,0,_width,_height,0,0,0,_height,_data,&_bmi,DIB_RGB_COLORS); + ReleaseMutex(_mutex); + return *this; + } + + template + CImgDisplay& render(const CImg& img) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "render(): Empty specified image.", + cimgdisplay_instance); + + if (is_empty()) return *this; + if (img._depth!=1) return render(img.get_projections2d((img._width - 1)/2,(img._height - 1)/2, + (img._depth - 1)/2)); + + const T + *data1 = img._data, + *data2 = (img._spectrum>=2)?img.data(0,0,0,1):data1, + *data3 = (img._spectrum>=3)?img.data(0,0,0,2):data1; + + WaitForSingleObject(_mutex,INFINITE); + unsigned int + *const ndata = (img._width==_width && img._height==_height)?_data: + new unsigned int[(size_t)img._width*img._height], + *ptrd = ndata; + + if (!_normalization || (_normalization==3 && cimg::type::string()==cimg::type::string())) { + _min = _max = 0; + switch (img._spectrum) { + case 1 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++); + *(ptrd++) = (unsigned int)((val<<16) | (val<<8) | val); + } + } break; + case 2 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8)); + } + } break; + default : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++), + B = (unsigned char)*(data3++); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8) | B); + } + } + } + } else { + if (_normalization==3) { + if (cimg::type::is_float()) _min = (float)img.min_max(_max); + else { + _min = (float)cimg::type::min(); + _max = (float)cimg::type::max(); + } + } else if ((_min>_max) || _normalization==1) _min = (float)img.min_max(_max); + const float delta = _max - _min, mm = 255/(delta?delta:1.f); + switch (img._spectrum) { + case 1 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = (unsigned int)((val<<16) | (val<<8) | val); + } + } break; + case 2 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8)); + } + } break; + default : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm), + B = (unsigned char)((*(data3++) - _min)*mm); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8) | B); + } + } + } + } + if (ndata!=_data) { _render_resize(ndata,img._width,img._height,_data,_width,_height); delete[] ndata; } + ReleaseMutex(_mutex); + return *this; + } + + template + static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { + img.assign(); + HDC hScreen = GetDC(GetDesktopWindow()); + if (hScreen) { + const int + width = GetDeviceCaps(hScreen,HORZRES), + height = GetDeviceCaps(hScreen,VERTRES); + int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1; + if (_x0>_x1) cimg::swap(_x0,_x1); + if (_y0>_y1) cimg::swap(_y0,_y1); + if (_x1>=0 && _x0=0 && _y0 + const CImgDisplay& snapshot(CImg& img) const { + if (is_empty()) { img.assign(); return *this; } + const unsigned int *ptrs = _data; + img.assign(_width,_height,1,3); + T + *data1 = img.data(0,0,0,0), + *data2 = img.data(0,0,0,1), + *data3 = img.data(0,0,0,2); + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned int val = *(ptrs++); + *(data1++) = (T)(unsigned char)(val>>16); + *(data2++) = (T)(unsigned char)((val>>8)&0xFF); + *(data3++) = (T)(unsigned char)(val&0xFF); + } + return *this; + } +#endif + + //@} + }; // struct CImgDisplay { ... + + /* + #-------------------------------------- + # + # + # + # Definition of the CImg structure + # + # + # + #-------------------------------------- + */ + + //! Class representing an image (up to 4 dimensions wide), each pixel being of type \c T. + /** + This is the main class of the %CImg Library. It declares and constructs + an image, allows access to its pixel values, and is able to perform various image operations. + + \par Image representation + + A %CImg image is defined as an instance of the container \c CImg, which contains a regular grid of pixels, + each pixel value being of type \c T. The image grid can have up to 4 dimensions: width, height, depth + and number of channels. + Usually, the three first dimensions are used to describe spatial coordinates (x,y,z), + while the number of channels is rather used as a vector-valued dimension + (it may describe the R,G,B color channels for instance). + If you need a fifth dimension, you can use image lists \c CImgList rather than simple images \c CImg. + + Thus, the \c CImg class is able to represent volumetric images of vector-valued pixels, + as well as images with less dimensions (1D scalar signal, 2D color images, ...). + Most member functions of the class CImg<\c T> are designed to handle this maximum case of (3+1) dimensions. + + Concerning the pixel value type \c T: + fully supported template types are the basic C++ types: unsigned char, char, short, unsigned int, int, + unsigned long, long, float, double, ... . + Typically, fast image display can be done using CImg images, + while complex image processing algorithms may be rather coded using CImg or CImg + images that have floating-point pixel values. The default value for the template T is \c float. + Using your own template types may be possible. However, you will certainly have to define the complete set + of arithmetic and logical operators for your class. + + \par Image structure + + The \c CImg structure contains \e six fields: + - \c _width defines the number of \a columns of the image (size along the X-axis). + - \c _height defines the number of \a rows of the image (size along the Y-axis). + - \c _depth defines the number of \a slices of the image (size along the Z-axis). + - \c _spectrum defines the number of \a channels of the image (size along the C-axis). + - \c _data defines a \a pointer to the \a pixel \a data (of type \c T). + - \c _is_shared is a boolean that tells if the memory buffer \c data is shared with + another image. + + You can access these fields publicly although it is recommended to use the dedicated functions + width(), height(), depth(), spectrum() and ptr() to do so. + Image dimensions are not limited to a specific range (as long as you got enough available memory). + A value of \e 1 usually means that the corresponding dimension is \a flat. + If one of the dimensions is \e 0, or if the data pointer is null, the image is considered as \e empty. + Empty images should not contain any pixel data and thus, will not be processed by CImg member functions + (a CImgInstanceException will be thrown instead). + Pixel data are stored in memory, in a non interlaced mode (See \ref cimg_storage). + + \par Image declaration and construction + + Declaring an image can be done by using one of the several available constructors. + Here is a list of the most used: + + - Construct images from arbitrary dimensions: + - CImg img; declares an empty image. + - CImg img(128,128); declares a 128x128 greyscale image with + \c unsigned \c char pixel values. + - CImg img(3,3); declares a 3x3 matrix with \c double coefficients. + - CImg img(256,256,1,3); declares a 256x256x1x3 (color) image + (colors are stored as an image with three channels). + - CImg img(128,128,128); declares a 128x128x128 volumetric and greyscale image + (with \c double pixel values). + - CImg<> img(128,128,128,3); declares a 128x128x128 volumetric color image + (with \c float pixels, which is the default value of the template parameter \c T). + - \b Note: images pixels are not automatically initialized to 0. You may use the function \c fill() to + do it, or use the specific constructor taking 5 parameters like this: + CImg<> img(128,128,128,3,0); declares a 128x128x128 volumetric color image with all pixel values to 0. + + - Construct images from filenames: + - CImg img("image.jpg"); reads a JPEG color image from the file "image.jpg". + - CImg img("analyze.hdr"); reads a volumetric image (ANALYZE7.5 format) from the + file "analyze.hdr". + - \b Note: You need to install ImageMagick + to be able to read common compressed image formats (JPG,PNG, ...) (See \ref cimg_files_io). + + - Construct images from C-style arrays: + - CImg img(data_buffer,256,256); constructs a 256x256 greyscale image from a \c int* buffer + \c data_buffer (of size 256x256=65536). + - CImg img(data_buffer,256,256,1,3); constructs a 256x256 color image + from a \c unsigned \c char* buffer \c data_buffer (where R,G,B channels follow each others). + + The complete list of constructors can be found here. + + \par Most useful functions + + The \c CImg class contains a lot of functions that operates on images. + Some of the most useful are: + + - operator()(): Read or write pixel values. + - display(): displays the image in a new window. + **/ + template + struct CImg { + + unsigned int _width, _height, _depth, _spectrum; + bool _is_shared; + T *_data; + + //! Simple iterator type, to loop through each pixel value of an image instance. + /** + \note + - The \c CImg::iterator type is defined to be a T*. + - You will seldom have to use iterators in %CImg, most classical operations + being achieved (often in a faster way) using methods of \c CImg. + \par Example + \code + CImg img("reference.jpg"); // Load image from file + // Set all pixels to '0', with a CImg iterator. + for (CImg::iterator it = img.begin(), it::const_iterator type is defined to be a \c const \c T*. + - You will seldom have to use iterators in %CImg, most classical operations + being achieved (often in a faster way) using methods of \c CImg. + \par Example + \code + const CImg img("reference.jpg"); // Load image from file + float sum = 0; + // Compute sum of all pixel values, with a CImg iterator. + for (CImg::iterator it = img.begin(), it::value_type type of a \c CImg is defined to be a \c T. + - \c CImg::value_type is actually not used in %CImg methods. It has been mainly defined for + compatibility with STL naming conventions. + **/ + typedef T value_type; + + // Define common types related to template type T. + typedef typename cimg::superset::type Tbool; + typedef typename cimg::superset::type Tuchar; + typedef typename cimg::superset::type Tchar; + typedef typename cimg::superset::type Tushort; + typedef typename cimg::superset::type Tshort; + typedef typename cimg::superset::type Tuint; + typedef typename cimg::superset::type Tint; + typedef typename cimg::superset::type Tulong; + typedef typename cimg::superset::type Tlong; + typedef typename cimg::superset::type Tfloat; + typedef typename cimg::superset::type Tdouble; + typedef typename cimg::last::type boolT; + typedef typename cimg::last::type ucharT; + typedef typename cimg::last::type charT; + typedef typename cimg::last::type ushortT; + typedef typename cimg::last::type shortT; + typedef typename cimg::last::type uintT; + typedef typename cimg::last::type intT; + typedef typename cimg::last::type ulongT; + typedef typename cimg::last::type longT; + typedef typename cimg::last::type uint64T; + typedef typename cimg::last::type int64T; + typedef typename cimg::last::type floatT; + typedef typename cimg::last::type doubleT; + + // Return 'dx*dy*dz*dc' as a 'size_t' and check no overflow occurs. + static size_t safe_size(const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) { + if (!(dx && dy && dz && dc)) return 0; + size_t siz = (size_t)dx, osiz = siz; + if ((dy==1 || (siz*=dy)>osiz) && + ((osiz = siz), dz==1 || (siz*=dz)>osiz) && + ((osiz = siz), dc==1 || (siz*=dc)>osiz) && + ((osiz = siz), sizeof(T)==1 || (siz*sizeof(T))>osiz)) { + if (siz > cimg_max_buf_size){ + throw CImgArgumentException("CImg<%s>::safe_size(): Specified size (%u,%u,%u,%u) exceeds maximum " + "allowed buffer size of %lu ", + pixel_type(),dx,dy,dz,dc,cimg_max_buf_size); + } + return siz; + } + throw CImgArgumentException("CImg<%s>::safe_size(): Specified size (%u,%u,%u,%u) overflows 'size_t'.", + pixel_type(),dx,dy,dz,dc); + } + + //@} + //--------------------------- + // + //! \name Plugins + //@{ + //--------------------------- +#ifdef cimg_plugin +#include cimg_plugin +#endif +#ifdef cimg_plugin1 +#include cimg_plugin1 +#endif +#ifdef cimg_plugin2 +#include cimg_plugin2 +#endif +#ifdef cimg_plugin3 +#include cimg_plugin3 +#endif +#ifdef cimg_plugin4 +#include cimg_plugin4 +#endif +#ifdef cimg_plugin5 +#include cimg_plugin5 +#endif +#ifdef cimg_plugin6 +#include cimg_plugin6 +#endif +#ifdef cimg_plugin7 +#include cimg_plugin7 +#endif +#ifdef cimg_plugin8 +#include cimg_plugin8 +#endif + + //@} + //--------------------------------------------------------- + // + //! \name Constructors / Destructor / Instance Management + //@{ + //--------------------------------------------------------- + + //! Destroy image. + /** + \note + - The pixel buffer data() is deallocated if necessary, e.g. for non-empty and non-shared image instances. + - Destroying an empty or shared image does nothing actually. + \warning + - When destroying a non-shared image, make sure that you will \e not operate on a remaining shared image + that shares its buffer with the destroyed instance, in order to avoid further invalid memory access + (to a deallocated buffer). + **/ + ~CImg() { + if (!_is_shared) delete[] _data; + } + + //! Construct empty image. + /** + \note + - An empty image has no pixel data and all of its dimensions width(), height(), depth(), spectrum() + are set to \c 0, as well as its pixel buffer pointer data(). + - An empty image may be re-assigned afterwards, e.g. with the family of + assign(unsigned int,unsigned int,unsigned int,unsigned int) methods, + or by operator=(const CImg&). In all cases, the type of pixels stays \c T. + - An empty image is never shared. + \par Example + \code + CImg img1, img2; // Construct two empty images + img1.assign(256,256,1,3); // Re-assign 'img1' to be a 256x256x1x3 (color) image + img2 = img1.get_rand(0,255); // Re-assign 'img2' to be a random-valued version of 'img1' + img2.assign(); // Re-assign 'img2' to be an empty image again + \endcode + **/ + CImg():_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {} + + //! Construct image with specified size. + /** + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \note + - It is able to create only \e non-shared images, and allocates thus a pixel buffer data() + for each constructed image instance. + - Setting one dimension \c size_x,\c size_y,\c size_z or \c size_c to \c 0 leads to the construction of + an \e empty image. + - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated + (e.g. when requested size is too big for available memory). + \warning + - The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values. + In order to initialize pixel values during construction (e.g. with \c 0), use constructor + CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) instead. + \par Example + \code + CImg img1(256,256,1,3); // Construct a 256x256x1x3 (color) image, filled with garbage values + CImg img2(256,256,1,3,0); // Construct a 256x256x1x3 (color) image, filled with value '0' + \endcode + **/ + explicit CImg(const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1): + _is_shared(false) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values. + /** + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param value Initialization value. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), + but it also fills the pixel buffer with the specified \c value. + \warning + - It cannot be used to construct a vector-valued image and initialize it with \e vector-valued pixels + (e.g. RGB vector, for color images). + For this task, you may use fillC() after construction. + **/ + CImg(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const T& value): + _is_shared(false) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + fill(value); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values from a sequence of integers. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, + with pixels of type \c T, and initialize pixel + values from the specified sequence of integers \c value0,\c value1,\c ... + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param value0 First value of the initialization sequence (must be an \e integer). + \param value1 Second value of the initialization sequence (must be an \e integer). + \param ... + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills + the pixel buffer with a sequence of specified integer values. + \warning + - You must specify \e exactly \c size_x*\c size_y*\c size_z*\c size_c integers in the initialization sequence. + Otherwise, the constructor may crash or fill your image pixels with garbage. + \par Example + \code + const CImg img(2,2,1,3, // Construct a 2x2 color (RGB) image + 0,255,0,255, // Set the 4 values for the red component + 0,0,255,255, // Set the 4 values for the green component + 64,64,64,64); // Set the 4 values for the blue component + img.resize(150,150).display(); + \endcode + \image html ref_constructor1.jpg + **/ + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const int value0, const int value1, ...): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { +#define _CImg_stdarg(img,a0,a1,N,t) { \ + size_t _siz = (size_t)N; \ + if (_siz--) { \ + va_list ap; \ + va_start(ap,a1); \ + T *ptrd = (img)._data; \ + *(ptrd++) = (T)a0; \ + if (_siz--) { \ + *(ptrd++) = (T)a1; \ + for ( ; _siz; --_siz) *(ptrd++) = (T)va_arg(ap,t); \ + } \ + va_end(ap); \ + } \ + } + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),int); + } + +#if cimg_use_cpp11==1 + //! Construct image with specified size and initialize pixel values from an initializer list of integers. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, + with pixels of type \c T, and initialize pixel + values from the specified initializer list of integers { \c value0,\c value1,\c ... } + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param { value0, value1, ... } Initialization list + \param repeat_values Tells if the value filling process is repeated over the image. + + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills + the pixel buffer with a sequence of specified integer values. + \par Example + \code + const CImg img(2,2,1,3, // Construct a 2x2 color (RGB) image + { 0,255,0,255, // Set the 4 values for the red component + 0,0,255,255, // Set the 4 values for the green component + 64,64,64,64 }); // Set the 4 values for the blue component + img.resize(150,150).display(); + \endcode + \image html ref_constructor1.jpg + **/ + template + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const std::initializer_list values, + const bool repeat_values=true): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { +#define _cimg_constructor_cpp11(repeat_values) \ + auto it = values.begin(); \ + size_t siz = size(); \ + if (repeat_values) for (T *ptrd = _data; siz--; ) { \ + *(ptrd++) = (T)(*(it++)); if (it==values.end()) it = values.begin(); } \ + else { siz = std::min(siz,values.size()); for (T *ptrd = _data; siz--; ) *(ptrd++) = (T)(*(it++)); } + assign(size_x,size_y,size_z,size_c); + _cimg_constructor_cpp11(repeat_values); + } + + template + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, + std::initializer_list values, + const bool repeat_values=true): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x,size_y,size_z); + _cimg_constructor_cpp11(repeat_values); + } + + template + CImg(const unsigned int size_x, const unsigned int size_y, + std::initializer_list values, + const bool repeat_values=true): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x,size_y); + _cimg_constructor_cpp11(repeat_values); + } + + template + CImg(const unsigned int size_x, + std::initializer_list values, + const bool repeat_values=true):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x); + _cimg_constructor_cpp11(repeat_values); + } + + //! Construct single channel 1D image with pixel values and width obtained from an initializer list of integers. + /** + Construct a new image instance of size \c width x \c 1 x \c 1 x \c 1, + with pixels of type \c T, and initialize pixel + values from the specified initializer list of integers { \c value0,\c value1,\c ... }. Image width is + given by the size of the initializer list. + \param { value0, value1, ... } Initialization list + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int) with height=1, depth=1, and spectrum=1, + but it also fills the pixel buffer with a sequence of specified integer values. + \par Example + \code + const CImg img = {10,20,30,20,10 }; // Construct a 5x1 image with one channel, and set its pixel values + img.resize(150,150).display(); + \endcode + \image html ref_constructor1.jpg + **/ + template + CImg(const std::initializer_list values): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(values.size(),1,1,1); + auto it = values.begin(); + unsigned int siz = _width; + for (T *ptrd = _data; siz--; ) *(ptrd++) = (T)(*(it++)); + } + + template + CImg& operator=(std::initializer_list values) { + _cimg_constructor_cpp11(siz>values.size()); + return *this; + } +#endif + + //! Construct image with specified size and initialize pixel values from a sequence of doubles. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, + and initialize pixel values from the specified sequence of doubles \c value0,\c value1,\c ... + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param value0 First value of the initialization sequence (must be a \e double). + \param value1 Second value of the initialization sequence (must be a \e double). + \param ... + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...), but + takes a sequence of double values instead of integers. + \warning + - You must specify \e exactly \c dx*\c dy*\c dz*\c dc doubles in the initialization sequence. + Otherwise, the constructor may crash or fill your image with garbage. + For instance, the code below will probably crash on most platforms: + \code + const CImg img(2,2,1,1, 0.5,0.5,255,255); // FAIL: The two last arguments are 'int', not 'double'! + \endcode + **/ + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const double value0, const double value1, ...): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),double); + } + + //! Construct image with specified size and initialize pixel values from a value string. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, + and initializes pixel values from the specified string \c values. + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param values Value string describing the way pixel values are set. + \param repeat_values Tells if the value filling process is repeated over the image. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills + the pixel buffer with values described in the value string \c values. + - Value string \c values may describe two different filling processes: + - Either \c values is a sequences of values assigned to the image pixels, as in "1,2,3,7,8,2". + In this case, set \c repeat_values to \c true to periodically fill the image with the value sequence. + - Either, \c values is a formula, as in "cos(x/10)*sin(y/20)". + In this case, parameter \c repeat_values is pointless. + - For both cases, specifying \c repeat_values is mandatory. + It disambiguates the possible overloading of constructor + CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) with \c T being a const char*. + - A \c CImgArgumentException is thrown when an invalid value string \c values is specified. + \par Example + \code + const CImg img1(129,129,1,3,"0,64,128,192,255",true), // Construct image from a value sequence + img2(129,129,1,3,"if(c==0,255*abs(cos(x/10)),1.8*y)",false); // Construct image from a formula + (img1,img2).display(); + \endcode + \image html ref_constructor2.jpg + **/ + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const char *const values, const bool repeat_values):_is_shared(false) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + fill(values,repeat_values); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values from a memory buffer. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, + and initializes pixel values from the specified \c t* memory buffer. + \param values Pointer to the input memory buffer. + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param is_shared Tells if input memory buffer must be shared by the current instance. + \note + - If \c is_shared is \c false, the image instance allocates its own pixel buffer, + and values from the specified input buffer are copied to the instance buffer. + If buffer types \c T and \c t are different, a regular static cast is performed during buffer copy. + - Otherwise, the image instance does \e not allocate a new buffer, and uses the input memory buffer as its + own pixel buffer. This case requires that types \c T and \c t are the same. Later, destroying such a shared + image will not deallocate the pixel buffer, this task being obviously charged to the initial buffer allocator. + - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated + (e.g. when requested size is too big for available memory). + \warning + - You must take care when operating on a shared image, since it may have an invalid pixel buffer pointer data() + (e.g. already deallocated). + \par Example + \code + unsigned char tab[256*256] = {}; + CImg img1(tab,256,256,1,1,false), // Construct new non-shared image from buffer 'tab' + img2(tab,256,256,1,1,true); // Construct new shared-image from buffer 'tab' + tab[1024] = 255; // Here, 'img2' is indirectly modified, but not 'img1' + \endcode + **/ + template + CImg(const t *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false):_is_shared(false) { + if (is_shared) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgArgumentException(_cimg_instance + "CImg(): Invalid construction request of a (%u,%u,%u,%u) shared instance " + "from a (%s*) buffer (pixel types are different).", + cimg_instance, + size_x,size_y,size_z,size_c,CImg::pixel_type()); + } + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (values && siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + + } + const t *ptrs = values; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \specialization. + CImg(const T *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (values && siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = is_shared; + if (_is_shared) _data = const_cast(values); + else { + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + std::memcpy(_data,values,siz*sizeof(T)); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Construct image from memory buffer with specified size and pixel ordering scheme. + template + CImg(const t *const values, const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const char *const axes_order):_data(0),_is_shared(false) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (values && siz) { + unsigned char s_code[4] = { 0,1,2,3 }, n_code[4] = {}; + for (unsigned int l = 0; axes_order[l]; ++l) { + int c = cimg::lowercase(axes_order[l]); + if (l>=4 || (c!='x' && c!='y' && c!='z' && c!='c')) { *s_code = 4; break; } + else { ++n_code[c%=4]; s_code[l] = c; } + } + if (*axes_order && *s_code<4 && *n_code<=1 && n_code[1]<=1 && n_code[2]<=1 && n_code[3]<=1) { + const unsigned int code = (s_code[0]<<12) | (s_code[1]<<8) | (s_code[2]<<4) | (s_code[3]); + int s0 = 0, s1 = 0, s2 = 0, s3 = 0; + const char *inv_order = 0; + switch (code) { + case 0x0123 : inv_order = "xyzc"; s0 = size_x; s1 = size_y; s2 = size_z; s3 = size_c; break; // xyzc + case 0x0132 : inv_order = "xyzc"; s0 = size_x; s1 = size_y; s2 = size_c; s3 = size_z; break; // xycz + case 0x0213 : inv_order = "xzyc"; s0 = size_x; s1 = size_z; s2 = size_y; s3 = size_c; break; // xzyc + case 0x0231 : inv_order = "xcyz"; s0 = size_x; s1 = size_z; s2 = size_c; s3 = size_y; break; // xzcy + case 0x0312 : inv_order = "xzcy"; s0 = size_x; s1 = size_c; s2 = size_y; s3 = size_z; break; // xcyz + case 0x0321 : inv_order = "xczy"; s0 = size_x; s1 = size_c; s2 = size_z; s3 = size_y; break; // xczy + case 0x1023 : inv_order = "yxzc"; s0 = size_y; s1 = size_x; s2 = size_z; s3 = size_c; break; // yxzc + case 0x1032 : inv_order = "yxcz"; s0 = size_y; s1 = size_x; s2 = size_c; s3 = size_z; break; // yxcz + case 0x1203 : inv_order = "zxyc"; s0 = size_y; s1 = size_z; s2 = size_x; s3 = size_c; break; // yzxc + case 0x1230 : inv_order = "cxyz"; s0 = size_y; s1 = size_z; s2 = size_c; s3 = size_x; break; // yzcx + case 0x1302 : inv_order = "zxcy"; s0 = size_y; s1 = size_c; s2 = size_x; s3 = size_z; break; // ycxz + case 0x1320 : inv_order = "cxzy"; s0 = size_y; s1 = size_c; s2 = size_z; s3 = size_x; break; // yczx + case 0x2013 : inv_order = "yzxc"; s0 = size_z; s1 = size_x; s2 = size_y; s3 = size_c; break; // zxyc + case 0x2031 : inv_order = "ycxz"; s0 = size_z; s1 = size_x; s2 = size_c; s3 = size_y; break; // zxcy + case 0x2103 : inv_order = "zyxc"; s0 = size_z; s1 = size_y; s2 = size_x; s3 = size_c; break; // zyxc + case 0x2130 : inv_order = "cyxz"; s0 = size_z; s1 = size_y; s2 = size_c; s3 = size_x; break; // zycx + case 0x2301 : inv_order = "zcxy"; s0 = size_z; s1 = size_c; s2 = size_x; s3 = size_y; break; // zcxy + case 0x2310 : inv_order = "czxy"; s0 = size_z; s1 = size_c; s2 = size_y; s3 = size_x; break; // zcyx + case 0x3012 : inv_order = "yzcx"; s0 = size_c; s1 = size_x; s2 = size_y; s3 = size_z; break; // cxyz + case 0x3021 : inv_order = "yczx"; s0 = size_c; s1 = size_x; s2 = size_z; s3 = size_y; break; // cxzy + case 0x3102 : inv_order = "zycx"; s0 = size_c; s1 = size_y; s2 = size_x; s3 = size_z; break; // cyxz + case 0x3120 : inv_order = "cyzx"; s0 = size_c; s1 = size_y; s2 = size_z; s3 = size_x; break; // cyzx + case 0x3201 : inv_order = "zcyx"; s0 = size_c; s1 = size_z; s2 = size_x; s3 = size_y; break; // czxy + case 0x3210 : inv_order = "czyx"; s0 = size_c; s1 = size_z; s2 = size_y; s3 = size_x; break; // czyx + } + CImg(values,s0,s1,s2,s3,true).get_permute_axes(inv_order).move_to(*this); + } else { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgArgumentException(_cimg_instance + "CImg(): Invalid specified axes order '%s'.", + cimg_instance, + axes_order); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Construct image from reading an image file. + /** + Construct a new image instance with pixels of type \c T, and initialize pixel values with the data read from + an image file. + \param filename Filename, as a C-string. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it reads the image + dimensions and pixel values from the specified image file. + - The recognition of the image file format by %CImg higlhy depends on the tools installed on your system + and on the external libraries you used to link your code against. + - Considered pixel type \c T should better fit the file format specification, or data loss may occur during + file load (e.g. constructing a \c CImg from a float-valued image file). + - A \c CImgIOException is thrown when the specified \c filename cannot be read, or if the file format is not + recognized. + \par Example + \code + const CImg img("reference.jpg"); + img.display(); + \endcode + \image html ref_image.jpg + **/ + explicit CImg(const char *const filename):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(filename); + } + + //! Construct image copy. + /** + Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg instance. + \param img Input image to copy. + \note + - Constructed copy has the same size width() x height() x depth() x spectrum() and pixel values as the + input image \c img. + - If input image \c img is \e shared and if types \c T and \c t are the same, the constructed copy is also + \e shared, and shares its pixel buffer with \c img. + Modifying a pixel value in the constructed copy will thus also modifies it in the input image \c img. + This behavior is needful to allow functions to return shared images. + - Otherwise, the constructed copy allocates its own pixel buffer, and copies pixel values from the input + image \c img into its buffer. The copied pixel values may be eventually statically casted if types \c T and + \c t are different. + - Constructing a copy from an image \c img when types \c t and \c T are the same is significantly faster than + with different types. + - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated + (e.g. not enough available memory). + **/ + template + CImg(const CImg& img):_is_shared(false) { + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + } + const t *ptrs = img._data; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image copy \specialization. + CImg(const CImg& img) { + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + _is_shared = img._is_shared; + if (_is_shared) _data = const_cast(img._data); + else { + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + + } + std::memcpy(_data,img._data,siz*sizeof(T)); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Advanced copy constructor. + /** + Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg instance, + while forcing the shared state of the constructed copy. + \param img Input image to copy. + \param is_shared Tells about the shared state of the constructed copy. + \note + - Similar to CImg(const CImg&), except that it allows to decide the shared state of + the constructed image, which does not depend anymore on the shared state of the input image \c img: + - If \c is_shared is \c true, the constructed copy will share its pixel buffer with the input image \c img. + For that case, the pixel types \c T and \c t \e must be the same. + - If \c is_shared is \c false, the constructed copy will allocate its own pixel buffer, whether the input + image \c img is shared or not. + - A \c CImgArgumentException is thrown when a shared copy is requested with different pixel types \c T and \c t. + **/ + template + CImg(const CImg& img, const bool is_shared):_is_shared(false) { + if (is_shared) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgArgumentException(_cimg_instance + "CImg(): Invalid construction request of a shared instance from a " + "CImg<%s> image (%u,%u,%u,%u,%p) (pixel types are different).", + cimg_instance, + CImg::pixel_type(),img._width,img._height,img._depth,img._spectrum,img._data); + } + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + } + const t *ptrs = img._data; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Advanced copy constructor \specialization. + CImg(const CImg& img, const bool is_shared) { + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + _is_shared = is_shared; + if (_is_shared) _data = const_cast(img._data); + else { + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + } + std::memcpy(_data,img._data,siz*sizeof(T)); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Construct image with dimensions borrowed from another image. + /** + Construct a new image instance with pixels of type \c T, and size get from some dimensions of an existing + \c CImg instance. + \param img Input image from which dimensions are borrowed. + \param dimensions C-string describing the image size along the X,Y,Z and C-dimensions. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it takes the image dimensions + (\e not its pixel values) from an existing \c CImg instance. + - The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values. + In order to initialize pixel values (e.g. with \c 0), use constructor CImg(const CImg&,const char*,T) + instead. + \par Example + \code + const CImg img1(256,128,1,3), // 'img1' is a 256x128x1x3 image + img2(img1,"xyzc"), // 'img2' is a 256x128x1x3 image + img3(img1,"y,x,z,c"), // 'img3' is a 128x256x1x3 image + img4(img1,"c,x,y,3",0), // 'img4' is a 3x128x256x3 image (with pixels initialized to '0') + \endcode + **/ + template + CImg(const CImg& img, const char *const dimensions): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(img,dimensions); + } + + //! Construct image with dimensions borrowed from another image and initialize pixel values. + /** + Construct a new image instance with pixels of type \c T, and size get from the dimensions of an existing + \c CImg instance, and set all pixel values to specified \c value. + \param img Input image from which dimensions are borrowed. + \param dimensions String describing the image size along the X,Y,Z and V-dimensions. + \param value Value used for initialization. + \note + - Similar to CImg(const CImg&,const char*), but it also fills the pixel buffer with the specified \c value. + **/ + template + CImg(const CImg& img, const char *const dimensions, const T& value): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(img,dimensions).fill(value); + } + + //! Construct image from a display window. + /** + Construct a new image instance with pixels of type \c T, as a snapshot of an existing \c CImgDisplay instance. + \param disp Input display window. + \note + - The width() and height() of the constructed image instance are the same as the specified \c CImgDisplay. + - The depth() and spectrum() of the constructed image instance are respectively set to \c 1 and \c 3 + (i.e. a 2D color image). + - The image pixels are read as 8-bits RGB values. + **/ + explicit CImg(const CImgDisplay &disp):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + disp.snapshot(*this); + } + + // Constructor and assignment operator for rvalue references (c++11). + // This avoids an additional image copy for methods returning new images. Can save RAM for big images ! +#if cimg_use_cpp11==1 + CImg(CImg&& img):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + swap(img); + } + + CImg& operator=(CImg&& img) { + if (_is_shared) return assign(img); + return img.swap(*this); + } +#endif + + //! Construct empty image \inplace. + /** + In-place version of the default constructor CImg(). It simply resets the instance to an empty image. + **/ + CImg& assign() { + if (!_is_shared) delete[] _data; + _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; + return *this; + } + + //! Construct image with specified size \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (!siz) return assign(); + const size_t curr_siz = (size_t)size(); + if (siz!=curr_siz) { + if (_is_shared) + throw CImgArgumentException(_cimg_instance + "assign(): Invalid assignment request of shared instance from specified " + "image (%u,%u,%u,%u).", + cimg_instance, + size_x,size_y,size_z,size_c); + else { + delete[] _data; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "assign(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + } + } + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + return *this; + } + + //! Construct image with specified size and initialize pixel values \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const T& value) { + return assign(size_x,size_y,size_z,size_c).fill(value); + } + + //! Construct image with specified size and initialize pixel values from a sequence of integers \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const int value0, const int value1, ...) { + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),int); + return *this; + } + + //! Construct image with specified size and initialize pixel values from a sequence of doubles \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,double,double,...). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const double value0, const double value1, ...) { + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,safe_size(size_x,size_y,size_z,size_c),double); + return *this; + } + + //! Construct image with specified size and initialize pixel values from a value string \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,const char*,bool). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const char *const values, const bool repeat_values) { + return assign(size_x,size_y,size_z,size_c).fill(values,repeat_values); + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \inplace. + /** + In-place version of the constructor CImg(const t*,unsigned int,unsigned int,unsigned int,unsigned int). + **/ + template + CImg& assign(const t *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (!values || !siz) return assign(); + assign(size_x,size_y,size_z,size_c); + const t *ptrs = values; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + return *this; + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \specialization. + CImg& assign(const T *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (!values || !siz) return assign(); + const size_t curr_siz = (size_t)size(); + if (values==_data && siz==curr_siz) return assign(size_x,size_y,size_z,size_c); + if (_is_shared || values + siz<_data || values>=_data + size()) { + assign(size_x,size_y,size_z,size_c); + if (_is_shared) std::memmove((void*)_data,(void*)values,siz*sizeof(T)); + else std::memcpy((void*)_data,(void*)values,siz*sizeof(T)); + } else { + T *new_data = 0; + try { new_data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "assign(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + std::memcpy((void*)new_data,(void*)values,siz*sizeof(T)); + delete[] _data; _data = new_data; _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + } + return *this; + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \overloading. + template + CImg& assign(const t *const values, const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const bool is_shared) { + if (is_shared) + throw CImgArgumentException(_cimg_instance + "assign(): Invalid assignment request of shared instance from (%s*) buffer" + "(pixel types are different).", + cimg_instance, + CImg::pixel_type()); + return assign(values,size_x,size_y,size_z,size_c); + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \overloading. + CImg& assign(const T *const values, const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const bool is_shared) { + const size_t siz = safe_size(size_x,size_y,size_z,size_c); + if (!values || !siz) return assign(); + if (!is_shared) { if (_is_shared) assign(); assign(values,size_x,size_y,size_z,size_c); } + else { + if (!_is_shared) { + if (values + siz<_data || values>=_data + size()) assign(); + else cimg::warn(_cimg_instance + "assign(): Shared image instance has overlapping memory.", + cimg_instance); + } + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = true; + _data = const_cast(values); + } + return *this; + } + + //! Construct image from memory buffer with specified size and pixel ordering scheme. + template + CImg& assign(const t *const values, const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const char *const axes_order) { + CImg(values,size_x,size_y,size_z,size_c,axes_order).move_to(*this); + } + + //! Construct image from reading an image file \inplace. + /** + In-place version of the constructor CImg(const char*). + **/ + CImg& assign(const char *const filename) { + return load(filename); + } + + //! Construct image copy \inplace. + /** + In-place version of the constructor CImg(const CImg&). + **/ + template + CImg& assign(const CImg& img) { + return assign(img._data,img._width,img._height,img._depth,img._spectrum); + } + + //! In-place version of the advanced copy constructor. + /** + In-place version of the constructor CImg(const CImg&,bool). + **/ + template + CImg& assign(const CImg& img, const bool is_shared) { + return assign(img._data,img._width,img._height,img._depth,img._spectrum,is_shared); + } + + //! Construct image with dimensions borrowed from another image \inplace. + /** + In-place version of the constructor CImg(const CImg&,const char*). + **/ + template + CImg& assign(const CImg& img, const char *const dimensions) { + if (!dimensions || !*dimensions) return assign(img._width,img._height,img._depth,img._spectrum); + unsigned int siz[4] = { 0,1,1,1 }, k = 0; + CImg item(256); + for (const char *s = dimensions; *s && k<4; ++k) { + if (cimg_sscanf(s,"%255[^0-9%xyzvwhdcXYZVWHDC]",item._data)>0) s+=std::strlen(item); + if (*s) { + unsigned int val = 0; char sep = 0; + if (cimg_sscanf(s,"%u%c",&val,&sep)>0) { + if (sep=='%') siz[k] = val*(k==0?_width:k==1?_height:k==2?_depth:_spectrum)/100; + else siz[k] = val; + while (*s>='0' && *s<='9') ++s; + if (sep=='%') ++s; + } else switch (cimg::lowercase(*s)) { + case 'x' : case 'w' : siz[k] = img._width; ++s; break; + case 'y' : case 'h' : siz[k] = img._height; ++s; break; + case 'z' : case 'd' : siz[k] = img._depth; ++s; break; + case 'c' : case 's' : siz[k] = img._spectrum; ++s; break; + default : + throw CImgArgumentException(_cimg_instance + "assign(): Invalid character '%c' detected in specified dimension string '%s'.", + cimg_instance, + *s,dimensions); + } + } + } + return assign(siz[0],siz[1],siz[2],siz[3]); + } + + //! Construct image with dimensions borrowed from another image and initialize pixel values \inplace. + /** + In-place version of the constructor CImg(const CImg&,const char*,T). + **/ + template + CImg& assign(const CImg& img, const char *const dimensions, const T& value) { + return assign(img,dimensions).fill(value); + } + + //! Construct image from a display window \inplace. + /** + In-place version of the constructor CImg(const CImgDisplay&). + **/ + CImg& assign(const CImgDisplay &disp) { + disp.snapshot(*this); + return *this; + } + + //! Construct empty image \inplace. + /** + Equivalent to assign(). + \note + - It has been defined for compatibility with STL naming conventions. + **/ + CImg& clear() { + return assign(); + } + + //! Transfer content of an image instance into another one. + /** + Transfer the dimensions and the pixel buffer content of an image instance into another one, + and replace instance by an empty image. It avoids the copy of the pixel buffer + when possible. + \param img Destination image. + \note + - Pixel types \c T and \c t of source and destination images can be different, though the process is + designed to be instantaneous when \c T and \c t are the same. + \par Example + \code + CImg src(256,256,1,3,0), // Construct a 256x256x1x3 (color) image filled with value '0' + dest(16,16); // Construct a 16x16x1x1 (scalar) image + src.move_to(dest); // Now, 'src' is empty and 'dest' is the 256x256x1x3 image + \endcode + **/ + template + CImg& move_to(CImg& img) { + img.assign(*this); + assign(); + return img; + } + + //! Transfer content of an image instance into another one \specialization. + CImg& move_to(CImg& img) { + if (_is_shared || img._is_shared) img.assign(*this); + else swap(img); + assign(); + return img; + } + + //! Transfer content of an image instance into a new image in an image list. + /** + Transfer the dimensions and the pixel buffer content of an image instance + into a newly inserted image at position \c pos in specified \c CImgList instance. + \param list Destination list. + \param pos Position of the newly inserted image in the list. + \note + - When optional parameter \c pos is omitted, the image instance is transferred as a new + image at the end of the specified \c list. + - It is convenient to sequentially insert new images into image lists, with no + additional copies of memory buffer. + \par Example + \code + CImgList list; // Construct an empty image list + CImg img("reference.jpg"); // Read image from filename + img.move_to(list); // Transfer image content as a new item in the list (no buffer copy) + \endcode + **/ + template + CImgList& move_to(CImgList& list, const unsigned int pos=~0U) { + const unsigned int npos = pos>list._width?list._width:pos; + move_to(list.insert(1,npos)[npos]); + return list; + } + + //! Swap fields of two image instances. + /** + \param img Image to swap fields with. + \note + - It can be used to interchange the content of two images in a very fast way. Can be convenient when dealing + with algorithms requiring two swapping buffers. + \par Example + \code + CImg img1("lena.jpg"), + img2("milla.jpg"); + img1.swap(img2); // Now, 'img1' is 'milla' and 'img2' is 'lena' + \endcode + **/ + CImg& swap(CImg& img) { + cimg::swap(_width,img._width,_height,img._height,_depth,img._depth,_spectrum,img._spectrum); + cimg::swap(_data,img._data); + cimg::swap(_is_shared,img._is_shared); + return img; + } + + //! Return a reference to an empty image. + /** + \note + This function is useful mainly to declare optional parameters having type \c CImg in functions prototypes, + e.g. + \code + void f(const int x=0, const int y=0, const CImg& img=CImg::empty()); + \endcode + **/ + static CImg& empty() { + static CImg _empty; + return _empty.assign(); + } + + //! Return a reference to an empty image \const. + static const CImg& const_empty() { + static const CImg _empty; + return _empty; + } + + //@} + //------------------------------------------ + // + //! \name Overloaded Operators + //@{ + //------------------------------------------ + + //! Access to a pixel value. + /** + Return a reference to a located pixel value of the image instance, + being possibly \e const, whether the image instance is \e const or not. + This is the standard method to get/set pixel values in \c CImg images. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Range of pixel coordinates start from (0,0,0,0) to + (width() - 1,height() - 1,depth() - 1,spectrum() - 1). + - Due to the particular arrangement of the pixel buffers defined in %CImg, you can omit one coordinate if the + corresponding dimension is equal to \c 1. + For instance, pixels of a 2D image (depth() equal to \c 1) can be accessed by img(x,y,c) instead of + img(x,y,0,c). + \warning + - There is \e no boundary checking done in this operator, to make it as fast as possible. + You \e must take care of out-of-bounds access by yourself, if necessary. + For debugging purposes, you may want to define macro \c 'cimg_verbosity'>=3 to enable additional boundary + checking operations in this operator. In that case, warning messages will be printed on the error output + when accessing out-of-bounds pixels. + \par Example + \code + CImg img(100,100,1,3,0); // Construct a 100x100x1x3 (color) image with pixels set to '0' + const float + valR = img(10,10,0,0), // Read red value at coordinates (10,10) + valG = img(10,10,0,1), // Read green value at coordinates (10,10) + valB = img(10,10,2), // Read blue value at coordinates (10,10) (Z-coordinate can be omitted) + avg = (valR + valG + valB)/3; // Compute average pixel value + img(10,10,0) = img(10,10,1) = img(10,10,2) = avg; // Replace the color pixel (10,10) by the average grey value + \endcode + **/ +#if cimg_verbosity>=3 + T& operator()(const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) { + const ulongT off = (ulongT)offset(x,y,z,c); + if (!_data || off>=size()) { + cimg::warn(_cimg_instance + "operator(): Invalid pixel request, at coordinates (%d,%d,%d,%d) [offset=%u].", + cimg_instance, + (int)x,(int)y,(int)z,(int)c,off); + return *_data; + } + else return _data[off]; + } + + //! Access to a pixel value \const. + const T& operator()(const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) const { + return const_cast*>(this)->operator()(x,y,z,c); + } + + //! Access to a pixel value. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param wh Precomputed offset, must be equal to width()*\ref height(). + \param whd Precomputed offset, must be equal to width()*\ref height()*\ref depth(). + \note + - Similar to (but faster than) operator()(). + It uses precomputed offsets to optimize memory access. You may use it to optimize + the reading/writing of several pixel values in the same image (e.g. in a loop). + **/ + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd=0) { + cimg::unused(wh,whd); + return (*this)(x,y,z,c); + } + + //! Access to a pixel value \const. + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd=0) const { + cimg::unused(wh,whd); + return (*this)(x,y,z,c); + } +#else + T& operator()(const unsigned int x) { + return _data[x]; + } + + const T& operator()(const unsigned int x) const { + return _data[x]; + } + + T& operator()(const unsigned int x, const unsigned int y) { + return _data[x + y*_width]; + } + + const T& operator()(const unsigned int x, const unsigned int y) const { + return _data[x + y*_width]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) const { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height + c*(ulongT)_width*_height*_depth]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) const { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height + c*(ulongT)_width*_height*_depth]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, + const ulongT wh) { + return _data[x + y*_width + z*wh]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, + const ulongT wh) const { + return _data[x + y*_width + z*wh]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd) { + return _data[x + y*_width + z*wh + c*whd]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd) const { + return _data[x + y*_width + z*wh + c*whd]; + } +#endif + + //! Implicitly cast an image into a \c T*. + /** + Implicitly cast a \c CImg instance into a \c T* or \c const \c T* pointer, whether the image instance + is \e const or not. The returned pointer points on the first value of the image pixel buffer. + \note + - It simply returns the pointer data() to the pixel buffer. + - This implicit conversion is convenient to test the empty state of images (data() being \c 0 in this case), e.g. + \code + CImg img1(100,100), img2; // 'img1' is a 100x100 image, 'img2' is an empty image + if (img1) { // Test succeeds, 'img1' is not an empty image + if (!img2) { // Test succeeds, 'img2' is an empty image + std::printf("'img1' is not empty, 'img2' is empty."); + } + } + \endcode + - It also allows to use brackets to access pixel values, without need for a \c CImg::operator[](), e.g. + \code + CImg img(100,100); + const float value = img[99]; // Access to value of the last pixel on the first row + img[510] = 255; // Set pixel value at (10,5) + \endcode + **/ + operator T*() { + return _data; + } + + //! Implicitly cast an image into a \c T* \const. + operator const T*() const { + return _data; + } + + //! Assign a value to all image pixels. + /** + Assign specified \c value to each pixel value of the image instance. + \param value Value that will be assigned to image pixels. + \note + - The image size is never modified. + - The \c value may be casted to pixel type \c T if necessary. + \par Example + \code + CImg img(100,100); // Declare image (with garbage values) + img = 0; // Set all pixel values to '0' + img = 1.2; // Set all pixel values to '1' (cast of '1.2' as a 'char') + \endcode + **/ + CImg& operator=(const T& value) { + return fill(value); + } + + //! Assign pixels values from a specified expression. + /** + Initialize all pixel values from the specified string \c expression. + \param expression Value string describing the way pixel values are set. + \note + - String parameter \c expression may describe different things: + - If \c expression is a list of values (as in \c "1,2,3,8,3,2"), or a formula (as in \c "(x*y)%255"), + the pixel values are set from specified \c expression and the image size is not modified. + - If \c expression is a filename (as in \c "reference.jpg"), the corresponding image file is loaded and + replace the image instance. The image size is modified if necessary. + \par Example + \code + CImg img1(100,100), img2(img1), img3(img1); // Declare 3 scalar images 100x100 with uninitialized values + img1 = "0,50,100,150,200,250,200,150,100,50"; // Set pixel values of 'img1' from a value sequence + img2 = "10*((x*y)%25)"; // Set pixel values of 'img2' from a formula + img3 = "reference.jpg"; // Set pixel values of 'img3' from a file (image size is modified) + (img1,img2,img3).display(); + \endcode + \image html ref_operator_eq.jpg + **/ + CImg& operator=(const char *const expression) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { + _fill(expression,true,3,0,"operator=",0,0); + } catch (CImgException&) { + cimg::exception_mode(omode); + load(expression); + } + cimg::exception_mode(omode); + return *this; + } + + //! Copy an image into the current image instance. + /** + Similar to the in-place copy constructor assign(const CImg&). + **/ + template + CImg& operator=(const CImg& img) { + return assign(img); + } + + //! Copy an image into the current image instance \specialization. + CImg& operator=(const CImg& img) { + return assign(img); + } + + //! Copy the content of a display window to the current image instance. + /** + Similar to assign(const CImgDisplay&). + **/ + CImg& operator=(const CImgDisplay& disp) { + disp.snapshot(*this); + return *this; + } + + //! In-place addition operator. + /** + Add specified \c value to all pixels of an image instance. + \param value Value to add. + \note + - Resulting pixel values are casted to fit the pixel type \c T. + For instance, adding \c 0.2 to a \c CImg is possible but does nothing indeed. + - Overflow values are treated as with standard C++ numeric types. For instance, + \code + CImg img(100,100,1,1,255); // Construct a 100x100 image with pixel values '255' + img+=1; // Add '1' to each pixels -> Overflow + // here all pixels of image 'img' are equal to '0'. + \endcode + - To prevent value overflow, you may want to consider pixel type \c T as \c float or \c double, + and use cut() after addition. + \par Example + \code + CImg img1("reference.jpg"); // Load a 8-bits RGB image (values in [0,255]) + CImg img2(img1); // Construct a float-valued copy of 'img1' + img2+=100; // Add '100' to pixel values -> goes out of [0,255] but no problems with floats + img2.cut(0,255); // Cut values in [0,255] to fit the 'unsigned char' constraint + img1 = img2; // Rewrite safe result in 'unsigned char' version 'img1' + const CImg img3 = (img1 + 100).cut(0,255); // Do the same in a more simple and elegant way + (img1,img2,img3).display(); + \endcode + \image html ref_operator_plus.jpg + **/ + template + CImg& operator+=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,*ptr + value,524288); + return *this; + } + + //! In-place addition operator. + /** + Add values to image pixels, according to the specified string \c expression. + \param expression Value string describing the way pixel values are added. + \note + - Similar to operator=(const char*), except that it adds values to the pixels of the current image instance, + instead of assigning them. + **/ + CImg& operator+=(const char *const expression) { + return *this+=(+*this)._fill(expression,true,3,0,"operator+=",this,0); + } + + //! In-place addition operator. + /** + Add values to image pixels, according to the values of the input image \c img. + \param img Input image to add. + \note + - The size of the image instance is never modified. + - It is not mandatory that input image \c img has the same size as the image instance. + If less values are available in \c img, then the values are added periodically. For instance, adding one + WxH scalar image (spectrum() equal to \c 1) to one WxH color image (spectrum() equal to \c 3) + means each color channel will be incremented with the same values at the same locations. + \par Example + \code + CImg img1("reference.jpg"); // Load a RGB color image (img1.spectrum()==3) + // Construct a scalar shading (img2.spectrum()==1). + const CImg img2(img1.width(),img.height(),1,1,"255*(x/w)^2"); + img1+=img2; // Add shading to each channel of 'img1' + img1.cut(0,255); // Prevent [0,255] overflow + (img2,img1).display(); + \endcode + \image html ref_operator_plus1.jpg + **/ + template + CImg& operator+=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this+=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs& operator++() { + if (is_empty()) return *this; + cimg_openmp_for(*this,*ptr + 1,524288); + return *this; + } + + //! In-place increment operator (postfix). + /** + Add \c 1 to all image pixels, and return a new copy of the initial (pre-incremented) image instance. + \note + - Use the prefixed version operator++() if you don't need a copy of the initial + (pre-incremented) image instance, since a useless image copy may be expensive in terms of memory usage. + **/ + CImg operator++(int) { + const CImg copy(*this,false); + ++*this; + return copy; + } + + //! Return a non-shared copy of the image instance. + /** + \note + - Use this operator to ensure you get a non-shared copy of an image instance with same pixel type \c T. + Indeed, the usual copy constructor CImg(const CImg&) returns a shared copy of a shared input image, + and it may be not desirable to work on a regular copy (e.g. for a resize operation) if you have no + information about the shared state of the input image. + - Writing \c (+img) is equivalent to \c CImg(img,false). + **/ + CImg operator+() const { + return CImg(*this,false); + } + + //! Addition operator. + /** + Similar to operator+=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator+(const t value) const { + return CImg<_cimg_Tt>(*this,false)+=value; + } + + //! Addition operator. + /** + Similar to operator+=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator+(const char *const expression) const { + return CImg(*this,false)+=expression; + } + + //! Addition operator. + /** + Similar to operator+=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator+(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false)+=img; + } + + //! In-place subtraction operator. + /** + Similar to operator+=(const t), except that it performs a subtraction instead of an addition. + **/ + template + CImg& operator-=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,*ptr - value,524288); + return *this; + } + + //! In-place subtraction operator. + /** + Similar to operator+=(const char*), except that it performs a subtraction instead of an addition. + **/ + CImg& operator-=(const char *const expression) { + return *this-=(+*this)._fill(expression,true,3,0,"operator-=",this,0); + } + + //! In-place subtraction operator. + /** + Similar to operator+=(const CImg&), except that it performs a subtraction instead of an addition. + **/ + template + CImg& operator-=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this-=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs& operator--() { + if (is_empty()) return *this; + cimg_openmp_for(*this,*ptr - 1,524288); + return *this; + } + + //! In-place decrement operator (postfix). + /** + Similar to operator++(int), except that it performs a decrement instead of an increment. + **/ + CImg operator--(int) { + const CImg copy(*this,false); + --*this; + return copy; + } + + //! Replace each pixel by its opposite value. + /** + \note + - If the computed opposite values are out-of-range, they are treated as with standard C++ numeric types. + For instance, the \c unsigned \c char opposite of \c 1 is \c 255. + \par Example + \code + const CImg + img1("reference.jpg"), // Load a RGB color image + img2 = -img1; // Compute its opposite (in 'unsigned char') + (img1,img2).display(); + \endcode + \image html ref_operator_minus.jpg + **/ + CImg operator-() const { + return CImg(_width,_height,_depth,_spectrum,(T)0)-=*this; + } + + //! Subtraction operator. + /** + Similar to operator-=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator-(const t value) const { + return CImg<_cimg_Tt>(*this,false)-=value; + } + + //! Subtraction operator. + /** + Similar to operator-=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator-(const char *const expression) const { + return CImg(*this,false)-=expression; + } + + //! Subtraction operator. + /** + Similar to operator-=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator-(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false)-=img; + } + + //! In-place multiplication operator. + /** + Similar to operator+=(const t), except that it performs a multiplication instead of an addition. + **/ + template + CImg& operator*=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,*ptr * value,262144); + return *this; + } + + //! In-place multiplication operator. + /** + Similar to operator+=(const char*), except that it performs a multiplication instead of an addition. + **/ + CImg& operator*=(const char *const expression) { + return mul((+*this)._fill(expression,true,3,0,"operator*=",this,0)); + } + + //! In-place multiplication operator. + /** + Replace the image instance by the matrix multiplication between the image instance and the specified matrix + \c img. + \param img Second operand of the matrix multiplication. + \note + - It does \e not compute a pointwise multiplication between two images. For this purpose, use + mul(const CImg&) instead. + - The size of the image instance can be modified by this operator. + \par Example + \code + CImg A(2,2,1,1, 1,2,3,4); // Construct 2x2 matrix A = [1,2;3,4] + const CImg X(1,2,1,1, 1,2); // Construct 1x2 vector X = [1;2] + A*=X; // Assign matrix multiplication A*X to 'A' + // 'A' is now a 1x2 vector whose values are [5;11]. + \endcode + **/ + template + CImg& operator*=(const CImg& img) { + return ((*this)*img).move_to(*this); + } + + //! Multiplication operator. + /** + Similar to operator*=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator*(const t value) const { + return CImg<_cimg_Tt>(*this,false)*=value; + } + + //! Multiplication operator. + /** + Similar to operator*=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator*(const char *const expression) const { + return CImg(*this,false)*=expression; + } + + //! Multiplication operator. + /** + Similar to operator*=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator*(const CImg& img) const { + typedef _cimg_Ttdouble Ttdouble; + typedef _cimg_Tt Tt; + if (_width!=img._height || _depth!=1 || _spectrum!=1 || img._depth!=1 || img._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "operator*(): Invalid multiplication of instance by specified " + "matrix (%u,%u,%u,%u,%p).", + cimg_instance, + img._width,img._height,img._depth,img._spectrum,img._data); + CImg res(img._width,_height); + + // Check for common cases to optimize. + if (img._width==1) { // Matrix * Vector + if (_height==1) switch (_width) { // Vector^T * Vector + case 1 : + res[0] = (Tt)((Ttdouble)_data[0]*img[0]); + return res; + case 2 : + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1]); + return res; + case 3 : + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] + + (Ttdouble)_data[2]*img[2]); + return res; + case 4 : + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] + + (Ttdouble)_data[2]*img[2] + (Ttdouble)_data[3]*img[3]); + return res; + default : { + Ttdouble val = 0; + cimg_pragma_openmp(parallel for reduction(+:val) cimg_openmp_if_size(size(),4096)) + cimg_forX(*this,i) val+=(Ttdouble)_data[i]*img[i]; + res[0] = val; + return res; + } + } else if (_height==_width) switch (_width) { // Square_matrix * Vector + case 2 : // 2x2_matrix * Vector + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1]); + res[1] = (Tt)((Ttdouble)_data[2]*img[0] + (Ttdouble)_data[3]*img[1]); + return res; + case 3 : // 3x3_matrix * Vector + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] + + (Ttdouble)_data[2]*img[2]); + res[1] = (Tt)((Ttdouble)_data[3]*img[0] + (Ttdouble)_data[4]*img[1] + + (Ttdouble)_data[5]*img[2]); + res[2] = (Tt)((Ttdouble)_data[6]*img[0] + (Ttdouble)_data[7]*img[1] + + (Ttdouble)_data[8]*img[2]); + return res; + case 4 : // 4x4_matrix * Vector + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[1] + + (Ttdouble)_data[2]*img[2] + (Ttdouble)_data[3]*img[3]); + res[1] = (Tt)((Ttdouble)_data[4]*img[0] + (Ttdouble)_data[5]*img[1] + + (Ttdouble)_data[6]*img[2] + (Ttdouble)_data[7]*img[3]); + res[2] = (Tt)((Ttdouble)_data[8]*img[0] + (Ttdouble)_data[9]*img[1] + + (Ttdouble)_data[10]*img[2] + (Ttdouble)_data[11]*img[3]); + res[3] = (Tt)((Ttdouble)_data[12]*img[0] + (Ttdouble)_data[13]*img[1] + + (Ttdouble)_data[14]*img[2] + (Ttdouble)_data[15]*img[3]); + return res; + } + } else if (_height==_width) { + if (img._height==img._width) switch (_width) { // Square_matrix * Square_matrix + case 2 : // 2x2_matrix * 2x2_matrix + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[2]); + res[1] = (Tt)((Ttdouble)_data[0]*img[1] + (Ttdouble)_data[1]*img[3]); + res[2] = (Tt)((Ttdouble)_data[2]*img[0] + (Ttdouble)_data[3]*img[2]); + res[3] = (Tt)((Ttdouble)_data[2]*img[1] + (Ttdouble)_data[3]*img[3]); + return res; + case 3 : // 3x3_matrix * 3x3_matrix + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[3] + + (Ttdouble)_data[2]*img[6]); + res[1] = (Tt)((Ttdouble)_data[0]*img[1] + (Ttdouble)_data[1]*img[4] + + (Ttdouble)_data[2]*img[7]); + res[2] = (Tt)((Ttdouble)_data[0]*img[2] + (Ttdouble)_data[1]*img[5] + + (Ttdouble)_data[2]*img[8]); + res[3] = (Tt)((Ttdouble)_data[3]*img[0] + (Ttdouble)_data[4]*img[3] + + (Ttdouble)_data[5]*img[6]); + res[4] = (Tt)((Ttdouble)_data[3]*img[1] + (Ttdouble)_data[4]*img[4] + + (Ttdouble)_data[5]*img[7]); + res[5] = (Tt)((Ttdouble)_data[3]*img[2] + (Ttdouble)_data[4]*img[5] + + (Ttdouble)_data[5]*img[8]); + res[6] = (Tt)((Ttdouble)_data[6]*img[0] + (Ttdouble)_data[7]*img[3] + + (Ttdouble)_data[8]*img[6]); + res[7] = (Tt)((Ttdouble)_data[6]*img[1] + (Ttdouble)_data[7]*img[4] + + (Ttdouble)_data[8]*img[7]); + res[8] = (Tt)((Ttdouble)_data[6]*img[2] + (Ttdouble)_data[7]*img[5] + + (Ttdouble)_data[8]*img[8]); + return res; + case 4 : // 4x4_matrix * 4x4_matrix + res[0] = (Tt)((Ttdouble)_data[0]*img[0] + (Ttdouble)_data[1]*img[4] + + (Ttdouble)_data[2]*img[8] + (Ttdouble)_data[3]*img[12]); + res[1] = (Tt)((Ttdouble)_data[0]*img[1] + (Ttdouble)_data[1]*img[5] + + (Ttdouble)_data[2]*img[9] + (Ttdouble)_data[3]*img[13]); + res[2] = (Tt)((Ttdouble)_data[0]*img[2] + (Ttdouble)_data[1]*img[6] + + (Ttdouble)_data[2]*img[10] + (Ttdouble)_data[3]*img[14]); + res[3] = (Tt)((Ttdouble)_data[0]*img[3] + (Ttdouble)_data[1]*img[7] + + (Ttdouble)_data[2]*img[11] + (Ttdouble)_data[3]*img[15]); + res[4] = (Tt)((Ttdouble)_data[4]*img[0] + (Ttdouble)_data[5]*img[4] + + (Ttdouble)_data[6]*img[8] + (Ttdouble)_data[7]*img[12]); + res[5] = (Tt)((Ttdouble)_data[4]*img[1] + (Ttdouble)_data[5]*img[5] + + (Ttdouble)_data[6]*img[9] + (Ttdouble)_data[7]*img[13]); + res[6] = (Tt)((Ttdouble)_data[4]*img[2] + (Ttdouble)_data[5]*img[6] + + (Ttdouble)_data[6]*img[10] + (Ttdouble)_data[7]*img[14]); + res[7] = (Tt)((Ttdouble)_data[4]*img[3] + (Ttdouble)_data[5]*img[7] + + (Ttdouble)_data[6]*img[11] + (Ttdouble)_data[7]*img[15]); + res[8] = (Tt)((Ttdouble)_data[8]*img[0] + (Ttdouble)_data[9]*img[4] + + (Ttdouble)_data[10]*img[8] + (Ttdouble)_data[11]*img[12]); + res[9] = (Tt)((Ttdouble)_data[8]*img[1] + (Ttdouble)_data[9]*img[5] + + (Ttdouble)_data[10]*img[9] + (Ttdouble)_data[11]*img[13]); + res[10] = (Tt)((Ttdouble)_data[8]*img[2] + (Ttdouble)_data[9]*img[6] + + (Ttdouble)_data[10]*img[10] + (Ttdouble)_data[11]*img[14]); + res[11] = (Tt)((Ttdouble)_data[8]*img[3] + (Ttdouble)_data[9]*img[7] + + (Ttdouble)_data[10]*img[11] + (Ttdouble)_data[11]*img[15]); + res[12] = (Tt)((Ttdouble)_data[12]*img[0] + (Ttdouble)_data[13]*img[4] + + (Ttdouble)_data[14]*img[8] + (Ttdouble)_data[15]*img[12]); + res[13] = (Tt)((Ttdouble)_data[12]*img[1] + (Ttdouble)_data[13]*img[5] + + (Ttdouble)_data[14]*img[9] + (Ttdouble)_data[15]*img[13]); + res[14] = (Tt)((Ttdouble)_data[12]*img[2] + (Ttdouble)_data[13]*img[6] + + (Ttdouble)_data[14]*img[10] + (Ttdouble)_data[15]*img[14]); + res[15] = (Tt)((Ttdouble)_data[12]*img[3] + (Ttdouble)_data[13]*img[7] + + (Ttdouble)_data[14]*img[11] + (Ttdouble)_data[15]*img[15]); + return res; + } else switch (_width) { // Square_matrix * Matrix + case 2 : { // 2x2_matrix * Matrix + const t *const ps0 = img.data(), *const ps1 = img.data(0,1); + Tt *const pd0 = res.data(), *const pd1 = res.data(0,1); + const Ttdouble + a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], + a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3]; + cimg_pragma_openmp(parallel for cimg_openmp_if_size(img.width(),4096)) + cimg_forX(img,i) { + const Ttdouble x = (Ttdouble)ps0[i], y = (Ttdouble)ps1[i]; + pd0[i] = (Tt)(a0*x + a1*y); + pd1[i] = (Tt)(a2*x + a3*y); + } + return res; + } + case 3 : { // 3x3_matrix * Matrix + const t *const ps0 = img.data(), *const ps1 = img.data(0,1), *const ps2 = img.data(0,2); + Tt *const pd0 = res.data(), *const pd1 = res.data(0,1), *const pd2 = res.data(0,2); + const Ttdouble + a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2], + a3 = (Ttdouble)_data[3], a4 = (Ttdouble)_data[4], a5 = (Ttdouble)_data[5], + a6 = (Ttdouble)_data[6], a7 = (Ttdouble)_data[7], a8 = (Ttdouble)_data[8]; + cimg_pragma_openmp(parallel for cimg_openmp_if_size(img.width(),1024)) + cimg_forX(img,i) { + const Ttdouble x = (Ttdouble)ps0[i], y = (Ttdouble)ps1[i], z = (Ttdouble)ps2[i]; + pd0[i] = (Tt)(a0*x + a1*y + a2*z); + pd1[i] = (Tt)(a3*x + a4*y + a5*z); + pd2[i] = (Tt)(a6*x + a7*y + a8*z); + } + return res; + } + case 4 : { // 4x4_matrix * Matrix + const t + *const ps0 = img.data(), *const ps1 = img.data(0,1), + *const ps2 = img.data(0,2), *const ps3 = img.data(0,3); + Tt + *const pd0 = res.data(), *const pd1 = res.data(0,1), + *const pd2 = res.data(0,2), *const pd3 = res.data(0,3); + const Ttdouble + a0 = (Ttdouble)_data[0], a1 = (Ttdouble)_data[1], a2 = (Ttdouble)_data[2], a3 = (Ttdouble)_data[3], + a4 = (Ttdouble)_data[4], a5 = (Ttdouble)_data[5], a6 = (Ttdouble)_data[6], a7 = (Ttdouble)_data[7], + a8 = (Ttdouble)_data[8], a9 = (Ttdouble)_data[9], a10 = (Ttdouble)_data[10], a11 = (Ttdouble)_data[11], + a12 = (Ttdouble)_data[12], a13 = (Ttdouble)_data[13], a14 = (Ttdouble)_data[14], + a15 = (Ttdouble)_data[15]; + cimg_pragma_openmp(parallel for cimg_openmp_if_size(img.width(),512)) + cimg_forX(img,i) { + const Ttdouble x = (Ttdouble)ps0[i], y = (Ttdouble)ps1[i], z = (Ttdouble)ps2[i], c = (Ttdouble)ps3[i]; + pd0[i] = (Tt)(a0*x + a1*y + a2*z + a3*c); + pd1[i] = (Tt)(a4*x + a5*y + a6*z + a7*c); + pd2[i] = (Tt)(a8*x + a9*y + a10*z + a11*c); + pd3[i] = (Tt)(a12*x + a13*y + a14*z + a15*c); + } + return res; + } + } + } + + // Fallback to generic version. +#if cimg_use_openmp!=0 + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(size()>(cimg_openmp_sizefactor)*1024 && + img.size()>(cimg_openmp_sizefactor)*1024)) + cimg_forXY(res,i,j) { + Ttdouble value = 0; + cimg_forX(*this,k) value+=(*this)(k,j)*img(i,k); + res(i,j) = (Tt)value; + } +#else + Tt *ptrd = res._data; + cimg_forXY(res,i,j) { + Ttdouble value = 0; + cimg_forX(*this,k) value+=(*this)(k,j)*img(i,k); + *(ptrd++) = (Tt)value; + } +#endif + return res; + } + + //! In-place division operator. + /** + Similar to operator+=(const t), except that it performs a division instead of an addition. + **/ + template + CImg& operator/=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,*ptr / value,32768); + return *this; + } + + //! In-place division operator. + /** + Similar to operator+=(const char*), except that it performs a division instead of an addition. + **/ + CImg& operator/=(const char *const expression) { + return div((+*this)._fill(expression,true,3,0,"operator/=",this,0)); + } + + //! In-place division operator. + /** + Replace the image instance by the (right) matrix division between the image instance and the specified + matrix \c img. + \param img Second operand of the matrix division. + \note + - It does \e not compute a pointwise division between two images. For this purpose, use + div(const CImg&) instead. + - It returns the matrix operation \c A*inverse(img). + - The size of the image instance can be modified by this operator. + **/ + template + CImg& operator/=(const CImg& img) { + return (*this*img.get_invert()).move_to(*this); + } + + //! Division operator. + /** + Similar to operator/=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator/(const t value) const { + return CImg<_cimg_Tt>(*this,false)/=value; + } + + //! Division operator. + /** + Similar to operator/=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator/(const char *const expression) const { + return CImg(*this,false)/=expression; + } + + //! Division operator. + /** + Similar to operator/=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator/(const CImg& img) const { + return (*this)*img.get_invert(); + } + + //! In-place modulo operator. + /** + Similar to operator+=(const t), except that it performs a modulo operation instead of an addition. + **/ + template + CImg& operator%=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,cimg::mod(*ptr,(T)value),16384); + return *this; + } + + //! In-place modulo operator. + /** + Similar to operator+=(const char*), except that it performs a modulo operation instead of an addition. + **/ + CImg& operator%=(const char *const expression) { + return *this%=(+*this)._fill(expression,true,3,0,"operator%=",this,0); + } + + //! In-place modulo operator. + /** + Similar to operator+=(const CImg&), except that it performs a modulo operation instead of an addition. + **/ + template + CImg& operator%=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this%=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> operator%(const t value) const { + return CImg<_cimg_Tt>(*this,false)%=value; + } + + //! Modulo operator. + /** + Similar to operator%=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator%(const char *const expression) const { + return CImg(*this,false)%=expression; + } + + //! Modulo operator. + /** + Similar to operator%=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator%(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false)%=img; + } + + //! In-place bitwise AND operator. + /** + Similar to operator+=(const t), except that it performs a bitwise AND operation instead of an addition. + **/ + template + CImg& operator&=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,(longT)*ptr & (longT)value,32768); + return *this; + } + + //! In-place bitwise AND operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise AND operation instead of an addition. + **/ + CImg& operator&=(const char *const expression) { + return *this&=(+*this)._fill(expression,true,3,0,"operator&=",this,0); + } + + //! In-place bitwise AND operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise AND operation instead of an addition. + **/ + template + CImg& operator&=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this&=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator&(const t value) const { + return (+*this)&=value; + } + + //! Bitwise AND operator. + /** + Similar to operator&=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator&(const char *const expression) const { + return (+*this)&=expression; + } + + //! Bitwise AND operator. + /** + Similar to operator&=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator&(const CImg& img) const { + return (+*this)&=img; + } + + //! In-place bitwise OR operator. + /** + Similar to operator+=(const t), except that it performs a bitwise OR operation instead of an addition. + **/ + template + CImg& operator|=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,(longT)*ptr | (longT)value,32768); + return *this; + } + + //! In-place bitwise OR operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise OR operation instead of an addition. + **/ + CImg& operator|=(const char *const expression) { + return *this|=(+*this)._fill(expression,true,3,0,"operator|=",this,0); + } + + //! In-place bitwise OR operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise OR operation instead of an addition. + **/ + template + CImg& operator|=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this|=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator|(const t value) const { + return (+*this)|=value; + } + + //! Bitwise OR operator. + /** + Similar to operator|=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator|(const char *const expression) const { + return (+*this)|=expression; + } + + //! Bitwise OR operator. + /** + Similar to operator|=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator|(const CImg& img) const { + return (+*this)|=img; + } + + //! In-place bitwise XOR operator. + /** + Similar to operator+=(const t), except that it performs a bitwise XOR operation instead of an addition. + \warning + - It does \e not compute the \e power of pixel values. For this purpose, use pow(const t) instead. + **/ + template + CImg& operator^=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,(longT)*ptr ^ (longT)value,32768); + return *this; + } + + //! In-place bitwise XOR operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise XOR operation instead of an addition. + \warning + - It does \e not compute the \e power of pixel values. For this purpose, use pow(const char*) instead. + **/ + CImg& operator^=(const char *const expression) { + return *this^=(+*this)._fill(expression,true,3,0,"operator^=",this,0); + } + + //! In-place bitwise XOR operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise XOR operation instead of an addition. + \warning + - It does \e not compute the \e power of pixel values. For this purpose, use pow(const CImg&) instead. + **/ + template + CImg& operator^=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this^=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator^(const t value) const { + return (+*this)^=value; + } + + //! Bitwise XOR operator. + /** + Similar to operator^=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator^(const char *const expression) const { + return (+*this)^=expression; + } + + //! Bitwise XOR operator. + /** + Similar to operator^=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator^(const CImg& img) const { + return (+*this)^=img; + } + + //! In-place bitwise left shift operator. + /** + Similar to operator+=(const t), except that it performs a bitwise left shift instead of an addition. + **/ + template + CImg& operator<<=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,((longT)*ptr) << (int)value,65536); + return *this; + } + + //! In-place bitwise left shift operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise left shift instead of an addition. + **/ + CImg& operator<<=(const char *const expression) { + return *this<<=(+*this)._fill(expression,true,3,0,"operator<<=",this,0); + } + + //! In-place bitwise left shift operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise left shift instead of an addition. + **/ + template + CImg& operator<<=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this^=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator<<(const t value) const { + return (+*this)<<=value; + } + + //! Bitwise left shift operator. + /** + Similar to operator<<=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator<<(const char *const expression) const { + return (+*this)<<=expression; + } + + //! Bitwise left shift operator. + /** + Similar to operator<<=(const CImg&), except that it returns a new image instance instead of + operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator<<(const CImg& img) const { + return (+*this)<<=img; + } + + //! In-place bitwise right shift operator. + /** + Similar to operator+=(const t), except that it performs a bitwise right shift instead of an addition. + **/ + template + CImg& operator>>=(const t value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,((longT)*ptr) >> (int)value,65536); + return *this; + } + + //! In-place bitwise right shift operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise right shift instead of an addition. + **/ + CImg& operator>>=(const char *const expression) { + return *this>>=(+*this)._fill(expression,true,3,0,"operator>>=",this,0); + } + + //! In-place bitwise right shift operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise right shift instead of an addition. + **/ + template + CImg& operator>>=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this^=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs> (int)*(ptrs++)); + for (const t *ptrs = img._data; ptrd> (int)*(ptrs++)); + } + return *this; + } + + //! Bitwise right shift operator. + /** + Similar to operator>>=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator>>(const t value) const { + return (+*this)>>=value; + } + + //! Bitwise right shift operator. + /** + Similar to operator>>=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator>>(const char *const expression) const { + return (+*this)>>=expression; + } + + //! Bitwise right shift operator. + /** + Similar to operator>>=(const CImg&), except that it returns a new image instance instead of + operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator>>(const CImg& img) const { + return (+*this)>>=img; + } + + //! Bitwise inversion operator. + /** + Similar to operator-(), except that it compute the bitwise inverse instead of the opposite value. + **/ + CImg operator~() const { + CImg res(_width,_height,_depth,_spectrum); + const T *ptrs = _data; + cimg_for(res,ptrd,T) { const ulongT value = (ulongT)*(ptrs++); *ptrd = (T)~value; } + return res; + } + + //! Test if all pixels of an image have the same value. + /** + Return \c true is all pixels of the image instance are equal to the specified \c value. + \param value Reference value to compare with. + **/ + template + bool operator==(const t value) const { + if (is_empty()) return false; + typedef _cimg_Tt Tt; + bool is_equal = true; + for (T *ptrd = _data + size(); is_equal && ptrd>_data; is_equal = ((Tt)*(--ptrd)==(Tt)value)) {} + return is_equal; + } + + //! Test if all pixel values of an image follow a specified expression. + /** + Return \c true is all pixels of the image instance are equal to the specified \c expression. + \param expression Value string describing the way pixel values are compared. + **/ + bool operator==(const char *const expression) const { + return *this==(+*this)._fill(expression,true,3,0,"operator==",this,0); + } + + //! Test if two images have the same size and values. + /** + Return \c true if the image instance and the input image \c img have the same pixel values, + even if the dimensions of the two images do not match. It returns \c false otherwise. + \param img Input image to compare with. + \note + - The pixel buffer pointers data() of the two compared images do not have to be the same for operator==() + to return \c true. + Only the dimensions and the pixel values matter. Thus, the comparison can be \c true even for different + pixel types \c T and \c t. + \par Example + \code + const CImg img1(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'float' pixel values) + const CImg img2(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'char' pixel values) + if (img1==img2) { // Test succeeds, image dimensions and values are the same + std::printf("'img1' and 'img2' have same dimensions and values."); + } + \endcode + **/ + template + bool operator==(const CImg& img) const { + typedef _cimg_Tt Tt; + const ulongT siz = size(); + bool is_equal = true; + if (siz!=img.size()) return false; + t *ptrs = img._data + siz; + for (T *ptrd = _data + siz; is_equal && ptrd>_data; is_equal = ((Tt)*(--ptrd)==(Tt)*(--ptrs))) {} + return is_equal; + } + + //! Test if pixels of an image are all different from a value. + /** + Return \c true is all pixels of the image instance are different than the specified \c value. + \param value Reference value to compare with. + **/ + template + bool operator!=(const t value) const { + return !((*this)==value); + } + + //! Test if all pixel values of an image are different from a specified expression. + /** + Return \c true is all pixels of the image instance are different to the specified \c expression. + \param expression Value string describing the way pixel values are compared. + **/ + bool operator!=(const char *const expression) const { + return !((*this)==expression); + } + + //! Test if two images have different sizes or values. + /** + Return \c true if the image instance and the input image \c img have different dimensions or pixel values, + and \c false otherwise. + \param img Input image to compare with. + \note + - Writing \c img1!=img2 is equivalent to \c !(img1==img2). + **/ + template + bool operator!=(const CImg& img) const { + return !((*this)==img); + } + + //! Construct an image list from two images. + /** + Return a new list of image (\c CImgList instance) containing exactly two elements: + - A copy of the image instance, at position [\c 0]. + - A copy of the specified image \c img, at position [\c 1]. + + \param img Input image that will be the second image of the resulting list. + \note + - The family of operator,() is convenient to easily create list of images, but it is also \e quite \e slow + in practice (see warning below). + - Constructed lists contain no shared images. If image instance or input image \c img are shared, they are + inserted as new non-shared copies in the resulting list. + - The pixel type of the returned list may be a superset of the initial pixel type \c T, if necessary. + \warning + - Pipelining operator,() \c N times will perform \c N copies of the entire content of a (growing) image list. + This may become very expensive in terms of speed and used memory. You should avoid using this technique to + build a new CImgList instance from several images, if you are seeking for performance. + Fast insertions of images in an image list are possible with + CImgList::insert(const CImg&,unsigned int,bool) or move_to(CImgList&,unsigned int). + \par Example + \code + const CImg + img1("reference.jpg"), + img2 = img1.get_mirror('x'), + img3 = img2.get_blur(5); + const CImgList list = (img1,img2); // Create list of two elements from 'img1' and 'img2' + (list,img3).display(); // Display image list containing copies of 'img1','img2' and 'img3' + \endcode + \image html ref_operator_comma.jpg + **/ + template + CImgList<_cimg_Tt> operator,(const CImg& img) const { + return CImgList<_cimg_Tt>(*this,img); + } + + //! Construct an image list from image instance and an input image list. + /** + Return a new list of images (\c CImgList instance) containing exactly \c list.size() \c + \c 1 elements: + - A copy of the image instance, at position [\c 0]. + - A copy of the specified image list \c list, from positions [\c 1] to [\c list.size()]. + + \param list Input image list that will be appended to the image instance. + \note + - Similar to operator,(const CImg&) const, except that it takes an image list as an argument. + **/ + template + CImgList<_cimg_Tt> operator,(const CImgList& list) const { + return CImgList<_cimg_Tt>(list,false).insert(*this,0); + } + + //! Split image along specified axis. + /** + Return a new list of images (\c CImgList instance) containing the split components + of the instance image along the specified axis. + \param axis Splitting axis (can be '\c x','\c y','\c z' or '\c c') + \note + - Similar to get_split(char,int) const, with default second argument. + \par Example + \code + const CImg img("reference.jpg"); // Load a RGB color image + const CImgList list = (img<'c'); // Get a list of its three R,G,B channels + (img,list).display(); + \endcode + \image html ref_operator_less.jpg + **/ + CImgList operator<(const char axis) const { + return get_split(axis); + } + + //@} + //------------------------------------- + // + //! \name Instance Characteristics + //@{ + //------------------------------------- + + //! Return the type of image pixel values as a C string. + /** + Return a \c char* string containing the usual type name of the image pixel values + (i.e. a stringified version of the template parameter \c T). + \note + - The returned string does not contain any spaces. + - If the pixel type \c T does not correspond to a registered type, the string "unknown" is returned. + **/ + static const char* pixel_type() { + return cimg::type::string(); + } + + //! Return the number of image columns. + /** + Return the image width, i.e. the image dimension along the X-axis. + \note + - The width() of an empty image is equal to \c 0. + - width() is typically equal to \c 1 when considering images as \e vectors for matrix calculations. + - width() returns an \c int, although the image width is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._width. + **/ + int width() const { + return (int)_width; + } + + //! Return the number of image rows. + /** + Return the image height, i.e. the image dimension along the Y-axis. + \note + - The height() of an empty image is equal to \c 0. + - height() returns an \c int, although the image height is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._height. + **/ + int height() const { + return (int)_height; + } + + //! Return the number of image slices. + /** + Return the image depth, i.e. the image dimension along the Z-axis. + \note + - The depth() of an empty image is equal to \c 0. + - depth() is typically equal to \c 1 when considering usual 2D images. When depth()\c > \c 1, the image + is said to be \e volumetric. + - depth() returns an \c int, although the image depth is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._depth. + **/ + int depth() const { + return (int)_depth; + } + + //! Return the number of image channels. + /** + Return the number of image channels, i.e. the image dimension along the C-axis. + \note + - The spectrum() of an empty image is equal to \c 0. + - spectrum() is typically equal to \c 1 when considering scalar-valued images, to \c 3 + for RGB-coded color images, and to \c 4 for RGBA-coded color images (with alpha-channel). + The number of channels of an image instance is not limited. The meaning of the pixel values is not linked + up to the number of channels (e.g. a 4-channel image may indifferently stands for a RGBA or CMYK color image). + - spectrum() returns an \c int, although the image spectrum is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._spectrum. + **/ + int spectrum() const { + return (int)_spectrum; + } + + //! Return the total number of pixel values. + /** + Return width()*\ref height()*\ref depth()*\ref spectrum(), + i.e. the total number of values of type \c T in the pixel buffer of the image instance. + \note + - The size() of an empty image is equal to \c 0. + - The allocated memory size for a pixel buffer of a non-shared \c CImg instance is equal to + size()*sizeof(T). + \par Example + \code + const CImg img(100,100,1,3); // Construct new 100x100 color image + if (img.size()==30000) // Test succeeds + std::printf("Pixel buffer uses %lu bytes", + img.size()*sizeof(float)); + \endcode + **/ + ulongT size() const { + return (ulongT)_width*_height*_depth*_spectrum; + } + + //! Return a pointer to the first pixel value. + /** + Return a \c T*, or a \c const \c T* pointer to the first value in the pixel buffer of the image instance, + whether the instance is \c const or not. + \note + - The data() of an empty image is equal to \c 0 (null pointer). + - The allocated pixel buffer for the image instance starts from \c data() + and goes to data()+\ref size() - 1 (included). + - To get the pointer to one particular location of the pixel buffer, use + data(unsigned int,unsigned int,unsigned int,unsigned int) instead. + **/ + T* data() { + return _data; + } + + //! Return a pointer to the first pixel value \const. + const T* data() const { + return _data; + } + + //! Return a pointer to a located pixel value. + /** + Return a \c T*, or a \c const \c T* pointer to the value located at (\c x,\c y,\c z,\c c) in the pixel buffer + of the image instance, + whether the instance is \c const or not. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Writing \c img.data(x,y,z,c) is equivalent to &(img(x,y,z,c)). Thus, this method has the same + properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int). + **/ +#if cimg_verbosity>=3 + T *data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) { + const ulongT off = (ulongT)offset(x,y,z,c); + if (off>=size()) + cimg::warn(_cimg_instance + "data(): Invalid pointer request, at coordinates (%u,%u,%u,%u) [offset=%u].", + cimg_instance, + x,y,z,c,off); + return _data + off; + } + + //! Return a pointer to a located pixel value \const. + const T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const { + return const_cast*>(this)->data(x,y,z,c); + } +#else + T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) { + return _data + x + (ulongT)y*_width + (ulongT)z*_width*_height + (ulongT)c*_width*_height*_depth; + } + + const T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const { + return _data + x + (ulongT)y*_width + (ulongT)z*_width*_height + (ulongT)c*_width*_height*_depth; + } +#endif + + //! Return the offset to a located pixel value, with respect to the beginning of the pixel buffer. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Writing \c img.data(x,y,z,c) is equivalent to &(img(x,y,z,c)) - img.data(). + Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int). + \par Example + \code + const CImg img(100,100,1,3); // Define a 100x100 RGB-color image + const long off = img.offset(10,10,0,2); // Get the offset of the blue value of the pixel located at (10,10) + const float val = img[off]; // Get the blue value of this pixel + \endcode + **/ + longT offset(const int x, const int y=0, const int z=0, const int c=0) const { + return x + (longT)y*_width + (longT)z*_width*_height + (longT)c*_width*_height*_depth; + } + + //! Return a CImg::iterator pointing to the first pixel value. + /** + \note + - Equivalent to data(). + - It has been mainly defined for compatibility with STL naming conventions. + **/ + iterator begin() { + return _data; + } + + //! Return a CImg::iterator pointing to the first value of the pixel buffer \const. + const_iterator begin() const { + return _data; + } + + //! Return a CImg::iterator pointing next to the last pixel value. + /** + \note + - Writing \c img.end() is equivalent to img.data() + img.size(). + - It has been mainly defined for compatibility with STL naming conventions. + \warning + - The returned iterator actually points to a value located \e outside the acceptable bounds of the pixel buffer. + Trying to read or write the content of the returned iterator will probably result in a crash. + Use it mainly as a strict upper bound for a CImg::iterator. + \par Example + \code + CImg img(100,100,1,3); // Define a 100x100 RGB color image + // 'img.end()' used below as an upper bound for the iterator. + for (CImg::iterator it = img.begin(); it::iterator pointing next to the last pixel value \const. + const_iterator end() const { + return _data + size(); + } + + //! Return a reference to the first pixel value. + /** + \note + - Writing \c img.front() is equivalent to img[0], or img(0,0,0,0). + - It has been mainly defined for compatibility with STL naming conventions. + **/ + T& front() { + return *_data; + } + + //! Return a reference to the first pixel value \const. + const T& front() const { + return *_data; + } + + //! Return a reference to the last pixel value. + /** + \note + - Writing \c img.back() is equivalent to img[img.size() - 1], or + img(img.width() - 1,img.height() - 1,img.depth() - 1,img.spectrum() - 1). + - It has been mainly defined for compatibility with STL naming conventions. + **/ + T& back() { + return *(_data + size() - 1); + } + + //! Return a reference to the last pixel value \const. + const T& back() const { + return *(_data + size() - 1); + } + + //! Access to a pixel value at a specified offset, using Dirichlet boundary conditions. + /** + Return a reference to the pixel value of the image instance located at a specified \c offset, + or to a specified default value in case of out-of-bounds access. + \param offset Offset to the desired pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note + - Writing \c img.at(offset,out_value) is similar to img[offset], except that if \c offset + is outside bounds (e.g. \c offset<0 or \c offset>=img.size()), a reference to a value \c out_value + is safely returned instead. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel offset. + **/ + T& at(const int offset, const T& out_value) { + return (offset<0 || offset>=(int)size())?(cimg::temporary(out_value)=out_value):(*this)[offset]; + } + + //! Access to a pixel value at a specified offset, using Dirichlet boundary conditions \const. + T at(const int offset, const T& out_value) const { + return (offset<0 || offset>=(int)size())?out_value:(*this)[offset]; + } + + //! Access to a pixel value at a specified offset, using Neumann boundary conditions. + /** + Return a reference to the pixel value of the image instance located at a specified \c offset, + or to the nearest pixel location in the image instance in case of out-of-bounds access. + \param offset Offset to the desired pixel value. + \note + - Similar to at(int,const T), except that an out-of-bounds access returns the value of the + nearest pixel in the image instance, regarding the specified offset, i.e. + - If \c offset<0, then \c img[0] is returned. + - If \c offset>=img.size(), then \c img[img.size() - 1] is returned. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel offset. + - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _at(int). + **/ + T& at(const int offset) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "at(): Empty instance.", + cimg_instance); + return _at(offset); + } + + T& _at(const int offset) { + const unsigned int siz = (unsigned int)size(); + return (*this)[offset<0?0:(unsigned int)offset>=siz?siz - 1:offset]; + } + + //! Access to a pixel value at a specified offset, using Neumann boundary conditions \const. + const T& at(const int offset) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "at(): Empty instance.", + cimg_instance); + return _at(offset); + } + + const T& _at(const int offset) const { + const unsigned int siz = (unsigned int)size(); + return (*this)[offset<0?0:(unsigned int)offset>=siz?siz - 1:offset]; + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate. + /** + Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c), + or to a specified default value in case of out-of-bounds access along the X-axis. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c (\c x,\c y,\c z,\c c) is outside image bounds. + \note + - Similar to operator()(), except that an out-of-bounds access along the X-axis returns the specified value + \c out_value. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel coordinates. + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + T& atX(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || x>=width())?(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate \const. + T atX(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || x>=width())?out_value:(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X-coordinate. + /** + Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c), + or to the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Similar to at(int,int,int,int,const T), except that an out-of-bounds access returns the value of the + nearest pixel in the image instance, regarding the specified X-coordinate. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel coordinates. + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _at(int,int,int,int). + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + T& atX(const int x, const int y=0, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atX(): Empty instance.", + cimg_instance); + return _atX(x,y,z,c); + } + + T& _atX(const int x, const int y=0, const int z=0, const int c=0) { + return (*this)(x<0?0:(x>=width()?width() - 1:x),y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X-coordinate \const. + const T& atX(const int x, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atX(): Empty instance.", + cimg_instance); + return _atX(x,y,z,c); + } + + const T& _atX(const int x, const int y=0, const int z=0, const int c=0) const { + return (*this)(x<0?0:(x>=width()?width() - 1:x),y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates. + /** + Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on X and Y-coordinates. + **/ + T& atXY(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || y<0 || x>=width() || y>=height())?(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X and Y coordinates \const. + T atXY(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || y<0 || x>=width() || y>=height())?out_value:(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates. + /** + Similar to atX(int,int,int,int), except that boundary checking is performed both on X and Y-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _atXY(int,int,int,int). + **/ + T& atXY(const int x, const int y, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXY(): Empty instance.", + cimg_instance); + return _atXY(x,y,z,c); + } + + T& _atXY(const int x, const int y, const int z=0, const int c=0) { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1),z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates \const. + const T& atXY(const int x, const int y, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXY(): Empty instance.", + cimg_instance); + return _atXY(x,y,z,c); + } + + const T& _atXY(const int x, const int y, const int z=0, const int c=0) const { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1),z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates. + /** + Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on + X,Y and Z-coordinates. + **/ + T& atXYZ(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || y<0 || z<0 || x>=width() || y>=height() || z>=depth())? + (cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates \const. + T atXYZ(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || y<0 || z<0 || x>=width() || y>=height() || z>=depth())?out_value:(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to atX(int,int,int,int), except that boundary checking is performed both on X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _atXYZ(int,int,int,int). + **/ + T& atXYZ(const int x, const int y, const int z, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZ(): Empty instance.", + cimg_instance); + return _atXYZ(x,y,z,c); + } + + T& _atXYZ(const int x, const int y, const int z, const int c=0) { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1),c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates \const. + const T& atXYZ(const int x, const int y, const int z, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZ(): Empty instance.", + cimg_instance); + return _atXYZ(x,y,z,c); + } + + const T& _atXYZ(const int x, const int y, const int z, const int c=0) const { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1),c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions. + /** + Similar to atX(int,int,int,int,const T), except that boundary checking is performed on all + X,Y,Z and C-coordinates. + **/ + T& atXYZC(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || y<0 || z<0 || c<0 || x>=width() || y>=height() || z>=depth() || c>=spectrum())? + (cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions \const. + T atXYZC(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || y<0 || z<0 || c<0 || x>=width() || y>=height() || z>=depth() || c>=spectrum())?out_value: + (*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions. + /** + Similar to atX(int,int,int,int), except that boundary checking is performed on all X,Y,Z and C-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _atXYZC(int,int,int,int). + **/ + T& atXYZC(const int x, const int y, const int z, const int c) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZC(): Empty instance.", + cimg_instance); + return _atXYZC(x,y,z,c); + } + + T& _atXYZC(const int x, const int y, const int z, const int c) { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1), + cimg::cut(c,0,spectrum() - 1)); + } + + //! Access to a pixel value, using Neumann boundary conditions \const. + const T& atXYZC(const int x, const int y, const int z, const int c) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZC(): Empty instance.", + cimg_instance); + return _atXYZC(x,y,z,c); + } + + const T& _atXYZC(const int x, const int y, const int z, const int c) const { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1), + cimg::cut(c,0,spectrum() - 1)); + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate. + /** + Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or a specified default value in case of out-of-bounds access along the X-axis. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds. + \note + - Similar to atX(int,int,int,int,const T), except that the returned pixel value is approximated by + a linear interpolation along the X-axis, if corresponding coordinates are not integers. + - The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued. + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat linear_atX(const float fx, const int y, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1; + const float + dx = fx - x; + const Tfloat + Ic = (Tfloat)atX(x,y,z,c,out_value), In = (Tfloat)atXY(nx,y,z,c,out_value); + return Ic + dx*(In - Ic); + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate. + /** + Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or the value of the nearest pixel location in the image instance in case of out-of-bounds access along + the X-axis. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Similar to linear_atX(float,int,int,int,const T) const, except that an out-of-bounds access returns + the value of the nearest pixel in the image instance, regarding the specified X-coordinate. + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atX(float,int,int,int). + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat linear_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atX(): Empty instance.", + cimg_instance); + + return _linear_atX(fx,y,z,c); + } + + Tfloat _linear_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1); + const unsigned int + x = (unsigned int)nfx; + const float + dx = nfx - x; + const unsigned int + nx = dx>0?x + 1:x; + const Tfloat + Ic = (Tfloat)(*this)(x,y,z,c), In = (Tfloat)(*this)(nx,y,z,c); + return Ic + dx*(In - Ic); + } + + //! Return pixel value, using linear interpolation and periodic boundary conditions for the X-coordinate. + Tfloat linear_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atX_p(): Empty instance.", + cimg_instance); + + return _linear_atX_p(fx,y,z,c); + } + + Tfloat _linear_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const { + const float + nfx = cimg::mod(fx,_width - 0.5f); + const unsigned int + x = (unsigned int)nfx; + const float + dx = nfx - x; + const unsigned int + nx = cimg::mod(x + 1,_width); + const Tfloat + Ic = (Tfloat)(*this)(x,y,z,c), In = (Tfloat)(*this)(nx,y,z,c); + return Ic + dx*(In - Ic); + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates. + /** + Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the + boundary checking are achieved both for X and Y-coordinates. + **/ + Tfloat linear_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1; + const float + dx = fx - x, + dy = fy - y; + const Tfloat + Icc = (Tfloat)atXY(x,y,z,c,out_value), Inc = (Tfloat)atXY(nx,y,z,c,out_value), + Icn = (Tfloat)atXY(x,ny,z,c,out_value), Inn = (Tfloat)atXY(nx,ny,z,c,out_value); + return Icc + (Inc - Icc + (Icc + Inn - Icn - Inc)*dy)*dx + (Icn - Icc)*dy; + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates. + /** + Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking + are achieved both for X and Y-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atXY(float,float,int,int). + **/ + Tfloat linear_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXY(): Empty instance.", + cimg_instance); + + return _linear_atXY(fx,fy,z,c); + } + + Tfloat _linear_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy; + const float + dx = nfx - x, + dy = nfy - y; + const unsigned int + nx = dx>0?x + 1:x, + ny = dy>0?y + 1:y; + const Tfloat + Icc = (Tfloat)(*this)(x,y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c), + Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c); + return Icc + (Inc - Icc + (Icc + Inn - Icn - Inc)*dy)*dx + (Icn - Icc)*dy; + } + + //! Return pixel value, using linear interpolation and periodic boundary conditions for the X and Y-coordinates. + Tfloat linear_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXY_p(): Empty instance.", + cimg_instance); + + return _linear_atXY_p(fx,fy,z,c); + } + + Tfloat _linear_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const { + const float + nfx = cimg::mod(fx,_width - 0.5f), + nfy = cimg::mod(fy,_height - 0.5f); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy; + const float + dx = nfx - x, + dy = nfy - y; + const unsigned int + nx = cimg::mod(x + 1,_width), + ny = cimg::mod(y + 1,_height); + const Tfloat + Icc = (Tfloat)(*this)(x,y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c), + Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c); + return Icc + (Inc - Icc + (Icc + Inn - Icn - Inc)*dy)*dx + (Icn - Icc)*dy; + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates. + /** + Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the + boundary checking are achieved both for X,Y and Z-coordinates. + **/ + Tfloat linear_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1, + z = (int)fz - (fz>=0?0:1), nz = z + 1; + const float + dx = fx - x, + dy = fy - y, + dz = fz - z; + const Tfloat + Iccc = (Tfloat)atXYZ(x,y,z,c,out_value), Incc = (Tfloat)atXYZ(nx,y,z,c,out_value), + Icnc = (Tfloat)atXYZ(x,ny,z,c,out_value), Innc = (Tfloat)atXYZ(nx,ny,z,c,out_value), + Iccn = (Tfloat)atXYZ(x,y,nz,c,out_value), Incn = (Tfloat)atXYZ(nx,y,nz,c,out_value), + Icnn = (Tfloat)atXYZ(x,ny,nz,c,out_value), Innn = (Tfloat)atXYZ(nx,ny,nz,c,out_value); + return Iccc + + (Incc - Iccc + + (Iccc + Innc - Icnc - Incc + + (Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)*dz)*dy + + (Iccc + Incn - Iccn - Incc)*dz)*dx + + (Icnc - Iccc + + (Iccc + Icnn - Iccn - Icnc)*dz)*dy + + (Iccn - Iccc)*dz; + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking + are achieved both for X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atXYZ(float,float,float,int). + **/ + Tfloat linear_atXYZ(const float fx, const float fy=0, const float fz=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXYZ(): Empty instance.", + cimg_instance); + + return _linear_atXYZ(fx,fy,fz,c); + } + + Tfloat _linear_atXYZ(const float fx, const float fy=0, const float fz=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1), + nfz = cimg::cut(fz,0,depth() - 1); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy, + z = (unsigned int)nfz; + const float + dx = nfx - x, + dy = nfy - y, + dz = nfz - z; + const unsigned int + nx = dx>0?x + 1:x, + ny = dy>0?y + 1:y, + nz = dz>0?z + 1:z; + const Tfloat + Iccc = (Tfloat)(*this)(x,y,z,c), Incc = (Tfloat)(*this)(nx,y,z,c), + Icnc = (Tfloat)(*this)(x,ny,z,c), Innc = (Tfloat)(*this)(nx,ny,z,c), + Iccn = (Tfloat)(*this)(x,y,nz,c), Incn = (Tfloat)(*this)(nx,y,nz,c), + Icnn = (Tfloat)(*this)(x,ny,nz,c), Innn = (Tfloat)(*this)(nx,ny,nz,c); + return Iccc + + (Incc - Iccc + + (Iccc + Innc - Icnc - Incc + + (Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)*dz)*dy + + (Iccc + Incn - Iccn - Incc)*dz)*dx + + (Icnc - Iccc + + (Iccc + Icnn - Iccn - Icnc)*dz)*dy + + (Iccn - Iccc)*dz; + } + + //! Return pixel value, using linear interpolation and periodic boundary conditions for the X,Y and Z-coordinates. + Tfloat linear_atXYZ_p(const float fx, const float fy=0, const float fz=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXYZ_p(): Empty instance.", + cimg_instance); + + return _linear_atXYZ_p(fx,fy,fz,c); + } + + Tfloat _linear_atXYZ_p(const float fx, const float fy=0, const float fz=0, const int c=0) const { + const float + nfx = cimg::mod(fx,_width - 0.5f), + nfy = cimg::mod(fy,_height - 0.5f), + nfz = cimg::mod(fz,_depth - 0.5f); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy, + z = (unsigned int)nfz; + const float + dx = nfx - x, + dy = nfy - y, + dz = nfz - z; + const unsigned int + nx = cimg::mod(x + 1,_width), + ny = cimg::mod(y + 1,_height), + nz = cimg::mod(z + 1,_depth); + const Tfloat + Iccc = (Tfloat)(*this)(x,y,z,c), Incc = (Tfloat)(*this)(nx,y,z,c), + Icnc = (Tfloat)(*this)(x,ny,z,c), Innc = (Tfloat)(*this)(nx,ny,z,c), + Iccn = (Tfloat)(*this)(x,y,nz,c), Incn = (Tfloat)(*this)(nx,y,nz,c), + Icnn = (Tfloat)(*this)(x,ny,nz,c), Innn = (Tfloat)(*this)(nx,ny,nz,c); + return Iccc + + (Incc - Iccc + + (Iccc + Innc - Icnc - Incc + + (Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)*dz)*dy + + (Iccc + Incn - Iccn - Incc)*dz)*dx + + (Icnc - Iccc + + (Iccc + Icnn - Iccn - Icnc)*dz)*dy + + (Iccn - Iccc)*dz; + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates. + /** + Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the + boundary checking are achieved for all X,Y,Z and C-coordinates. + **/ + Tfloat linear_atXYZC(const float fx, const float fy, const float fz, const float fc, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1, + z = (int)fz - (fz>=0?0:1), nz = z + 1, + c = (int)fc - (fc>=0?0:1), nc = c + 1; + const float + dx = fx - x, + dy = fy - y, + dz = fz - z, + dc = fc - c; + const Tfloat + Icccc = (Tfloat)atXYZC(x,y,z,c,out_value), Inccc = (Tfloat)atXYZC(nx,y,z,c,out_value), + Icncc = (Tfloat)atXYZC(x,ny,z,c,out_value), Inncc = (Tfloat)atXYZC(nx,ny,z,c,out_value), + Iccnc = (Tfloat)atXYZC(x,y,nz,c,out_value), Incnc = (Tfloat)atXYZC(nx,y,nz,c,out_value), + Icnnc = (Tfloat)atXYZC(x,ny,nz,c,out_value), Innnc = (Tfloat)atXYZC(nx,ny,nz,c,out_value), + Icccn = (Tfloat)atXYZC(x,y,z,nc,out_value), Inccn = (Tfloat)atXYZC(nx,y,z,nc,out_value), + Icncn = (Tfloat)atXYZC(x,ny,z,nc,out_value), Inncn = (Tfloat)atXYZC(nx,ny,z,nc,out_value), + Iccnn = (Tfloat)atXYZC(x,y,nz,nc,out_value), Incnn = (Tfloat)atXYZC(nx,y,nz,nc,out_value), + Icnnn = (Tfloat)atXYZC(x,ny,nz,nc,out_value), Innnn = (Tfloat)atXYZC(nx,ny,nz,nc,out_value); + return Icccc + + dx*(Inccc - Icccc + + dy*(Icccc + Inncc - Icncc - Inccc + + dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + + dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - + Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + + dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + + dz*(Icccc + Incnc - Iccnc - Inccc + + dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + + dc*(Icccc + Inccn - Inccc - Icccn)) + + dy*(Icncc - Icccc + + dz*(Icccc + Icnnc - Iccnc - Icncc + + dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + + dc*(Icccc + Icncn - Icncc - Icccn)) + + dz*(Iccnc - Icccc + + dc*(Icccc + Iccnn - Iccnc - Icccn)) + + dc*(Icccn -Icccc); + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates. + /** + Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking + are achieved for all X,Y,Z and C-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atXYZC(float,float,float,float). + **/ + Tfloat linear_atXYZC(const float fx, const float fy=0, const float fz=0, const float fc=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXYZC(): Empty instance.", + cimg_instance); + + return _linear_atXYZC(fx,fy,fz,fc); + } + + Tfloat _linear_atXYZC(const float fx, const float fy=0, const float fz=0, const float fc=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1), + nfz = cimg::cut(fz,0,depth() - 1), + nfc = cimg::cut(fc,0,spectrum() - 1); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy, + z = (unsigned int)nfz, + c = (unsigned int)nfc; + const float + dx = nfx - x, + dy = nfy - y, + dz = nfz - z, + dc = nfc - c; + const unsigned int + nx = dx>0?x + 1:x, + ny = dy>0?y + 1:y, + nz = dz>0?z + 1:z, + nc = dc>0?c + 1:c; + const Tfloat + Icccc = (Tfloat)(*this)(x,y,z,c), Inccc = (Tfloat)(*this)(nx,y,z,c), + Icncc = (Tfloat)(*this)(x,ny,z,c), Inncc = (Tfloat)(*this)(nx,ny,z,c), + Iccnc = (Tfloat)(*this)(x,y,nz,c), Incnc = (Tfloat)(*this)(nx,y,nz,c), + Icnnc = (Tfloat)(*this)(x,ny,nz,c), Innnc = (Tfloat)(*this)(nx,ny,nz,c), + Icccn = (Tfloat)(*this)(x,y,z,nc), Inccn = (Tfloat)(*this)(nx,y,z,nc), + Icncn = (Tfloat)(*this)(x,ny,z,nc), Inncn = (Tfloat)(*this)(nx,ny,z,nc), + Iccnn = (Tfloat)(*this)(x,y,nz,nc), Incnn = (Tfloat)(*this)(nx,y,nz,nc), + Icnnn = (Tfloat)(*this)(x,ny,nz,nc), Innnn = (Tfloat)(*this)(nx,ny,nz,nc); + return Icccc + + dx*(Inccc - Icccc + + dy*(Icccc + Inncc - Icncc - Inccc + + dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + + dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - + Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + + dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + + dz*(Icccc + Incnc - Iccnc - Inccc + + dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + + dc*(Icccc + Inccn - Inccc - Icccn)) + + dy*(Icncc - Icccc + + dz*(Icccc + Icnnc - Iccnc - Icncc + + dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + + dc*(Icccc + Icncn - Icncc - Icccn)) + + dz*(Iccnc - Icccc + + dc*(Icccc + Iccnn - Iccnc - Icccn)) + + dc*(Icccn - Icccc); + } + + //! Return pixel value, using linear interpolation and periodic boundary conditions for all X,Y,Z and C-coordinates. + Tfloat linear_atXYZC_p(const float fx, const float fy=0, const float fz=0, const float fc=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXYZC_p(): Empty instance.", + cimg_instance); + + return _linear_atXYZC_p(fx,fy,fz,fc); + } + + Tfloat _linear_atXYZC_p(const float fx, const float fy=0, const float fz=0, const float fc=0) const { + const float + nfx = cimg::mod(fx,_width - 0.5f), + nfy = cimg::mod(fy,_height - 0.5f), + nfz = cimg::mod(fz,_depth - 0.5f), + nfc = cimg::mod(fc,_spectrum - 0.5f); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy, + z = (unsigned int)nfz, + c = (unsigned int)nfc; + const float + dx = nfx - x, + dy = nfy - y, + dz = nfz - z, + dc = nfc - c; + const unsigned int + nx = cimg::mod(x + 1,_width), + ny = cimg::mod(y + 1,_height), + nz = cimg::mod(z + 1,_depth), + nc = cimg::mod(c + 1,_spectrum); + const Tfloat + Icccc = (Tfloat)(*this)(x,y,z,c), Inccc = (Tfloat)(*this)(nx,y,z,c), + Icncc = (Tfloat)(*this)(x,ny,z,c), Inncc = (Tfloat)(*this)(nx,ny,z,c), + Iccnc = (Tfloat)(*this)(x,y,nz,c), Incnc = (Tfloat)(*this)(nx,y,nz,c), + Icnnc = (Tfloat)(*this)(x,ny,nz,c), Innnc = (Tfloat)(*this)(nx,ny,nz,c), + Icccn = (Tfloat)(*this)(x,y,z,nc), Inccn = (Tfloat)(*this)(nx,y,z,nc), + Icncn = (Tfloat)(*this)(x,ny,z,nc), Inncn = (Tfloat)(*this)(nx,ny,z,nc), + Iccnn = (Tfloat)(*this)(x,y,nz,nc), Incnn = (Tfloat)(*this)(nx,y,nz,nc), + Icnnn = (Tfloat)(*this)(x,ny,nz,nc), Innnn = (Tfloat)(*this)(nx,ny,nz,nc); + return Icccc + + dx*(Inccc - Icccc + + dy*(Icccc + Inncc - Icncc - Inccc + + dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + + dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - + Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + + dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + + dz*(Icccc + Incnc - Iccnc - Inccc + + dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + + dc*(Icccc + Inccn - Inccc - Icccn)) + + dy*(Icncc - Icccc + + dz*(Icccc + Icnnc - Iccnc - Icncc + + dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + + dc*(Icccc + Icncn - Icncc - Icccn)) + + dz*(Iccnc - Icccc + + dc*(Icccc + Iccnn - Iccnc - Icccn)) + + dc*(Icccn - Icccc); + } + + //! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate. + /** + Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or a specified default value in case of out-of-bounds access along the X-axis. + The cubic interpolation uses Hermite splines. + \param fx d X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds. + \note + - Similar to linear_atX(float,int,int,int,const T) const, except that the returned pixel value is + approximated by a \e cubic interpolation along the X-axis. + - The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued. + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat cubic_atX(const float fx, const int y, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2; + const float + dx = fx - x; + const Tfloat + Ip = (Tfloat)atX(px,y,z,c,out_value), Ic = (Tfloat)atX(x,y,z,c,out_value), + In = (Tfloat)atX(nx,y,z,c,out_value), Ia = (Tfloat)atX(ax,y,z,c,out_value); + return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate. + /** + Similar to cubic_atX(float,int,int,int,const T) const, except that the return value is clamped to stay in the + min/max range of the datatype \c T. + **/ + T cubic_atX_c(const float fx, const int y, const int z, const int c, const T& out_value) const { + return cimg::type::cut(cubic_atX(fx,y,z,c,out_value)); + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate. + /** + Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or the value of the nearest pixel location in the image instance in case of out-of-bounds access + along the X-axis. The cubic interpolation uses Hermite splines. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Similar to cubic_atX(float,int,int,int,const T) const, except that the returned pixel value is + approximated by a cubic interpolation along the X-axis. + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atX(float,int,int,int). + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat cubic_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atX(): Empty instance.", + cimg_instance); + return _cubic_atX(fx,y,z,c); + } + + Tfloat _cubic_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + const float + nfx = cimg::type::is_nan(fx)?0:cimg::cut(fx,0,width() - 1); + const int + x = (int)nfx; + const float + dx = nfx - x; + const int + px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2; + const Tfloat + Ip = (Tfloat)(*this)(px,y,z,c), Ic = (Tfloat)(*this)(x,y,z,c), + In = (Tfloat)(*this)(nx,y,z,c), Ia = (Tfloat)(*this)(ax,y,z,c); + return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate. + /** + Similar to cubic_atX(float,int,int,int) const, except that the return value is clamped to stay in the + min/max range of the datatype \c T. + **/ + T cubic_atX_c(const float fx, const int y, const int z, const int c) const { + return cimg::type::cut(cubic_atX(fx,y,z,c)); + } + + T _cubic_atX_c(const float fx, const int y, const int z, const int c) const { + return cimg::type::cut(_cubic_atX(fx,y,z,c)); + } + + //! Return pixel value, using cubic interpolation and periodic boundary conditions for the X-coordinate. + Tfloat cubic_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atX_p(): Empty instance.", + cimg_instance); + return _cubic_atX_p(fx,y,z,c); + } + + Tfloat _cubic_atX_p(const float fx, const int y=0, const int z=0, const int c=0) const { + const float + nfx = cimg::type::is_nan(fx)?0:cimg::mod(fx,_width - 0.5f); + const int + x = (int)nfx; + const float + dx = nfx - x; + const int + px = cimg::mod(x - 1,width()), nx = cimg::mod(x + 1,width()), ax = cimg::mod(x + 2,width()); + const Tfloat + Ip = (Tfloat)(*this)(px,y,z,c), Ic = (Tfloat)(*this)(x,y,z,c), + In = (Tfloat)(*this)(nx,y,z,c), Ia = (Tfloat)(*this)(ax,y,z,c); + return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia)); + } + + T cubic_atX_pc(const float fx, const int y, const int z, const int c) const { + return cimg::type::cut(cubic_atX_p(fx,y,z,c)); + } + + T _cubic_atX_pc(const float fx, const int y, const int z, const int c) const { + return cimg::type::cut(_cubic_atX_p(fx,y,z,c)); + } + + //! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates. + /** + Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking + are achieved both for X and Y-coordinates. + **/ + Tfloat cubic_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2, + y = (int)fy - (fy>=0?0:1), py = y - 1, ny = y + 1, ay = y + 2; + const float dx = fx - x, dy = fy - y; + const Tfloat + Ipp = (Tfloat)atXY(px,py,z,c,out_value), Icp = (Tfloat)atXY(x,py,z,c,out_value), + Inp = (Tfloat)atXY(nx,py,z,c,out_value), Iap = (Tfloat)atXY(ax,py,z,c,out_value), + Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ipc = (Tfloat)atXY(px,y,z,c,out_value), Icc = (Tfloat)atXY(x, y,z,c,out_value), + Inc = (Tfloat)atXY(nx,y,z,c,out_value), Iac = (Tfloat)atXY(ax,y,z,c,out_value), + Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ipn = (Tfloat)atXY(px,ny,z,c,out_value), Icn = (Tfloat)atXY(x,ny,z,c,out_value), + Inn = (Tfloat)atXY(nx,ny,z,c,out_value), Ian = (Tfloat)atXY(ax,ny,z,c,out_value), + In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ipa = (Tfloat)atXY(px,ay,z,c,out_value), Ica = (Tfloat)atXY(x,ay,z,c,out_value), + Ina = (Tfloat)atXY(nx,ay,z,c,out_value), Iaa = (Tfloat)atXY(ax,ay,z,c,out_value), + Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates. + /** + Similar to cubic_atXY(float,float,int,int,const T) const, except that the return value is clamped to stay in the + min/max range of the datatype \c T. + **/ + T cubic_atXY_c(const float fx, const float fy, const int z, const int c, const T& out_value) const { + return cimg::type::cut(cubic_atXY(fx,fy,z,c,out_value)); + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates. + /** + Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking + are achieved for both X and Y-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atXY(float,float,int,int). + **/ + Tfloat cubic_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atXY(): Empty instance.", + cimg_instance); + return _cubic_atXY(fx,fy,z,c); + } + + Tfloat _cubic_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + const float + nfx = cimg::type::is_nan(fx)?0:cimg::cut(fx,0,width() - 1), + nfy = cimg::type::is_nan(fy)?0:cimg::cut(fy,0,height() - 1); + const int x = (int)nfx, y = (int)nfy; + const float dx = nfx - x, dy = nfy - y; + const int + px = x - 1<0?0:x - 1, nx = dx<=0?x:x + 1, ax = x + 2>=width()?width() - 1:x + 2, + py = y - 1<0?0:y - 1, ny = dy<=0?y:y + 1, ay = y + 2>=height()?height() - 1:y + 2; + const Tfloat + Ipp = (Tfloat)(*this)(px,py,z,c), Icp = (Tfloat)(*this)(x,py,z,c), Inp = (Tfloat)(*this)(nx,py,z,c), + Iap = (Tfloat)(*this)(ax,py,z,c), + Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ipc = (Tfloat)(*this)(px,y,z,c), Icc = (Tfloat)(*this)(x, y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c), + Iac = (Tfloat)(*this)(ax,y,z,c), + Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ipn = (Tfloat)(*this)(px,ny,z,c), Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c), + Ian = (Tfloat)(*this)(ax,ny,z,c), + In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ipa = (Tfloat)(*this)(px,ay,z,c), Ica = (Tfloat)(*this)(x,ay,z,c), Ina = (Tfloat)(*this)(nx,ay,z,c), + Iaa = (Tfloat)(*this)(ax,ay,z,c), + Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates. + /** + Similar to cubic_atXY(float,float,int,int) const, except that the return value is clamped to stay in the + min/max range of the datatype \c T. + **/ + T cubic_atXY_c(const float fx, const float fy, const int z, const int c) const { + return cimg::type::cut(cubic_atXY(fx,fy,z,c)); + } + + T _cubic_atXY_c(const float fx, const float fy, const int z, const int c) const { + return cimg::type::cut(_cubic_atXY(fx,fy,z,c)); + } + + //! Return pixel value, using cubic interpolation and periodic boundary conditions for the X and Y-coordinates. + Tfloat cubic_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atXY_p(): Empty instance.", + cimg_instance); + return _cubic_atXY_p(fx,fy,z,c); + } + + Tfloat _cubic_atXY_p(const float fx, const float fy, const int z=0, const int c=0) const { + const float + nfx = cimg::type::is_nan(fx)?0:cimg::mod(fx,_width - 0.5f), + nfy = cimg::type::is_nan(fy)?0:cimg::mod(fy,_height - 0.5f); + const int x = (int)nfx, y = (int)nfy; + const float dx = nfx - x, dy = nfy - y; + const int + px = cimg::mod(x - 1,width()), nx = cimg::mod(x + 1,width()), ax = cimg::mod(x + 2,width()), + py = cimg::mod(y - 1,height()), ny = cimg::mod(y + 1,height()), ay = cimg::mod(y + 2,height()); + const Tfloat + Ipp = (Tfloat)(*this)(px,py,z,c), Icp = (Tfloat)(*this)(x,py,z,c), Inp = (Tfloat)(*this)(nx,py,z,c), + Iap = (Tfloat)(*this)(ax,py,z,c), + Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ipc = (Tfloat)(*this)(px,y,z,c), Icc = (Tfloat)(*this)(x, y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c), + Iac = (Tfloat)(*this)(ax,y,z,c), + Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ipn = (Tfloat)(*this)(px,ny,z,c), Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c), + Ian = (Tfloat)(*this)(ax,ny,z,c), + In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ipa = (Tfloat)(*this)(px,ay,z,c), Ica = (Tfloat)(*this)(x,ay,z,c), Ina = (Tfloat)(*this)(nx,ay,z,c), + Iaa = (Tfloat)(*this)(ax,ay,z,c), + Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia)); + } + + T cubic_atXY_pc(const float fx, const float fy, const int z, const int c) const { + return cimg::type::cut(cubic_atXY_p(fx,fy,z,c)); + } + + T _cubic_atXY_pc(const float fx, const float fy, const int z, const int c) const { + return cimg::type::cut(_cubic_atXY_p(fx,fy,z,c)); + } + + //! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates. + /** + Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking + are achieved both for X,Y and Z-coordinates. + **/ + Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2, + y = (int)fy - (fy>=0?0:1), py = y - 1, ny = y + 1, ay = y + 2, + z = (int)fz - (fz>=0?0:1), pz = z - 1, nz = z + 1, az = z + 2; + const float dx = fx - x, dy = fy - y, dz = fz - z; + const Tfloat + Ippp = (Tfloat)atXYZ(px,py,pz,c,out_value), Icpp = (Tfloat)atXYZ(x,py,pz,c,out_value), + Inpp = (Tfloat)atXYZ(nx,py,pz,c,out_value), Iapp = (Tfloat)atXYZ(ax,py,pz,c,out_value), + Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) + + dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)), + Ipcp = (Tfloat)atXYZ(px,y,pz,c,out_value), Iccp = (Tfloat)atXYZ(x, y,pz,c,out_value), + Incp = (Tfloat)atXYZ(nx,y,pz,c,out_value), Iacp = (Tfloat)atXYZ(ax,y,pz,c,out_value), + Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) + + dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)), + Ipnp = (Tfloat)atXYZ(px,ny,pz,c,out_value), Icnp = (Tfloat)atXYZ(x,ny,pz,c,out_value), + Innp = (Tfloat)atXYZ(nx,ny,pz,c,out_value), Ianp = (Tfloat)atXYZ(ax,ny,pz,c,out_value), + Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) + + dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)), + Ipap = (Tfloat)atXYZ(px,ay,pz,c,out_value), Icap = (Tfloat)atXYZ(x,ay,pz,c,out_value), + Inap = (Tfloat)atXYZ(nx,ay,pz,c,out_value), Iaap = (Tfloat)atXYZ(ax,ay,pz,c,out_value), + Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) + + dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)), + Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) + + dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ippc = (Tfloat)atXYZ(px,py,z,c,out_value), Icpc = (Tfloat)atXYZ(x,py,z,c,out_value), + Inpc = (Tfloat)atXYZ(nx,py,z,c,out_value), Iapc = (Tfloat)atXYZ(ax,py,z,c,out_value), + Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) + + dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)), + Ipcc = (Tfloat)atXYZ(px,y,z,c,out_value), Iccc = (Tfloat)atXYZ(x, y,z,c,out_value), + Incc = (Tfloat)atXYZ(nx,y,z,c,out_value), Iacc = (Tfloat)atXYZ(ax,y,z,c,out_value), + Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) + + dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)), + Ipnc = (Tfloat)atXYZ(px,ny,z,c,out_value), Icnc = (Tfloat)atXYZ(x,ny,z,c,out_value), + Innc = (Tfloat)atXYZ(nx,ny,z,c,out_value), Ianc = (Tfloat)atXYZ(ax,ny,z,c,out_value), + Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) + + dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)), + Ipac = (Tfloat)atXYZ(px,ay,z,c,out_value), Icac = (Tfloat)atXYZ(x,ay,z,c,out_value), + Inac = (Tfloat)atXYZ(nx,ay,z,c,out_value), Iaac = (Tfloat)atXYZ(ax,ay,z,c,out_value), + Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) + + dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)), + Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) + + dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ippn = (Tfloat)atXYZ(px,py,nz,c,out_value), Icpn = (Tfloat)atXYZ(x,py,nz,c,out_value), + Inpn = (Tfloat)atXYZ(nx,py,nz,c,out_value), Iapn = (Tfloat)atXYZ(ax,py,nz,c,out_value), + Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) + + dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)), + Ipcn = (Tfloat)atXYZ(px,y,nz,c,out_value), Iccn = (Tfloat)atXYZ(x, y,nz,c,out_value), + Incn = (Tfloat)atXYZ(nx,y,nz,c,out_value), Iacn = (Tfloat)atXYZ(ax,y,nz,c,out_value), + Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) + + dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)), + Ipnn = (Tfloat)atXYZ(px,ny,nz,c,out_value), Icnn = (Tfloat)atXYZ(x,ny,nz,c,out_value), + Innn = (Tfloat)atXYZ(nx,ny,nz,c,out_value), Iann = (Tfloat)atXYZ(ax,ny,nz,c,out_value), + Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) + + dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)), + Ipan = (Tfloat)atXYZ(px,ay,nz,c,out_value), Ican = (Tfloat)atXYZ(x,ay,nz,c,out_value), + Inan = (Tfloat)atXYZ(nx,ay,nz,c,out_value), Iaan = (Tfloat)atXYZ(ax,ay,nz,c,out_value), + Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) + + dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)), + In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) + + dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ippa = (Tfloat)atXYZ(px,py,az,c,out_value), Icpa = (Tfloat)atXYZ(x,py,az,c,out_value), + Inpa = (Tfloat)atXYZ(nx,py,az,c,out_value), Iapa = (Tfloat)atXYZ(ax,py,az,c,out_value), + Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) + + dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)), + Ipca = (Tfloat)atXYZ(px,y,az,c,out_value), Icca = (Tfloat)atXYZ(x, y,az,c,out_value), + Inca = (Tfloat)atXYZ(nx,y,az,c,out_value), Iaca = (Tfloat)atXYZ(ax,y,az,c,out_value), + Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) + + dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)), + Ipna = (Tfloat)atXYZ(px,ny,az,c,out_value), Icna = (Tfloat)atXYZ(x,ny,az,c,out_value), + Inna = (Tfloat)atXYZ(nx,ny,az,c,out_value), Iana = (Tfloat)atXYZ(ax,ny,az,c,out_value), + Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) + + dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)), + Ipaa = (Tfloat)atXYZ(px,ay,az,c,out_value), Icaa = (Tfloat)atXYZ(x,ay,az,c,out_value), + Inaa = (Tfloat)atXYZ(nx,ay,az,c,out_value), Iaaa = (Tfloat)atXYZ(ax,ay,az,c,out_value), + Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) + + dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)), + Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) + + dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return clamped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates. + /** + Similar to cubic_atXYZ(float,float,float,int,const T) const, except that the return value is clamped to stay + in the min/max range of the datatype \c T. + **/ + T cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c, const T& out_value) const { + return cimg::type::cut(cubic_atXYZ(fx,fy,fz,c,out_value)); + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking + are achieved both for X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atXYZ(float,float,float,int). + **/ + Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atXYZ(): Empty instance.", + cimg_instance); + return _cubic_atXYZ(fx,fy,fz,c); + } + + Tfloat _cubic_atXYZ(const float fx, const float fy, const float fz, const int c=0) const { + const float + nfx = cimg::type::is_nan(fx)?0:cimg::cut(fx,0,width() - 1), + nfy = cimg::type::is_nan(fy)?0:cimg::cut(fy,0,height() - 1), + nfz = cimg::type::is_nan(fz)?0:cimg::cut(fz,0,depth() - 1); + const int x = (int)nfx, y = (int)nfy, z = (int)nfz; + const float dx = nfx - x, dy = nfy - y, dz = nfz - z; + const int + px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2, + py = y - 1<0?0:y - 1, ny = dy>0?y + 1:y, ay = y + 2>=height()?height() - 1:y + 2, + pz = z - 1<0?0:z - 1, nz = dz>0?z + 1:z, az = z + 2>=depth()?depth() - 1:z + 2; + const Tfloat + Ippp = (Tfloat)(*this)(px,py,pz,c), Icpp = (Tfloat)(*this)(x,py,pz,c), + Inpp = (Tfloat)(*this)(nx,py,pz,c), Iapp = (Tfloat)(*this)(ax,py,pz,c), + Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) + + dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)), + Ipcp = (Tfloat)(*this)(px,y,pz,c), Iccp = (Tfloat)(*this)(x, y,pz,c), + Incp = (Tfloat)(*this)(nx,y,pz,c), Iacp = (Tfloat)(*this)(ax,y,pz,c), + Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) + + dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)), + Ipnp = (Tfloat)(*this)(px,ny,pz,c), Icnp = (Tfloat)(*this)(x,ny,pz,c), + Innp = (Tfloat)(*this)(nx,ny,pz,c), Ianp = (Tfloat)(*this)(ax,ny,pz,c), + Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) + + dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)), + Ipap = (Tfloat)(*this)(px,ay,pz,c), Icap = (Tfloat)(*this)(x,ay,pz,c), + Inap = (Tfloat)(*this)(nx,ay,pz,c), Iaap = (Tfloat)(*this)(ax,ay,pz,c), + Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) + + dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)), + Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) + + dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ippc = (Tfloat)(*this)(px,py,z,c), Icpc = (Tfloat)(*this)(x,py,z,c), + Inpc = (Tfloat)(*this)(nx,py,z,c), Iapc = (Tfloat)(*this)(ax,py,z,c), + Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) + + dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)), + Ipcc = (Tfloat)(*this)(px,y,z,c), Iccc = (Tfloat)(*this)(x, y,z,c), + Incc = (Tfloat)(*this)(nx,y,z,c), Iacc = (Tfloat)(*this)(ax,y,z,c), + Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) + + dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)), + Ipnc = (Tfloat)(*this)(px,ny,z,c), Icnc = (Tfloat)(*this)(x,ny,z,c), + Innc = (Tfloat)(*this)(nx,ny,z,c), Ianc = (Tfloat)(*this)(ax,ny,z,c), + Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) + + dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)), + Ipac = (Tfloat)(*this)(px,ay,z,c), Icac = (Tfloat)(*this)(x,ay,z,c), + Inac = (Tfloat)(*this)(nx,ay,z,c), Iaac = (Tfloat)(*this)(ax,ay,z,c), + Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) + + dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)), + Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) + + dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ippn = (Tfloat)(*this)(px,py,nz,c), Icpn = (Tfloat)(*this)(x,py,nz,c), + Inpn = (Tfloat)(*this)(nx,py,nz,c), Iapn = (Tfloat)(*this)(ax,py,nz,c), + Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) + + dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)), + Ipcn = (Tfloat)(*this)(px,y,nz,c), Iccn = (Tfloat)(*this)(x, y,nz,c), + Incn = (Tfloat)(*this)(nx,y,nz,c), Iacn = (Tfloat)(*this)(ax,y,nz,c), + Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) + + dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)), + Ipnn = (Tfloat)(*this)(px,ny,nz,c), Icnn = (Tfloat)(*this)(x,ny,nz,c), + Innn = (Tfloat)(*this)(nx,ny,nz,c), Iann = (Tfloat)(*this)(ax,ny,nz,c), + Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) + + dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)), + Ipan = (Tfloat)(*this)(px,ay,nz,c), Ican = (Tfloat)(*this)(x,ay,nz,c), + Inan = (Tfloat)(*this)(nx,ay,nz,c), Iaan = (Tfloat)(*this)(ax,ay,nz,c), + Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) + + dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)), + In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) + + dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ippa = (Tfloat)(*this)(px,py,az,c), Icpa = (Tfloat)(*this)(x,py,az,c), + Inpa = (Tfloat)(*this)(nx,py,az,c), Iapa = (Tfloat)(*this)(ax,py,az,c), + Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) + + dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)), + Ipca = (Tfloat)(*this)(px,y,az,c), Icca = (Tfloat)(*this)(x, y,az,c), + Inca = (Tfloat)(*this)(nx,y,az,c), Iaca = (Tfloat)(*this)(ax,y,az,c), + Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) + + dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)), + Ipna = (Tfloat)(*this)(px,ny,az,c), Icna = (Tfloat)(*this)(x,ny,az,c), + Inna = (Tfloat)(*this)(nx,ny,az,c), Iana = (Tfloat)(*this)(ax,ny,az,c), + Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) + + dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)), + Ipaa = (Tfloat)(*this)(px,ay,az,c), Icaa = (Tfloat)(*this)(x,ay,az,c), + Inaa = (Tfloat)(*this)(nx,ay,az,c), Iaaa = (Tfloat)(*this)(ax,ay,az,c), + Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) + + dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)), + Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) + + dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return clamped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates. + /** + Similar to cubic_atXYZ(float,float,float,int) const, except that the return value is clamped to stay in the + min/max range of the datatype \c T. + **/ + T cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c) const { + return cimg::type::cut(cubic_atXYZ(fx,fy,fz,c)); + } + + T _cubic_atXYZ_c(const float fx, const float fy, const float fz, const int c) const { + return cimg::type::cut(_cubic_atXYZ(fx,fy,fz,c)); + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking + are achieved both for X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atXYZ(float,float,float,int). + **/ + Tfloat cubic_atXYZ_p(const float fx, const float fy, const float fz, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atXYZ_p(): Empty instance.", + cimg_instance); + return _cubic_atXYZ_p(fx,fy,fz,c); + } + + Tfloat _cubic_atXYZ_p(const float fx, const float fy, const float fz, const int c=0) const { + const float + nfx = cimg::type::is_nan(fx)?0:cimg::mod(fx,_width - 0.5f), + nfy = cimg::type::is_nan(fy)?0:cimg::mod(fy,_height - 0.5f), + nfz = cimg::type::is_nan(fz)?0:cimg::mod(fz,_depth - 0.5f); + const int x = (int)nfx, y = (int)nfy, z = (int)nfz; + const float dx = nfx - x, dy = nfy - y, dz = nfz - z; + const int + px = cimg::mod(x - 1,width()), nx = cimg::mod(x + 1,width()), ax = cimg::mod(x + 2,width()), + py = cimg::mod(y - 1,height()), ny = cimg::mod(y + 1,height()), ay = cimg::mod(y + 2,height()), + pz = cimg::mod(z - 1,depth()), nz = cimg::mod(z + 1,depth()), az = cimg::mod(z + 2,depth()); + const Tfloat + Ippp = (Tfloat)(*this)(px,py,pz,c), Icpp = (Tfloat)(*this)(x,py,pz,c), + Inpp = (Tfloat)(*this)(nx,py,pz,c), Iapp = (Tfloat)(*this)(ax,py,pz,c), + Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) + + dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)), + Ipcp = (Tfloat)(*this)(px,y,pz,c), Iccp = (Tfloat)(*this)(x, y,pz,c), + Incp = (Tfloat)(*this)(nx,y,pz,c), Iacp = (Tfloat)(*this)(ax,y,pz,c), + Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) + + dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)), + Ipnp = (Tfloat)(*this)(px,ny,pz,c), Icnp = (Tfloat)(*this)(x,ny,pz,c), + Innp = (Tfloat)(*this)(nx,ny,pz,c), Ianp = (Tfloat)(*this)(ax,ny,pz,c), + Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) + + dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)), + Ipap = (Tfloat)(*this)(px,ay,pz,c), Icap = (Tfloat)(*this)(x,ay,pz,c), + Inap = (Tfloat)(*this)(nx,ay,pz,c), Iaap = (Tfloat)(*this)(ax,ay,pz,c), + Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) + + dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)), + Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) + + dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ippc = (Tfloat)(*this)(px,py,z,c), Icpc = (Tfloat)(*this)(x,py,z,c), + Inpc = (Tfloat)(*this)(nx,py,z,c), Iapc = (Tfloat)(*this)(ax,py,z,c), + Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) + + dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)), + Ipcc = (Tfloat)(*this)(px,y,z,c), Iccc = (Tfloat)(*this)(x, y,z,c), + Incc = (Tfloat)(*this)(nx,y,z,c), Iacc = (Tfloat)(*this)(ax,y,z,c), + Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) + + dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)), + Ipnc = (Tfloat)(*this)(px,ny,z,c), Icnc = (Tfloat)(*this)(x,ny,z,c), + Innc = (Tfloat)(*this)(nx,ny,z,c), Ianc = (Tfloat)(*this)(ax,ny,z,c), + Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) + + dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)), + Ipac = (Tfloat)(*this)(px,ay,z,c), Icac = (Tfloat)(*this)(x,ay,z,c), + Inac = (Tfloat)(*this)(nx,ay,z,c), Iaac = (Tfloat)(*this)(ax,ay,z,c), + Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) + + dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)), + Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) + + dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ippn = (Tfloat)(*this)(px,py,nz,c), Icpn = (Tfloat)(*this)(x,py,nz,c), + Inpn = (Tfloat)(*this)(nx,py,nz,c), Iapn = (Tfloat)(*this)(ax,py,nz,c), + Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) + + dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)), + Ipcn = (Tfloat)(*this)(px,y,nz,c), Iccn = (Tfloat)(*this)(x, y,nz,c), + Incn = (Tfloat)(*this)(nx,y,nz,c), Iacn = (Tfloat)(*this)(ax,y,nz,c), + Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) + + dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)), + Ipnn = (Tfloat)(*this)(px,ny,nz,c), Icnn = (Tfloat)(*this)(x,ny,nz,c), + Innn = (Tfloat)(*this)(nx,ny,nz,c), Iann = (Tfloat)(*this)(ax,ny,nz,c), + Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) + + dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)), + Ipan = (Tfloat)(*this)(px,ay,nz,c), Ican = (Tfloat)(*this)(x,ay,nz,c), + Inan = (Tfloat)(*this)(nx,ay,nz,c), Iaan = (Tfloat)(*this)(ax,ay,nz,c), + Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) + + dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)), + In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) + + dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ippa = (Tfloat)(*this)(px,py,az,c), Icpa = (Tfloat)(*this)(x,py,az,c), + Inpa = (Tfloat)(*this)(nx,py,az,c), Iapa = (Tfloat)(*this)(ax,py,az,c), + Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) + + dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)), + Ipca = (Tfloat)(*this)(px,y,az,c), Icca = (Tfloat)(*this)(x, y,az,c), + Inca = (Tfloat)(*this)(nx,y,az,c), Iaca = (Tfloat)(*this)(ax,y,az,c), + Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) + + dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)), + Ipna = (Tfloat)(*this)(px,ny,az,c), Icna = (Tfloat)(*this)(x,ny,az,c), + Inna = (Tfloat)(*this)(nx,ny,az,c), Iana = (Tfloat)(*this)(ax,ny,az,c), + Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) + + dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)), + Ipaa = (Tfloat)(*this)(px,ay,az,c), Icaa = (Tfloat)(*this)(x,ay,az,c), + Inaa = (Tfloat)(*this)(nx,ay,az,c), Iaaa = (Tfloat)(*this)(ax,ay,az,c), + Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) + + dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)), + Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) + + dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia)); + } + + T cubic_atXYZ_pc(const float fx, const float fy, const float fz, const int c) const { + return cimg::type::cut(cubic_atXYZ_p(fx,fy,fz,c)); + } + + T _cubic_atXYZ_pc(const float fx, const float fy, const float fz, const int c) const { + return cimg::type::cut(_cubic_atXYZ_p(fx,fy,fz,c)); + } + + //! Set pixel value, using linear interpolation for the X-coordinates. + /** + Set pixel value at specified coordinates (\c fx,\c y,\c z,\c c) in the image instance, in a way that + the value is spread amongst several neighbors if the pixel coordinates are float-valued. + \param value Pixel value to set. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param is_added Tells if the pixel value is added to (\c true), or simply replace (\c false) the current image + pixel(s). + \return A reference to the current image instance. + \note + - Calling this method with out-of-bounds coordinates does nothing. + **/ + CImg& set_linear_atX(const T& value, const float fx, const int y=0, const int z=0, const int c=0, + const bool is_added=false) { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1; + const float + dx = fx - x; + if (y>=0 && y=0 && z=0 && c=0 && x=0 && nx& set_linear_atXY(const T& value, const float fx, const float fy=0, const int z=0, const int c=0, + const bool is_added=false) { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1; + const float + dx = fx - x, + dy = fy - y; + if (z>=0 && z=0 && c=0 && y=0 && x=0 && nx=0 && ny=0 && x=0 && nx& set_linear_atXYZ(const T& value, const float fx, const float fy=0, const float fz=0, const int c=0, + const bool is_added=false) { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1, + z = (int)fz - (fz>=0?0:1), nz = z + 1; + const float + dx = fx - x, + dy = fy - y, + dz = fz - z; + if (c>=0 && c=0 && z=0 && y=0 && x=0 && nx=0 && ny=0 && x=0 && nx=0 && nz=0 && y=0 && x=0 && nx=0 && ny=0 && x=0 && nx image whose buffer data() is a \c char* string describing the list of all pixel values + of the image instance (written in base 10), separated by specified \c separator character. + \param separator A \c char character which specifies the separator between values in the returned C-string. + \param max_size Maximum size of the returned image (or \c 0 if no limits are set). + \param format For float/double-values, tell the printf format used to generate the text representation + of the numbers (or \c 0 for default representation). + \note + - The returned image is never empty. + - For an empty image instance, the returned string is "". + - If \c max_size is equal to \c 0, there are no limits on the size of the returned string. + - Otherwise, if the maximum number of string characters is exceeded, the value string is cut off + and terminated by character \c '\0'. In that case, the returned image size is max_size + 1. + **/ + CImg value_string(const char separator=',', const unsigned int max_size=0, + const char *const format=0) const { + if (is_empty() || max_size==1) return CImg(1,1,1,1,0); + CImgList items; + CImg s_item(256); *s_item = 0; + const T *ptrs = _data; + unsigned int string_size = 0; + const char *const _format = format?format:cimg::type::format(); + for (ulongT off = 0, siz = size(); off::format(*(ptrs++))); + CImg item(s_item._data,printed_size); + item[printed_size - 1] = separator; + item.move_to(items); + if (max_size) string_size+=printed_size; + } + CImg res; + (items>'x').move_to(res); + if (max_size && res._width>=max_size) res.crop(0,max_size - 1); + res.back() = 0; + return res; + } + + //@} + //------------------------------------- + // + //! \name Instance Checking + //@{ + //------------------------------------- + + //! Test shared state of the pixel buffer. + /** + Return \c true if image instance has a shared memory buffer, and \c false otherwise. + \note + - A shared image do not own his pixel buffer data() and will not deallocate it on destruction. + - Most of the time, a \c CImg image instance will \e not be shared. + - A shared image can only be obtained by a limited set of constructors and methods (see list below). + **/ + bool is_shared() const { + return _is_shared; + } + + //! Test if image instance is empty. + /** + Return \c true, if image instance is empty, i.e. does \e not contain any pixel values, has dimensions + \c 0 x \c 0 x \c 0 x \c 0 and a pixel buffer pointer set to \c 0 (null pointer), and \c false otherwise. + **/ + bool is_empty() const { + return !(_data && _width && _height && _depth && _spectrum); + } + + //! Test if image instance contains a 'inf' value. + /** + Return \c true, if image instance contains a 'inf' value, and \c false otherwise. + **/ + bool is_inf() const { + if (cimg::type::is_float()) cimg_for(*this,p,T) if (cimg::type::is_inf((float)*p)) return true; + return false; + } + + //! Test if image instance contains a NaN value. + /** + Return \c true, if image instance contains a NaN value, and \c false otherwise. + **/ + bool is_nan() const { + if (cimg::type::is_float()) cimg_for(*this,p,T) if (cimg::type::is_nan((float)*p)) return true; + return false; + } + + //! Test if image width is equal to specified value. + bool is_sameX(const unsigned int size_x) const { + return _width==size_x; + } + + //! Test if image width is equal to specified value. + template + bool is_sameX(const CImg& img) const { + return is_sameX(img._width); + } + + //! Test if image width is equal to specified value. + bool is_sameX(const CImgDisplay& disp) const { + return is_sameX(disp._width); + } + + //! Test if image height is equal to specified value. + bool is_sameY(const unsigned int size_y) const { + return _height==size_y; + } + + //! Test if image height is equal to specified value. + template + bool is_sameY(const CImg& img) const { + return is_sameY(img._height); + } + + //! Test if image height is equal to specified value. + bool is_sameY(const CImgDisplay& disp) const { + return is_sameY(disp._height); + } + + //! Test if image depth is equal to specified value. + bool is_sameZ(const unsigned int size_z) const { + return _depth==size_z; + } + + //! Test if image depth is equal to specified value. + template + bool is_sameZ(const CImg& img) const { + return is_sameZ(img._depth); + } + + //! Test if image spectrum is equal to specified value. + bool is_sameC(const unsigned int size_c) const { + return _spectrum==size_c; + } + + //! Test if image spectrum is equal to specified value. + template + bool is_sameC(const CImg& img) const { + return is_sameC(img._spectrum); + } + + //! Test if image width and height are equal to specified values. + /** + Test if is_sameX(unsigned int) const and is_sameY(unsigned int) const are both verified. + **/ + bool is_sameXY(const unsigned int size_x, const unsigned int size_y) const { + return _width==size_x && _height==size_y; + } + + //! Test if image width and height are the same as that of another image. + /** + Test if is_sameX(const CImg&) const and is_sameY(const CImg&) const are both verified. + **/ + template + bool is_sameXY(const CImg& img) const { + return is_sameXY(img._width,img._height); + } + + //! Test if image width and height are the same as that of an existing display window. + /** + Test if is_sameX(const CImgDisplay&) const and is_sameY(const CImgDisplay&) const are both verified. + **/ + bool is_sameXY(const CImgDisplay& disp) const { + return is_sameXY(disp._width,disp._height); + } + + //! Test if image width and depth are equal to specified values. + /** + Test if is_sameX(unsigned int) const and is_sameZ(unsigned int) const are both verified. + **/ + bool is_sameXZ(const unsigned int size_x, const unsigned int size_z) const { + return _width==size_x && _depth==size_z; + } + + //! Test if image width and depth are the same as that of another image. + /** + Test if is_sameX(const CImg&) const and is_sameZ(const CImg&) const are both verified. + **/ + template + bool is_sameXZ(const CImg& img) const { + return is_sameXZ(img._width,img._depth); + } + + //! Test if image width and spectrum are equal to specified values. + /** + Test if is_sameX(unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameXC(const unsigned int size_x, const unsigned int size_c) const { + return _width==size_x && _spectrum==size_c; + } + + //! Test if image width and spectrum are the same as that of another image. + /** + Test if is_sameX(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXC(const CImg& img) const { + return is_sameXC(img._width,img._spectrum); + } + + //! Test if image height and depth are equal to specified values. + /** + Test if is_sameY(unsigned int) const and is_sameZ(unsigned int) const are both verified. + **/ + bool is_sameYZ(const unsigned int size_y, const unsigned int size_z) const { + return _height==size_y && _depth==size_z; + } + + //! Test if image height and depth are the same as that of another image. + /** + Test if is_sameY(const CImg&) const and is_sameZ(const CImg&) const are both verified. + **/ + template + bool is_sameYZ(const CImg& img) const { + return is_sameYZ(img._height,img._depth); + } + + //! Test if image height and spectrum are equal to specified values. + /** + Test if is_sameY(unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameYC(const unsigned int size_y, const unsigned int size_c) const { + return _height==size_y && _spectrum==size_c; + } + + //! Test if image height and spectrum are the same as that of another image. + /** + Test if is_sameY(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameYC(const CImg& img) const { + return is_sameYC(img._height,img._spectrum); + } + + //! Test if image depth and spectrum are equal to specified values. + /** + Test if is_sameZ(unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameZC(const unsigned int size_z, const unsigned int size_c) const { + return _depth==size_z && _spectrum==size_c; + } + + //! Test if image depth and spectrum are the same as that of another image. + /** + Test if is_sameZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameZC(const CImg& img) const { + return is_sameZC(img._depth,img._spectrum); + } + + //! Test if image width, height and depth are equal to specified values. + /** + Test if is_sameXY(unsigned int,unsigned int) const and is_sameZ(unsigned int) const are both verified. + **/ + bool is_sameXYZ(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z) const { + return is_sameXY(size_x,size_y) && _depth==size_z; + } + + //! Test if image width, height and depth are the same as that of another image. + /** + Test if is_sameXY(const CImg&) const and is_sameZ(const CImg&) const are both verified. + **/ + template + bool is_sameXYZ(const CImg& img) const { + return is_sameXYZ(img._width,img._height,img._depth); + } + + //! Test if image width, height and spectrum are equal to specified values. + /** + Test if is_sameXY(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameXYC(const unsigned int size_x, const unsigned int size_y, const unsigned int size_c) const { + return is_sameXY(size_x,size_y) && _spectrum==size_c; + } + + //! Test if image width, height and spectrum are the same as that of another image. + /** + Test if is_sameXY(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXYC(const CImg& img) const { + return is_sameXYC(img._width,img._height,img._spectrum); + } + + //! Test if image width, depth and spectrum are equal to specified values. + /** + Test if is_sameXZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameXZC(const unsigned int size_x, const unsigned int size_z, const unsigned int size_c) const { + return is_sameXZ(size_x,size_z) && _spectrum==size_c; + } + + //! Test if image width, depth and spectrum are the same as that of another image. + /** + Test if is_sameXZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXZC(const CImg& img) const { + return is_sameXZC(img._width,img._depth,img._spectrum); + } + + //! Test if image height, depth and spectrum are equal to specified values. + /** + Test if is_sameYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameYZC(const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const { + return is_sameYZ(size_y,size_z) && _spectrum==size_c; + } + + //! Test if image height, depth and spectrum are the same as that of another image. + /** + Test if is_sameYZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameYZC(const CImg& img) const { + return is_sameYZC(img._height,img._depth,img._spectrum); + } + + //! Test if image width, height, depth and spectrum are equal to specified values. + /** + Test if is_sameXYZ(unsigned int,unsigned int,unsigned int) const and is_sameC(unsigned int) const are both + verified. + **/ + bool is_sameXYZC(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c) const { + return is_sameXYZ(size_x,size_y,size_z) && _spectrum==size_c; + } + + //! Test if image width, height, depth and spectrum are the same as that of another image. + /** + Test if is_sameXYZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXYZC(const CImg& img) const { + return is_sameXYZC(img._width,img._height,img._depth,img._spectrum); + } + + //! Test if specified coordinates are inside image bounds. + /** + Return \c true if pixel located at (\c x,\c y,\c z,\c c) is inside bounds of the image instance, + and \c false otherwise. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Return \c true only if all these conditions are verified: + - The image instance is \e not empty. + - 0<=x<=\ref width() - 1. + - 0<=y<=\ref height() - 1. + - 0<=z<=\ref depth() - 1. + - 0<=c<=\ref spectrum() - 1. + **/ + bool containsXYZC(const int x, const int y=0, const int z=0, const int c=0) const { + return !is_empty() && x>=0 && x=0 && y=0 && z=0 && c img(100,100,1,3); // Construct a 100x100 RGB color image + const unsigned long offset = 1249; // Offset to the pixel (49,12,0,0) + unsigned int x,y,z,c; + if (img.contains(img[offset],x,y,z,c)) { // Convert offset to (x,y,z,c) coordinates + std::printf("Offset %u refers to pixel located at (%u,%u,%u,%u).\n", + offset,x,y,z,c); + } + \endcode + **/ + template + bool contains(const T& pixel, t& x, t& y, t& z, t& c) const { + const ulongT wh = (ulongT)_width*_height, whd = wh*_depth, siz = whd*_spectrum; + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false; + ulongT off = (ulongT)(ppixel - _data); + const ulongT nc = off/whd; + off%=whd; + const ulongT nz = off/wh; + off%=wh; + const ulongT ny = off/_width, nx = off%_width; + x = (t)nx; y = (t)ny; z = (t)nz; c = (t)nc; + return true; + } + + //! Test if pixel value is inside image bounds and get its X,Y and Z-coordinates. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X,Y and Z-coordinates are set. + **/ + template + bool contains(const T& pixel, t& x, t& y, t& z) const { + const ulongT wh = (ulongT)_width*_height, whd = wh*_depth, siz = whd*_spectrum; + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false; + ulongT off = ((ulongT)(ppixel - _data))%whd; + const ulongT nz = off/wh; + off%=wh; + const ulongT ny = off/_width, nx = off%_width; + x = (t)nx; y = (t)ny; z = (t)nz; + return true; + } + + //! Test if pixel value is inside image bounds and get its X and Y-coordinates. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X and Y-coordinates are set. + **/ + template + bool contains(const T& pixel, t& x, t& y) const { + const ulongT wh = (ulongT)_width*_height, siz = wh*_depth*_spectrum; + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false; + ulongT off = ((unsigned int)(ppixel - _data))%wh; + const ulongT ny = off/_width, nx = off%_width; + x = (t)nx; y = (t)ny; + return true; + } + + //! Test if pixel value is inside image bounds and get its X-coordinate. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X-coordinate is set. + **/ + template + bool contains(const T& pixel, t& x) const { + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + size()) return false; + x = (t)(((ulongT)(ppixel - _data))%_width); + return true; + } + + //! Test if pixel value is inside image bounds. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that no pixel coordinates are set. + **/ + bool contains(const T& pixel) const { + const T *const ppixel = &pixel; + return !is_empty() && ppixel>=_data && ppixel<_data + size(); + } + + //! Test if pixel buffers of instance and input images overlap. + /** + Return \c true, if pixel buffers attached to image instance and input image \c img overlap, + and \c false otherwise. + \param img Input image to compare with. + \note + - Buffer overlapping may happen when manipulating \e shared images. + - If two image buffers overlap, operating on one of the image will probably modify the other one. + - Most of the time, \c CImg instances are \e non-shared and do not overlap between each others. + \par Example + \code + const CImg + img1("reference.jpg"), // Load RGB-color image + img2 = img1.get_shared_channel(1); // Get shared version of the green channel + if (img1.is_overlapped(img2)) { // Test succeeds, 'img1' and 'img2' overlaps + std::printf("Buffers overlap!\n"); + } + \endcode + **/ + template + bool is_overlapped(const CImg& img) const { + const ulongT csiz = size(), isiz = img.size(); + return !((void*)(_data + csiz)<=(void*)img._data || (void*)_data>=(void*)(img._data + isiz)); + } + + //! Test if the set {\c *this,\c primitives,\c colors,\c opacities} defines a valid 3D object. + /** + Return \c true is the 3D object represented by the set {\c *this,\c primitives,\c colors,\c opacities} defines a + valid 3D object, and \c false otherwise. The vertex coordinates are defined by the instance image. + \param primitives List of primitives of the 3D object. + \param colors List of colors of the 3D object. + \param opacities List (or image) of opacities of the 3D object. + \param full_check Tells if full checking of the 3D object must be performed. + \param[out] error_message C-string to contain the error message, if the test does not succeed + (at least 256 bytes). + \note + - Set \c full_checking to \c false to speed-up the 3D object checking. In this case, only the size of + each 3D object component is checked. + - Size of the string \c error_message should be at least 128-bytes long, to be able to contain the error message. + **/ + template + bool is_object3d(const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool full_check=true, + char *const error_message=0) const { + if (error_message) *error_message = 0; + + // Check consistency for the particular case of an empty 3D object. + if (is_empty()) { + if (primitives || colors || opacities) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) defines no vertices but %u primitives, " + "%u colors and %lu opacities", + _width,primitives._width,primitives._width, + colors._width,(unsigned long)opacities.size()); + return false; + } + return true; + } + + // Check consistency of vertices. + if (_height!=3 || _depth>1 || _spectrum>1) { // Check vertices dimensions + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) has invalid vertex dimensions (%u,%u,%u,%u)", + _width,primitives._width,_width,_height,_depth,_spectrum); + return false; + } + if (colors._width>primitives._width + 1) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) defines %u colors", + _width,primitives._width,colors._width); + return false; + } + if (opacities.size()>primitives._width) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) defines %lu opacities", + _width,primitives._width,(unsigned long)opacities.size()); + return false; + } + if (!full_check) return true; + + // Check consistency of primitives. + cimglist_for(primitives,l) { + const CImg& primitive = primitives[l]; + const unsigned int psiz = (unsigned int)primitive.size(); + switch (psiz) { + case 1 : { // Point + const unsigned int i0 = (unsigned int)primitive(0); + if (i0>=_width) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) refers to invalid vertex index %u in " + "point primitive [%u]", + _width,primitives._width,i0,l); + return false; + } + } break; + case 5 : { // Sphere + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + if (i0>=_width || i1>=_width) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) refers to invalid vertex indices (%u,%u) in " + "sphere primitive [%u]", + _width,primitives._width,i0,i1,l); + return false; + } + } break; + case 2 : case 6 : { // Segment + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + if (i0>=_width || i1>=_width) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) refers to invalid vertex indices (%u,%u) in " + "segment primitive [%u]", + _width,primitives._width,i0,i1,l); + return false; + } + } break; + case 3 : case 9 : { // Triangle + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2); + if (i0>=_width || i1>=_width || i2>=_width) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) refers to invalid vertex indices (%u,%u,%u) in " + "triangle primitive [%u]", + _width,primitives._width,i0,i1,i2,l); + return false; + } + } break; + case 4 : case 12 : { // Quadrangle + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2), + i3 = (unsigned int)primitive(3); + if (i0>=_width || i1>=_width || i2>=_width || i3>=_width) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) refers to invalid vertex indices (%u,%u,%u,%u) in " + "quadrangle primitive [%u]", + _width,primitives._width,i0,i1,i2,i3,l); + return false; + } + } break; + default : + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) defines an invalid primitive [%u] of size %u", + _width,primitives._width,l,(unsigned int)psiz); + return false; + } + } + + // Check consistency of colors. + cimglist_for(colors,c) { + const CImg& color = colors[c]; + if (!color) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) defines no color for primitive [%u]", + _width,primitives._width,c); + return false; + } + } + + // Check consistency of light texture. + if (colors._width>primitives._width) { + const CImg &light = colors.back(); + if (!light || light._depth>1) { + if (error_message) cimg_snprintf(error_message,256, + "3D object (%u,%u) defines an invalid light texture (%u,%u,%u,%u)", + _width,primitives._width,light._width, + light._height,light._depth,light._spectrum); + return false; + } + } + + return true; + } + + //! Test if image instance represents a valid serialization of a 3D object. + /** + Return \c true if the image instance represents a valid serialization of a 3D object, and \c false otherwise. + \param full_check Tells if full checking of the instance must be performed. + \param[out] error_message C-string to contain the error message, if the test does not succeed. + \note + - Set \c full_check to \c false to speed-up the 3D object checking. In this case, only the size of + each 3D object component is checked. + - Size of the string \c error_message should be at least 256-bytes long, to be able to contain the error message. + **/ + bool is_CImg3d(const bool full_check=true, char *const error_message=0) const { + if (error_message) *error_message = 0; + + // Check instance dimension and header. + if (_width!=1 || _height<8 || _depth!=1 || _spectrum!=1) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d has invalid dimensions (%u,%u,%u,%u)", + _width,_height,_depth,_spectrum); + return false; + } + const T *ptrs = _data, *const ptre = end(); + if (!_is_CImg3d(*(ptrs++),'C') || !_is_CImg3d(*(ptrs++),'I') || !_is_CImg3d(*(ptrs++),'m') || + !_is_CImg3d(*(ptrs++),'g') || !_is_CImg3d(*(ptrs++),'3') || !_is_CImg3d(*(ptrs++),'d')) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d header not found"); + return false; + } + if (!cimg::type::is_finite(*ptrs) || !cimg::type::is_finite(ptrs[1])) { + if (error_message) cimg_snprintf(error_message,256, + "Specified numbers of vertices/primitives (%g/%g) are invalid", + (double)*ptrs,(double)ptrs[1]); + return false; + } + + const unsigned int + nb_points = cimg::float2uint((float)*(ptrs++)), + nb_primitives = cimg::float2uint((float)*(ptrs++)); + + // Check consistency of number of vertices / primitives. + if (!full_check) { + const ulongT minimal_size = 8UL + 3*nb_points + 6*nb_primitives; + if (_data + minimal_size>ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) has only %lu values, " + "while at least %lu values were expected", + nb_points,nb_primitives,(unsigned long)size(),(unsigned long)minimal_size); + return false; + } + } + + // Check consistency of vertex data. + if (!nb_points) { + if (nb_primitives) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) defines no vertices but %u primitives", + nb_points,nb_primitives,nb_primitives); + return false; + } + if (ptrs!=ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) is an empty object but contains %u value%s " + "more than expected", + nb_points,nb_primitives,(unsigned int)(ptre - ptrs),(ptre - ptrs)>1?"s":""); + return false; + } + return true; + } + if (ptrs + 3*nb_points>ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) defines only %u vertices data", + nb_points,nb_primitives,(unsigned int)(ptre - ptrs)/3); + return false; + } + ptrs+=3*nb_points; + + // Check consistency of primitive data. + if (ptrs==ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) defines %u vertices but no primitive", + nb_points,nb_primitives,nb_points); + return false; + } + + if (!full_check) return true; + + for (unsigned int p = 0; p=nb_points) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid vertex index %u in point primitive [%u]", + nb_points,nb_primitives,i0,p); + return false; + } + } break; + case 5 : { // Sphere + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)); + ptrs+=3; + if (i0>=nb_points || i1>=nb_points) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u) in " + "sphere primitive [%u]", + nb_points,nb_primitives,i0,i1,p); + return false; + } + } break; + case 2 : case 6 : { // Segment + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)); + if (nb_inds==6) ptrs+=4; + if (i0>=nb_points || i1>=nb_points) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u) in " + "segment primitive [%u]", + nb_points,nb_primitives,i0,i1,p); + return false; + } + } break; + case 3 : case 9 : { // Triangle + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)), + i2 = cimg::float2uint((float)*(ptrs++)); + if (nb_inds==9) ptrs+=6; + if (i0>=nb_points || i1>=nb_points || i2>=nb_points) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u,%u) in " + "triangle primitive [%u]", + nb_points,nb_primitives,i0,i1,i2,p); + return false; + } + } break; + case 4 : case 12 : { // Quadrangle + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)), + i2 = cimg::float2uint((float)*(ptrs++)), + i3 = cimg::float2uint((float)*(ptrs++)); + if (nb_inds==12) ptrs+=8; + if (i0>=nb_points || i1>=nb_points || i2>=nb_points || i3>=nb_points) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u,%u,%u) in " + "quadrangle primitive [%u]", + nb_points,nb_primitives,i0,i1,i2,i3,p); + return false; + } + } break; + default : + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) defines an invalid primitive [%u] of size %u", + nb_points,nb_primitives,p,nb_inds); + return false; + } + if (ptrs>ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) has incomplete primitive data for primitive [%u], " + "%u values missing", + nb_points,nb_primitives,p,(unsigned int)(ptrs - ptre)); + return false; + } + } + + // Check consistency of color data. + if (ptrs==ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) defines no color/texture data", + nb_points,nb_primitives); + return false; + } + for (unsigned int c = 0; c=c) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid shared sprite/texture index %u " + "for primitive [%u]", + nb_points,nb_primitives,w,c); + return false; + } + } else ptrs+=w*h*s; + } + if (ptrs>ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) has incomplete color/texture data for primitive [%u], " + "%u values missing", + nb_points,nb_primitives,c,(unsigned int)(ptrs - ptre)); + return false; + } + } + + // Check consistency of opacity data. + if (ptrs==ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) defines no opacity data", + nb_points,nb_primitives); + return false; + } + for (unsigned int o = 0; o=o) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) refers to invalid shared opacity index %u " + "for primitive [%u]", + nb_points,nb_primitives,w,o); + return false; + } + } else ptrs+=w*h*s; + } + if (ptrs>ptre) { + if (error_message) cimg_snprintf(error_message,256, + "CImg3d (%u,%u) has incomplete opacity data for primitive [%u]", + nb_points,nb_primitives,o); + return false; + } + } + + // Check end of data. + if (ptrs1?"s":""); + return false; + } + return true; + } + + static bool _is_CImg3d(const T val, const char c) { + return val>=(T)c && val<(T)(c + 1); + } + + //@} + //------------------------------------- + // + //! \name Mathematical Functions + //@{ + //------------------------------------- + + // Define the math formula parser/compiler and expression evaluator. + struct _cimg_math_parser { + CImg mem; + CImg memtype, memmerge; + CImgList _code, &code, code_begin, code_end, + _code_begin_t, &code_begin_t, _code_end_t, &code_end_t; + CImg opcode; + const CImg *p_code_end, *p_code; + const CImg *const p_break; + + CImg expr, pexpr; + const CImg& imgin; + CImg &imgout; + CImgList& imglist; + + CImg _img_stats, &img_stats, constcache_vals; + CImgList _list_stats, &list_stats, _list_median, &list_median, _list_norm, &list_norm; + CImg mem_img_stats, constcache_inds; + + CImg level, variable_pos, reserved_label; + CImgList variable_def, macro_def, macro_body; + char *user_macro; + + unsigned int mempos, mem_img_median, mem_img_norm, mem_img_index, debug_indent, + result_dim, result_end_dim, break_type, constcache_size; + bool is_parallelizable, is_noncritical_run, is_end_code, is_fill, need_input_copy, return_comp; + double *result, *result_end; + cimg_uint64 rng; + const char *const calling_function, *s_op, *ss_op; + typedef double (*mp_func)(_cimg_math_parser&); + +#define _cimg_mp_calling_function s_calling_function()._data +#define _cimg_mp_check_const_scalar(arg,n_arg,mode) check_const_scalar(arg,n_arg,mode,ss,se,saved_char) +#define _cimg_mp_check_const_index(arg) check_const_index(arg,ss,se,saved_char) +#define _cimg_mp_check_notnan_index(arg) check_notnan_index(arg,ss,se,saved_char) +#define _cimg_mp_check_list() check_list(ss,se,saved_char) +#define _cimg_mp_check_matrix_square(arg,n_arg) check_matrix_square(arg,n_arg,ss,se,saved_char) +#define _cimg_mp_check_type(arg,n_arg,mode,N) check_type(arg,n_arg,mode,N,ss,se,saved_char) +#define _cimg_mp_const_scalar(val) _cimg_mp_return(const_scalar((double)(val))) +#define _cimg_mp_defunc(mp) (*(mp_func)(*(mp).opcode))(mp) +#define _cimg_mp_op(s) s_op = s; ss_op = ss +#define _cimg_mp_return(x) { *se = saved_char; s_op = previous_s_op; ss_op = previous_ss_op; return x; } +#define _cimg_mp_return_nan() _cimg_mp_return(_cimg_mp_slot_nan) +#define _cimg_mp_same(x) _cimg_mp_return(same(x)); +#define _cimg_mp_scalar0(op) _cimg_mp_return(scalar0(op)) +#define _cimg_mp_scalar1(op,i1) _cimg_mp_return(scalar1(op,i1)) +#define _cimg_mp_scalar2(op,i1,i2) _cimg_mp_return(scalar2(op,i1,i2)) +#define _cimg_mp_scalar3(op,i1,i2,i3) _cimg_mp_return(scalar3(op,i1,i2,i3)) +#define _cimg_mp_scalar4(op,i1,i2,i3,i4) _cimg_mp_return(scalar4(op,i1,i2,i3,i4)) +#define _cimg_mp_scalar5(op,i1,i2,i3,i4,i5) _cimg_mp_return(scalar5(op,i1,i2,i3,i4,i5)) +#define _cimg_mp_scalar6(op,i1,i2,i3,i4,i5,i6) _cimg_mp_return(scalar6(op,i1,i2,i3,i4,i5,i6)) +#define _cimg_mp_scalar7(op,i1,i2,i3,i4,i5,i6,i7) _cimg_mp_return(scalar7(op,i1,i2,i3,i4,i5,i6,i7)) +#define _cimg_mp_strerr \ + *se = saved_char; \ + for (s0 = ss; s0>expr._data && *s0!=';'; --s0) {} \ + if (*s0==';') ++s0; \ + while (cimg::is_blank(*s0)) ++s0; \ + cimg::strellipsize(s0,64) +#define _cimg_mp_vector1_v(op,i1) _cimg_mp_return(vector1_v(op,i1)) +#define _cimg_mp_vector2_sv(op,i1,i2) _cimg_mp_return(vector2_sv(op,i1,i2)) +#define _cimg_mp_vector2_vs(op,i1,i2) _cimg_mp_return(vector2_vs(op,i1,i2)) +#define _cimg_mp_vector2_vv(op,i1,i2) _cimg_mp_return(vector2_vv(op,i1,i2)) +#define _cimg_mp_vector3_vss(op,i1,i2,i3) _cimg_mp_return(vector3_vss(op,i1,i2,i3)) +#define _cimg_mp_vector4_vvss(op,i1,i2,i3,i4) _cimg_mp_return(vector4_vvss(op,i1,i2,i3,i4)) +#define _cimg_mp_vector4_vsss(op,i1,i2,i3,i4) _cimg_mp_return(vector4_vsss(op,i1,i2,i3,i4)) +#define _cimg_mp_vector4_svss(op,i1,i2,i3,i4) _cimg_mp_return(vector4_svss(op,i1,i2,i3,i4)) + + // Constructors / Destructors. + ~_cimg_math_parser() { + cimg::srand(rng); + } + + _cimg_math_parser(const char *const expression, const char *const funcname=0, + const CImg& img_input=CImg::const_empty(), CImg *const img_output=0, + CImgList *const list_images=0, const bool _is_fill=false): + code(_code),code_begin_t(_code_begin_t),code_end_t(_code_end_t), + p_break((CImg*)(cimg_ulong)-2),imgin(img_input), + imgout(img_output?*img_output:CImg::empty()),imglist(list_images?*list_images:CImgList::empty()), + img_stats(_img_stats),list_stats(_list_stats),list_median(_list_median),list_norm(_list_norm),user_macro(0), + mem_img_median(~0U),mem_img_norm(~0U),mem_img_index(~0U),debug_indent(0),result_dim(0),result_end_dim(0), + break_type(0),constcache_size(0),is_parallelizable(true),is_noncritical_run(false),is_fill(_is_fill), + need_input_copy(false),result_end(0),rng((cimg::_rand(),cimg::rng())), + calling_function(funcname?funcname:"cimg_math_parser") { + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + if (!expression || !*expression) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Empty expression.", + pixel_type(),_cimg_mp_calling_function); + const char *_expression = expression; + while (*_expression && (cimg::is_blank(*_expression) || *_expression==';')) ++_expression; + CImg::string(_expression).move_to(expr); + char *ps = &expr.back() - 1; + while (ps>expr._data && (cimg::is_blank(*ps) || *ps==';')) --ps; + *(++ps) = 0; expr._width = (unsigned int)(ps - expr._data + 1); + + // Ease the retrieval of previous non-space characters afterwards. + pexpr.assign(expr._width); + char c, *pe = pexpr._data; + for (ps = expr._data, c = ' '; *ps; ++ps) { + if (!cimg::is_blank(*ps)) c = *ps; else *ps = ' '; + *(pe++) = c; + } + *pe = 0; + level = get_level(expr); + + // Init constant values. +#define _cimg_mp_interpolation (reserved_label[31]!=~0U?reserved_label[31]:0) +#define _cimg_mp_boundary (reserved_label[32]!=~0U?reserved_label[32]:0) +#define _cimg_mp_slot_t 17 +#define _cimg_mp_slot_nan 30 +#define _cimg_mp_slot_x 31 +#define _cimg_mp_slot_y 32 +#define _cimg_mp_slot_z 33 +#define _cimg_mp_slot_c 34 + + mem.assign(96); + for (unsigned int i = 0; i<=10; ++i) mem[i] = (double)i; // mem[0-10] = 0...10 + for (unsigned int i = 1; i<=5; ++i) mem[i + 10] = -(double)i; // mem[11-15] = -1...-5 + mem[16] = 0.5; + mem[_cimg_mp_slot_t] = 0; // thread_id + mem[18] = (double)imgin._width; // w + mem[19] = (double)imgin._height; // h + mem[20] = (double)imgin._depth; // d + mem[21] = (double)imgin._spectrum; // s + mem[22] = (double)imgin._is_shared; // r + mem[23] = (double)imgin._width*imgin._height; // wh + mem[24] = (double)imgin._width*imgin._height*imgin._depth; // whd + mem[25] = (double)imgin._width*imgin._height*imgin._depth*imgin._spectrum; // whds + mem[26] = (double)imglist._width; // l + mem[27] = std::exp(1.); // e + mem[28] = cimg::PI; // pi + mem[29] = DBL_EPSILON; // eps + mem[_cimg_mp_slot_nan] = cimg::type::nan(); // nan + + // Type property for each value in memory : + // { -1 = reserved (e.g. variable) | 0 = computation scalar | + // 1 = compile-time constant | N>1 = start of a vector(#N-1) }. + memtype.assign(mem._width,1,1,1,0); + for (unsigned int i = 0; i<_cimg_mp_slot_x; ++i) memtype[i] = 1; + memtype[_cimg_mp_slot_t] = memtype[_cimg_mp_slot_x] = memtype[_cimg_mp_slot_y] = + memtype[_cimg_mp_slot_z] = memtype[_cimg_mp_slot_c] = -1; + mempos = _cimg_mp_slot_c + 1; + variable_pos.assign(8); + + reserved_label.assign(128,1,1,1,~0U); + // reserved_label[0-32] are used to store the memory index of these variables: + // [0] = wh, [1] = whd, [2] = whds, [3] = pi, [4] = im, [5] = iM, [6] = ia, [7] = iv, [8] = id, + // [9] = is, [10] = ip, [11] = ic, [12] = in, [13] = xm, [14] = ym, [15] = zm, [16] = cm, [17] = xM, + // [18] = yM, [19] = zM, [20] = cM, [21] = i0...[30] = i9, [31] = interpolation, [32] = boundary, [33] = eps + + // Compile expression into a sequence of opcodes. + s_op = ""; ss_op = expr._data; + const unsigned int ind_result = compile(expr._data,expr._data + expr._width - 1,0,0,0); + if (!is_const_scalar(ind_result)) { + if (is_vector(ind_result)) + CImg(&mem[ind_result] + 1,size(ind_result),1,1,1,true). + fill(cimg::type::nan()); + else if (ind_result!=_cimg_mp_slot_t) mem[ind_result] = cimg::type::nan(); + } + if (mem._width>=256 && mem._width - mempos>=mem._width/2) mem.resize(mempos,1,1,1,-1); + result_dim = size(ind_result); + result = mem._data + ind_result; + + // Free resources used for compiling expression and prepare evaluation. + memtype.assign(); + constcache_vals.assign(); + constcache_inds.assign(); + level.assign(); + variable_pos.assign(); + reserved_label.assign(); + expr.assign(); + pexpr.assign(); + opcode.assign(); + opcode._is_shared = true; + + // Execute begin() block if any specified. + if (code_begin) { + mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0; + p_code_end = code_begin.end(); + for (p_code = code_begin; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + } + p_code_end = code.end(); + } + + _cimg_math_parser(): + code(_code),code_begin_t(_code_begin_t),code_end_t(_code_end_t), + p_code_end(0),p_break((CImg*)(cimg_ulong)-2), + imgin(CImg::const_empty()),imgout(CImg::empty()),imglist(CImgList::empty()), + img_stats(_img_stats),list_stats(_list_stats),list_median(_list_median),list_norm(_list_norm),debug_indent(0), + result_dim(0),result_end_dim(0),break_type(0),constcache_size(0),is_parallelizable(true), + is_noncritical_run(false),is_fill(false),need_input_copy(false), + result_end(0),rng(0),calling_function(0) { + mem.assign(1 + _cimg_mp_slot_c,1,1,1,0); // Allow to skip 'is_empty?' test in operator()() + result = mem._data; + } + + _cimg_math_parser(const _cimg_math_parser& mp): + mem(mp.mem),code(mp.code),code_begin_t(mp.code_begin_t),code_end_t(mp.code_end_t), + p_code_end(mp.p_code_end),p_break(mp.p_break), + imgin(mp.imgin),imgout(mp.imgout),imglist(mp.imglist), + img_stats(mp.img_stats),list_stats(mp.list_stats),list_median(mp.list_median),list_norm(mp.list_norm), + debug_indent(0),result_dim(mp.result_dim),result_end_dim(mp.result_end_dim),break_type(0),constcache_size(0), + is_parallelizable(mp.is_parallelizable),is_noncritical_run(mp.is_noncritical_run),is_fill(mp.is_fill), + need_input_copy(mp.need_input_copy), + result(mem._data + (mp.result - mp.mem._data)), + result_end(mp.result_end?mem._data + (mp.result_end - mp.mem._data):0), + rng((cimg::_rand(),cimg::rng())),calling_function(0) { + +#if cimg_use_openmp!=0 + mem[_cimg_mp_slot_t] = (double)omp_get_thread_num(); + rng+=omp_get_thread_num(); +#endif + opcode.assign(); + opcode._is_shared = true; + } + + // Compilation procedure. + unsigned int compile(char *ss, char *se, const unsigned int depth, unsigned int *const p_ref, + unsigned char block_flags) { + if (depth>256) { + cimg::strellipsize(expr,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Call stack overflow (infinite recursion?), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + (ss - 4)>expr._data?ss - 4:expr._data); + } + char c1, c2; + + // Simplify expression when possible. + do { + c2 = 0; + if (ssss && (cimg::is_blank(c1 = *(se - 1)) || c1==';')) --se; // Remove trailing blanks and ';' + } + while (*ss=='(' && *(se - 1)==')' && std::strchr(ss,')')==se - 1) { // Remove useless start/end parentheses + ++ss; --se; c2 = 1; + } + if (*ss=='_' && ss + 1=se) return _cimg_mp_slot_nan; + c2 = 1; + } + } while (c2 && ss::%s: %s%s Missing %s, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + *s_op=='F'?"argument":"item", + ss_op); + } + + static const size_t siz_ref = 7*sizeof(unsigned int); + const char *const previous_s_op = s_op, *const previous_ss_op = ss_op; + const unsigned int depth1 = depth + 1; + unsigned int pos, p1, p2, p3, arg1, arg2, arg3, arg4, arg5, arg6; + char + *const se1 = se - 1, *const se2 = se - 2, *const se3 = se - 3, + *const ss1 = ss + 1, *const ss2 = ss + 2, *const ss3 = ss + 3, *const ss4 = ss + 4, + *const ss5 = ss + 5, *const ss6 = ss + 6, *const ss7 = ss + 7, *const ss8 = ss + 8, + *s, *ps, *ns, *s0, *s1, *s2, *s3, sep = 0, end = 0; + double val = 0, val1, val2; + mp_func op; + return_comp = false; + + // Bits of 'block_flags' tell about in which code block we currently are: + // 0: critical(), 1: begin(), 2: begin_t(), 3: end(), 4: end_t(), 5: is_new_variable_assignment + const bool + is_inside_critical = (bool)(block_flags&1), + is_inside_begin = (bool)(block_flags&2), + is_inside_begin_t = (bool)(block_flags&4), + is_inside_end = (bool)(block_flags&8), + is_inside_end_t = (bool)(block_flags&16), + is_new_variable_assignment = (bool)(block_flags&32); + block_flags&=31; // Deeper calls to 'compile()' won't automatically pass 'is_new_variable_assigment=true' + + // 'p_ref' is a 'unsigned int[7]' used to return a reference to an image or vector value + // linked to the returned memory slot (reference that cannot be determined at compile time). + // p_ref[0] can be { 0 = scalar (unlinked) | 1 = vector value | 2 = image value (offset) | + // 3 = image value (coordinates) | 4 = image value as a vector (offset) | + // 5 = image value as a vector (coordinates) }. + // Depending on p_ref[0], the remaining p_ref[k] have the following meaning: + // When p_ref[0]==0, p_ref is actually unlinked. + // When p_ref[0]==1, p_ref = [ 1, vector_ind, offset ]. + // When p_ref[0]==2, p_ref = [ 2, image_ind (or ~0U), is_relative, offset ]. + // When p_ref[0]==3, p_ref = [ 3, image_ind (or ~0U), is_relative, x, y, z, c ]. + // When p_ref[0]==4, p_ref = [ 4, image_ind (or ~0U), is_relative, offset ]. + // When p_ref[0]==5, p_ref = [ 5, image_ind (or ~0U), is_relative, x, y, z ]. + if (p_ref) { *p_ref = 0; p_ref[1] = p_ref[2] = p_ref[3] = p_ref[4] = p_ref[5] = p_ref[6] = ~0U; } + + const char saved_char = *se; *se = 0; + const unsigned int clevel = level[ss - expr._data], clevel1 = clevel + 1; + bool is_sth, is_relative; + CImg ref; + CImg variable_name; + CImgList l_opcode; + + // Look for a single value or a pre-defined variable. + int nb = 0; + is_sth = *ss=='-'; + s = ss + (*ss=='+' || is_sth?1:0); + if (*s=='i' || *s=='I' || *s=='n' || *s=='N') { // Particular cases : +/-NaN and +/-Inf + if (!cimg::strcasecmp(s,"inf")) { val = cimg::type::inf(); nb = 1; } + else if (!cimg::strcasecmp(s,"nan")) { val = cimg::type::nan(); nb = 1; } + } else if (*s=='0' && (s[1]=='x' || s[1]=='X') && s[2]!='-') { // Hexadecimal literal + cimg_uint64 num; + if ((nb = cimg_sscanf(s + 2,cimg_fhex64 "%c",&num,&sep))==1 || (nb==2 && sep=='%')) + val = (double)num; + } else if (*s=='0' && (s[1]=='b' || s[1]=='B') && s[2]!='-') { // Binary literal + variable_name.assign(65); + if ((nb = cimg_sscanf(s + 2,"%64[01]%c",variable_name.data(),&sep))==1 || (nb==2 && sep=='%')) + val = (double)std::strtoll(variable_name,0,2); + variable_name.assign(); + } + if (is_sth && nb) val = -val; + else if (!nb) nb = cimg_sscanf(ss,"%lf%c%c",&val,&(sep=0),&(end=0)); + if (nb==1) _cimg_mp_const_scalar(val); + if (nb==2 && sep=='%') _cimg_mp_const_scalar(val/100); + + if (ss1==se) switch (*ss) { // One-char reserved variable + case 'c' : _cimg_mp_return(reserved_label[(int)'c']!=~0U?reserved_label[(int)'c']:_cimg_mp_slot_c); + case 'd' : _cimg_mp_return(reserved_label[(int)'d']!=~0U?reserved_label[(int)'d']:20); + case 'e' : _cimg_mp_return(reserved_label[(int)'e']!=~0U?reserved_label[(int)'e']:27); + case 'h' : _cimg_mp_return(reserved_label[(int)'h']!=~0U?reserved_label[(int)'h']:19); + case 'k' : + if (reserved_label[(int)'k']!=~0U) _cimg_mp_return(reserved_label[(int)'k']); + pos = get_mem_img_index(); + if (pos!=~0U) _cimg_mp_return(pos); + _cimg_mp_return_nan(); + case 'l' : _cimg_mp_return(reserved_label[(int)'l']!=~0U?reserved_label[(int)'l']:26); + case 'r' : _cimg_mp_return(reserved_label[(int)'r']!=~0U?reserved_label[(int)'r']:22); + case 's' : _cimg_mp_return(reserved_label[(int)'s']!=~0U?reserved_label[(int)'s']:21); + case 't' : _cimg_mp_return(reserved_label[(int)'t']!=~0U?reserved_label[(int)'t']:_cimg_mp_slot_t); + case 'n' : + if (reserved_label[(int)'n']!=~0U) _cimg_mp_return(reserved_label[(int)'n']); +#if cimg_use_openmp!=0 + _cimg_mp_const_scalar((double)omp_get_max_threads()); +#else + _cimg_mp_return(1); +#endif + case 'w' : _cimg_mp_return(reserved_label[(int)'w']!=~0U?reserved_label[(int)'w']:18); + case 'x' : _cimg_mp_return(reserved_label[(int)'x']!=~0U?reserved_label[(int)'x']:_cimg_mp_slot_x); + case 'y' : _cimg_mp_return(reserved_label[(int)'y']!=~0U?reserved_label[(int)'y']:_cimg_mp_slot_y); + case 'z' : _cimg_mp_return(reserved_label[(int)'z']!=~0U?reserved_label[(int)'z']:_cimg_mp_slot_z); + case 'u' : + if (reserved_label[(int)'u']!=~0U) _cimg_mp_return(reserved_label[(int)'u']); + _cimg_mp_scalar0(mp_rand_double_0_1); + case 'v' : + if (reserved_label[(int)'v']!=~0U) _cimg_mp_return(reserved_label[(int)'v']); + _cimg_mp_scalar0(mp_rand_int_0_1); + case 'g' : + if (reserved_label[(int)'g']!=~0U) _cimg_mp_return(reserved_label[(int)'g']); + _cimg_mp_scalar0(mp_rand_double_gaussian); + case 'i' : + if (reserved_label[(int)'i']!=~0U) _cimg_mp_return(reserved_label[(int)'i']); + _cimg_mp_scalar0(mp_i); + case 'I' : + _cimg_mp_op("Variable 'I'"); + if (reserved_label[(int)'I']!=~0U) _cimg_mp_return(reserved_label[(int)'I']); + if (!imgin._spectrum) _cimg_mp_return(0); + need_input_copy = true; + pos = vector(imgin._spectrum); + CImg::vector((ulongT)mp_Joff,pos,0,0,imgin._spectrum).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + case 'R' : + if (reserved_label[(int)'R']!=~0U) _cimg_mp_return(reserved_label[(int)'R']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,0,0,0); + case 'G' : + if (reserved_label[(int)'G']!=~0U) _cimg_mp_return(reserved_label[(int)'G']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,1,0,0); + case 'B' : + if (reserved_label[(int)'B']!=~0U) _cimg_mp_return(reserved_label[(int)'B']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,2,0,0); + case 'A' : + if (reserved_label[(int)'A']!=~0U) _cimg_mp_return(reserved_label[(int)'A']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,3,0,0); + } + else if (ss2==se) { // Two-chars reserved variable + arg1 = arg2 = ~0U; + if (*ss=='w' && *ss1=='h') // wh + _cimg_mp_return(reserved_label[0]!=~0U?reserved_label[0]:23); + if (*ss=='p' && *ss1=='i') // pi + _cimg_mp_return(reserved_label[3]!=~0U?reserved_label[3]:28); + if (*ss=='i') { + if (*ss1>='0' && *ss1<='9') { // i0...i9 + pos = 21 + *ss1 - '0'; + if (reserved_label[pos]!=~0U) _cimg_mp_return(reserved_label[pos]); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,pos - 21,0,0); + } + switch (*ss1) { + case 'a' : arg1 = 6; arg2 = 2; break; // ia + case 'c' : // ic + if (reserved_label[11]!=~0U) _cimg_mp_return(reserved_label[11]); + if (mem_img_median==~0U) mem_img_median = imgin?const_scalar(imgin.median()):0; + _cimg_mp_return(mem_img_median); + break; + case 'd' : arg1 = 8; arg2 = 3; break; // id + case 'm' : arg1 = 4; arg2 = 0; break; // im + case 'M' : arg1 = 5; arg2 = 1; break; // iM + case 'n' : // in + if (reserved_label[12]!=~0U) _cimg_mp_return(reserved_label[12]); + if (mem_img_norm==~0U) mem_img_norm = imgin?const_scalar(imgin.magnitude(2)):0; + _cimg_mp_return(mem_img_norm); + break; + case 'p' : arg1 = 10; arg2 = 13; break; // ip + case 's' : arg1 = 9; arg2 = 12; break; // is + case 'v' : arg1 = 7; arg2 = 3; break; // iv + } + } + else if (*ss1=='m') switch (*ss) { + case 'x' : arg1 = 13; arg2 = 4; break; // xm + case 'y' : arg1 = 14; arg2 = 5; break; // ym + case 'z' : arg1 = 15; arg2 = 6; break; // zm + case 'c' : arg1 = 16; arg2 = 7; break; // cm + } + else if (*ss1=='M') switch (*ss) { + case 'x' : arg1 = 17; arg2 = 8; break; // xM + case 'y' : arg1 = 18; arg2 = 9; break; // yM + case 'z' : arg1 = 19; arg2 = 10; break; // zM + case 'c' : arg1 = 20; arg2 = 11; break; // cM + } + if (arg1!=~0U) { + if (reserved_label[arg1]!=~0U) _cimg_mp_return(reserved_label[arg1]); + if (!img_stats) { + img_stats.assign(1,14,1,1,0).fill(imgin.get_stats(),false); + mem_img_stats.assign(1,14,1,1,~0U); + } + if (mem_img_stats[arg2]==~0U) mem_img_stats[arg2] = const_scalar(img_stats[arg2]); + if (arg1==8) _cimg_mp_const_scalar(std::sqrt(img_stats[arg2])); // id: std variation + _cimg_mp_return(mem_img_stats[arg2]); + } + } else if (ss3==se) { // Three-chars reserved variable + if (*ss=='w' && *ss1=='h' && *ss2=='d') // whd + _cimg_mp_return(reserved_label[1]!=~0U?reserved_label[1]:24); + if (*ss=='e' && *ss1=='p' && *ss2=='s') // eps + _cimg_mp_return(reserved_label[33]!=~0U?reserved_label[33]:29); + } else if (ss4==se) { // Four-chars reserved variable + if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='s') // whds + _cimg_mp_return(reserved_label[2]!=~0U?reserved_label[2]:25); + } + + pos = ~0U; + is_sth = false; + + for (s0 = ss, s = ss1; s='i'?1:3,0); + if (is_vector(arg2)) { + if (p1!=~0U) { + _cimg_mp_check_const_index(p1); + p3 = (unsigned int)cimg::mod((int)mem[p1],imglist.width()); + p2 = imglist[p3]._spectrum; + } else p2 = imgin._spectrum; + if (!p2) _cimg_mp_return(0); + _cimg_mp_check_type(arg2,2,2,p2); + } else p2 = 0; + + if (p_ref) { + *p_ref = *ss=='I' || *ss=='J'?4:2; + p_ref[1] = p1; + p_ref[2] = (unsigned int)is_relative; + p_ref[3] = arg1; + if (is_vector(arg2)) + set_reserved_vector(arg2); // Prevent from being used in further optimization + else if (is_comp_scalar(arg2)) memtype[arg2] = -1; + if (is_comp_scalar(arg1)) memtype[arg1] = -1; + } + + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg2); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg2,p1,arg1).move_to(code); + else if (is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s), + arg2,p1,arg1).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg2,p1,arg1,size(arg2)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg2,arg1).move_to(code); + else if (is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s), + arg2,arg1).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg2,arg1,size(arg2)).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ss1=='(' && *ve1==')') { // i/j/I/J(_#ind,_x,_y,_z,_c) = value + if (!is_inside_critical) is_parallelizable = false; + if (*ss2=='#') { // Index specified + s0 = ss3; while (s0='i'?1:3,0); + if (s01) { + arg2 = arg1 + 1; + if (p2>2) { + arg3 = arg2 + 1; + if (p2>3) arg4 = arg3 + 1; + } + } + } else if (s1='i') + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg5,p1,arg1,arg2,arg3,arg4).move_to(code); + else if (is_scalar(arg5)) + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s), + arg5,p1,arg1,arg2,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg5,p1,arg1,arg2,arg3,size(arg5)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg5); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg5,arg1,arg2,arg3,arg4).move_to(code); + else if (is_scalar(arg5)) + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s), + arg5,arg1,arg2,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg5,arg1,arg2,arg3,size(arg5)).move_to(code); + } + _cimg_mp_return(arg5); + } + } + + // Assign vector value (direct). + if (l_variable_name>3 && *ve1==']' && *ss!='[') { + s0 = ve1; while (s0>ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0; + if (s0>ss && cimg::is_varname(ss,s0 - ss)) { + variable_name[s0 - ss] = 0; // Remove brackets in variable name + get_variable_pos(variable_name,arg1,arg2); + arg1 = arg2!=~0U?reserved_label[arg2]:arg1!=~0U?variable_pos[arg1]:~0U; // Vector slot + if (arg1==~0U || is_scalar(arg1)) + compile(ss,s0,depth1,0,block_flags); // Variable does not exist or is not a vector -> error + + arg2 = compile(++s0,ve1,depth1,0,block_flags); // Index + arg3 = compile(s + 1,se,depth1,0,block_flags); // Value to assign + _cimg_mp_check_type(arg3,2,1,0); + + if (is_const_scalar(arg2)) { // Constant index -> return corresponding variable slot directly + nb = (int)mem[arg2]; + if (nb>=0 && nb<(int)size(arg1)) { + arg1+=nb + 1; + CImg::vector((ulongT)mp_copy,arg1,arg3).move_to(code); + _cimg_mp_return(arg1); + } + compile(ss,s,depth1,0,block_flags); // Out-of-bounds reference -> error + } + + // Case of non-constant index -> return assigned value + linked reference + if (p_ref) { + *p_ref = 1; + p_ref[1] = arg1; + p_ref[2] = arg2; + if (is_comp_scalar(arg3)) memtype[arg3] = -1; // Prevent from being used in further optimization + if (is_comp_scalar(arg2)) memtype[arg2] = -1; + } + CImg::vector((ulongT)mp_vector_set_off,arg3,arg1,(ulongT)size(arg1),arg2). + move_to(code); + _cimg_mp_return(arg3); + } + } + + // Assign user-defined macro. + if (l_variable_name>2 && *ve1==')' && *ss!='(') { + s0 = ve1; while (s0>ss && *s0!='(') --s0; + if (cimg::is_varname(ss,s0 - ss) && std::strncmp(variable_name,"debug(",6) && + std::strncmp(variable_name,"print(",6)) { // Valid macro name + s0 = variable_name._data + (s0 - ss); + *s0 = 0; + s1 = variable_name._data + l_variable_name - 1; // Pointer to closing parenthesis + CImg(variable_name._data,(unsigned int)(s0 - variable_name._data + 1)).move_to(macro_def,0); + ++s; while (*s && cimg::is_blank(*s)) ++s; + CImg(s,(unsigned int)(se - s + 1)).move_to(macro_body,0); + + bool is_variadic = false; + p1 = 1; // Index of current parsed argument + for (s = s0 + 1; s<=s1; ++p1, s = ns + 1) { // Parse function arguments + if (is_variadic && p1>1) { + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Multiple arguments not allowed when first one is " + "variadic, in macro definition '%s()', in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data,s0); + } + if (p1>24) { + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Too much specified arguments (>24), in macro " + "definition '%s()', in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data,s0); + } + while (*s && cimg::is_blank(*s)) ++s; + if (*s==')' && p1==1) break; // Function has no arguments + s2 = s; // Start of the argument name + is_sth = true; // is_valid_argument_name? + if (*s2>='0' && *s2<='9') is_sth = false; + else for (ns = s2; nss2 && *ns=='.' && ns[1]=='.' && ns[2]=='.') { is_variadic = true; ns+=3; } + else if (*ns=='.') is_sth = false; + while (*ns && cimg::is_blank(*ns)) ++ns; + + if (!is_sth || s2==s3 || (*ns!=',' && ns!=s1)) { + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: %s name specified for argument %u when defining " + "macro '%s()', in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + is_sth?"Empty":"Invalid",p1, + variable_name._data,s0); + } + + if (ns==s1 || *ns==',' || (is_variadic && *ns=='.')) { // New argument found + *s3 = 0; + p2 = (unsigned int)(s3 - s2); // Argument length + for (ps = std::strstr(macro_body[0],s2); ps; ps = std::strstr(ps,s2)) { // Replace by arg number + if (!((ps>macro_body[0]._data && cimg::is_varchar(*(ps - 1))) || + (ps + p2macro_body[0]._data && *(ps - 1)=='#') { // Remove pre-number sign + *(ps - 1) = (char)p1; + if (ps + p26 && !std::strncmp(variable_name,"const ",6); + s0 = variable_name._data; + if (is_const) { + s0+=6; while (cimg::is_blank(*s0)) ++s0; + variable_name.resize(variable_name.end() - s0,1,1,1,0,0,1); + } + if (cimg::is_varname(variable_name)) { // Valid variable name + + // Assign variable (direct). + get_variable_pos(variable_name,arg1,arg2); + arg1 = arg2!=~0U?reserved_label[arg2]:arg1!=~0U?variable_pos[arg1]:~0U; + arg3 = compile(s + 1,se,depth1,0,block_flags|(arg1==~0U?32:0)); + is_sth = return_comp; // is arg3 a new blank object? + if (is_const) _cimg_mp_check_const_scalar(arg3,2,0); + + if (arg1==~0U) { // Create new variable + if (is_vector(arg3)) { // Vector variable + arg1 = is_sth || is_comp_vector(arg3)?arg3:copy(arg3); + set_reserved_vector(arg1); // Prevent from being used in further optimization + } else { // Scalar variable + if (is_const) arg1 = arg3; + else { + arg1 = is_sth || is_comp_scalar(arg3)?arg3:scalar1(mp_copy,arg3); + memtype[arg1] = -1; + } + } + + if (arg2!=~0U) reserved_label[arg2] = arg1; + else { + if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0); + variable_pos[variable_def._width] = arg1; + variable_name.move_to(variable_def); + } + + } else { // Variable already exists -> assign a new value + if (is_const || is_const_scalar(arg1)) { + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid assignment of %sconst variable '%s'%s, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + is_const_scalar(arg1)?"":"non-", + variable_name._data, + !is_const_scalar(arg1) && is_const?" as a const variable":"", + s0); + } + _cimg_mp_check_type(arg3,2,is_vector(arg1)?3:1,size(arg1)); + if (is_vector(arg1)) { // Vector + if (is_vector(arg3)) // From vector + CImg::vector((ulongT)mp_vector_copy,arg1,arg3,(ulongT)size(arg1)). + move_to(code); + else // From scalar + CImg::vector((ulongT)mp_vector_init,arg1,1,(ulongT)size(arg1),arg3). + move_to(code); + } else // Scalar + CImg::vector((ulongT)mp_copy,arg1,arg3).move_to(code); + } + return_comp = false; + _cimg_mp_return(arg1); + } + + // Assign lvalue (variable name was not valid for a direct assignment). + arg1 = ~0U; + is_sth = (bool)std::strchr(variable_name,'?'); // Contains_ternary_operator? + if (is_sth) break; // Do nothing and make ternary operator priority over assignment + + if (l_variable_name>2 && (std::strchr(variable_name,'(') || std::strchr(variable_name,'['))) { + ref.assign(7); + arg1 = compile(ss,s,depth1,ref,block_flags); // Lvalue slot + arg2 = compile(s + 1,se,depth1,0,block_flags); // Value to assign + + if (*ref==1) { // Vector value (scalar): V[k] = scalar + _cimg_mp_check_type(arg2,2,1,0); + arg3 = ref[1]; // Vector slot + arg4 = ref[2]; // Index + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + CImg::vector((ulongT)mp_vector_set_off,arg2,arg3,(ulongT)size(arg3),arg4). + move_to(code); + _cimg_mp_return(arg2); + } + + if (*ref==2) { // Image value (scalar): i/j[_#ind,off] = scalar + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg2,p1,arg3).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg2,arg3).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c) = scalar + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + arg6 = ref[6]; // C + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg2,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg2,arg3,arg4,arg5,arg6).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off] = value + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg2); + if (is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s), + arg2,p1,arg3).move_to(code); + else { + _cimg_mp_check_const_index(p1); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg2,p1,arg3,size(arg2)).move_to(code); + } + + } else { + if (!imgout) _cimg_mp_return(arg2); + if (is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s), + arg2,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg2,arg3,size(arg2)).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) = value + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg2); + if (is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s), + arg2,p1,arg3,arg4,arg5).move_to(code); + else { + _cimg_mp_check_const_index(p1); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg2,p1,arg3,arg4,arg5,size(arg2)).move_to(code); + } + + } else { + if (!imgout) _cimg_mp_return(arg2); + if (is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s), + arg2,arg3,arg4,arg5).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg2,arg3,arg4,arg5,size(arg2)).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (is_vector(arg1)) { // Vector variable: V = value + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg2)) // From vector + CImg::vector((ulongT)mp_vector_copy,arg1,arg2,(ulongT)size(arg1)). + move_to(code); + else // From scalar + CImg::vector((ulongT)mp_vector_init,arg1,1,(ulongT)size(arg1),arg2). + move_to(code); + _cimg_mp_return(arg1); + } + + if (is_reserved(arg1)) { // Scalar variable: s = scalar + _cimg_mp_check_type(arg2,2,1,0); + CImg::vector((ulongT)mp_copy,arg1,arg2).move_to(code); + _cimg_mp_return(arg1); + } + } + + // No assignment expressions match -> error + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid %slvalue '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + arg1!=~0U && is_const_scalar(arg1)?"const ":"", + variable_name._data,s0); + } + + // Apply unary/binary/ternary operators. The operator precedences should be the same as in C++. + for (s = se2, ps = se3, ns = ps - 1; s>ss1; --s, --ps, --ns) // Here, ns = ps - 1 + if (*s=='=' && (*ps=='*' || *ps=='/' || *ps=='^') && *ns==*ps && + level[s - expr._data]==clevel) { // Self-operators for complex numbers only (**=,//=,^^=) + _cimg_mp_op(*ps=='*'?"Operator '**='":*ps=='/'?"Operator '//='":"Operator '^^='"); + + ref.assign(7); + arg1 = compile(ss,ns,depth1,ref,block_flags); // Vector slot + arg2 = compile(s + 1,se,depth1,0,block_flags); // Right operand + _cimg_mp_check_type(arg1,1,2,2); + _cimg_mp_check_type(arg2,2,3,2); + if (is_vector(arg2)) { // Complex **= complex + if (*ps=='*') + CImg::vector((ulongT)mp_complex_mul,arg1,arg1,arg2).move_to(code); + else if (*ps=='/') + CImg::vector((ulongT)mp_complex_div_vv,arg1,arg1,arg2).move_to(code); + else + CImg::vector((ulongT)mp_complex_pow_vv,arg1,arg1,arg2).move_to(code); + } else { // Complex **= scalar + if (arg2==1) _cimg_mp_return(arg1); + if (*ps=='*') self_vector_s(arg1,mp_self_mul,arg2); + else if (*ps=='/') self_vector_s(arg1,mp_self_div,arg2); + else if (arg2==2) CImg::vector((ulongT)mp_complex_sqr,arg1,arg1 + 1,arg1 + 2).move_to(code); + else CImg::vector((ulongT)mp_complex_pow_vs,arg1,arg1,arg2).move_to(code); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off] **= value + if (!is_inside_critical) is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg1); + _cimg_mp_check_const_index(p1); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,size(arg1)).move_to(code); + } + + } else if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) **= value + if (!is_inside_critical) is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg1); + _cimg_mp_check_const_index(p1); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,size(arg1)).move_to(code); + } + } + + _cimg_mp_return(arg1); + } + + for (s = se2, ps = se3, ns = ps - 1; s>ss1; --s, --ps, --ns) // Here, ns = ps - 1 + if (*s=='=' && (*ps=='+' || *ps=='-' || *ps=='*' || *ps=='/' || (*ps=='%' && s[1]!='=') || + *ps=='&' || *ps=='^' || *ps=='|' || + (*ps=='>' && *ns=='>') || (*ps=='<' && *ns=='<')) && + level[s - expr._data]==clevel) { // Self-operators (+=,-=,*=,/=,%=,>>=,<<=,&=,^=,|=) + switch (*ps) { + case '+' : op = mp_self_add; _cimg_mp_op("Operator '+='"); break; + case '-' : op = mp_self_sub; _cimg_mp_op("Operator '-='"); break; + case '*' : op = mp_self_mul; _cimg_mp_op("Operator '*='"); break; + case '/' : op = mp_self_div; _cimg_mp_op("Operator '/='"); break; + case '%' : op = mp_self_modulo; _cimg_mp_op("Operator '%='"); break; + case '<' : op = mp_self_bitwise_left_shift; _cimg_mp_op("Operator '<<='"); break; + case '>' : op = mp_self_bitwise_right_shift; _cimg_mp_op("Operator '>>='"); break; + case '&' : op = mp_self_bitwise_and; _cimg_mp_op("Operator '&='"); break; + case '|' : op = mp_self_bitwise_or; _cimg_mp_op("Operator '|='"); break; + default : op = mp_self_pow; _cimg_mp_op("Operator '^='"); break; + } + s1 = *ps=='>' || *ps=='<'?ns:ps; + + ref.assign(7); + arg1 = compile(ss,s1,depth1,ref,block_flags); // Variable slot + arg2 = compile(s + 1,se,depth1,0,block_flags); // Value to apply + + // Check for particular case to be simplified. + if ((op==mp_self_add || op==mp_self_sub) && !arg2) _cimg_mp_return(arg1); + if ((op==mp_self_mul || op==mp_self_div || op==mp_self_pow) && arg2==1) _cimg_mp_return(arg1); + if (op==mp_self_pow && (arg2==0 || arg2==2)) { + if (!arg2) CImg::vector((ulongT)mp_copy,arg1,1).move_to(code); + else CImg::vector((ulongT)mp_sqr,arg1,arg1).move_to(code); + _cimg_mp_return(arg1); + } + + // Apply operator on a copy to prevent modifying a constant or a variable. + if (*ref && (is_const_scalar(arg1) || is_vector(arg1) || is_reserved(arg1))) + arg1 = copy(arg1); + + if (*ref==1) { // Vector value (scalar): V[k] += scalar + _cimg_mp_check_type(arg2,2,1,0); + arg3 = ref[1]; // Vector slot + arg4 = ref[2]; // Index + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + CImg::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)size(arg3),arg4). + move_to(code); + _cimg_mp_return(arg1); + } + + if (*ref==2) { // Image value (scalar): i/j[_#ind,off] += scalar + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg1,p1,arg3).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg1,arg3).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c) += scalar + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + arg6 = ref[6]; // C + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg1,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg1,arg3,arg4,arg5,arg6).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off] += value + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (is_scalar(arg2)) self_vector_s(arg1,op,arg2); else self_vector_v(arg1,op,arg2); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,size(arg1)).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) += value + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + if (is_scalar(arg2)) self_vector_s(arg1,op,arg2); else self_vector_v(arg1,op,arg2); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,size(arg1)).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (is_vector(arg1)) { // Vector variable: V += value + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg2)) self_vector_v(arg1,op,arg2); // Vector += vector + else self_vector_s(arg1,op,arg2); // Vector += scalar + _cimg_mp_return(arg1); + } + + if (is_reserved(arg1)) { // Scalar variable: s += scalar + _cimg_mp_check_type(arg2,2,1,0); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + _cimg_mp_return(arg1); + } + + variable_name.assign(ss,(unsigned int)(s - ss)).back() = 0; + cimg::strpare(variable_name,false,true); + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid %slvalue '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + is_const_scalar(arg1)?"const ":"", + variable_name._data,s0); + } + + for (s = ss1; s::vector((ulongT)mp_if,pos,arg1,arg2,arg3, + p3 - p2,code._width - p3,arg4).move_to(code,p2); + return_comp = true; + _cimg_mp_return(pos); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='|' && *ns=='|' && level[s - expr._data]==clevel) { // Logical or ('||') + _cimg_mp_op("Operator '||'"); + arg1 = compile(ss,s,depth1,0,block_flags); + _cimg_mp_check_type(arg1,1,1,0); + if (is_const_scalar(arg1) && mem[arg1]) _cimg_mp_return(1); + p2 = code._width; + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,1,0); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1] || mem[arg2]); + if (!arg1) _cimg_mp_scalar1(mp_bool,arg2); + pos = scalar(); + CImg::vector((ulongT)mp_logical_or,pos,arg1,arg2,code._width - p2).move_to(code,p2); + return_comp = true; + _cimg_mp_return(pos); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='&' && *ns=='&' && level[s - expr._data]==clevel) { // Logical and ('&&') + _cimg_mp_op("Operator '&&'"); + arg1 = compile(ss,s,depth1,0,block_flags); + _cimg_mp_check_type(arg1,1,1,0); + if (!arg1) _cimg_mp_return(0); + p2 = code._width; + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,1,0); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1] && mem[arg2]); + if (is_const_scalar(arg1) && mem[arg1]) _cimg_mp_scalar1(mp_bool,arg2); + pos = scalar(); + CImg::vector((ulongT)mp_logical_and,pos,arg1,arg2,code._width - p2). + move_to(code,p2); + return_comp = true; + _cimg_mp_return(pos); + } + + for (s = se2; s>ss; --s) + if (*s=='|' && level[s - expr._data]==clevel) { // Bitwise or ('|') + _cimg_mp_op("Operator '|'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_or,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) { + if (!arg2) _cimg_mp_same(arg1); + _cimg_mp_vector2_vs(mp_bitwise_or,arg1,arg2); + } + if (is_scalar(arg1) && is_vector(arg2)) { + if (!arg1) _cimg_mp_same(arg2); + _cimg_mp_vector2_sv(mp_bitwise_or,arg1,arg2); + } + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar((longT)mem[arg1] | (longT)mem[arg2]); + if (!arg2) _cimg_mp_same(arg1); + if (!arg1) _cimg_mp_same(arg2); + _cimg_mp_scalar2(mp_bitwise_or,arg1,arg2); + } + + for (s = se2; s>ss; --s) + if (*s=='&' && level[s - expr._data]==clevel) { // Bitwise and ('&') + _cimg_mp_op("Operator '&'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_and,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_bitwise_and,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_and,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar((longT)mem[arg1] & (longT)mem[arg2]); + if (!arg1 || !arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_bitwise_and,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='!' && *ns=='=' && level[s - expr._data]==clevel) { // Not equal to ('!=') + _cimg_mp_op("Operator '!='"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + if (arg1==arg2) _cimg_mp_return(0); + p1 = size(arg1); + p2 = size(arg2); + if (p1 || p2) { + if (p1 && p2 && p1!=p2) _cimg_mp_return(1); + pos = scalar(); + CImg::vector((ulongT)mp_vector_neq,pos,arg1,p1,arg2,p2,11,1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]!=mem[arg2]); + _cimg_mp_scalar2(mp_neq,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='=' && *ns=='=' && level[s - expr._data]==clevel) { // Equal to ('==') + _cimg_mp_op("Operator '=='"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + if (arg1==arg2) _cimg_mp_return(1); + p1 = size(arg1); + p2 = size(arg2); + if (p1 || p2) { + if (p1 && p2 && p1!=p2) _cimg_mp_return(0); + pos = scalar(); + CImg::vector((ulongT)mp_vector_eq,pos,arg1,p1,arg2,p2,11,1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]==mem[arg2]); + _cimg_mp_scalar2(mp_eq,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='<' && *ns=='=' && level[s - expr._data]==clevel) { // Less or equal than ('<=') + _cimg_mp_op("Operator '<='"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_lte,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lte,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_lte,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]<=mem[arg2]); + if (arg1==arg2) _cimg_mp_return(1); + _cimg_mp_scalar2(mp_lte,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='>' && *ns=='=' && level[s - expr._data]==clevel) { // Greater or equal than ('>=') + _cimg_mp_op("Operator '>='"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_gte,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gte,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_gte,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]>=mem[arg2]); + if (arg1==arg2) _cimg_mp_return(1); + _cimg_mp_scalar2(mp_gte,arg1,arg2); + } + + for (s = se2, ns = se1, ps = se3; s>ss; --s, --ns, --ps) + if (*s=='<' && *ns!='<' && *ps!='<' && level[s - expr._data]==clevel) { // Less than ('<') + _cimg_mp_op("Operator '<'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_lt,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lt,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_lt,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]ss; --s, --ns, --ps) + if (*s=='>' && *ns!='>' && *ps!='>' && level[s - expr._data]==clevel) { // Greater than ('>') + _cimg_mp_op("Operator '>'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_gt,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gt,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_gt,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]>mem[arg2]); + if (arg1==arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_gt,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='<' && *ns=='<' && level[s - expr._data]==clevel) { // Left bit shift ('<<') + _cimg_mp_op("Operator '<<'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) + _cimg_mp_vector2_vv(mp_bitwise_left_shift,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) { + if (!arg2) _cimg_mp_same(arg1); + _cimg_mp_vector2_vs(mp_bitwise_left_shift,arg1,arg2); + } + if (is_scalar(arg1) && is_vector(arg2)) + _cimg_mp_vector2_sv(mp_bitwise_left_shift,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar((longT)mem[arg1]<<(unsigned int)mem[arg2]); + if (!arg1) _cimg_mp_return(0); + if (!arg2) _cimg_mp_same(arg1); + _cimg_mp_scalar2(mp_bitwise_left_shift,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='>' && *ns=='>' && level[s - expr._data]==clevel) { // Right bit shift ('>>') + _cimg_mp_op("Operator '>>'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) + _cimg_mp_vector2_vv(mp_bitwise_right_shift,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) { + if (!arg2) _cimg_mp_same(arg1); + _cimg_mp_vector2_vs(mp_bitwise_right_shift,arg1,arg2); + } + if (is_scalar(arg1) && is_vector(arg2)) + _cimg_mp_vector2_sv(mp_bitwise_right_shift,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar((longT)mem[arg1]>>(unsigned int)mem[arg2]); + if (!arg1) _cimg_mp_return(0); + if (!arg2) _cimg_mp_same(arg1); + _cimg_mp_scalar2(mp_bitwise_right_shift,arg1,arg2); + } + + for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s>ss; --ns, --s, --ps) + if (*s=='+' && (*ns!='+' || ns!=se1) && *ps!='-' && *ps!='+' && *ps!='*' && *ps!='/' && *ps!='%' && + *ps!='&' && *ps!='|' && *ps!='^' && *ps!='!' && *ps!='~' && *ps!='#' && + (*ps!='e' || !(ps - pexpr._data>ss - expr._data && (*(ps - 1)=='.' || (*(ps - 1)>='0' && + *(ps - 1)<='9')))) && + level[s - expr._data]==clevel) { // Addition ('+') + _cimg_mp_op("Operator '+'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (!arg2) _cimg_mp_same(arg1); + if (!arg1) _cimg_mp_same(arg2); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_add,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_add,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_add,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1] + mem[arg2]); + if (code) { // Try to spot linear case 'a*b + c' + CImg &pop = code.back(); + if (pop[0]==(ulongT)mp_mul && is_comp_scalar(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) { + arg3 = (unsigned int)pop[1]; + arg4 = (unsigned int)pop[2]; + arg5 = (unsigned int)pop[3]; + code.remove(); + CImg::vector((ulongT)mp_linear_add,arg3,arg4,arg5,arg3==arg2?arg1:arg2).move_to(code); + _cimg_mp_return(arg3); + } + } + if (arg2==1) _cimg_mp_scalar1(mp_increment,arg1); + if (arg1==1) _cimg_mp_scalar1(mp_increment,arg2); + _cimg_mp_scalar2(mp_add,arg1,arg2); + } + + for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s>ss; --ns, --s, --ps) + if (*s=='-' && (*ns!='-' || ns!=se1) && *ps!='-' && *ps!='+' && *ps!='*' && *ps!='/' && *ps!='%' && + *ps!='&' && *ps!='|' && *ps!='^' && *ps!='!' && *ps!='~' && *ps!='#' && + (*ps!='e' || !(ps - pexpr._data>ss - expr._data && (*(ps - 1)=='.' || (*(ps - 1)>='0' && + *(ps - 1)<='9')))) && + level[s - expr._data]==clevel) { // Subtraction ('-') + _cimg_mp_op("Operator '-'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (!arg2) _cimg_mp_same(arg1); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_sub,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_sub,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) { + if (!arg1) _cimg_mp_vector1_v(mp_minus,arg2); + _cimg_mp_vector2_sv(mp_sub,arg1,arg2); + } + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1] - mem[arg2]); + if (!arg1) _cimg_mp_scalar1(mp_minus,arg2); + if (code) { // Try to spot linear cases 'a*b - c' and 'c - a*b' + CImg &pop = code.back(); + if (pop[0]==(ulongT)mp_mul && is_comp_scalar(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) { + arg3 = (unsigned int)pop[1]; + arg4 = (unsigned int)pop[2]; + arg5 = (unsigned int)pop[3]; + code.remove(); + CImg::vector((ulongT)(arg3==arg1?mp_linear_sub_left:mp_linear_sub_right), + arg3,arg4,arg5,arg3==arg1?arg2:arg1).move_to(code); + _cimg_mp_return(arg3); + } + } + if (arg2==1) _cimg_mp_scalar1(mp_decrement,arg1); + _cimg_mp_scalar2(mp_sub,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='*' && *ns=='*' && level[s - expr._data]==clevel) { // Complex multiplication ('**') + _cimg_mp_op("Operator '**'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg1,1,3,2); + _cimg_mp_check_type(arg2,2,3,2); + if (arg2==1) _cimg_mp_same(arg1); + if (arg1==1) _cimg_mp_same(arg2); + if (is_vector(arg1) && is_vector(arg2)) { + pos = vector(2); + CImg::vector((ulongT)mp_complex_mul,pos,arg1,arg2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]*mem[arg2]); + if (!arg1 || !arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_mul,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='/' && *ns=='/' && level[s - expr._data]==clevel) { // Complex division ('//') + _cimg_mp_op("Operator '//'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg1,1,3,2); + _cimg_mp_check_type(arg2,2,3,2); + if (arg2==1) _cimg_mp_same(arg1); + if (is_vector(arg1) && is_vector(arg2)) { + pos = vector(2); + CImg::vector((ulongT)mp_complex_div_vv,pos,arg1,arg2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) { + pos = vector(2); + CImg::vector((ulongT)mp_complex_div_sv,pos,arg1,arg2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]/mem[arg2]); + if (!arg1) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_div,arg1,arg2); + } + + for (s = se2; s>ss; --s) if (*s=='*' && level[s - expr._data]==clevel) { // Multiplication ('*') + _cimg_mp_op("Operator '*'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + p2 = size(arg2); + if (p2>0 && (ulongT)size(arg1)==(ulongT)p2*p2) { // Particular case of matrix multiplication + pos = vector(p2); + CImg::vector((ulongT)mp_matrix_mul,pos,arg1,arg2,p2,p2,1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (arg2==1) _cimg_mp_same(arg1); + if (arg1==1) _cimg_mp_same(arg2); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_mul,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]*mem[arg2]); + + if (code) { // Try to spot double multiplication 'a*b*c' + CImg &pop = code.back(); + if (pop[0]==(ulongT)mp_mul && is_comp_scalar(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) { + arg3 = (unsigned int)pop[1]; + arg4 = (unsigned int)pop[2]; + arg5 = (unsigned int)pop[3]; + code.remove(); + CImg::vector((ulongT)mp_mul2,arg3,arg4,arg5,arg3==arg2?arg1:arg2).move_to(code); + _cimg_mp_return(arg3); + } + } + if (!arg1 || !arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_mul,arg1,arg2); + } + + for (s = se2; s>ss; --s) if (*s=='/' && level[s - expr._data]==clevel) { // Division ('/') + _cimg_mp_op("Operator '/'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (arg2==1) _cimg_mp_same(arg1); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_div,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_div,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(mem[arg1]/mem[arg2]); + if (!arg1) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_div,arg1,arg2); + } + + for (s = se2, ns = se1; s>ss; --s, --ns) + if (*s=='%' && *ns!='^' && level[s - expr._data]==clevel) { // Modulo ('%') + _cimg_mp_op("Operator '%'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_modulo,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_modulo,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_modulo,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(cimg::mod(mem[arg1],mem[arg2])); + _cimg_mp_scalar2(mp_modulo,arg1,arg2); + } + + if (se1>ss) { + if (*ss=='+' && (*ss1!='+' || (ss2='0' && *ss2<='9'))) { // Unary plus ('+') + _cimg_mp_op("Operator '+'"); + _cimg_mp_return(compile(ss1,se,depth1,0,block_flags)); + } + + if (*ss=='-' && (*ss1!='-' || (ss2='0' && *ss2<='9'))) { // Unary minus ('-') + _cimg_mp_op("Operator '-'"); + arg1 = compile(ss1,se,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_minus,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(-mem[arg1]); + _cimg_mp_scalar1(mp_minus,arg1); + } + + if (*ss=='!') { // Logical not ('!') + _cimg_mp_op("Operator '!'"); + if (*ss1=='!') { // '!!expr' optimized as 'bool(expr)' + arg1 = compile(ss2,se,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_bool,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar((bool)mem[arg1]); + _cimg_mp_scalar1(mp_bool,arg1); + } + arg1 = compile(ss1,se,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_logical_not,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(!mem[arg1]); + _cimg_mp_scalar1(mp_logical_not,arg1); + } + + if (*ss=='~') { // Bitwise not ('~') + _cimg_mp_op("Operator '~'"); + arg1 = compile(ss1,se,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_bitwise_not,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(~(unsigned int)mem[arg1]); + _cimg_mp_scalar1(mp_bitwise_not,arg1); + } + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='^' && *ns=='^' && level[s - expr._data]==clevel) { // Complex power ('^^') + _cimg_mp_op("Operator '^^'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 2,se,depth1,0,block_flags); + _cimg_mp_check_type(arg1,1,3,2); + _cimg_mp_check_type(arg2,2,3,2); + if (arg2==1) _cimg_mp_same(arg1); + pos = vector(2); + if (!arg2) CImg::vector((ulongT)mp_complex_one,pos).move_to(code); + else if (arg2==2) { + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_sqr,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_sqr,pos,arg1 + 1,arg1 + 2).move_to(code); + } else { + if (is_vector(arg1) && is_vector(arg2)) + CImg::vector((ulongT)mp_complex_pow_vv,pos,arg1,arg2).move_to(code); + else if (is_vector(arg1) && is_scalar(arg2)) + CImg::vector((ulongT)mp_complex_pow_vs,pos,arg1,arg2).move_to(code); + else if (is_scalar(arg1) && is_vector(arg2)) + CImg::vector((ulongT)mp_complex_pow_sv,pos,arg1,arg2).move_to(code); + else + CImg::vector((ulongT)mp_complex_pow_ss,pos,arg1,arg2).move_to(code); + } + return_comp = true; + _cimg_mp_return(pos); + } + + for (s = se2; s>ss; --s) + if (*s=='^' && level[s - expr._data]==clevel) { // Power ('^') + _cimg_mp_op("Operator '^'"); + arg1 = compile(ss,s,depth1,0,block_flags); + arg2 = compile(s + 1,se,depth1,0,block_flags); + _cimg_mp_check_type(arg2,2,3,size(arg1)); + if (arg2==1) _cimg_mp_same(arg1); + if (is_vector(arg1) && is_vector(arg2)) _cimg_mp_vector2_vv(mp_pow,arg1,arg2); + if (is_vector(arg1) && is_scalar(arg2)) _cimg_mp_vector2_vs(mp_pow,arg1,arg2); + if (is_scalar(arg1) && is_vector(arg2)) _cimg_mp_vector2_sv(mp_pow,arg1,arg2); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) + _cimg_mp_const_scalar(std::pow(mem[arg1],mem[arg2])); + switch (arg2) { + case 0 : _cimg_mp_return(1); + case 2 : _cimg_mp_scalar1(mp_sqr,arg1); + case 3 : _cimg_mp_scalar1(mp_pow3,arg1); + case 4 : _cimg_mp_scalar1(mp_pow4,arg1); + default : + if (is_const_scalar(arg2)) { + if (mem[arg2]==0.5) { _cimg_mp_scalar1(mp_sqrt,arg1); } + else if (mem[arg2]==0.25) { _cimg_mp_scalar1(mp_pow0_25,arg1); } + } + _cimg_mp_scalar2(mp_pow,arg1,arg2); + } + } + + // Percentage computation. + if (*se1=='%') { + arg1 = compile(ss,se1,depth1,0,block_flags); + arg2 = is_const_scalar(arg1)?0:const_scalar(100); + if (is_vector(arg1)) _cimg_mp_vector2_vs(mp_div,arg1,arg2); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]/100); + _cimg_mp_scalar2(mp_div,arg1,arg2); + } + + // Degree to radian postfix operator ('°' in UTF-8). + if (se2>ss && (unsigned char)*se2==0xC2 && (unsigned char)*se1==0xB0) { + arg1 = compile(ss,se2,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_deg2rad,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]*cimg::PI/180); + _cimg_mp_scalar1(mp_deg2rad,arg1); + } + + // Pre/post-decrement and increment. + is_sth = ss1ss && (*se1=='+' || *se1=='-') && *se2==*se1)) { + if ((is_sth && *ss=='+') || (!is_sth && *se1=='+')) { + _cimg_mp_op("Operator '++'"); + op = mp_self_increment; + } else { + _cimg_mp_op("Operator '--'"); + op = mp_self_decrement; + } + ref.assign(7); + arg1 = is_sth?compile(ss2,se,depth1,ref,block_flags): + compile(ss,se2,depth1,ref,block_flags); // Variable slot + + // Apply operator on a copy to prevent modifying a constant or a variable. + if (*ref && (is_const_scalar(arg1) || is_vector(arg1) || is_reserved(arg1))) + arg1 = copy(arg1); + + pos = is_sth?arg1:copy(arg1); // Determine return index, depending on pre/post action + + if (*ref==1) { // Vector value (scalar): V[k]++ + arg3 = ref[1]; // Vector slot + arg4 = ref[2]; // Index + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1,1).move_to(code); + CImg::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)size(arg3),arg4). + move_to(code); + _cimg_mp_return(pos); + } + + if (*ref==2) { // Image value (scalar): i/j[_#ind,off]++ + if (!is_inside_critical) is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1).move_to(code); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg1,p1,arg3).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg1,arg3).move_to(code); + } + _cimg_mp_return(pos); + } + + if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c)++ + if (!is_inside_critical) is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + arg6 = ref[6]; // C + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1).move_to(code); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg1,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg1,arg3,arg4,arg5,arg6).move_to(code); + } + _cimg_mp_return(pos); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off]++ + if (!is_inside_critical) is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,size(arg1)).move_to(code); + } + _cimg_mp_return(pos); + } + + if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c)++ + if (!is_inside_critical) is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1); + if (p1!=~0U) { + if (!imglist) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,size(arg1)).move_to(code); + } + _cimg_mp_return(pos); + } + + if (is_vector(arg1)) { // Vector variable: V++ + self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1); + _cimg_mp_return(pos); + } + + if (is_reserved(arg1)) { // Scalar variable: s++ + CImg::vector((ulongT)op,arg1).move_to(code); + _cimg_mp_return(pos); + } + + if (is_sth) variable_name.assign(ss2,(unsigned int)(se - ss1)); + else variable_name.assign(ss,(unsigned int)(se1 - ss)); + variable_name.back() = 0; + cimg::strpare(variable_name,false,true); + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid %slvalue '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + is_const_scalar(arg1)?"const ":"", + variable_name._data,s0); + } + + // Array-like access to vectors and image values 'i/j/I/J[_#ind,offset,_boundary]' and 'vector[offset]'. + if (*se1==']') { + _cimg_mp_op("Value accessor '[]'"); + + // Find opening bracket for the offset. + s0 = se1; while (s0>ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0; + if (s0>ss) { s1 = s0; do { --s1; } while (cimg::is_blank(*s1)); cimg::swap(*s0,*++s1); } + is_sth=s0>ss && *(s0-1)==']'; // Particular case s.a. '..[..][..]' ? + is_relative = *ss=='j' || *ss=='J'; + + if (!is_sth && (*ss=='I' || *ss=='J') && *ss1=='[' && + (reserved_label[(int)*ss]==~0U || + !is_vector(reserved_label[(int)*ss]))) { // Image value as a vector + if (*ss2=='#') { // Index specified + s0 = ss3; while (s0::vector((ulongT)(is_relative?mp_list_Joff:mp_list_Ioff), + pos,p1,arg1,arg2==~0U?_cimg_mp_boundary:arg2,p2).move_to(code); + } else { + need_input_copy = true; + CImg::vector((ulongT)(is_relative?mp_Joff:mp_Ioff), + pos,arg1,arg2==~0U?_cimg_mp_boundary:arg2,p2).move_to(code); + } + return_comp = true; + _cimg_mp_return(pos); + } + + if (!is_sth && (*ss=='i' || *ss=='j') && *ss1=='[' && + (reserved_label[(int)*ss]==~0U || + !is_vector(reserved_label[(int)*ss]))) { // Image value as a scalar + if (*ss2=='#') { // Index specified + s0 = ss3; while (s0ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0; + if (s0>ss) { // Vector element + arg1 = compile(ss,s0,depth1,0,block_flags); + if (is_scalar(arg1)) { + variable_name.assign(ss,(unsigned int)(s0 - ss + 1)).back() = 0; + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Array brackets used on non-vector variable '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data,s0); + } + s1 = s0 + 1; while (s1 sub-vector extraction + p1 = size(arg1); + arg2 = compile(++s0,s1,depth1,0,block_flags); // Starting index + s0 = ++s1; while (s0::vector((ulongT)mp_vector_crop,pos,arg1,p1,arg2,arg3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + // One argument -> vector value reference + arg2 = compile(++s0,se1,depth1,0,block_flags); + if (is_const_scalar(arg2)) { // Constant index + nb = (int)mem[arg2]; + if (nb>=0 && nb<(int)size(arg1)) _cimg_mp_return(arg1 + 1 + nb); + variable_name.assign(ss,(unsigned int)(s0 - ss)).back() = 0; + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Out-of-bounds reference '%s[%d]' " + "(vector '%s' has dimension %u), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + variable_name._data,nb, + variable_name._data,size(arg1),s0); + } + if (p_ref) { + *p_ref = 1; + p_ref[1] = arg1; + p_ref[2] = arg2; + if (is_comp_scalar(arg2)) memtype[arg2] = -1; // Prevent from being used in further optimization + } + pos = scalar3(mp_vector_off,arg1,size(arg1),arg2); + memtype[pos] = -1; // Prevent from being used in further optimization + _cimg_mp_return(pos); + } + } + + // Look for a function call, an access to image value, or a parenthesis. + if (*se1==')') { + if (*ss=='(') _cimg_mp_return(compile(ss1,se1,depth1,p_ref,block_flags)); // Simple parentheses + _cimg_mp_op("Value accessor '()'"); + is_relative = *ss=='j' || *ss=='J'; + s0 = s1 = std::strchr(ss,'('); if (s0) { do { --s1; } while (cimg::is_blank(*s1)); cimg::swap(*s0,*++s1); } + + // I/J(_#ind,_x,_y,_z,_interpolation,_boundary_conditions) + if ((*ss=='I' || *ss=='J') && *ss1=='(') { // Image value as scalar + if (*ss2=='#') { // Index specified + s0 = ss3; while (s01) { + arg2 = arg1 + 1; + if (p2>2) arg3 = arg2 + 1; + } + if (s1::vector((ulongT)(is_relative?mp_list_Jxyz:mp_list_Ixyz), + pos,p1,arg1,arg2,arg3, + arg4==~0U?_cimg_mp_interpolation:arg4, + arg5==~0U?_cimg_mp_boundary:arg5,p2).move_to(code); + else { + need_input_copy = true; + CImg::vector((ulongT)(is_relative?mp_Jxyz:mp_Ixyz), + pos,arg1,arg2,arg3, + arg4==~0U?_cimg_mp_interpolation:arg4, + arg5==~0U?_cimg_mp_boundary:arg5,p2).move_to(code); + } + return_comp = true; + _cimg_mp_return(pos); + } + + // i/j(_#ind,_x,_y,_z,_c,_interpolation,_boundary_conditions) + if ((*ss=='i' || *ss=='j') && *ss1=='(') { // Image value as scalar + if (*ss2=='#') { // Index specified + s0 = ss3; while (s01) { + arg2 = arg1 + 1; + if (p2>2) { + arg3 = arg2 + 1; + if (p2>3) arg4 = arg3 + 1; + } + } + if (s1::vector((ulongT)mp_abort,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return_nan(); + } + } +#endif + + if (!std::strncmp(ss,"abs(",4)) { // Absolute value + _cimg_mp_op("Function 'abs()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_abs,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::abs(mem[arg1])); + _cimg_mp_scalar1(mp_abs,arg1); + } + + if (!std::strncmp(ss,"addr(",5)) { // Pointer address + _cimg_mp_op("Function 'addr()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_const_scalar((double)arg1); + } + + if (!std::strncmp(ss,"acos(",5)) { // Arccos + _cimg_mp_op("Function 'acos()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_acos,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::acos(mem[arg1])); + _cimg_mp_scalar1(mp_acos,arg1); + } + + if (!std::strncmp(ss,"acosh(",6)) { // Hyperbolic arccosine + _cimg_mp_op("Function 'acosh()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_acosh,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::acosh(mem[arg1])); + _cimg_mp_scalar1(mp_acosh,arg1); + } + + if (!std::strncmp(ss,"asinh(",6)) { // Hyperbolic arcsine + _cimg_mp_op("Function 'asinh()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_asinh,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::asinh(mem[arg1])); + _cimg_mp_scalar1(mp_asinh,arg1); + } + + if (!std::strncmp(ss,"atanh(",6)) { // Hyperbolic arctangent + _cimg_mp_op("Function 'atanh()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_atanh,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::atanh(mem[arg1])); + _cimg_mp_scalar1(mp_atanh,arg1); + } + + if (!std::strncmp(ss,"arg(",4) || + !std::strncmp(ss,"arg0(",5) || + !std::strncmp(ss,"arg1(",5)) { // Nth argument + _cimg_mp_op(*ss3=='('?"Function 'arg()'":*ss3=='0'?"Function 'arg0()'":"Function 'arg1()'"); + s0 = ss4 + (*ss3!='('?1:0); + s1 = s0; while (s1::vector((ulongT)(*ss3=='0'?mp_arg0:mp_arg),0,0,p2,arg1,arg2).move_to(l_opcode); + for (s = ++s2; s::vector(arg3).move_to(l_opcode); + ++p3; + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + if (is_const_scalar(arg1)) { + p3-=1; // Number of args + if (*ss3=='0') arg1 = (unsigned int)(mem[arg1]<0?mem[arg1] + p3:mem[arg1] + 1); + else arg1 = (unsigned int)(mem[arg1]<0?mem[arg1] + p3:mem[arg1]); + if (arg1::vector((ulongT)mp_break,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return_nan(); + } + } + + if (!std::strncmp(ss,"breakpoint(",11)) { // Break point (for abort test) + _cimg_mp_op("Function 'breakpoint()'"); + if (pexpr[se2 - expr._data]=='(') { // no arguments? + CImg::vector((ulongT)mp_breakpoint,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return_nan(); + } + } + + if (!std::strncmp(ss,"bool(",5)) { // Boolean cast + _cimg_mp_op("Function 'bool()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_bool,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar((bool)mem[arg1]); + _cimg_mp_scalar1(mp_bool,arg1); + } + + if (!std::strncmp(ss,"begin(",6)) { // Begin + _cimg_mp_op("Function 'begin()'"); + s1 = ss6; while (s1 Error too much arguments + if (p2>4) { + *s1 = 0; s1 = s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Argument '%s' is a vector of size %u (should be <=4), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s1,p2,s0); + } + arg1 = pos + 1; + arg2 = p2>1?pos + 2:0; + arg3 = p2>2?pos + 3:0; + arg4 = p2>3?pos + 4:0; + } else { // Coordinates specified as scalars + arg1 = pos; arg2 = arg3 = arg4 = 0; + if (s1::vector((ulongT)mp_complex_conj,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_conj,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ceil(",5)) { // Ceil + _cimg_mp_op("Function 'ceil()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_ceil,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::ceil(mem[arg1])); + _cimg_mp_scalar1(mp_ceil,arg1); + } + + if (!std::strncmp(ss,"cexp(",5)) { // Complex exponential + _cimg_mp_op("Function 'cexp()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_exp,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_exp,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"clog(",5)) { // Complex logarithm + _cimg_mp_op("Function 'clog()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_log,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_log,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ccos(",5)) { // Complex cosine + _cimg_mp_op("Function 'ccos()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_cos,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_cos,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"csin(",5)) { // Complex sine + _cimg_mp_op("Function 'csin()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_sin,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_sin,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"csqr(",5)) { // Complex square + _cimg_mp_op("Function 'csqr()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_sqr,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_sqr,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"csqrt(",6)) { // Complex square root + _cimg_mp_op("Function 'csqrt()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_sqrt,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_sqrt,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ctan(",5)) { // Complex tangent + _cimg_mp_op("Function 'ctan()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_tan,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_tan,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ccosh(",6)) { // Complex hyperbolic cosine + _cimg_mp_op("Function 'ccosh()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_cosh,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_cosh,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"csinh(",6)) { // Complex hyperbolic sine + _cimg_mp_op("Function 'csinh()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_sinh,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_sinh,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ctanh(",6)) { // Complex hyperbolic tangent + _cimg_mp_op("Function 'ctanh()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,0,3,2); + pos = vector(2); + if (is_scalar(arg1)) CImg::vector((ulongT)mp_complex_tanh,pos,arg1,0).move_to(code); + else CImg::vector((ulongT)mp_complex_tanh,pos,arg1 + 1,arg1 + 2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"continue(",9)) { // Continue loop + if (pexpr[se2 - expr._data]=='(') { // no arguments? + CImg::vector((ulongT)mp_continue,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return_nan(); + } + } + + if (!std::strncmp(ss,"copy(",5)) { // Memory copy + _cimg_mp_op("Function 'copy()'"); + ref.assign(14); + s1 = ss5; while (s1=4 && arg4==~0U) arg4 = scalar1(mp_image_whd,ref[1]); + } + if (is_vector(arg2)) { + if (arg3==~0U) arg3 = const_scalar(size(arg2)); + if (!ref[7]) ++arg2; + if (ref[7]>=4 && arg5==~0U) arg5 = scalar1(mp_image_whd,ref[8]); + } + if (arg3==~0U) arg3 = 1; + if (arg4==~0U) arg4 = 1; + if (arg5==~0U) arg5 = 1; + _cimg_mp_check_type(arg3,3,1,0); + _cimg_mp_check_type(arg4,4,1,0); + _cimg_mp_check_type(arg5,5,1,0); + _cimg_mp_check_type(arg6,5,1,0); + CImg(1,22).move_to(code); + code.back().get_shared_rows(0,7).fill((ulongT)mp_memcopy,p1,arg1,arg2,arg3,arg4,arg5,arg6); + code.back().get_shared_rows(8,21).fill(ref); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"cos(",4)) { // Cosine + _cimg_mp_op("Function 'cos()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_cos,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::cos(mem[arg1])); + _cimg_mp_scalar1(mp_cos,arg1); + } + + if (!std::strncmp(ss,"cosh(",5)) { // Hyperbolic cosine + _cimg_mp_op("Function 'cosh()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_cosh,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::cosh(mem[arg1])); + _cimg_mp_scalar1(mp_cosh,arg1); + } + + if (!std::strncmp(ss,"cov(",4)) { // Covariance + _cimg_mp_op("Function 'cov()'"); + s1 = ss4; while (s1::vector((ulongT)mp_critical,arg1,code._width - p1).move_to(code,p1); + _cimg_mp_return(arg1); + } + + if (!std::strncmp(ss,"crop(",5)) { // Image or vector crop + _cimg_mp_op("Function 'crop()'"); + is_sth = false; // is image crop ? + arg1 = 0; + if (*ss5=='#') { // Index specified + s0 = ss6; while (s01) _cimg_mp_check_type(arg1,pos,1,0); + CImg::vector(arg1).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + + if (!opcode || is_sth) { // Image crop + arg1 = 0; arg2 = (p1!=~0U); + switch (opcode._height) { + case 0 : case 1 : + CImg::vector(0,0,0,0,~0U,~0U,~0U,~0U,0).move_to(opcode); + break; + case 2 : + CImg::vector(*opcode,0,0,0,opcode[1],~0U,~0U,~0U,_cimg_mp_boundary).move_to(opcode); + arg1 = 2 + arg2; break; + case 3 : + CImg::vector(*opcode,0,0,0,opcode[1],~0U,~0U,~0U,opcode[2]).move_to(opcode); + arg1 = 2 + arg2; break; + case 4 : + CImg::vector(*opcode,opcode[1],0,0,opcode[2],opcode[3],~0U,~0U,_cimg_mp_boundary). + move_to(opcode); + arg1 = 3 + arg2; break; + case 5 : + CImg::vector(*opcode,opcode[1],0,0,opcode[2],opcode[3],~0U,~0U,opcode[4]). + move_to(opcode); + arg1 = 3 + arg2; break; + case 6 : + CImg::vector(*opcode,opcode[1],opcode[2],0,opcode[3],opcode[4],opcode[5],~0U, + _cimg_mp_boundary).move_to(opcode); + arg1 = 4 + arg2; break; + case 7 : + CImg::vector(*opcode,opcode[1],opcode[2],0,opcode[3],opcode[4],opcode[5],~0U, + opcode[6]).move_to(opcode); + arg1 = 4 + arg2; break; + case 8 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],opcode[5],opcode[6], + opcode[7],_cimg_mp_boundary).move_to(opcode); + arg1 = 5 + arg2; break; + case 9 : + arg1 = 5 + arg2; break; + default : // Error -> too much arguments + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Too much arguments specified, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s0); + } + + if (opcode[4]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[4],arg1,3); + opcode[4] = (ulongT)mem[opcode[4]]; + } + if (opcode[5]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[5],arg1 + 1,3); + opcode[5] = (ulongT)mem[opcode[5]]; + } + if (opcode[6]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[6],arg1 + 2,3); + opcode[6] = (ulongT)mem[opcode[6]]; + } + if (opcode[7]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[7],arg1 + 3,3); + opcode[7] = (ulongT)mem[opcode[7]]; + } + _cimg_mp_check_type((unsigned int)opcode[8],arg1 + 4,1,0); + + if (opcode[4]==(ulongT)~0U || opcode[5]==(ulongT)~0U || + opcode[6]==(ulongT)~0U || opcode[7]==(ulongT)~0U) { + p2 = 0; + if (p1!=~0U) { + _cimg_mp_check_const_scalar(p1,1,1); + p2 = (unsigned int)cimg::mod((int)mem[p1],imglist.width()); + } + const CImg &img = p1!=~0U?imglist[p2]:imgin; + if (!img) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Cannot crop empty image when " + "some xyzc-coordinates are unspecified, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s0); + } + if (opcode[4]==(ulongT)~0U) opcode[4] = (ulongT)img._width; + if (opcode[5]==(ulongT)~0U) opcode[5] = (ulongT)img._height; + if (opcode[6]==(ulongT)~0U) opcode[6] = (ulongT)img._depth; + if (opcode[7]==(ulongT)~0U) opcode[7] = (ulongT)img._spectrum; + } + + pos = vector((unsigned int)(opcode[4]*opcode[5]*opcode[6]*opcode[7])); + CImg::vector((ulongT)mp_image_crop, + pos,p1, // 1-2: res,#ind + *opcode,opcode[1],opcode[2],opcode[3], // 3-6: x,y,z,c + opcode[4],opcode[5],opcode[6],opcode[7], // 7-10: dx,dy,dz,dc + opcode[8]).move_to(code); // 11: boundary conditions + + } else { // Vector crop + switch (opcode._height) { + case 5 : case 6 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + 0,0,0,0,~0U,~0U,~0U,~0U,0).move_to(opcode); + break; + case 7 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],0,0,0,opcode[6],~0U,~0U,~0U,_cimg_mp_boundary).move_to(opcode); + arg1 = 7; break; + case 8 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],0,0,0,opcode[6],~0U,~0U,~0U,opcode[7]).move_to(opcode); + arg1 = 7; break; + case 9 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],opcode[6],0,0,opcode[7],opcode[8],~0U,~0U,_cimg_mp_boundary). + move_to(opcode); + arg1 = 8; break; + case 10 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],opcode[6],0,0,opcode[7],opcode[8],~0U,~0U,opcode[9]). + move_to(opcode); + arg1 = 8; break; + case 11 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],opcode[6],opcode[7],0,opcode[8],opcode[9],opcode[10],~0U, + _cimg_mp_boundary).move_to(opcode); + arg1 = 9; break; + case 12 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],opcode[6],opcode[7],0,opcode[8],opcode[9],opcode[10],~0U, + opcode[11]).move_to(opcode); + arg1 = 9; break; + case 13 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4], + opcode[5],opcode[6],opcode[7],opcode[8],opcode[9],opcode[10],opcode[11], + opcode[12],_cimg_mp_boundary).move_to(opcode); + arg1 = 10; break; + case 14 : + arg1 = 10; break; + default : // Error -> too few or too much arguments + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Too %s arguments specified, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + opcode._height<5?"few":"much",s0); + } + + _cimg_mp_check_const_scalar((unsigned int)opcode[1],2,3); // w + opcode[1] = (ulongT)mem[opcode[1]]; + _cimg_mp_check_const_scalar((unsigned int)opcode[2],3,3); // h + opcode[2] = (ulongT)mem[opcode[2]]; + _cimg_mp_check_const_scalar((unsigned int)opcode[3],4,3); // d + opcode[3] = (ulongT)mem[opcode[3]]; + _cimg_mp_check_const_scalar((unsigned int)opcode[4],5,3); // s + opcode[4] = (ulongT)mem[opcode[4]]; + p1 = size((unsigned int)opcode[0]); + arg2 = (unsigned int)opcode[1]; + arg3 = (unsigned int)opcode[2]; + arg4 = (unsigned int)opcode[3]; + arg5 = (unsigned int)opcode[4]; + if (arg2*arg3*arg4*arg5!=p1) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Input vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + p1,arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5); + + if (opcode[9]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[9],arg1,3); + opcode[9] = (ulongT)mem[opcode[9]]; + } else opcode[9] = opcode[1]; + if (opcode[10]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[10],arg1 + 1,3); + opcode[10] = (ulongT)mem[opcode[10]]; + } else opcode[10] = opcode[2]; + if (opcode[11]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[11],arg1 + 2,3); + opcode[11] = (ulongT)mem[opcode[11]]; + } else opcode[11] = opcode[3]; + if (opcode[12]!=(ulongT)~0U) { + _cimg_mp_check_const_scalar((unsigned int)opcode[12],arg1 + 3,3); + opcode[12] = (ulongT)mem[opcode[12]]; + } else opcode[12] = opcode[4]; + _cimg_mp_check_type((unsigned int)opcode[13],arg1 + 4,1,0); + + pos = vector((unsigned int)(opcode[9]*opcode[10]*opcode[11]*opcode[12])); + CImg::vector((ulongT)mp_vector_crop_ext, + pos,*opcode, // 1-2: res,S + opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s + opcode[5],opcode[6],opcode[7],opcode[8], // 7-10: x,y,z,c + opcode[9],opcode[10],opcode[11],opcode[12], // 11-14: dx,dy,dz,dc + opcode[13]).move_to(code); // 15: boundary conditions + } + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"cross(",6)) { // Cross product + _cimg_mp_op("Function 'cross()'"); + s1 = ss6; while (s1::vector((ulongT)mp_cross,pos,arg1,arg2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"cut(",4)) { // Cut + _cimg_mp_op("Function 'cut()'"); + s1 = ss4; while (s1val2?val2:val); + } + _cimg_mp_scalar3(mp_cut,arg1,arg2,arg3); + } + + if (!std::strncmp(ss,"cumulate(",9)) { // Mirror image + _cimg_mp_op("Function 'cumulate()'"); + s0 = ss + 9; + s1 = s0; while (s1::%s: %s: Input vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p1,1U),arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5); + pos = vector(arg2*arg3*arg4*arg5); + CImg::vector((ulongT)mp_vector_cumulate,pos,arg1,arg2,arg3,arg4,arg5,arg6,p2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"convolve(",9) || !std::strncmp(ss,"correlate(",10)) { // Convolve & Correlate + is_sth = *ss2=='n'; // is_convolve? + _cimg_mp_op(is_sth?"Function 'convolve()'":"Function 'correlate()'"); + op = is_sth?mp_convolve:mp_correlate; + const ulongT default_params[] = { (ulongT)op,0, // [0]=function, [1]=result vector + 0,0,0,0,0, // [2]=A, [3]=wA, [4]=hA, [5]=dA, [6]=sA + 0,0,0,0,0, // [7]=M, [8]=wM, [9]=hM, [10]=dM, [11]=sM + 1,0,1, // [12]=boundary_conditions, [13]=is_normalized, [14]=chan._mode + ~0U,~0U,~0U, // [15]=xcenter, [16]=ycenter, [17]=zcenter + 0,0,0, // [18]=xstart, [19]=ystart, [20]=zstart + ~0U,~0U,~0U, // [21]=xend, [22]=yend, [23]=zend + 1,1,1, // [24]=xstride, [25]=ystride, [26]=zstride + 1,1,1, // [27]=xdilation, [28]=ydilation, [29]=zdilation, + 0 }; // [30]=interpolation_type + + l_opcode.assign(); // Don't use 'opcode': it could be modified by further calls to 'compile()'! + CImg(default_params,1,sizeof(default_params)/sizeof(ulongT)).move_to(l_opcode); + + arg1 = 2; + for (s = std::strchr(ss,'(') + 1; sopcode._height) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: %s arguments provided, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + arg1<12?"Not enough":"Too much",s0); + } + _cimg_mp_check_type(opcode[2],1,2,0); // A + _cimg_mp_check_const_scalar(opcode[3],2,3); // wA + _cimg_mp_check_const_scalar(opcode[4],3,3); // hA + _cimg_mp_check_const_scalar(opcode[5],4,3); // dA + _cimg_mp_check_const_scalar(opcode[6],5,3); // sA + _cimg_mp_check_type(opcode[7],6,2,0); // M + _cimg_mp_check_const_scalar(opcode[8],7,3); // wM + _cimg_mp_check_const_scalar(opcode[9],8,3); // hM + _cimg_mp_check_const_scalar(opcode[10],9,3); // dM + _cimg_mp_check_const_scalar(opcode[11],10,3); // sM + _cimg_mp_check_type(opcode[12],11,1,0); // boundary_conditions + _cimg_mp_check_type(opcode[13],12,1,0); // is_normalized + _cimg_mp_check_const_scalar(opcode[14],13,1); // channel_mode + if (opcode[15]!=~0U) _cimg_mp_check_type(opcode[15],14,1,0); // xcenter + if (opcode[16]!=~0U) _cimg_mp_check_type(opcode[16],15,1,0); // ycenter + if (opcode[17]!=~0U) _cimg_mp_check_type(opcode[17],16,1,0); // zcenter + _cimg_mp_check_const_scalar(opcode[18],17,1); // xstart + _cimg_mp_check_const_scalar(opcode[19],18,1); // ystart + _cimg_mp_check_const_scalar(opcode[20],19,1); // zstart + if (opcode[21]!=~0U) _cimg_mp_check_const_scalar(opcode[21],20,1); // xend + if (opcode[22]!=~0U) _cimg_mp_check_const_scalar(opcode[22],21,1); // yend + if (opcode[23]!=~0U) _cimg_mp_check_const_scalar(opcode[23],22,1); // zend + _cimg_mp_check_const_scalar(opcode[24],23,0); // xstride + _cimg_mp_check_const_scalar(opcode[25],24,0); // ystride + _cimg_mp_check_const_scalar(opcode[26],25,0); // zstride + _cimg_mp_check_type(opcode[27],26,1,0); // xdilation + _cimg_mp_check_type(opcode[28],27,1,0); // ydilation + _cimg_mp_check_type(opcode[29],28,1,0); // zdilation + _cimg_mp_check_type(opcode[30],29,1,0); // interpolation_type + + const unsigned int + wA = (unsigned int)mem[opcode[3]], + hA = (unsigned int)mem[opcode[4]], + dA = (unsigned int)mem[opcode[5]], + sA = (unsigned int)mem[opcode[6]], + wM = (unsigned int)mem[opcode[8]], + hM = (unsigned int)mem[opcode[9]], + dM = (unsigned int)mem[opcode[10]], + sM = (unsigned int)mem[opcode[11]], + channel_mode = (unsigned int)mem[opcode[14]]; + const int + xstart = (int)mem[opcode[18]], + ystart = (int)mem[opcode[19]], + zstart = (int)mem[opcode[20]], + xend = opcode[21]!=~0U?(int)mem[opcode[21]]:wA - 1, + yend = opcode[22]!=~0U?(int)mem[opcode[22]]:hA - 1, + zend = opcode[23]!=~0U?(int)mem[opcode[23]]:dA - 1; + + if (xstart>xend || ystart>yend || zstart>zend) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid xyz-start/end arguments " + "(start = (%d,%d,%d), end = (%d,%d,%d)), in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + xstart,ystart,zstart,xend,yend,zend,s0); + } + + const float + xstride = (float)mem[opcode[24]], + ystride = (float)mem[opcode[25]], + zstride = (float)mem[opcode[26]]; + + if (xstride<=0 || ystride<=0 || zstride<=0) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid stride arguments (%g,%g,%g), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + xstride,ystride,zstride,s0); + } + + arg2 = xend - xstart + 1; + arg3 = yend - ystart + 1; + arg4 = zend - zstart + 1; + arg5 = !channel_mode?sA*sM:channel_mode==1?std::max(sA,sM): + channel_mode==2?std::max(sA,sM)/std::min(sA,sM):1U; + + opcode[1] = pos = vector(arg2*arg3*arg4*arg5); + opcode[3] = (ulongT)wA; + opcode[4] = (ulongT)hA; + opcode[5] = (ulongT)dA; + opcode[6] = (ulongT)sA; + opcode[8] = (ulongT)wM; + opcode[9] = (ulongT)hM; + opcode[10] = (ulongT)dM; + opcode[11] = (ulongT)sM; + opcode[14] = (ulongT)channel_mode; + opcode[18] = (ulongT)xstart; + opcode[19] = (ulongT)ystart; + opcode[20] = (ulongT)zstart; + opcode[21] = (ulongT)xend; + opcode[22] = (ulongT)yend; + opcode[23] = (ulongT)zend; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + break; + + case 'd' : + if (*ss1=='(') { // Image depth + _cimg_mp_op("Function 'd()'"); + if (*ss2=='#') { // Index specified + p1 = compile(ss3,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss2!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_d,p1); + } + + if (!std::strncmp(ss,"da_back(",8) || + !std::strncmp(ss,"da_pop(",7) || + !std::strncmp(ss,"da_pop_heap(",12)) { // Get latest element in a dynamic array + if (!is_inside_critical) is_parallelizable = false; + const bool is_pop = *ss3=='p', is_pop_heap = *ss6=='_'; + _cimg_mp_op(is_pop_heap?"Function 'da_pop_heap()": + is_pop?"Function 'da_pop()'":"Function 'da_back()'"); + s0 = ss + (is_pop_heap?12:is_pop?7:8); + if (*s0=='#') { // Index specified + s1 = ++s0; while (s11) pos = vector(p2); else pos = scalar(); // Return vector or scalar result + CImg::vector((ulongT)mp_da_back_or_pop,pos,p2,p1,is_pop_heap?2:is_pop?1:0).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"da_insert(",10) || + !std::strncmp(ss,"da_push(",8) || + !std::strncmp(ss,"da_push_heap(",13)) { // Insert element(s) in a dynamic array + if (!is_inside_critical) is_parallelizable = false; + const bool is_push = *ss3=='p', is_push_heap = *ss7=='_'; + _cimg_mp_op(is_push_heap?"Function 'da_push_heap()'": + is_push?"Function 'da_push()'":"Function 'da_insert()'"); + s0 = ss + (is_push_heap?13:is_push?8:10); + if (*s0=='#') { // Index specified + s1 = ++s0; while (s1::vector((ulongT)mp_da_insert_or_push,_cimg_mp_slot_nan,p1,arg1,0,0).move_to(l_opcode); + p3 = p1==~0U?2:3; + p1 = ~0U; + for (s = s1; s::vector(arg2).move_to(l_opcode); + s = ns; + ++p3; + } + if (p1==~0U) compile(++s1,se1,depth1,0,block_flags); // Missing element -> error + (l_opcode>'y').move_to(opcode); + opcode[4] = p1; + opcode[5] = opcode._height; + opcode.move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"da_freeze(",10)) { // Freeze dynamic array + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_op("Function 'da_freeze()'"); + s0 = ss + 10; + if (*s0=='#') { // Index specified + s1 = ++s0; while (s1::vector((ulongT)mp_da_freeze,_cimg_mp_slot_nan,p1).move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"da_remove(",10)) { // Remove element(s) in a dynamic array + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_op("Function 'da_remove()'"); + if (ss[10]=='#') { // Index specified + s0 = ss + 11; while (s0::vector((ulongT)mp_da_remove,_cimg_mp_slot_nan,p1,arg1,arg2).move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"da_size(",8)) { // Size of a dynamic array + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_op("Function 'da_size()'"); + if (ss[8]=='#') { // Index specified + s0 = ss + 9; while (s0::vector((ulongT)mp_date,pos,size(pos), + arg1,arg1==~0U?~0U:size(arg1), + arg2,arg2==~0U?~0U:size(arg2)).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"debug(",6)) { // Print debug info + _cimg_mp_op("Function 'debug()'"); + p1 = code._width; + arg1 = compile(ss6,se1,depth1,p_ref,block_flags); + *se1 = 0; + variable_name.assign(CImg::string(ss6,true,true).unroll('y'),true); + cimg::strpare(variable_name,false,true); + ((CImg::vector((ulongT)mp_debug,arg1,0,code._width - p1), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code,p1); + *se1 = ')'; + _cimg_mp_return(arg1); + } + + if (!std::strncmp(ss,"deg2rad(",8)) { // Degrees to radians + _cimg_mp_op("Function 'deg2rad()'"); + arg1 = compile(ss8,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_deg2rad,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]*cimg::PI/180); + _cimg_mp_scalar1(mp_deg2rad,arg1); + } + + if (!std::strncmp(ss,"display(",8)) { // Display memory, vector or image + _cimg_mp_op("Function 'display()'"); + if (pexpr[se2 - expr._data]=='(') { // no arguments? + CImg::vector((ulongT)mp_display_memory,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return_nan(); + } + if (*ss8!='#') { // Vector + s1 = ss8; while (s1::string(ss8,true,true).unroll('y'),true); + cimg::strpare(variable_name,false,true); + if (is_vector(arg1)) + ((CImg::vector((ulongT)mp_vector_print,arg1,0,(ulongT)size(arg1),0), + variable_name)>'y').move_to(opcode); + else + ((CImg::vector((ulongT)mp_print,arg1,0,0), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + + ((CImg::vector((ulongT)mp_display,arg1,0,(ulongT)size(arg1), + arg2,arg3,arg4,arg5), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + *s1 = c1; + _cimg_mp_return(arg1); + + } else { // Image + p1 = compile(ss8 + 1,se1,depth1,0,block_flags); + _cimg_mp_check_list(); + CImg::vector((ulongT)mp_image_display,_cimg_mp_slot_nan,p1).move_to(code); + _cimg_mp_return_nan(); + } + } + + if (!std::strncmp(ss,"det(",4)) { // Matrix determinant + _cimg_mp_op("Function 'det()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + _cimg_mp_check_matrix_square(arg1,1); + p1 = (unsigned int)cimg::round(std::sqrt((float)size(arg1))); + _cimg_mp_scalar2(mp_det,arg1,p1); + } + + if (!std::strncmp(ss,"diag(",5)) { // Diagonal matrix + _cimg_mp_op("Function 'diag()'"); + CImg::vector((ulongT)mp_diag,0,0).move_to(l_opcode); + for (s = ss5; s::sequence(size(arg2),arg2 + 1, + arg2 + (ulongT)size(arg2)). + move_to(l_opcode); + else CImg::vector(arg2).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + arg1 = opcode._height - 3; + pos = vector(arg1*arg1); + opcode[1] = pos; + opcode[2] = opcode._height; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"dot(",4)) { // Dot product + _cimg_mp_op("Function 'dot()'"); + s1 = ss4; while (s1::vector((ulongT)mp_do,p1,p2,arg2 - arg1,code._width - arg2,size(p1), + p1>=arg6 && !is_const_scalar(p1), + p2>=arg6 && !is_const_scalar(p2)).move_to(code,arg1); + _cimg_mp_return(p1); + } + + if (!std::strncmp(ss,"draw(",5)) { // Draw image + _cimg_mp_op("Function 'draw()'"); + if (*ss5=='#') { // Index specified + s0 = ss6; while (s0::vector(arg1).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + + is_sth = p1==~0U && opcode._height>5 && is_vector((unsigned int)opcode[5]); // Is vector drawing? + if ((is_sth && (opcode._height<6 || opcode._height>17)) || + (!is_sth && (opcode._height<1 || opcode._height>12))) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Too %s arguments specified, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + opcode._height>12?"much":"few",s0); + } + + if (is_sth) { // Drawing in a vector + _cimg_mp_check_type((unsigned int)*opcode,1,2,0); // D + _cimg_mp_check_type((unsigned int)opcode[1],2,1,0); // w + _cimg_mp_check_type((unsigned int)opcode[2],3,1,0); // h + _cimg_mp_check_type((unsigned int)opcode[3],4,1,0); // d + _cimg_mp_check_type((unsigned int)opcode[4],5,1,0); // s + + if (opcode._height<8 || (opcode._height<10 && is_vector((unsigned int)opcode[7]))) { + // D,w,h,d,s,S[,opac,M,maxM] + if (opcode._height>6) _cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // opac + if (opcode._height>8) _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // maxM + CImg::vector((ulongT)mp_vector_draw, + *opcode,size((unsigned int)*opcode), // 1-2: D,sizD + opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s + opcode[5],size((unsigned int)opcode[5]), // 7-8: S,sizS + 0,0,0,0, // 9-12: x,y,z,c + ~0U,~0U,~0U,~0U, // 13-16: dx,dy,dz,dc + opcode._height<7?1:opcode[6], // 17: opac + opcode._height<8?~0U:opcode[7], // 18: M + opcode._height<8?0:size((unsigned int)opcode[7]), // 19: sizM + opcode._height<9?1:opcode[8]).move_to(code); // 20: maxM + } else if (opcode._height<10 || (opcode._height<12 && is_vector((unsigned int)opcode[9]))) { + // D,w,h,d,s,S,x,dx[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // dx + if (opcode._height>8) _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // opac + if (opcode._height>10) _cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // maxM + CImg::vector((ulongT)mp_vector_draw, + *opcode,size((unsigned int)*opcode), // 1-2: D,sizD + opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s + opcode[5],size((unsigned int)opcode[5]), // 7-8: S,sizS + opcode[6],0,0,0, // 9-12: x,y,z,c + opcode[7],~0U,~0U,~0U, // 13-16: dx,dy,dz,dc + opcode._height<9?1:opcode[8], // 17: opac + opcode._height<10?~0U:opcode[9], // 18: M + opcode._height<10?0:size((unsigned int)opcode[9]), // 19: sizM + opcode._height<11?1:opcode[10]).move_to(code); // 20: maxM + } else if (opcode._height<12 || (opcode._height<14 && is_vector((unsigned int)opcode[11]))) { + // D,w,h,d,s,S,x,y,dx,dy[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // y + _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // dx + _cimg_mp_check_type((unsigned int)opcode[9],10,1,0); // dy + if (opcode._height>10) _cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // opac + if (opcode._height>12) _cimg_mp_check_type((unsigned int)opcode[12],13,1,0); // maxM + CImg::vector((ulongT)mp_vector_draw, + *opcode,size((unsigned int)*opcode), // 1-2: D,sizD + opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s + opcode[5],size((unsigned int)opcode[5]), // 7-8: S,sizS + opcode[6],opcode[7],0,0, // 9-12: x,y,z,c + opcode[8],opcode[9],~0U,~0U, // 13-16: dx,dy,dz,dc + opcode._height<11?1:opcode[10], // 17: opac + opcode._height<12?~0U:opcode[11], // 18: M + opcode._height<12?0:size((unsigned int)opcode[11]), // 19: sizM + opcode._height<13?1:opcode[12]).move_to(code); // 20: maxM + } else if (opcode._height<14 || (opcode._height<16 && is_vector((unsigned int)opcode[13]))) { + // D,w,h,d,s,S,x,y,z,dx,dy,dz[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // y + _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // z + _cimg_mp_check_type((unsigned int)opcode[9],10,1,0); // dx + _cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // dy + _cimg_mp_check_type((unsigned int)opcode[11],12,1,0); // dz + if (opcode._height>12) _cimg_mp_check_type((unsigned int)opcode[12],13,1,0); // opac + if (opcode._height>14) _cimg_mp_check_type((unsigned int)opcode[14],15,1,0); // maxM + CImg::vector((ulongT)mp_vector_draw, + *opcode,size((unsigned int)*opcode), // 1-2: D,sizD + opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s + opcode[5],size((unsigned int)opcode[5]), // 7-8: S,sizS + opcode[6],opcode[7],opcode[8],0, // 9-12: x,y,z,c + opcode[9],opcode[10],opcode[11],~0U, // 13-16: dx,dy,dz,dc + opcode._height<13?1:opcode[12], // 17: opac + opcode._height<14?~0U:opcode[13], // 18: M + opcode._height<14?0:size((unsigned int)opcode[13]), // 19: sizM + opcode._height<15?1:opcode[14]).move_to(code); // 20: maxM + } else if (opcode._height<16 || (opcode._height<18 && is_vector((unsigned int)opcode[15]))) { + // D,w,h,d,s,S,x,y,z,c,dx,dy,dz,dc[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[6],7,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[7],8,1,0); // y + _cimg_mp_check_type((unsigned int)opcode[8],9,1,0); // z + _cimg_mp_check_type((unsigned int)opcode[9],10,1,0); // c + _cimg_mp_check_type((unsigned int)opcode[10],11,1,0); // dx + _cimg_mp_check_type((unsigned int)opcode[11],12,1,0); // dy + _cimg_mp_check_type((unsigned int)opcode[12],13,1,0); // dz + _cimg_mp_check_type((unsigned int)opcode[13],14,1,0); // dc + if (opcode._height>14) _cimg_mp_check_type((unsigned int)opcode[14],15,1,0); // opac + if (opcode._height>16) _cimg_mp_check_type((unsigned int)opcode[16],17,1,0); // maxM + CImg::vector((ulongT)mp_vector_draw, + *opcode,size((unsigned int)*opcode), // 1-2: D,sizD + opcode[1],opcode[2],opcode[3],opcode[4], // 3-6: w,h,d,s + opcode[5],size((unsigned int)opcode[5]), // 7-8: S,sizS + opcode[6],opcode[7],opcode[8],opcode[9], // 9-12: x,y,z,c + opcode[10],opcode[11],opcode[12],opcode[13], // 13-16: dx,dy,dz,dc + opcode._height<15?1:opcode[14], // 17: opac + opcode._height<16?~0U:opcode[15], // 18: M + opcode._height<16?0:size((unsigned int)opcode[15]), // 19: sizM + opcode._height<17?1:opcode[16]).move_to(code); // 20: maxM + } else { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid types in specified arguments, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s0); + } + + } else { // Drawing in an image + if (!is_inside_critical) is_parallelizable = false; + arg1 = p1!=~0U; + _cimg_mp_check_type((unsigned int)*opcode,1 + arg1,2,0); // S + if (opcode._height<3 || (opcode._height<5 && is_vector((unsigned int)opcode[2]))) { + // S[,opac,M,maxM] + if (opcode._height>1) _cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // opac + if (opcode._height>3) _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // maxM + CImg::vector((ulongT)mp_image_draw, + *opcode,size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind + 0,0,0,0, // 4-7: x,y,z,c + ~0U,~0U,~0U,~0U, // 8-11: dx,dy,dz,dc + opcode._height<2?1:opcode[1], // 12: opac + opcode._height<3?~0U:opcode[2], // 13: M + opcode._height<3?0:size((unsigned int)opcode[2]), // 14: sizM + opcode._height<4?1:opcode[3]).move_to(code); // 15: maxM + } else if (opcode._height<5 || (opcode._height<7 && is_vector((unsigned int)opcode[4]))) { + // x,dx,S[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // dx + if (opcode._height>3) _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // opac + if (opcode._height>5) _cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // maxM + CImg::vector((ulongT)mp_image_draw, + *opcode,size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind + opcode[1],0,0,0, // 4-7: x,y,z,c + opcode[2],~0U,~0U,~0U, // 8-11: dx,dy,dz,dc + opcode._height<4?1:opcode[3], // 12: opac + opcode._height<5?~0U:opcode[4], // 13: M + opcode._height<5?0:size((unsigned int)opcode[4]), // 14: sizM + opcode._height<6?1:opcode[5]).move_to(code); // 15: maxM + } else if (opcode._height<7 || (opcode._height<9 && is_vector((unsigned int)opcode[6]))) { + // x,y,dx,dy,S[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // y + _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // dx + _cimg_mp_check_type((unsigned int)opcode[4],5 + arg1,1,0); // dy + if (opcode._height>5) _cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // opac + if (opcode._height>7) _cimg_mp_check_type((unsigned int)opcode[7],8 + arg1,1,0); // maxM + CImg::vector((ulongT)mp_image_draw, + *opcode,size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind + opcode[1],opcode[2],0,0, // 4-7: x,y,z,c + opcode[3],opcode[4],~0U,~0U, // 8-11: dx,dy,dz,dc + opcode._height<6?1:opcode[5], // 12: opac + opcode._height<7?~0U:opcode[6], // 13: M + opcode._height<7?0:size((unsigned int)opcode[6]), // 14: sizM + opcode._height<8?1:opcode[7]).move_to(code); // 15: maxM + } else if (opcode._height<9 || (opcode._height<11 && is_vector((unsigned int)opcode[8]))) { + // x,y,z,dx,dy,dz,S[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // y + _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // z + _cimg_mp_check_type((unsigned int)opcode[4],5 + arg1,1,0); // dx + _cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // dy + _cimg_mp_check_type((unsigned int)opcode[6],7 + arg1,1,0); // dz + if (opcode._height>7) _cimg_mp_check_type((unsigned int)opcode[7],8 + arg1,1,0); // opac + if (opcode._height>9) _cimg_mp_check_type((unsigned int)opcode[9],10 + arg1,1,0); // maxM + CImg::vector((ulongT)mp_image_draw, + *opcode,size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind + opcode[1],opcode[2],opcode[3],0, // 4-7: x,y,z,c + opcode[4],opcode[5],opcode[6],~0U, // 8-11: dx,dy,dz,dc + opcode._height<8?1:opcode[7], // 12: opac + opcode._height<9?~0U:opcode[8], // 13: M + opcode._height<9?0:size((unsigned int)opcode[8]), // 14: sizM + opcode._height<10?1:opcode[9]).move_to(code); // 15: maxM + } else if (opcode._height<11 || (opcode._height<13 && is_vector((unsigned int)opcode[10]))) { + // x,y,z,c,dx,dy,dz,dc,S[,opac,M,maxM] + _cimg_mp_check_type((unsigned int)opcode[1],2 + arg1,1,0); // x + _cimg_mp_check_type((unsigned int)opcode[2],3 + arg1,1,0); // y + _cimg_mp_check_type((unsigned int)opcode[3],4 + arg1,1,0); // z + _cimg_mp_check_type((unsigned int)opcode[4],5 + arg1,1,0); // c + _cimg_mp_check_type((unsigned int)opcode[5],6 + arg1,1,0); // dx + _cimg_mp_check_type((unsigned int)opcode[6],7 + arg1,1,0); // dy + _cimg_mp_check_type((unsigned int)opcode[7],8 + arg1,1,0); // dz + _cimg_mp_check_type((unsigned int)opcode[8],9 + arg1,1,0); // dc + if (opcode._height>9) _cimg_mp_check_type((unsigned int)opcode[9],10 + arg1,1,0); // opac + if (opcode._height>11) _cimg_mp_check_type((unsigned int)opcode[11],12 + arg1,1,0); // maxM + CImg::vector((ulongT)mp_image_draw, + *opcode,size((unsigned int)*opcode),p1, // 1-3: S,sizS,#ind + opcode[1],opcode[2],opcode[3],opcode[4], // 4-7: x,y,z,c + opcode[5],opcode[6],opcode[7],opcode[8], // 8-11: dx,dy,dz,dc + opcode._height<10?1:opcode[9], // 12: opac + opcode._height<11?~0U:opcode[10], // 13: M + opcode._height<11?0:size((unsigned int)opcode[10]), // 14: sizM + opcode._height<12?1:opcode[11]).move_to(code); // 15: maxM + } else { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid types in specified arguments, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s0); + } + } + _cimg_mp_return_nan(); + } + break; + + case 'e' : + if (!std::strncmp(ss,"echo(",5)) { // Echo + _cimg_mp_op("Function 'echo()'"); + CImg::vector((ulongT)mp_echo,_cimg_mp_slot_nan,0).move_to(l_opcode); + for (s = ss5; s::vector(arg1,size(arg1)).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"eig(",4)) { // Matrix eigenvalues/eigenvector + _cimg_mp_op("Function 'eig()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + _cimg_mp_check_matrix_square(arg1,1); + p1 = (unsigned int)cimg::round(std::sqrt((float)size(arg1))); + pos = vector((p1 + 1)*p1); + CImg::vector((ulongT)mp_matrix_eig,pos,arg1,p1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ellipse(",8)) { // Ellipse/circle drawing + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_op("Function 'ellipse()'"); + if (*ss8=='#') { // Index specified + s0 = ss + 9; while (s0::vector((ulongT)mp_ellipse,_cimg_mp_slot_nan,0,p1).move_to(l_opcode); + for (s = s0; s::sequence(size(arg2),arg2 + 1,arg2 + (ulongT)size(arg2)).move_to(l_opcode); + else + CImg::vector(arg2).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"equalize(",9)) { // Equalize + _cimg_mp_op("Function 'equalize()'"); + s0 = ss + 9; + s1 = s0; while (s1::vector((ulongT)mp_vector_equalize,pos,arg1,p1,arg2,arg3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + +#if cimg_use_cpp11==1 + if (!std::strncmp(ss,"erf(",4)) { // Error function + _cimg_mp_op("Function 'erf()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_erf,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::erf(mem[arg1])); + _cimg_mp_scalar1(mp_erf,arg1); + } +#endif + + if (!std::strncmp(ss,"erfinv(",7)) { // Inverse of error function + _cimg_mp_op("Function 'erfinv()'"); + arg1 = compile(ss7,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_erfinv,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::erfinv(mem[arg1])); + _cimg_mp_scalar1(mp_erfinv,arg1); + } + + if (!std::strncmp(ss,"exp(",4)) { // Exponential + _cimg_mp_op("Function 'exp()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_exp,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::exp(mem[arg1])); + _cimg_mp_scalar1(mp_exp,arg1); + } + + if (!std::strncmp(ss,"expr(",5)) { // Vector from expression + _cimg_mp_op("Function 'expr()'"); + s1 = ss5; while (s1::vector((ulongT)mp_expr,pos,arg1,p1,arg2,arg3,arg4,arg5).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"eye(",4)) { // Identity matrix + _cimg_mp_op("Function 'eye()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + _cimg_mp_check_const_scalar(arg1,1,3); + p1 = (unsigned int)mem[arg1]; + pos = vector(p1*p1); + CImg::vector((ulongT)mp_eye,pos,p1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"end(",4)) { // End + _cimg_mp_op("Function 'end()'"); + s1 = ss4; while (s1uint conversion + _cimg_mp_op("Function 'f2ui()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_f2ui,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar((double)cimg::float2uint((float)mem[arg1])); + _cimg_mp_scalar1(mp_f2ui,arg1); + } + + if (!std::strncmp(ss,"fact(",5)) { // Factorial + _cimg_mp_op("Function 'fact()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_factorial,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::factorial((int)mem[arg1])); + _cimg_mp_scalar1(mp_factorial,arg1); + } + + if (!std::strncmp(ss,"fibo(",5)) { // Fibonacci + _cimg_mp_op("Function 'fibo()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_fibonacci,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::fibonacci((int)mem[arg1])); + _cimg_mp_scalar1(mp_fibonacci,arg1); + } + + if (!std::strncmp(ss,"fill(",5)) { // Fill + _cimg_mp_op("Function 'fill()'"); + s0 = ss5; while (s0::%s: %s: Target scalar is constant, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,ss); + s1 = ++s0; while (s1::%s: %s: Invalid loop variable name '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data,s0); + } + get_variable_pos(variable_name,arg2,arg3); + arg2 = arg3!=~0U?reserved_label[arg3]:arg2!=~0U?variable_pos[arg2]:~0U; // Variable slot + if (arg2!=~0U && (!is_scalar(arg2) || + is_const_scalar(arg2))) { // Variable is not a vector or is a constant->error + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid type '%s' for variable '%s' " + "(expected 'scalar'), in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg2)._data,variable_name._data,s0); + } else if (arg2==~0U) { // Variable does not exist -> create it + arg2 = scalar(); + if (arg3!=~0U) reserved_label[arg3] = arg2; + else { + if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0); + variable_pos[variable_def._width] = arg2; + variable_name.move_to(variable_def); + } + memtype[arg2] = -1; + } + arg3 = compile(++s1,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg3,3,1,0); + } else { // Version with 2 arguments + arg2 = ~0U; + arg3 = compile(s0,se1,depth1,0,block_flags); + } + // arg2 = variable slot, arg3 = fill expression. + _cimg_mp_check_type(arg3,3,1,0); + CImg::vector((ulongT)mp_fill,arg1,size(arg1),arg2,arg3,code._width - p1). + move_to(code,p1); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"find(",5)) { // Find + _cimg_mp_op("Function 'find()'"); + + // First argument: data to look at. + s0 = ss5; while (s01) + _cimg_mp_scalar5(mp_list_find_seq,p1,arg2,size(arg2),arg3,arg4); + _cimg_mp_scalar4(mp_list_find,p1,arg2 + (size(arg2)?1:0),arg3,arg4); + } + if (size(arg2)>1) + _cimg_mp_scalar6(mp_find_seq,arg1,size(arg1),arg2,size(arg2),arg3,arg4); + _cimg_mp_scalar5(mp_find,arg1,size(arg1),arg2 + (size(arg2)?1:0),arg3,arg4); + } + + if (*ss1=='o' && *ss2=='r' && *ss3=='(') { // For loop + _cimg_mp_op("Function 'for()'"); + s1 = ss4; while (s1::vector((ulongT)mp_for,p3,(ulongT)size(p3),p2,arg2 - arg1,arg3 - arg2, + arg4 - arg3,code._width - arg4, + p3>=arg6 && !is_const_scalar(p3), + p2>=arg6 && !is_const_scalar(p2)).move_to(code,arg1); + _cimg_mp_return(p3); + } + + if (!std::strncmp(ss,"flood(",6)) { // Flood fill image + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_op("Function 'flood()'"); + if (*ss6=='#') { // Index specified + s0 = ss7; while (s0::vector((ulongT)mp_flood,_cimg_mp_slot_nan,0,p1).move_to(l_opcode); + for (s = s0; s::sequence(size(arg2),arg2 + 1,arg2 + (ulongT)size(arg2)).move_to(l_opcode); + else + CImg::vector(arg2).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"floor(",6)) { // Floor + _cimg_mp_op("Function 'floor()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_floor,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::floor(mem[arg1])); + _cimg_mp_scalar1(mp_floor,arg1); + } + + if (!std::strncmp(ss,"fsize(",6)) { // File size + _cimg_mp_op("Function 'fsize()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_type(arg1,1,2,0); + pos = scalar(); + CImg::vector((ulongT)mp_fsize,pos,arg1,(ulongT)size(arg1)).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + break; + + case 'g' : +#if cimg_use_cpp11==1 + if (!std::strncmp(ss,"gamma(",6)) { // Gamma + _cimg_mp_op("Function 'gamma()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_gamma,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::tgamma(mem[arg1])); + _cimg_mp_scalar1(mp_gamma,arg1); + } +#endif + + if (!std::strncmp(ss,"gauss(",6)) { // Gaussian function + _cimg_mp_op("Function 'gauss()'"); + s1 = ss6; while (s1::max(); + if (mem[arg2]>=siz_max) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Specified variable size %g is larger than %d.", + pixel_type(),_cimg_mp_calling_function,s_op, + mem[arg2],siz_max); + } + arg2 = (unsigned int)mem[arg2]; + if (arg2) pos = vector(arg2); else pos = scalar(); + CImg::vector((ulongT)mp_get,pos,arg1,p1,arg2,arg3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } +#endif + break; + + case 'h' : + if (*ss1=='(') { // Image height + _cimg_mp_op("Function 'h()'"); + if (*ss2=='#') { // Index specified + p1 = compile(ss3,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss2!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_h,p1); + } + + if (!std::strncmp(ss,"histogram(",10)) { // Compute histogram + _cimg_mp_op("Function 'histogram()'"); + s0 = ss + 10; + s1 = s0; while (s1::vector((ulongT)mp_vector_histogram,pos,arg1,p1,arg2,arg3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + break; + + case 'i' : + if (*ss1=='c' && *ss2=='(') { // Image median + _cimg_mp_op("Function 'ic()'"); + if (*ss3=='#') { // Index specified + p1 = compile(ss4,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_median,pos,p1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (*ss1=='n' && *ss2=='(') { // Image norm + _cimg_mp_op("Function 'in()'"); + if (*ss3=='#') { // Index specified + p1 = compile(ss4,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_norm,pos,p1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (*ss1=='f' && *ss2=='(') { // If..then[..else.] + _cimg_mp_op("Function 'if()'"); + s1 = ss3; while (s1::vector((ulongT)mp_if,pos,arg1,arg2,arg3, + p3 - p2,code._width - p3,arg4).move_to(code,p2); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"index(",6)) { // Index colors + _cimg_mp_op("Function 'index()'"); + s1 = ss6; while (s1::%s: %s: Colormap size (%lu values) and specified " + "dimension of colormap entries (%u) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p2,1U),arg3); + if (p1%arg3) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Input vector size (%lu values) and specified " + "dimension of colormap entries (%u) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p1,1U),arg3); + pos = vector(arg5?p1:p1/arg3); + CImg::vector((ulongT)mp_vector_index,pos,arg1,p1,arg2,p2,arg3,arg4,arg5).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"inrange(",8)) { // Check value range + _cimg_mp_op("Function 'inrange()'"); + s1 = ss8; while (s1=val1) + is_sth = (mem[arg4]?(val>=val1):(val>val1)) && (mem[arg5]?(val<=val2):(val=val2):(val>val2)) && (mem[arg4]?(val<=val1):(val::vector((ulongT)mp_inrange,pos,arg6,arg1,p1,arg2,p2,arg3,p3,arg4,arg5).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"int(",4)) { // Integer cast + _cimg_mp_op("Function 'int()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_int,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar((longT)mem[arg1]); + _cimg_mp_scalar1(mp_int,arg1); + } + + if (!std::strncmp(ss,"invert(",7)) { // Matrix/scalar inverse (or pseudoinverse) + _cimg_mp_op("Function 'invert()'"); + s1 = ss7; while (s1::%s: %s: Type of first argument ('%s') " + "does not match with second argument 'nb_colsA=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,p2,s0); + } + } + pos = vector(p1); + CImg::vector((ulongT)mp_matrix_invert,pos,arg1,p2,p3,arg3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(1/mem[arg1]); + _cimg_mp_scalar2(mp_div,1,arg1); + } + + if (*ss1=='s') { // Family of 'is_?()' functions + + if (!std::strncmp(ss,"isbool(",7)) { // Is boolean? + _cimg_mp_op("Function 'isbool()'"); + if (ss7==se1) _cimg_mp_return(0); + try { arg1 = compile(ss7,se1,depth1,0,block_flags); } + catch (CImgException&) { _cimg_mp_return(0); } + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_isbool,arg1); + if (is_const_scalar(arg1)) _cimg_mp_return(mem[arg1]==0. || mem[arg1]==1.); + _cimg_mp_scalar1(mp_isbool,arg1); + } + + if (!std::strncmp(ss,"isconst(",8)) { // Is constant? + _cimg_mp_op("Function 'isconst()'"); + if (ss8==se1) _cimg_mp_return(0); + try { arg1 = compile(ss8,se1,depth1,0,block_flags); } + catch (CImgException&) { _cimg_mp_return(0); } + if (is_const_scalar(arg1)) _cimg_mp_return(1); + _cimg_mp_return(0); + } + + if (!std::strncmp(ss,"isdir(",6)) { // Is directory? + _cimg_mp_op("Function 'isdir()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + pos = scalar(); + CImg::vector((ulongT)mp_isdir,pos,arg1,(ulongT)size(arg1)).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"isfile(",7)) { // Is file? + _cimg_mp_op("Function 'isfile()'"); + arg1 = compile(ss7,se1,depth1,0,block_flags); + pos = scalar(); + CImg::vector((ulongT)mp_isfile,pos,arg1,(ulongT)size(arg1)).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"isin(",5)) { // Is in sequence/vector? + if (ss5>=se1) _cimg_mp_return(0); + _cimg_mp_op("Function 'isin()'"); + pos = scalar(); + CImg::vector((ulongT)mp_isin,pos,0).move_to(l_opcode); + for (s = ss5; s::vector(arg1,size(arg1)).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"isinf(",6)) { // Is infinite? + _cimg_mp_op("Function 'isinf()'"); + if (ss6==se1) _cimg_mp_return(0); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_isinf,arg1); + if (is_const_scalar(arg1)) + _cimg_mp_return((unsigned int)cimg::type::is_inf(mem[arg1])); + _cimg_mp_scalar1(mp_isinf,arg1); + } + + if (!std::strncmp(ss,"isint(",6)) { // Is integer? + _cimg_mp_op("Function 'isint()'"); + if (ss6==se1) _cimg_mp_return(0); + s1 = ss6; while (s1=mem[arg2]); + _cimg_mp_return(is_sth && val>=mem[arg2] && val<=mem[arg3]); + } + _cimg_mp_scalar3(mp_isint,arg1,arg2,arg3); + } + + if (!std::strncmp(ss,"isnan(",6)) { // Is NaN? + _cimg_mp_op("Function 'isnan()'"); + if (ss6==se1) _cimg_mp_return(0); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_isnan,arg1); + if (is_const_scalar(arg1)) + _cimg_mp_return((unsigned int)cimg::type::is_nan(mem[arg1])); + _cimg_mp_scalar1(mp_isnan,arg1); + } + + if (!std::strncmp(ss,"isnum(",6)) { // Is number? + _cimg_mp_op("Function 'isnum()'"); + val = 0; + if (cimg_sscanf(ss6,"%lf%c%c",&val,&sep,&end)==2 && sep==')') _cimg_mp_return(1); + _cimg_mp_return(0); + } + + if (!std::strncmp(ss,"isexpr(",7)) { // Is valid expression? + _cimg_mp_op("Function 'isexpr()'"); + if (ss7==se1) _cimg_mp_return(0); + try { arg1 = compile(ss7,se1,depth1,0,block_flags); } + catch (CImgException&) { _cimg_mp_return(0); } + _cimg_mp_return(1); + } + + if (!std::strncmp(ss,"ispercentage(",13)) { // Does argument ends with '%'? + _cimg_mp_op("Function 'ispercentage()'"); + _cimg_mp_return((unsigned int)(*se2=='%')); + } + + if (!std::strncmp(ss,"isvarname(",10)) { // Is variable name? + _cimg_mp_op("Function 'isvarname()'"); + arg1 = compile(ss + 10,se1,depth1,0,block_flags); + pos = scalar(); + CImg::vector((ulongT)mp_isvarname,pos,arg1,(ulongT)size(arg1)).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + } + break; + + case 'l' : + if (*ss1=='(') { // Size of image list + _cimg_mp_op("Function 'l()'"); + if (ss2!=se1) break; + _cimg_mp_scalar0(mp_list_l); + } + + if (!std::strncmp(ss,"lerp(",5)) { // Linear interpolation + _cimg_mp_op("Function 'lerp()'"); + s1 = ss5; while (s1::vector((ulongT)mp_vector_lerp,pos,p1,arg1,arg2,arg3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"log(",4)) { // Natural logarithm + _cimg_mp_op("Function 'log()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_log,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::log(mem[arg1])); + _cimg_mp_scalar1(mp_log,arg1); + } + + if (!std::strncmp(ss,"log2(",5)) { // Base-2 logarithm + _cimg_mp_op("Function 'log2()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_log2,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::log2(mem[arg1])); + _cimg_mp_scalar1(mp_log2,arg1); + } + + if (!std::strncmp(ss,"log10(",6)) { // Base-10 logarithm + _cimg_mp_op("Function 'log10()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_log10,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::log10(mem[arg1])); + _cimg_mp_scalar1(mp_log10,arg1); + } + + if (!std::strncmp(ss,"lowercase(",10)) { // Lower case + _cimg_mp_op("Function 'lowercase()'"); + arg1 = compile(ss + 10,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_lowercase,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::lowercase(mem[arg1])); + _cimg_mp_scalar1(mp_lowercase,arg1); + } + break; + + case 'm' : + if (!std::strncmp(ss,"map(",4)) { // Map vector + _cimg_mp_op("Function 'map()'"); + s1 = ss4; while (s1::%s: %s: Type of first arguments ('%s') " + "does not match with third argument 'nb_channelsX=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,arg3,s0); + } + if (p2%arg4) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Type of second arguments ('%s') " + "does not match with fourth argument 'nb_channelsP=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg2)._data,arg4,s0); + } + pos = vector(p1*arg4); + CImg::vector((ulongT)mp_map,pos,arg1,arg2,p1,p2,arg3,arg4,arg5).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"mul(",4)) { // Matrix multiplication + _cimg_mp_op("Function 'mul()'"); + s1 = ss4; while (s1::%s: %s: Types of first and second arguments ('%s' and '%s') " + "do not match with third argument 'nb_colsB=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,s_type(arg2)._data,p3,s0); + } + pos = vector(arg4*p3); + CImg::vector((ulongT)mp_matrix_mul,pos,arg1,arg2,arg4,arg5,p3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"mirror(",7)) { // Mirror image + _cimg_mp_op("Function 'mirror()'"); + s1 = ss7; while (s1::%s: %s: Input vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p1,1U),arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5); + pos = vector(arg2*arg3*arg4*arg5); + CImg::vector((ulongT)mp_vector_mirror,pos,arg1,arg2,arg3,arg4,arg5,arg6,p2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"mproj(",6)) { // Project matrix onto dictionary + _cimg_mp_op("Function 'mproj()'"); + s1 = ss6; while (s1::%s: %s: Type of first argument ('%s') " + "do not match with second argument 'nb_colsS=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,wS,s0); + } + if (wD*hD!=p2) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Type of third argument ('%s') " + "do not match with fourth argument 'nb_colsD=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg3)._data,wD,s0); + } + if (hS!=hD) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Type of first argument ('%s') " + "do not match with third argument ('%s'), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,s_type(arg3)._data,s0); + } + pos = vector(wS*wD); + CImg::vector((ulongT)mp_mproj,pos,arg1,wS,hS,arg3,wD,arg5,arg6,p3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"mse(",4)) { // Mean-squared error + _cimg_mp_op("Function 'mse()'"); + s1 = ss4; while (s1::%s: %s: First argument cannot be a linked reference, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s0); + } + + arg1 = ~0U; // Merge operator + // (0='=',1='+',2='-',3='*',4='/',5='&',6='|',7='xor',8='&&',9=='||',10='min',11='max') + if (s1::%s: %s: Merge has already been requested before " + "for specified variable " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s0); + } + if (arg1==~0U) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid specified operator " + "(should be one of '=,+,-,*,/,&,|,xor,&&,||,min,max'), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,s0); + } + memmerge.resize(3,memmerge._height + 1,1,1,0,0); + memmerge(0,memmerge._height - 1) = (int)pos; + memmerge(1,memmerge._height - 1) = (int)size(pos); + memmerge(2,memmerge._height - 1) = (int)arg1; + _cimg_mp_return_nan(); + } + break; + + case 'n' : +#ifdef cimg_mp_func_name + if (!std::strncmp(ss,"name(",5)) { // Get image name as a string vector + _cimg_mp_op("Function 'name()'"); + if (*ss5=='#') { // Index specified + s0 = ss6; while (s0::vector((ulongT)mp_name,pos,p1,arg1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } +#endif + + if (!std::strncmp(ss,"narg(",5)) { // Number of arguments + _cimg_mp_op("Function 'narg()'"); + if (ss5>=se1) _cimg_mp_return(0); + arg1 = 0; + for (s = ss5; s::vector((ulongT)mp_vector_noise,pos,arg1,p1,arg2,arg3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"normalize(",10)) { // Normalize + _cimg_mp_op("Function 'normalize()'"); + s0 = ss + 10; + s1 = s0; while (s1::vector((ulongT)mp_vector_normalize,pos,arg1,p1,arg2,arg3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"normp(",6)) { // Lp norm, with variable argument p. + _cimg_mp_op("Function 'normp()'"); + s1 = ss6; while (s1::vector((ulongT)mp_o2c,pos,p1,arg1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + break; + + case 'p' : + if (!std::strncmp(ss,"perm(",5)) { // Number of permutations + _cimg_mp_op("Function 'perm()'"); + s1 = ss5; while (s1::%s: %s: Input vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p1,1U),arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5); + pos = vector(arg2*arg3*arg4*arg5); + CImg::vector((ulongT)mp_vector_permute,pos,arg1,arg2,arg3,arg4,arg5,arg6,p2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"polygon(",8)) { // Polygon/line drawing + if (!is_inside_critical) is_parallelizable = false; + _cimg_mp_op("Function 'polygon()'"); + if (*ss8=='#') { // Index specified + s0 = ss + 9; while (s0::vector((ulongT)mp_polygon,_cimg_mp_slot_nan,0,p1).move_to(l_opcode); + for (s = s0; s1 && is_vector(arg2)) // Vector argument allowed to specify coordinates and color + CImg::sequence(size(arg2),arg2 + 1, + arg2 + (ulongT)size(arg2)). + move_to(l_opcode); + else { + _cimg_mp_check_type(arg2,pos,1,0); + CImg::vector(arg2).move_to(l_opcode); + } + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"print(",6) || + !std::strncmp(ss,"prints(",7)) { // Print expressions + s0 = ss6 + (*ss5=='('?0:1); + is_sth = *ss5=='s'; // corresponding string must be printed? + _cimg_mp_op(is_sth?"Function 'prints()'":"Function 'print()'"); + if (!is_sth && *s0=='#') { // Image + p1 = compile(ss7,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + CImg::vector((ulongT)mp_image_print,_cimg_mp_slot_nan,p1).move_to(code); + _cimg_mp_return_nan(); + } + + // Regular expression + for (s = s0; s::string(s,true,true).unroll('y'),true); + cimg::strpare(variable_name,false,true); + if (is_const_scalar(pos)) // Const scalar + std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = %.17g " + "(mem[%u]: %s%s)", + variable_name._data,mem[pos],pos,s_type(pos)._data,s_ref(ref)._data); + else // Vector or non-const scalar + std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = (uninitialized) " + "(mem[%u]: %s%s)", + variable_name._data,pos,s_type(pos)._data,s_ref(ref)._data); + + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + + if (is_vector(pos)) // Vector + ((CImg::vector((ulongT)mp_vector_print,pos,0,(ulongT)size(pos),is_sth?1:0), + variable_name)>'y').move_to(opcode); + else // Scalar + ((CImg::vector((ulongT)mp_print,pos,0,is_sth?1:0), + variable_name)>'y').move_to(opcode); + + opcode[2] = opcode._height; + opcode.move_to(code); + *ns = c1; s = ns; + } + _cimg_mp_return(pos); + } + break; + + case 'r' : + if (!std::strncmp(ss,"rad2deg(",8)) { // Degrees to radians + _cimg_mp_op("Function 'rad2deg()'"); + arg1 = compile(ss8,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_rad2deg,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(mem[arg1]*180/cimg::PI); + _cimg_mp_scalar1(mp_rad2deg,arg1); + } + + if ((cimg_sscanf(ss,"rand%u%c",&(arg1=~0U),&sep)==2 && sep=='(' && arg1>0) || + !std::strncmp(ss,"rand(#",6) || + (!std::strncmp(ss,"rand",4) && ss4::vector((ulongT)mp_vector_rand,pos,arg1,arg2,arg3,arg4,p2,arg5).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ref(",4)) { // Variable declaration + _cimg_mp_op("Function 'ref()'"); + s1 = ss4; while (s1=se1 || !*s1) compile(s1,s1,depth1,0,block_flags); // Will throw missing argument error + arg3 = compile(ss4,s1++,depth1,p_ref,block_flags|32); + *se1 = 0; + + if (!cimg::is_varname(s1)) { // Invalid variable name + variable_name.assign(s1,(unsigned int)(se1 + 1 - s1)).back() = 0; + cimg::strellipsize(variable_name,64); + *se1 = ')'; + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid specified variable name '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data,s0); + } + get_variable_pos(s1,arg1,arg2); + if (arg2!=~0U) reserved_label[arg2] = arg3; + else if (arg1!=~0U) variable_pos[arg1] = arg3; + else { // New variable + if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0); + variable_pos[variable_def._width] = arg3; + CImg::string(s1).move_to(variable_def); + } + if (is_vector(arg3)) + set_reserved_vector(arg3); // Prevent from being used in further optimization + else if (is_comp_scalar(arg3)) memtype[arg3] = -1; + *se1 = ')'; + _cimg_mp_return(arg3); + } + + if (!std::strncmp(ss,"repeat(",7)) { // Repeat + _cimg_mp_op("Function 'repeat()'"); + s0 = ss7; while (s0::%s: %s: Invalid loop variable name '%s', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data,s0); + } + get_variable_pos(variable_name,arg2,arg3); + arg2 = arg3!=~0U?reserved_label[arg3]:arg2!=~0U?variable_pos[arg2]:~0U; // Variable slot + if (arg2!=~0U && (!is_scalar(arg2) || + is_const_scalar(arg2))) { // Variable is not a vector or is a constant->error + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Invalid type '%s' for variable '%s' " + "(expected 'scalar'), in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg2)._data,variable_name._data,s0); + } else if (arg2==~0U) { // Variable does not exist -> create it + arg2 = scalar(); + if (arg3!=~0U) reserved_label[arg3] = arg2; + else { + if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0); + variable_pos[variable_def._width] = arg2; + variable_name.move_to(variable_def); + } + memtype[arg2] = -1; + } + arg3 = compile(++s1,se1,depth1,0,block_flags); + } else { // Version with 2 arguments + arg2 = ~0U; + arg3 = compile(s0,se1,depth1,0,block_flags); + } + // arg2 = variable slot, arg3 = fill expression. + CImg::vector((ulongT)mp_repeat,arg3,arg1,arg2,code._width - p1).move_to(code,p1); + _cimg_mp_return_nan(); + } + + if (!std::strncmp(ss,"resize(",7)) { // Vector or image resize + _cimg_mp_op("Function 'resize()'"); + if (*ss7!='#') { // Vector + pos = 1; + for (s = ss7; s::vector(arg2).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + if (opcode.height()<2) compile(s,se1,depth1,0,block_flags); // Not enough arguments -> throw exception + arg1 = (unsigned int)opcode[0]; // Vector to resize + p1 = size(arg1); + + if (opcode.height()<=4) { // Simple vector resize + arg2 = (unsigned int)opcode[1]; + _cimg_mp_check_const_scalar(arg2,2,3); + arg2 = (unsigned int)mem[arg2]; + arg3 = opcode.height()<3?1U:(unsigned int)opcode[2]; + _cimg_mp_check_type(arg3,3,1,0); + arg4 = opcode.height()<4?0U:(unsigned int)opcode[3]; + _cimg_mp_check_type(arg4,4,1,0); + pos = vector(arg2); + CImg::vector((ulongT)mp_vector_resize,pos,arg2,arg1,p1,arg3,arg4).move_to(code); + } else { // Advanced vector resize (vector viewed as an image) + // opcode = [ A, ow,oh,od,os, nw,nh,nd,ns, interp, boundary_cond, ax,ay,az,ac ] + // [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ] + + if (opcode.height()<6) compile(s,se1,depth1,0,block_flags); // Not enough arguments -> throw exception + p2 = opcode.height(); + opcode.resize(1,15,1,1,0); + if (p2<7) opcode[6] = opcode[2]; + if (p2<8) opcode[7] = opcode[3]; + if (p2<9) opcode[8] = opcode[4]; + if (p2<10) opcode[9] = 1; + _cimg_mp_check_const_scalar(opcode[1],2,3); + _cimg_mp_check_const_scalar(opcode[2],3,3); + _cimg_mp_check_const_scalar(opcode[3],4,3); + _cimg_mp_check_const_scalar(opcode[4],5,3); + _cimg_mp_check_const_scalar(opcode[5],6,3); + _cimg_mp_check_const_scalar(opcode[6],7,3); + _cimg_mp_check_const_scalar(opcode[7],8,3); + _cimg_mp_check_const_scalar(opcode[8],9,3); + arg2 = (unsigned int)mem[opcode[1]]; opcode[1] = arg2; + arg3 = (unsigned int)mem[opcode[2]]; opcode[2] = arg3; + arg4 = (unsigned int)mem[opcode[3]]; opcode[3] = arg4; + arg5 = (unsigned int)mem[opcode[4]]; opcode[4] = arg5; + if (arg2*arg3*arg4*arg5!=std::max(1U,p1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Input vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p1,1U),arg2,arg3,arg4,arg5,(ulongT)arg2*arg3*arg4*arg5); + arg2 = (unsigned int)mem[opcode[5]]; opcode[5] = arg2; + arg3 = (unsigned int)mem[opcode[6]]; opcode[6] = arg3; + arg4 = (unsigned int)mem[opcode[7]]; opcode[7] = arg4; + arg5 = (unsigned int)mem[opcode[8]]; opcode[8] = arg5; + pos = vector(arg2*arg3*arg4*arg5); + opcode.resize(1,18,1,1,0,0,0,1); + opcode[0] = (ulongT)mp_vector_resize_ext; + opcode[1] = (ulongT)pos; + opcode[2] = (ulongT)p1; + opcode.move_to(code); + } + return_comp = true; + _cimg_mp_return(pos); + + } else { // Image + if (!is_inside_critical) is_parallelizable = false; + s0 = ss8; while (s0::vector((ulongT)mp_image_resize,_cimg_mp_slot_nan,p1,~0U,~0U,~0U,~0U,1,0,0,0,0,0). + move_to(l_opcode); + pos = 0; + for (s = s0; s10) { + _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: %s arguments, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + pos<1?"Missing":"Too much",s0); + } + l_opcode[0].move_to(code); + _cimg_mp_return_nan(); + } + } + + if (!std::strncmp(ss,"reverse(",8)) { // Vector reverse + _cimg_mp_op("Function 'reverse()'"); + arg1 = compile(ss8,se1,depth1,0,block_flags); + if (!is_vector(arg1)) _cimg_mp_same(arg1); + p1 = size(arg1); + pos = vector(p1); + CImg::vector((ulongT)mp_vector_reverse,pos,arg1,p1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"rol(",4) || !std::strncmp(ss,"ror(",4)) { // Bitwise rotation + _cimg_mp_op(ss[2]=='l'?"Function 'rol()'":"Function 'ror()'"); + s1 = ss4; while (s11) { + arg2 = arg1 + 1; + if (p2>2) arg3 = arg2 + 1; + } + arg4 = compile(++s1,se1,depth1,0,block_flags); + } else { + s2 = ++s1; while (s2::vector((ulongT)mp_rot3d,pos,arg1,arg2,arg3,arg4).move_to(code); + } else { // 2D rotation + _cimg_mp_check_type(arg1,1,1,0); + pos = vector(4); + CImg::vector((ulongT)mp_rot2d,pos,arg1).move_to(code); + } + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"round(",6)) { // Value rounding + _cimg_mp_op("Function 'round()'"); + s1 = ss6; while (s1::vector((ulongT)mp_run,0,0).move_to(l_opcode); + pos = 1; + for (s = ss4; s::vector(arg1,size(arg1)).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + pos = scalar(); + opcode[1] = pos; + opcode[2] = opcode._height; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } +#endif + break; + + case 's' : + if (*ss1=='(') { // Image spectrum + _cimg_mp_op("Function 's()'"); + if (*ss2=='#') { // Index specified + p1 = compile(ss3,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss2!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_s,p1); + } + + if (!std::strncmp(ss,"same(",5)) { // Test if operands have the same values + _cimg_mp_op("Function 'same()'"); + s1 = ss5; while (s1::vector((ulongT)mp_set,arg2,p2,arg1,p1).move_to(code); + _cimg_mp_return_nan(); + } +#endif + + if (!std::strncmp(ss,"shift(",6)) { // Shift vector + _cimg_mp_op("Function 'shift()'"); + s1 = ss6; while (s1::vector((ulongT)mp_shift,pos,arg1,p1,arg2,arg3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"sign(",5)) { // Sign + _cimg_mp_op("Function 'sign()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_sign,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::sign(mem[arg1])); + _cimg_mp_scalar1(mp_sign,arg1); + } + + if (!std::strncmp(ss,"sin(",4)) { // Sine + _cimg_mp_op("Function 'sin()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_sin,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::sin(mem[arg1])); + _cimg_mp_scalar1(mp_sin,arg1); + } + + if (!std::strncmp(ss,"sinc(",5)) { // Sine cardinal + _cimg_mp_op("Function 'sinc()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_sinc,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::sinc(mem[arg1])); + _cimg_mp_scalar1(mp_sinc,arg1); + } + + if (!std::strncmp(ss,"sinh(",5)) { // Hyperbolic sine + _cimg_mp_op("Function 'sinh()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_sinh,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::sinh(mem[arg1])); + _cimg_mp_scalar1(mp_sinh,arg1); + } + + if (!std::strncmp(ss,"size(",5)) { // Vector size + _cimg_mp_op("Function 'size()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_const_scalar(is_scalar(arg1)?0:size(arg1)); + } + + if (!std::strncmp(ss,"solve(",6)) { // Solve square linear system + _cimg_mp_op("Function 'solve()'"); + s1 = ss6; while (s1::%s: %s: Types of first and second arguments ('%s' and '%s') " + "do not match with third argument 'nb_colsB=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,s_type(arg2)._data,p3,s0); + } + pos = vector(arg6*p3); + CImg::vector((ulongT)mp_solve,pos,arg1,arg2,arg6,arg5,p3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"sort(",5)) { // Sort vector + _cimg_mp_op("Function 'sort()'"); + s1 = ss5; while (s1::vector((ulongT)mp_sort,pos,arg1,p1,arg2,arg3,arg4).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"sqr(",4)) { // Square + _cimg_mp_op("Function 'sqr()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_sqr,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(cimg::sqr(mem[arg1])); + _cimg_mp_scalar1(mp_sqr,arg1); + } + + if (!std::strncmp(ss,"sqrt(",5)) { // Square root + _cimg_mp_op("Function 'sqrt()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_sqrt,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::sqrt(mem[arg1])); + _cimg_mp_scalar1(mp_sqrt,arg1); + } + + if (!std::strncmp(ss,"srand(",6)) { // Set RNG seed + _cimg_mp_op("Function 'srand()'"); + arg1 = ss6::vector((ulongT)mp_image_stats,pos,p1).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + +#ifdef cimg_mp_func_store + if (!std::strncmp(ss,"store(",6)) { // Store vector to variable + _cimg_mp_op("Function 'store()'"); + s1 = ss6; while (s1::vector((ulongT)mp_store,_cimg_mp_slot_nan,arg2,p2,arg1,p1, + arg3,arg4,arg5,arg6,pos).move_to(code); + _cimg_mp_return_nan(); + } +#endif + + if (!std::strncmp(ss,"s2v(",4)) { // String to double + _cimg_mp_op("Function 's2v()'"); + s1 = ss4; while (s1::vector((ulongT)mp_s2v,pos,arg1,p1,arg2,arg3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"string(",7)) { // Construct string from list of arguments + _cimg_mp_op("Function 'string()'"); + CImg::vector((ulongT)mp_string,0,0,0).move_to(l_opcode); + + if (*ss7=='#') { // Output vector size specified, with '#' + s0 = ss8; while (s0::vector(arg2,p2).move_to(l_opcode); + s = ns; + } + if (arg1==~0U) arg1 = p1; + pos = vector(arg1,0); + (l_opcode>'y').move_to(opcode); + opcode[1] = pos; + opcode[2] = arg1; + opcode[3] = opcode._height; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"svd(",4)) { // Matrix SVD + _cimg_mp_op("Function 'svd()'"); + s1 = ss4; while (s1::%s: %s: Type of first argument ('%s') " + "does not match with second argument 'nb_colsA=%u', " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,p2,s0); + } + pos = vector(p1 + p2 + p2*p2); + CImg::vector((ulongT)mp_matrix_svd,pos,arg1,p2,p3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"swap(",5)) { // Swap values + _cimg_mp_op("Function 'swap()'"); + s1 = ss5; while (s1::%s: %s: %s argument cannot be a constant, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + is_const_scalar(arg1)?"First":"Second",s0); + } + CImg::vector((ulongT)mp_swap,arg1,arg2,p1).move_to(code); + + // Write back values of linked arg1 and arg2. + const unsigned int *_ref = ref; + is_sth = true; // Is first argument? + do { + switch (*_ref) { + case 1 : // arg1: V[k] + arg3 = _ref[1]; // Vector slot + arg4 = _ref[2]; // Index + CImg::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)size(arg3),arg4). + move_to(code); + break; + case 2 : // arg1: i/j[_#ind,off] + if (!is_inside_critical) is_parallelizable = false; + p1 = _ref[1]; // Index + is_relative = (bool)_ref[2]; + arg3 = _ref[3]; // Offset + if (p1!=~0U) { + if (imglist) + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg1,p1,arg3).move_to(code); + } else { + if (imgout) + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg1,arg3).move_to(code); + } + break; + case 3 : // arg1: i/j(_#ind,_x,_y,_z,_c) + if (!is_inside_critical) is_parallelizable = false; + p1 = _ref[1]; // Index + is_relative = (bool)_ref[2]; + arg3 = _ref[3]; // X + arg4 = _ref[4]; // Y + arg5 = _ref[5]; // Z + arg6 = _ref[6]; // C + if (p1!=~0U) { + if (imglist) + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg1,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (imgout) + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg1,arg3,arg4,arg5,arg6).move_to(code); + } + break; + case 4: // arg1: I/J[_#ind,off] + if (!is_inside_critical) is_parallelizable = false; + p1 = _ref[1]; // Index + is_relative = (bool)_ref[2]; + arg3 = _ref[3]; // Offset + if (p1!=~0U) { + if (imglist) { + if (is_scalar(arg1)) + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s), + arg1,p1,arg3).move_to(code); + else { + _cimg_mp_check_const_index(p1); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,size(arg1)).move_to(code); + } + } + } else { + if (imgout) { + if (is_scalar(arg1)) + CImg::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s), + arg1,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,size(arg1)).move_to(code); + } + } + break; + case 5 : // arg1: I/J(_#ind,_x,_y,_z,_c) + if (!is_inside_critical) is_parallelizable = false; + p1 = _ref[1]; // Index + is_relative = (bool)_ref[2]; + arg3 = _ref[3]; // X + arg4 = _ref[4]; // Y + arg5 = _ref[5]; // Z + if (p1!=~0U) { + if (imglist) { + if (is_scalar(arg1)) + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s), + arg1,p1,arg3,arg4,arg5).move_to(code); + else { + _cimg_mp_check_const_index(p1); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,size(arg1)).move_to(code); + } + } + } else { + if (imgout) { + if (is_scalar(arg1)) + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s), + arg1,arg3,arg4,arg5).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,size(arg1)).move_to(code); + } + } + break; + } + + _ref+=7; + arg1 = arg2; + is_sth = !is_sth; + } while (!is_sth); + + if (p_ref) std::memcpy(p_ref,ref,siz_ref); + _cimg_mp_return_nan(); + } + break; + + case 't' : + if (!std::strncmp(ss,"tan(",4)) { // Tangent + _cimg_mp_op("Function 'tan()'"); + arg1 = compile(ss4,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_tan,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::tan(mem[arg1])); + _cimg_mp_scalar1(mp_tan,arg1); + } + + if (!std::strncmp(ss,"tanh(",5)) { // Hyperbolic tangent + _cimg_mp_op("Function 'tanh()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_tanh,arg1); + if (is_const_scalar(arg1)) _cimg_mp_const_scalar(std::tanh(mem[arg1])); + _cimg_mp_scalar1(mp_tanh,arg1); + } + + if (!std::strncmp(ss,"trace(",6)) { // Matrix trace + _cimg_mp_op("Function 'trace()'"); + arg1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_matrix_square(arg1,1); + p1 = (unsigned int)cimg::round(std::sqrt((float)size(arg1))); + _cimg_mp_scalar2(mp_trace,arg1,p1); + } + + if (!std::strncmp(ss,"transpose(",10)) { // Matrix transpose + _cimg_mp_op("Function 'transpose()'"); + s1 = ss + 10; while (s1::%s: %s: Size of first argument ('%s') does not match " + "second argument 'nb_cols=%u', in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,p2,s0); + } + pos = vector(p3*p2); + CImg::vector((ulongT)mp_transpose,pos,arg1,p2,p3).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + break; + + case 'u' : + if (!std::strncmp(ss,"ui2f(",5)) { // Special uint->float conversion + _cimg_mp_op("Function 'ui2f()'"); + arg1 = compile(ss5,se1,depth1,0,block_flags); + if (is_vector(arg1)) _cimg_mp_vector1_v(mp_ui2f,arg1); + if (is_const_scalar(arg1)) + _cimg_mp_const_scalar((double)cimg::uint2float((unsigned int)mem[arg1])); + _cimg_mp_scalar1(mp_ui2f,arg1); + } + + if (!std::strncmp(ss,"unitnorm(",9)) { // Normalize vector to unit norm + _cimg_mp_op("Function 'unitnorm()'"); + s0 = ss + 9; + s1 = s0; while (s10) pos = is_comp_vector(arg1)?arg1:((return_comp = true), vector(p1)); + else { + pos = scalar(); + if (is_const_scalar(arg1) && is_const_scalar(arg2)) { + val = mem[arg1]; + _cimg_mp_const_scalar(val?(mem[arg2]?1:val):0); + } + } + CImg::vector((ulongT)mp_vector_unitnorm,pos,arg1,p1,arg2).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"unref(",6)) { // Un-reference variable + _cimg_mp_op("Function 'unref()'"); + arg1=~0U; + for (s0 = ss6; s0ss6 && *s0==',') ++s0; + s1 = s0; while (s1s0) { + *s1 = 0; + get_variable_pos(s0,arg1,arg2); + if (arg2!=~0U) reserved_label[arg2] = ~0U; + else if (arg1!=~0U) { + variable_def.remove(arg1); + if (arg10) || + !std::strncmp(ss,"vector(",7) || + (!std::strncmp(ss,"vector",6) && ss7 &rcode = is_inside_begin?code:code_begin; + p1 = rcode.size(); + p2 = variable_def.size(); + arg3 = compile(s,ns,depth1,0,block_flags); + p3 = rcode.size(); + if (is_vector(arg3)) { + arg4 = size(arg3); + CImg::sequence(arg4,arg3 + 1,arg3 + arg4).move_to(l_opcode); + arg2+=arg4; + const CImg &rcode_back = rcode.back(); + is_sth&=p3>p1 && rcode_back[1]==arg3 && + (rcode_back[0]==(ulongT)mp_string_init || + rcode_back[0]==(ulongT)mp_vector_init) && variable_def.size()==p2 && !is_comp_vector(arg3); + // ^^ Tricky part: detect if 'arg2' is a newly constructed vector not assigned to a variable + // (i.e. a vector-valued literal). + } else { + CImg::vector(arg3).move_to(l_opcode); + ++arg2; + is_sth&=is_const_scalar(arg3); + } + s = ns; + } + if (arg1==~0U) arg1 = arg2; + if (!arg1) _cimg_mp_return(0); + pos = vector(arg1); + l_opcode.insert(CImg::vector((ulongT)mp_vector_init,pos,0,arg1),0); + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(!is_sth || is_inside_begin || is_new_variable_assignment?code:code_begin); + return_comp = !is_sth && is_new_variable_assignment; + if (!return_comp) set_reserved_vector(pos); // Prevent from being used in further optimization + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"vmax(",5) || !std::strncmp(ss,"vmin(",5) || + !std::strncmp(ss,"vmaxabs(",8) || !std::strncmp(ss,"vminabs(",8) || + !std::strncmp(ss,"vmed(",5) || !std::strncmp(ss,"vkth(",5) || + !std::strncmp(ss,"vsum(",5) || !std::strncmp(ss,"vavg(",5) || + !std::strncmp(ss,"vstd(",5) || !std::strncmp(ss,"vvar(",5) || + !std::strncmp(ss,"vprod(",6) || + !std::strncmp(ss,"vargmin(",8) || !std::strncmp(ss,"vargmax(",8) || + !std::strncmp(ss,"vargminabs(",11) || !std::strncmp(ss,"vargmaxabs(",11) || + !std::strncmp(ss,"vargkth(",8)) { // Multi-argument vector functions + _cimg_mp_op(ss[1]=='a'?(ss[2]=='v'?"Function 'vavg()'": + ss[4]=='k'?"Function 'vargkth()'": + ss[5]=='i' && ss[7]=='('?"Function 'vargmin()'": + ss[5]=='i'?"Function vargminabs()'": + ss[7]=='('?"Function 'vargmax()'": + "Function 'vargmaxabs()'"): + ss[1]=='s'?(ss[2]=='u'?"Function 'vsum()'":"Function 'vstd()'"): + ss[1]=='k'?"Function 'vkth()'": + ss[1]=='p'?"Function 'vprod()'": + ss[1]=='v'?"Function 'vvar()'": + ss[2]=='i'?(ss[4]=='('?"Function 'vmin()'": + "Function 'vminabs()'"): + ss[2]=='a'?(ss[4]=='('?"Function 'vmax()'": + "Function 'vmaxabs()'"): + "Function 'vmed()'"); + op = ss[1]=='a'?(ss[2]=='v'?mp_vavg: + ss[4]=='k'?mp_vargkth: + ss[5]=='i' && ss[7]=='('?mp_vargmin: + ss[5]=='i'?mp_vargminabs: + ss[7]=='('?mp_vargmax:mp_vargmaxabs): + ss[1]=='s'?(ss[2]=='u'?mp_vsum:mp_vstd): + ss[1]=='k'?mp_vkth: + ss[1]=='p'?mp_vprod: + ss[1]=='v'?mp_vvar: + ss[2]=='i'?(ss[4]=='('?mp_vmin:mp_vminabs): + ss[2]=='a'?(ss[4]=='('?mp_vmax:mp_vmaxabs): + mp_vmedian; + CImg::vector((ulongT)op,0,0,0).move_to(l_opcode); + p1 = ~0U; + p3 = 1; + for (s = std::strchr(ss,'(') + 1; s::vector(arg2,p2).move_to(l_opcode); + s = ns; + ++p3; + } + (l_opcode>'y').move_to(opcode); + if (p1==~0U) { pos = scalar(); p1 = 0; } else pos = vector(p1); + opcode[1] = pos; + opcode[2] = p1; + opcode[3] = opcode._height; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"v2s(",4)) { // Double(s) to string + _cimg_mp_op("Function 'v2s()'"); + s1 = ss4; while (s1::vector((ulongT)mp_v2s,pos,p1,arg1,size(arg1),arg2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + break; + + case 'w' : + if (*ss1=='(') { // Image width + _cimg_mp_op("Function 'w()'"); + if (*ss2=='#') { // Index specified + p1 = compile(ss3,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss2!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_w,p1); + } + + if (*ss1=='h' && *ss2=='(') { // Image width*height + _cimg_mp_op("Function 'wh()'"); + if (*ss3=='#') { // Index specified + p1 = compile(ss4,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss3!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_wh,p1); + } + + if (*ss1=='h' && *ss2=='d' && *ss3=='(') { // Image width*height*depth + _cimg_mp_op("Function 'whd()'"); + if (*ss4=='#') { // Index specified + p1 = compile(ss5,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss4!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_whd,p1); + } + + if (*ss1=='h' && *ss2=='d' && *ss3=='s' && *ss4=='(') { // Image width*height*depth*spectrum + _cimg_mp_op("Function 'whds()'"); + if (*ss5=='#') { // Index specified + p1 = compile(ss6,se1,depth1,0,block_flags); + _cimg_mp_check_notnan_index(p1); + _cimg_mp_check_list(); + } else { if (ss5!=se1) break; p1 = ~0U; } + _cimg_mp_scalar1(mp_image_whds,p1); + } + + if (!std::strncmp(ss,"warp(",5)) { // Image warping + _cimg_mp_op("Function 'warp()'"); + pos = 1; + for (s = ss5; s::vector(arg2).move_to(l_opcode); + s = ns; + } + (l_opcode>'y').move_to(opcode); + // opcode = [ A, wA,hA,dA,sA, B, wB,hB,dB,sB, mode, interp, boundary_cond ] + // [ 0 1 2 3 4 5 6 7 8 9 10 11 12 ] + + if (opcode.height()<10) compile(s,se1,depth1,0,block_flags); // Not enough arguments -> throw exception + arg1 = (unsigned int)opcode[0]; // Image to warp + arg2 = (unsigned int)opcode[5]; // Warp map + p1 = size(arg1); + p2 = size(arg2); + p3 = opcode.height(); + opcode.resize(1,13,1,1,0); + if (p3<11) opcode[10] = 0; + if (p3<12) opcode[11] = 1; + if (p3<13) opcode[12] = 0; + arg3 = (unsigned int)mem[opcode[1]]; opcode[1] = arg3; + arg4 = (unsigned int)mem[opcode[2]]; opcode[2] = arg4; + arg5 = (unsigned int)mem[opcode[3]]; opcode[3] = arg5; + arg6 = (unsigned int)mem[opcode[4]]; opcode[4] = arg6; + if (arg3*arg4*arg5*arg6!=std::max(1U,p1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Input vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p1,1U),arg3,arg4,arg5,arg6,(ulongT)arg3*arg4*arg5*arg6); + arg3 = (unsigned int)mem[opcode[6]]; opcode[6] = arg3; + arg4 = (unsigned int)mem[opcode[7]]; opcode[7] = arg4; + arg5 = (unsigned int)mem[opcode[8]]; opcode[8] = arg5; + arg6 = (unsigned int)mem[opcode[9]]; opcode[9] = arg6; + if (arg3*arg4*arg5*arg6!=std::max(1U,p2)) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Warp vector size (%lu values) and its specified " + "geometry (%u,%u,%u,%u) (%lu values) do not match.", + pixel_type(),_cimg_mp_calling_function,s_op, + std::max(p2,1U),arg3,arg4,arg5,arg6,(ulongT)arg3*arg4*arg5*arg6); + pos = vector(arg3*arg4*arg5*(unsigned int)opcode[4]); + opcode.resize(1,15,1,1,0,0,0,1); + opcode[0] = (ulongT)mp_vector_warp; + opcode[1] = (ulongT)pos; + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"while(",6)) { // While...do + _cimg_mp_op("Function 'while()'"); + s0 = *ss5=='('?ss6:ss8; + s1 = s0; while (s1::vector((ulongT)mp_while,pos,arg1,p2 - p1,code._width - p2,arg2, + pos>=arg6 && !is_const_scalar(pos), + arg1>=arg6 && !is_const_scalar(arg1)).move_to(code,p1); + _cimg_mp_return(pos); + } + break; + + case 'x' : + if (!std::strncmp(ss,"xor(",4)) { // Xor + _cimg_mp_op("Function 'xor()'"); + s1 = ss4; while (s1::vector(0,0,0,arg1).move_to(l_opcode); + for (++s; s::sequence(size(arg2),arg2 + 1,arg2 + (ulongT)size(arg2)). + move_to(l_opcode); + else CImg::vector(arg2).move_to(l_opcode); + is_sth&=is_const_scalar(arg2); + s = ns; + } + (l_opcode>'y').move_to(opcode); + op = val==2?(is_hypot && opcode._height<8?_mp_vector_hypot:_mp_vector_norm2): + val==1?_mp_vector_norm1:!val?_mp_vector_norm0: + cimg::type::is_inf(val)?_mp_vector_norminf:_mp_vector_normp; + opcode[0] = (ulongT)op; + opcode[2] = opcode._height; + if (is_sth) _cimg_mp_const_scalar(op(*this)); + if (opcode._height==5) { // Single argument + if (arg1) { _cimg_mp_scalar1(mp_abs,opcode[4]); } + else { _cimg_mp_scalar2(mp_neq,opcode[4],0); } + } + opcode[1] = pos = scalar(); + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + if ((*ss=='u' || *ss=='v') && *ss1=='(') { // Random value with uniform distribution in specified range + is_sth = *ss=='v'; // is integer generator? + _cimg_mp_op(is_sth?"Function 'v()'":"Function 'u()'"); + if (*ss2==')') _cimg_mp_scalar0(is_sth?mp_rand_int_0_1:mp_rand_double_0_1); + s1 = ss2; while (s1::vector((ulongT)op,pos,0).move_to(l_opcode); + for (s = std::strchr(ss,'(') + 1; s::vector(arg2 + 1,size(arg2)).move_to(l_opcode); + else CImg::vector(arg2,1).move_to(l_opcode); + is_sth&=is_const_scalar(arg2); + s = ns; + } + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + if (is_sth) _cimg_mp_const_scalar(op(*this)); + opcode.move_to(code); + return_comp = true; + _cimg_mp_return(pos); + } + + // No corresponding built-in function -> Look for a user-defined macro call. + s0 = strchr(ss,'('); + if (s0) { + variable_name.assign(ss,(unsigned int)(s0 - ss + 1)).back() = 0; + + // Count number of specified arguments. + p1 = 0; + for (s = s0 + 1; s<=se1; ++p1, s = ns + 1) { + while (*s && cimg::is_blank(*s)) ++s; + if (*s==')' && !p1) break; + ns = s; while (ns _expr = macro_body[l]; // Expression to be substituted + + p1 = 1; // Index of current parsed argument + for (s = s0 + 1; s<=se1; ++p1, s = ns + 1) { // Parse function arguments + while (*s && cimg::is_blank(*s)) ++s; + if (!is_variadic && *s==')' && p1==1) break; // Function has no arguments + if (p1>p2) { ++p1; break; } + + if (is_variadic) ns = se1; + else { + ns = s; while (ns1) { + _expr.resize(arg1 + variable_name._width - 2,1,1,1,0); + std::memmove(_expr._data + k + variable_name._width - 1,_expr._data + k + 1,arg1 - k - 1); + std::memcpy(_expr._data + k,variable_name,variable_name._width - 1); + k+=variable_name._width - 2; + } else { + std::memmove(_expr._data + k,_expr._data + k + 1,arg1 - k - 1); + --k; + } + } + ++arg2; + } + } + + // Recompute 'pexpr' and 'level' for evaluating substituted expression. + CImg _pexpr(_expr._width); + ns = _pexpr._data; + for (ps = _expr._data, c1 = ' '; *ps; ++ps) { + if (!cimg::is_blank(*ps)) c1 = *ps; + *(ns++) = c1; + } + *ns = 0; + + CImg _level = get_level(_expr); + expr.swap(_expr); + pexpr.swap(_pexpr); + level.swap(_level); + s0 = user_macro; + user_macro = macro_def[l]; + pos = compile(expr._data,expr._data + expr._width - 1,depth1,p_ref,block_flags); + user_macro = s0; + level.swap(_level); + pexpr.swap(_pexpr); + expr.swap(_expr); + _cimg_mp_return(pos); + } + + if (arg3) { // Macro name matched but number of arguments does not + CImg sig_nargs(arg3); + arg1 = 0; + cimglist_for(macro_def,l) if (!std::strcmp(macro_def[l],variable_name)) + sig_nargs[arg1++] = (unsigned int)macro_def[l].back(); + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + if (sig_nargs._width>1) { + sig_nargs.sort(); + arg1 = sig_nargs.back(); + --sig_nargs._width; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Function '%s()': Number of specified arguments (%u) " + "does not match macro declaration (defined for %s or %u arguments), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,variable_name._data, + p1,sig_nargs.value_string()._data,arg1,s0); + } else + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Function '%s()': Number of specified arguments (%u) " + "does not match macro declaration (defined for %u argument%s), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,variable_name._data, + p1,*sig_nargs,*sig_nargs!=1?"s":"",s0); + } + } + } // if (se1==')') + + // Char / string initializer. + if (*se1=='\'' && + ((se1>ss && *ss=='\'') || + (se1>ss1 && *ss=='_' && *ss1=='\''))) { + if (*ss=='_') { _cimg_mp_op("Char initializer"); s1 = ss2; } + else { _cimg_mp_op("String initializer"); s1 = ss1; } + arg1 = (unsigned int)(se1 - s1); // Original string length + if (arg1) { + CImg(s1,arg1 + 1).move_to(variable_name).back() = 0; + cimg::strunescape(variable_name); + arg1 = (unsigned int)std::strlen(variable_name); + } + if (!arg1) _cimg_mp_return(0); // Empty string -> 0 + if (*ss=='_') { + if (arg1==1) _cimg_mp_const_scalar((unsigned char)*variable_name); + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s: Literal %s contains more than one byte, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + ss1,s0); + } + pos = vector(arg1); + CImg::vector((ulongT)mp_string_init,pos,arg1).move_to(l_opcode); + CImg(1,arg1/sizeof(ulongT) + (arg1%sizeof(ulongT)?1:0)).move_to(l_opcode); + std::memcpy((char*)l_opcode[1]._data,variable_name,arg1); + (l_opcode>'y').move_to(is_inside_begin || is_new_variable_assignment?code:code_begin); + return_comp = is_new_variable_assignment; + if (!return_comp) set_reserved_vector(pos); // Prevent from being used in further optimization + _cimg_mp_return(pos); + } + + // Vector initializer [ ... ]. + if (*ss=='[' && *se1==']') { + _cimg_mp_op("Vector initializer"); + s1 = ss1; while (s1s1 && cimg::is_blank(*s2)) --s2; + if (s2>s1 && *s1=='\'' && *s2=='\'') { // Vector values provided as a string + arg1 = (unsigned int)(s2 - s1 - 1); // Original string length + if (arg1) { + CImg(s1 + 1,arg1 + 1).move_to(variable_name).back() = 0; + cimg::strunescape(variable_name); + arg1 = (unsigned int)std::strlen(variable_name); + } + if (!arg1) _cimg_mp_return(0); // Empty string -> 0 + pos = vector(arg1); + CImg::vector((ulongT)mp_string_init,pos,arg1).move_to(l_opcode); + CImg(1,arg1/sizeof(ulongT) + (arg1%sizeof(ulongT)?1:0)).move_to(l_opcode); + std::memcpy((char*)l_opcode[1]._data,variable_name,arg1); + (l_opcode>'y').move_to(is_inside_begin || is_new_variable_assignment?code:code_begin); + return_comp = is_new_variable_assignment; + if (!return_comp) set_reserved_vector(pos); // Prevent from being used in further optimization + } else { // Vector values provided as a list of items + is_sth = !is_new_variable_assignment; // Can vector be defined once in 'begin()'? + arg1 = 0; // Number of specified values + if (*ss1!=']') for (s = ss1; s &rcode = is_inside_begin?code:code_begin; + p1 = rcode.size(); + p2 = variable_def.size(); + arg2 = compile(s,ns,depth1,0,block_flags); + p3 = rcode.size(); + if (is_vector(arg2)) { + arg3 = size(arg2); + CImg::sequence(arg3,arg2 + 1,arg2 + arg3).move_to(l_opcode); + arg1+=arg3; + const CImg &rcode_back = rcode.back(); + is_sth&=p3>p1 && rcode_back[1]==arg2 && + (rcode_back[0]==(ulongT)mp_string_init || + rcode_back[0]==(ulongT)mp_vector_init) && variable_def.size()==p2 && !is_comp_vector(arg2); + // ^^ Tricky part: detect if 'arg2' is a newly constructed vector not assigned to a variable + // (i.e. a vector-valued literal). + } else { + CImg::vector(arg2).move_to(l_opcode); + ++arg1; + is_sth&=is_const_scalar(arg2); + } + s = ns; + } + if (!arg1) _cimg_mp_return(0); + pos = vector(arg1); + l_opcode.insert(CImg::vector((ulongT)mp_vector_init,pos,0,arg1),0); + (l_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(!is_sth || is_inside_begin || is_new_variable_assignment?code:code_begin); + return_comp = !is_sth && is_new_variable_assignment; + if (!return_comp) set_reserved_vector(pos); // Prevent from being used in further optimization + } + _cimg_mp_return(pos); + } + + // Variables related to the input list of images. + if (*ss1=='#' && ss2::vector((ulongT)mp_list_Joff,pos,p1,0,0,p2).move_to(code); + return_comp = true; + _cimg_mp_return(pos); + case 'R' : // R#ind + if (!imglist) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,0, + 0,_cimg_mp_boundary); + case 'G' : // G#ind + if (!imglist) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,1, + 0,_cimg_mp_boundary); + case 'B' : // B#ind + if (!imglist) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,2, + 0,_cimg_mp_boundary); + case 'A' : // A#ind + if (!imglist) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,3, + 0,_cimg_mp_boundary); + } + } + + if (*ss1 && *ss2=='#' && ss3='0' && *ss1<='9') { // i0#ind...i9#ind + if (!imglist) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,*ss1 - '0', + 0,_cimg_mp_boundary); + } + + if (*ss1=='c') { // ic#ind + if (!imglist) _cimg_mp_return(0); + if (is_const_scalar(arg1)) { + if (!list_median) list_median.assign(imglist._width); + if (!list_median[p1]) CImg::vector(imglist[p1].median()).move_to(list_median[p1]); + _cimg_mp_const_scalar(*list_median[p1]); + } + _cimg_mp_scalar1(mp_list_id,arg1); + } + + if (*ss1=='d') { // id#ind + if (!imglist) _cimg_mp_return(0); + if (is_const_scalar(arg1)) { + if (!list_stats) list_stats.assign(imglist._width); + if (!list_stats[p1]) list_stats[p1].assign(1,14,1,1,0).fill(imglist[p1].get_stats(),false); + _cimg_mp_const_scalar(std::sqrt(list_stats(p1,3))); + } + _cimg_mp_scalar1(mp_list_id,arg1); + } + + if (*ss1=='n') { // in#ind + if (!imglist) _cimg_mp_return(0); + if (is_const_scalar(arg1)) { + if (!list_norm) list_norm.assign(imglist._width); + if (!list_norm[p1]) CImg::vector(imglist[p1].magnitude(2)).move_to(list_norm[p1]); + _cimg_mp_const_scalar(*list_norm[p1]); + } + _cimg_mp_scalar1(mp_list_norm,arg1); + } + + switch (*ss1) { + case 'a' : arg2 = 2; break; // ia#ind + case 'm' : arg2 = 0; break; // im#ind + case 'M' : arg2 = 1; break; // iM#ind + case 'p' : arg2 = 13; break; // ip#ind + case 's' : arg2 = 12; break; // is#ind + case 'v' : arg2 = 3; break; // iv#ind + } + } else if (*ss1=='m') switch (*ss) { + case 'x' : arg2 = 4; break; // xm#ind + case 'y' : arg2 = 5; break; // ym#ind + case 'z' : arg2 = 6; break; // zm#ind + case 'c' : arg2 = 7; break; // cm#ind + } else if (*ss1=='M') switch (*ss) { + case 'x' : arg2 = 8; break; // xM#ind + case 'y' : arg2 = 9; break; // yM#ind + case 'z' : arg2 = 10; break; // zM#ind + case 'c' : arg2 = 11; break; // cM#ind + } + if (arg2!=~0U) { + if (!imglist) _cimg_mp_return(0); + if (is_const_scalar(arg1)) { + if (!list_stats) list_stats.assign(imglist._width); + if (!list_stats[p1]) list_stats[p1].assign(1,14,1,1,0).fill(imglist[p1].get_stats(),false); + _cimg_mp_const_scalar(list_stats(p1,arg2)); + } + _cimg_mp_scalar2(mp_list_stats,arg1,arg2); + } + } + + if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='#' && ss4 error. + c1 = *se1; + _cimg_mp_strerr; + cimg::strellipsize(variable_name,64); + if (is_sth) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Undefined variable '%s' in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + variable_name._data,s0); + s1 = std::strchr(ss,'('); + s_op = s1 && c1==')'?"function call":"item"; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Unrecognized %s '%s' in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + s_op,variable_name._data,s0); + } + + // Evaluation procedure. + double operator()(const double x, const double y, const double z, const double c) { + mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c; + for (p_code = code; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + return *result; + } + + // Evaluation procedure (return output values in vector 'output'). + template + void operator()(const double x, const double y, const double z, const double c, t *const output) { + mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c; + for (p_code = code; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + if (result_dim) { + const double *ptrs = result + 1; + t *ptrd = output; + for (unsigned int k = 0; k_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + p_code_end = code.end(); + } + + // Evaluation procedure for end_t() bloc. + void end_t() { + if (!code_end_t) return; + if (imgin) { + mem[_cimg_mp_slot_x] = imgin._width - 1.; + mem[_cimg_mp_slot_y] = imgin._height - 1.; + mem[_cimg_mp_slot_z] = imgin._depth - 1.; + mem[_cimg_mp_slot_c] = imgin._spectrum - 1.; + } else mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0; + p_code_end = code_end_t.end(); + for (p_code = code_end_t; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + } + + // Evaluation procedure the end() bloc. + void end() { + if (!code_end) return; + if (imgin) { + mem[_cimg_mp_slot_x] = imgin._width - 1.; + mem[_cimg_mp_slot_y] = imgin._height - 1.; + mem[_cimg_mp_slot_z] = imgin._depth - 1.; + mem[_cimg_mp_slot_c] = imgin._spectrum - 1.; + } else mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0; + p_code_end = code_end.end(); + for (p_code = code_end; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + } + + // Merge inter-thread variables. + // (argument 'mp' is the master instance). + void merge(_cimg_math_parser& mp) { + if (&mp==this) return; + cimg_rofY(mp.memmerge,k) { + const unsigned int + pos = (unsigned int)mp.memmerge(0,k), + siz = (unsigned int)mp.memmerge(1,k), + iop = (unsigned int)mp.memmerge(2,k); + if (!siz) switch (iop) { // Scalar value + case 0 : mp.mem[pos] = mem[pos]; break; // Assignment + case 1 : mp.mem[pos]+=mem[pos]; break; // Operator+ + case 2 : mp.mem[pos]-=mem[pos]; break; // Operator- + case 3 : mp.mem[pos]*=mem[pos]; break; // Operator* + case 4 : mp.mem[pos]/=mem[pos]; break; // Operator/ + case 5 : mp.mem[pos] = (double)((longT)mp.mem[pos] & (longT)mem[pos]); break; // Operator& + case 6 : mp.mem[pos] = (double)((longT)mp.mem[pos] | (longT)mem[pos]); break; // Operator| + case 7 : mp.mem[pos] = (double)((longT)mp.mem[pos] ^ (longT)mem[pos]); break; // Operator 'xor' + case 8 : mp.mem[pos] = mp.mem[pos] && mem[pos]; break; // Operator&& + case 9 : mp.mem[pos] = mp.mem[pos] || mem[pos]; break; // Operator|| + case 10 : mp.mem[pos] = std::min(mp.mem[pos],mem[pos]); break; // Operator 'min' + case 11 : mp.mem[pos] = std::max(mp.mem[pos],mem[pos]); break; // Operator 'max' + } else switch (iop) { // Vector value + case 0 : // Assignment + CImg(&mp.mem[pos + 1],siz,1,1,1,true) = CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 1 : // Operator+ + CImg(&mp.mem[pos + 1],siz,1,1,1,true)+=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 2 : // Operator- + CImg(&mp.mem[pos + 1],siz,1,1,1,true)-=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 3 : // Operator* + CImg(&mp.mem[pos + 1],siz,1,1,1,true)*=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 4 : // Operator/ + CImg(&mp.mem[pos + 1],siz,1,1,1,true)/=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 5 : // Operator& + CImg(&mp.mem[pos + 1],siz,1,1,1,true)&=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 6 : // Operator| + CImg(&mp.mem[pos + 1],siz,1,1,1,true)|=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 7 : // Operator 'xor' + CImg(&mp.mem[pos + 1],siz,1,1,1,true)^=CImg(&mem[pos + 1],siz,1,1,1,true); + break; + case 8 : { // Operator&& + CImg + arg1(&mp.mem[pos + 1],siz,1,1,1,true), + arg2(&mem[pos + 1],siz,1,1,1,true); + cimg_foroff(arg1,off) arg1[off] = arg1[off] && arg2[off]; + } break; + case 9 : { // Operator|| + CImg + arg1(&mp.mem[pos + 1],siz,1,1,1,true), + arg2(&mem[pos + 1],siz,1,1,1,true); + cimg_foroff(arg1,off) arg1[off] = arg1[off] || arg2[off]; + } break; + case 10 : // Operator 'min' + CImg(&mp.mem[pos + 1],siz,1,1,1,true).min(CImg(&mem[pos + 1],siz,1,1,1,true)); + break; + case 11 : // Operator 'max' + CImg(&mp.mem[pos + 1],siz,1,1,1,true).max(CImg(&mem[pos + 1],siz,1,1,1,true)); + break; + } + } + } + + // Return specified argument number as a string. + static const char *s_argth(const unsigned int n_arg) { + const char + *_s_arg[] = { "", "First", "Second", "Third", "Fourth", "Fifth", "Sixth", "Seventh", "Eighth","Ninth", + "10th", "11th", "12th", "13th", "14th", "15th", "16th", "17th", "18th", "19th", + "20th", "21st", "22nd", "23rd", "24th", "25th", "26th", "27th", "28th", "One of the" }; + return _s_arg[n_arg s_calling_function() const { + CImg res; + const unsigned int + l1 = calling_function?(unsigned int)std::strlen(calling_function):0U, + l2 = user_macro?(unsigned int)std::strlen(user_macro):0U; + if (l2) { + res.assign(l1 + l2 + 48); + cimg_snprintf(res,res._width,"%s(): When substituting function '%s()'",calling_function,user_macro); + } else { + res.assign(l1 + l2 + 4); + cimg_snprintf(res,res._width,"%s()",calling_function); + } + return res; + } + + // Return type of a memory slot as a string. + CImg s_type(const unsigned int arg) const { + CImg res; + if (is_vector(arg)) { // Vector + CImg::string("vectorXXXXXXXXXXXXXXXX").move_to(res); + cimg_snprintf(res._data + 6,res._width - 6,"%u",size(arg)); + } else if (is_const_scalar(arg)) CImg::string("const scalar").move_to(res); // Const scalar + else CImg::string("scalar").move_to(res); // Scalar + return res; + } + + // Return reference state of a memory slot as a string. + CImg s_ref(const unsigned int *const p_ref) const { + CImg res; + if (!p_ref || !*p_ref) return res.assign(1,1,1,1,0); + res.assign(32); + switch (p_ref[0]) { + case 1 : // Reference to vector value as a scalar + cimg_snprintf(res,res._width,", ref: ([%u])[%u]", + p_ref[1],p_ref[2]); + break; + case 2 : // Reference to image value as a scalar (offset) + if (p_ref[1]==~0U) + cimg_snprintf(res,res._width,", ref: %c[%u]", + p_ref[2]?'j':'i',p_ref[3]); + else + cimg_snprintf(res,res._width,", ref: %c[#%u,%u]", + p_ref[2]?'j':'i',p_ref[1],p_ref[3]); + break; + case 3 : // Reference to image value as a scalar (coordinates) + if (p_ref[1]==~0U) + cimg_snprintf(res,res._width,", ref: %c(%u,%u,%u,%u)", + p_ref[2]?'j':'i',p_ref[3],p_ref[4],p_ref[5],p_ref[6]); + else + cimg_snprintf(res,res._width,", ref: %c(#%u,%u,%u,%u,%u)", + p_ref[2]?'j':'i',p_ref[1],p_ref[3],p_ref[4],p_ref[5],p_ref[6]); + break; + case 4 : // Reference to image value as a vector (offset) + if (p_ref[1]==~0U) + cimg_snprintf(res,res._width,", ref: %c[%u]", + p_ref[2]?'J':'I',p_ref[3]); + else + cimg_snprintf(res,res._width,", ref: %c[#%u,%u]", + p_ref[2]?'J':'I',p_ref[1],p_ref[3]); + break; + case 5 : // Reference to image value as a vector (coordinates) + if (p_ref[1]==~0U) + cimg_snprintf(res,res._width,", ref: %c(%u,%u,%u)", + p_ref[2]?'J':'I',p_ref[3],p_ref[4],p_ref[5]); + else + cimg_snprintf(res,res._width,", ref: %c(#%u,%u,%u,%u)", + p_ref[2]?'J':'I',p_ref[1],p_ref[3],p_ref[4],p_ref[5]); + break; + } + return res; + } + + // Count parentheses/brackets level of each character of the expression. + CImg get_level(CImg& _expr) const { + bool is_escaped = false, next_is_escaped = false; + unsigned int mode = 0, next_mode = 0; // { 0=normal | 1=char-string | 2=vector-string + CImg res(_expr._width - 1); + unsigned int *pd = res._data; + int _level = 0; + for (const char *ps = _expr._data; *ps && _level>=0; ++ps) { + if (!is_escaped && !next_is_escaped && *ps=='\\') next_is_escaped = true; + if (!is_escaped && *ps=='\'') { // Non-escaped character + if (!mode && ps>_expr._data && *(ps - 1)=='[') next_mode = mode = 2; // Start vector-string + else if (mode==2 && *(ps + 1)==']') next_mode = !mode; // End vector-string + else if (mode<2) next_mode = mode?(mode = 0):1; // Start/end char-string + } + *(pd++) = (unsigned int)(mode>=1 || is_escaped?_level + (mode==1): + *ps=='(' || *ps=='['?_level++: + *ps==')' || *ps==']'?--_level: + _level); + mode = next_mode; + is_escaped = next_is_escaped; + next_is_escaped = false; + } + if (mode) { + cimg::strellipsize(_expr,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Unterminated string literal, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + _expr._data); + } + if (_level) { + cimg::strellipsize(_expr,64); + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: Unbalanced parentheses/brackets, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + _expr._data); + } + return res; + } + + // Find and return index of current image 'imgin' within image list 'imglist'. + unsigned int get_mem_img_index() { + if (mem_img_index==~0U) { + if (&imgout>imglist.data() && &imgout='0' && c2<='9') rp = 21 + c2 - '0'; // i0...i9 + else if (c2=='m') rp = 4; // im + else if (c2=='M') rp = 5; // iM + else if (c2=='a') rp = 6; // ia + else if (c2=='v') rp = 7; // iv + else if (c2=='d') rp = 8; // id + else if (c2=='s') rp = 9; // is + else if (c2=='p') rp = 10; // ip + else if (c2=='c') rp = 11; // ic + else if (c2=='n') rp = 12; // in + } else if (c2=='m') { + if (c1=='x') rp = 13; // xm + else if (c1=='y') rp = 14; // ym + else if (c1=='z') rp = 15; // zm + else if (c1=='c') rp = 16; // cm + } else if (c2=='M') { + if (c1=='x') rp = 17; // xM + else if (c1=='y') rp = 18; // yM + else if (c1=='z') rp = 19; // zM + else if (c1=='c') rp = 20; // cM + } + } else if (variable_name[1] && variable_name[2] && !variable_name[3]) { // Three-chars variable + c1 = variable_name[0]; + c2 = variable_name[1]; + c3 = variable_name[2]; + if (c1=='w' && c2=='h' && c3=='d') rp = 1; // whd + else if (c1=='e' && c2=='p' && c3=='s') rp = 33; // eps + } else if (variable_name[1] && variable_name[2] && variable_name[3] && + !variable_name[4]) { // Four-chars variable + c1 = variable_name[0]; + c2 = variable_name[1]; + c3 = variable_name[2]; + c4 = variable_name[3]; + if (c1=='w' && c2=='h' && c3=='d' && c4=='s') rp = 2; // whds + } else if (!std::strcmp(variable_name,"interpolation")) rp = 31; // interpolation + else if (!std::strcmp(variable_name,"boundary")) rp = 32; // boundary + + if (rp!=~0U) { rpos = rp; return; } // One of the reserved labels + + // Multi-char variable name : check for existing variable with same name + cimglist_for(variable_def,i) + if (!std::strcmp(variable_name,variable_def[i])) { pos = i; break; } + } + + // Return true if all values of a vector are (temporary) computational values. + bool is_comp_vector(const unsigned int arg) const { + unsigned int siz = size(arg); + if (siz>128) return false; + const int *ptr = memtype.data(arg + 1); + bool is_tmp = true; + while (siz-->0) if (*(ptr++)) { is_tmp = false; break; } + return is_tmp; + } + + // Return true if specified scalar value is a (temporary) computational value. + bool is_comp_scalar(const unsigned int arg) const { + return !memtype[arg]; + } + + // Return true if specified value is a constant scalar. + bool is_const_scalar(const unsigned int arg) const { + return memtype[arg]==1; + } + + // Return true if specified value is a scalar reserved value (e.g. variable). + bool is_reserved(const unsigned int arg) const { + return memtype[arg]==-1; + } + + // Return true if specified value is a scalar. + bool is_scalar(const unsigned int arg) const { + return memtype[arg]<2; + } + + // Return true if specified value is a vector. + bool is_vector(const unsigned int arg) const { + return memtype[arg]>1; + } + + // Return size of specified value (0: scalar, N>0: vectorN). + unsigned int size(const unsigned int arg) const { + return is_scalar(arg)?0U:memtype[arg] - 1U; + } + + // Check if a memory slot is a positive integer constant scalar value. + // 'mode' can be: + // { 0=constant | 1=integer constant | 2=positive integer constant | 3=strictly-positive integer constant } + void check_const_scalar(const unsigned int arg, const unsigned int n_arg, + const unsigned int mode, + char *const ss, char *const se, const char saved_char) { + _cimg_mp_check_type(arg,n_arg,1,0); + if (!is_const_scalar(arg)) { + const char *const s_arg = s_argth(n_arg); + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s %s%s (of type '%s') is not a constant, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_arg?" argument":" Argument",s_type(arg)._data,s0); + } + const double val = mem[arg]; + + if (!((!mode || (double)(int)mem[arg]==mem[arg]) && + (mode<2 || mem[arg]>=(mode==3)))) { + const char *const s_arg = s_argth(n_arg); + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s %s%s (of type '%s' and value %g) is not a%s constant, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_arg?" argument":" Argument",s_type(arg)._data,val, + !mode?"":mode==1?"n integer": + mode==2?" positive integer":" strictly positive integer",s0); + } + } + + // Check if an image index is a constant value. + void check_const_index(const unsigned int arg, + char *const ss, char *const se, const char saved_char) { + if (arg!=~0U && !is_const_scalar(arg)) { + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s Specified image index is not a constant, " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",s0); + } + } + + // Check that specified constant is not nan. + void check_notnan_index(const unsigned int arg, + char *const ss, char *const se, const char saved_char) { + if (arg!=~0U && + (arg==_cimg_mp_slot_nan || (is_const_scalar(arg) && cimg::type::is_nan(mem[arg])))) { + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s Specified index is NaN.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":""); + } + } + + // Check a matrix is square. + void check_matrix_square(const unsigned int arg, const unsigned int n_arg, + char *const ss, char *const se, const char saved_char) { + _cimg_mp_check_type(arg,n_arg,2,0); + const unsigned int + siz = size(arg), + n = (unsigned int)cimg::round(std::sqrt((float)siz)); + if (n*n!=siz) { + const char *s_arg; + if (*s_op!='F') s_arg = !n_arg?"":n_arg==1?"Left-hand":"Right-hand"; + else s_arg = !n_arg?"":n_arg==1?"First":n_arg==2?"Second":n_arg==3?"Third":"One"; + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s %s%s (of type '%s') " + "cannot be considered as a square matrix, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_op=='F'?(*s_arg?" argument":" Argument"):(*s_arg?" operand":" Operand"), + s_type(arg)._data,s0); + } + } + + // Check type compatibility for one argument. + // Bits of 'mode' tells what types are allowed: + // { 1 = scalar | 2 = vectorN }. + // If 'N' is not zero, it also restricts the vectors to be of size N only. + void check_type(const unsigned int arg, const unsigned int n_arg, + const unsigned int mode, const unsigned int N, + char *const ss, char *const se, const char saved_char) { + const bool + _is_scalar = is_scalar(arg), + _is_vector = is_vector(arg) && (!N || size(arg)==N); + bool cond = false; + if (mode&1) cond|=_is_scalar; + if (mode&2) cond|=_is_vector; + if (!cond) { + const char *s_arg; + if (*s_op!='F') s_arg = !n_arg?"":n_arg==1?"Left-hand":"Right-hand"; + else s_arg = s_argth(n_arg); + CImg sb_type(32); + if (mode==1) cimg_snprintf(sb_type,sb_type._width,"'scalar'"); + else if (mode==2) { + if (N) cimg_snprintf(sb_type,sb_type._width,"'vector%u'",N); + else cimg_snprintf(sb_type,sb_type._width,"'vector'"); + } else { + if (N) cimg_snprintf(sb_type,sb_type._width,"'scalar' or 'vector%u'",N); + else cimg_snprintf(sb_type,sb_type._width,"'scalar' or 'vector'"); + } + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s %s%s has invalid type '%s' (should be %s), " + "in expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_op=='F'?(*s_arg?" argument":" Argument"):(*s_arg?" operand":" Operand"), + s_type(arg)._data,sb_type._data,s0); + } + } + + // Check that imglist are not empty. + void check_list(char *const ss, char *const se, const char saved_char) { + if (!imglist) { + char *s0; _cimg_mp_strerr; + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>::%s: %s%s Image list cannot be empty, for expression '%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"",s0); + } + } + + static void mp_check_list(_cimg_math_parser& mp, const char *const funcname) { + if (!mp.imglist) + throw CImgArgumentException("[" cimg_appname "_math_parser] " + "CImg<%s>: Function '%s()': Images list cannot be empty.", + pixel_type(),funcname); + } + + // Insert constant value in memory. + unsigned int const_scalar(const double val) { + + // Search for built-in constant. + if (cimg::type::is_nan(val)) return _cimg_mp_slot_nan; + if (val==(double)(int)val) { + if (val>=0 && val<=10) return (unsigned int)val; + if (val<0 && val>=-5) return (unsigned int)(10 - val); + } + if (val==0.5) return 16; + + // Search for constant already requested before (in const cache). + unsigned int ind = ~0U; + if (constcache_size<1024) { + if (!constcache_size) { + constcache_vals.assign(16,1,1,1,0); + constcache_inds.assign(16,1,1,1,0); + *constcache_vals = val; + constcache_size = 1; + ind = 0; + } else { // Dichotomic search + const double val_beg = *constcache_vals, val_end = constcache_vals[constcache_size - 1]; + if (val_beg>=val) ind = 0; + else if (val_end==val) ind = constcache_size - 1; + else if (val_end=constcache_size || constcache_vals[ind]!=val) { + ++constcache_size; + if (constcache_size>constcache_vals._width) { + constcache_vals.resize(-200,1,1,1,0); + constcache_inds.resize(-200,1,1,1,0); + } + const int l = constcache_size - (int)ind - 1; + if (l>0) { + std::memmove(&constcache_vals[ind + 1],&constcache_vals[ind],l*sizeof(double)); + std::memmove(&constcache_inds[ind + 1],&constcache_inds[ind],l*sizeof(unsigned int)); + } + constcache_vals[ind] = val; + constcache_inds[ind] = 0; + } + } + if (constcache_inds[ind]) return constcache_inds[ind]; + } + + // Insert new constant in memory if necessary. + if (mempos>=mem._width) { mem.resize(-200,1,1,1,0); memtype.resize(-200,1,1,1,0); } + const unsigned int pos = mempos++; + mem[pos] = val; + memtype[pos] = 1; // Set constant property + if (ind!=~0U) constcache_inds[ind] = pos; + return pos; + } + + // Insert new scalar in memory. + unsigned int scalar() { + if (mempos>=mem._width) { mem.resize(-200,1,1,1,0); memtype.resize(mem._width,1,1,1,0); } + return mempos++; + } + + // Insert new vector of specified size in memory. + unsigned int vector(const unsigned int siz) { + if (mempos + siz>=mem._width) { + mem.resize(2*mem._width + siz,1,1,1,0); + memtype.resize(mem._width,1,1,1,0); + } + const unsigned int pos = mempos++; + mem[pos] = cimg::type::nan(); + memtype[pos] = siz + 1; + mempos+=siz; + return pos; + } + + // Insert new initialized vector. + unsigned int vector(const unsigned int siz, const double value) { + const unsigned int pos = vector(siz); + double *ptr = &mem[pos] + 1; + for (unsigned int i = 0; i::vector((ulongT)mp_vector_copy,pos,arg,siz).move_to(code); + return pos; + } + return scalar1(mp_copy,arg); // Scalar + } + + // Return same value as specified. + // (this avoids a copy to be made when possible. Use 'copy()' to force the copy of a value). + unsigned int same(const unsigned int arg) { + if (is_const_scalar(arg)) return arg; + if (is_comp_scalar(arg)) { return_comp = true; return arg; } + const unsigned int siz = size(arg); + if (siz) { // Vector + if (is_comp_vector(arg)) { return_comp = true; return arg; } + const unsigned int pos = vector(siz); + CImg::vector((ulongT)mp_vector_copy,pos,arg,siz).move_to(code); + return pos; + } + return_comp = true; + return scalar1(mp_copy,arg); // Scalar + } + + // Set reserved status to all values of a vector. + void set_reserved_vector(const unsigned int arg) { + unsigned int siz = size(arg); + int *ptr = memtype.data(arg + 1); + while (siz-->0) *(ptr++) = -1; + } + + unsigned int scalar0(const mp_func op) { + const unsigned int pos = scalar(); + CImg::vector((ulongT)op,pos).move_to(code); + return_comp = true; + return pos; + } + + unsigned int scalar1(const mp_func op, const unsigned int arg1) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1) && op!=mp_copy?arg1: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1).move_to(code); + return pos; + } + + unsigned int scalar2(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1)?arg1: + arg2!=~0U && arg2>_cimg_mp_slot_c && is_comp_scalar(arg2)?arg2: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1,arg2).move_to(code); + return pos; + } + + unsigned int scalar3(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1)?arg1: + arg2!=~0U && arg2>_cimg_mp_slot_c && is_comp_scalar(arg2)?arg2: + arg3!=~0U && arg3>_cimg_mp_slot_c && is_comp_scalar(arg3)?arg3: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3).move_to(code); + return pos; + } + + unsigned int scalar4(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1)?arg1: + arg2!=~0U && arg2>_cimg_mp_slot_c && is_comp_scalar(arg2)?arg2: + arg3!=~0U && arg3>_cimg_mp_slot_c && is_comp_scalar(arg3)?arg3: + arg4!=~0U && arg4>_cimg_mp_slot_c && is_comp_scalar(arg4)?arg4: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4).move_to(code); + return pos; + } + + unsigned int scalar5(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4, const unsigned int arg5) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1)?arg1: + arg2!=~0U && arg2>_cimg_mp_slot_c && is_comp_scalar(arg2)?arg2: + arg3!=~0U && arg3>_cimg_mp_slot_c && is_comp_scalar(arg3)?arg3: + arg4!=~0U && arg4>_cimg_mp_slot_c && is_comp_scalar(arg4)?arg4: + arg5!=~0U && arg5>_cimg_mp_slot_c && is_comp_scalar(arg5)?arg5: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5).move_to(code); + return pos; + } + + unsigned int scalar6(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4, const unsigned int arg5, const unsigned int arg6) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1)?arg1: + arg2!=~0U && arg2>_cimg_mp_slot_c && is_comp_scalar(arg2)?arg2: + arg3!=~0U && arg3>_cimg_mp_slot_c && is_comp_scalar(arg3)?arg3: + arg4!=~0U && arg4>_cimg_mp_slot_c && is_comp_scalar(arg4)?arg4: + arg5!=~0U && arg5>_cimg_mp_slot_c && is_comp_scalar(arg5)?arg5: + arg6!=~0U && arg6>_cimg_mp_slot_c && is_comp_scalar(arg6)?arg6: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5,arg6).move_to(code); + return pos; + } + + unsigned int scalar7(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4, const unsigned int arg5, const unsigned int arg6, + const unsigned int arg7) { + const unsigned int pos = + arg1!=~0U && arg1>_cimg_mp_slot_c && is_comp_scalar(arg1)?arg1: + arg2!=~0U && arg2>_cimg_mp_slot_c && is_comp_scalar(arg2)?arg2: + arg3!=~0U && arg3>_cimg_mp_slot_c && is_comp_scalar(arg3)?arg3: + arg4!=~0U && arg4>_cimg_mp_slot_c && is_comp_scalar(arg4)?arg4: + arg5!=~0U && arg5>_cimg_mp_slot_c && is_comp_scalar(arg5)?arg5: + arg6!=~0U && arg6>_cimg_mp_slot_c && is_comp_scalar(arg6)?arg6: + arg7!=~0U && arg7>_cimg_mp_slot_c && is_comp_scalar(arg7)?arg7: + ((return_comp = true), scalar()); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5,arg6,arg7).move_to(code); + return pos; + } + + void self_vector_s(const unsigned int pos, const mp_func op, const unsigned int arg1) { + const unsigned int siz = size(pos); + if (siz>24) CImg::vector((ulongT)mp_self_map_vector_s,pos,siz,(ulongT)op,arg1).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1).move_to(code[code._width - 1 - siz + k]); + } + } + + void self_vector_v(const unsigned int pos, const mp_func op, const unsigned int arg1) { + const unsigned int siz = size(pos); + if (siz>24) CImg::vector((ulongT)mp_self_map_vector_v,pos,siz,(ulongT)op,arg1).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k).move_to(code[code._width - 1 - siz + k]); + } + } + + unsigned int vector1_v(const mp_func op, const unsigned int arg1) { + const unsigned int + siz = size(arg1), + pos = is_comp_vector(arg1)?arg1: + ((return_comp = true), vector(siz)); + if (siz>24) CImg::vector((ulongT)mp_vector_map_v,pos,1,siz,(ulongT)op,arg1).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector2_vv(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int + siz = size(arg1), + pos = is_comp_vector(arg1)?arg1:is_comp_vector(arg2)?arg2: + ((return_comp = true), vector(siz)); + if (siz>24) CImg::vector((ulongT)mp_vector_map_vv,pos,2,siz,(ulongT)op,arg1,arg2).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2 + k).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector2_vs(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int + siz = size(arg1), + pos = is_comp_vector(arg1)?arg1: + ((return_comp = true), vector(siz)); + if (siz>24) CImg::vector((ulongT)mp_vector_map_v,pos,2,siz,(ulongT)op,arg1,arg2).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector2_sv(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int + siz = size(arg2), + pos = is_comp_vector(arg2)?arg2: + ((return_comp = true), vector(siz)); + if (siz>24) CImg::vector((ulongT)mp_vector_map_sv,pos,2,siz,(ulongT)op,arg1,arg2).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1,arg2 + k).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector3_vss(const mp_func op, const unsigned int arg1, const unsigned int arg2, + const unsigned int arg3) { + const unsigned int + siz = size(arg1), + pos = is_comp_vector(arg1)?arg1: + ((return_comp = true), vector(siz)); + if (siz>24) CImg::vector((ulongT)mp_vector_map_v,pos,3,siz,(ulongT)op,arg1,arg2,arg3).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2,arg3).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector4_vvss(const mp_func op, const unsigned int arg1, const unsigned int arg2, + const unsigned int arg3, const unsigned int arg4) { + const unsigned int + siz = size(arg1), + pos = is_comp_vector(arg1)?arg1:is_comp_vector(arg2)?arg2: + ((return_comp = true), vector(siz)); + if (siz>24) + CImg::vector((ulongT)mp_vector_map_vv,pos,4,siz,(ulongT)op,arg1,arg2,arg3,arg4).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2 + k,arg3,arg4). + move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector4_vsss(const mp_func op, const unsigned int arg1, const unsigned int arg2, + const unsigned int arg3, const unsigned int arg4) { + const unsigned int + siz = size(arg1), + pos = is_comp_vector(arg1)?arg1: + ((return_comp = true), vector(siz)); + if (siz>24) + CImg::vector((ulongT)mp_vector_map_v,pos,4,siz,(ulongT)op,arg1,arg2,arg3,arg4).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2,arg3,arg4). + move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector4_svss(const mp_func op, const unsigned int arg1, const unsigned int arg2, + const unsigned int arg3, const unsigned int arg4) { + const unsigned int + siz = size(arg2), + pos = is_comp_vector(arg2)?arg2: + ((return_comp = true), vector(siz)); + if (siz>24) + CImg::vector((ulongT)mp_vector_map_sv,pos,4,siz,(ulongT)op,arg1,arg2,arg3,arg4).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1,arg2 + k,arg3,arg4). + move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + // Evaluation functions, known by the parser. + // Defining these functions 'static' ensures that sizeof(mp_func)==sizeof(ulongT), + // so we can store pointers to them directly in the opcode vectors. +#ifdef _mp_arg +#undef _mp_arg +#endif +#define _mp_arg(x) mp.mem[mp.opcode[x]] + +#ifdef cimg_mp_func_abort + static double mp_abort(_cimg_math_parser& mp) { + cimg::unused(mp); + cimg_mp_func_abort(); + return cimg::type::nan(); + } +#endif + + static double mp_abs(_cimg_math_parser& mp) { + return cimg::abs(_mp_arg(2)); + } + + static double mp_add(_cimg_math_parser& mp) { + return _mp_arg(2) + _mp_arg(3); + } + + static double mp_acos(_cimg_math_parser& mp) { + return std::acos(_mp_arg(2)); + } + + static double mp_acosh(_cimg_math_parser& mp) { + return cimg::acosh(_mp_arg(2)); + } + + static double mp_asinh(_cimg_math_parser& mp) { + return cimg::asinh(_mp_arg(2)); + } + + static double mp_atanh(_cimg_math_parser& mp) { + return cimg::atanh(_mp_arg(2)); + } + + static double mp_arg(_cimg_math_parser& mp) { + const int _ind = (int)_mp_arg(4); + const unsigned int + nb_args = (unsigned int)mp.opcode[2] - 4, + ind = _ind<0?_ind + nb_args:(unsigned int)_ind, + siz = (unsigned int)mp.opcode[3]; + if (siz>0) { + if (ind>=nb_args) std::memset(&_mp_arg(1) + 1,0,siz*sizeof(double)); + else std::memcpy(&_mp_arg(1) + 1,&_mp_arg(ind + 4) + 1,siz*sizeof(double)); + return cimg::type::nan(); + } + if (ind>=nb_args) return 0; + return _mp_arg(ind + 4); + } + + static double mp_arg0(_cimg_math_parser& mp) { + const int _ind = (int)_mp_arg(4); + const unsigned int + nb_args = (unsigned int)mp.opcode[2] - 4, + ind = _ind<0?_ind + nb_args:_ind + 1U, + siz = (unsigned int)mp.opcode[3]; + if (siz>0) { + if (ind>=nb_args) std::memset(&_mp_arg(1) + 1,0,siz*sizeof(double)); + else std::memcpy(&_mp_arg(1) + 1,&_mp_arg(ind + 4) + 1,siz*sizeof(double)); + return cimg::type::nan(); + } + if (ind>=nb_args) return 0; + return _mp_arg(ind + 4); + } + + static double mp_argkth(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + CImg values; + if (i_end==5) values.assign(&_mp_arg(3),(unsigned int)mp.opcode[4],1,1,1,true); // Only a single argument + else { + unsigned int siz = 0; + for (unsigned int i = 4; i1) std::memcpy(ptr,&_mp_arg(i),len*sizeof(double)); + else *ptr = _mp_arg(i); + ptr+=len; + } + } + longT ind = (longT)cimg::round(_mp_arg(3)); + ++values._data; --values._width; // Skip first value + if (ind<0) ind+=values.width() + 1; + ind = cimg::cut(ind,(longT)1,(longT)values.width()); + const double kth = values.kth_smallest((ulongT)(ind - 1)); + --values._data; ++values._width; + for (unsigned int argkth = 1; argkth::nan(); + } + + static double mp_argmin(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val, valmin = cimg::type::inf(); + unsigned int siz = 0, argmin = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k::inf(); + unsigned int siz = 0, argminabs = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k::inf(); + unsigned int siz = 0, argmax = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; kvalmax) { valmax = val; argmax = siz + k; } } + } else { val = _mp_arg(i); if (val>valmax) { valmax = val; argmax = siz; } } + siz+=len; + } + return (double)argmax; + } + + static double mp_argmaxabs(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val, abs_val, abs_valmaxabs = 0; + unsigned int siz = 0, argmaxabs = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; kabs_valmaxabs) { abs_valmaxabs = abs_val; argmaxabs = siz + k; } + } + } else { + val = _mp_arg(i); + abs_val = cimg::abs(val); + if (abs_val>abs_valmaxabs) { abs_valmaxabs = abs_val; argmaxabs = siz; } + } + siz+=len; + } + return (double)argmaxabs; + } + + static double mp_asin(_cimg_math_parser& mp) { + return std::asin(_mp_arg(2)); + } + + static double mp_atan(_cimg_math_parser& mp) { + return std::atan(_mp_arg(2)); + } + + static double mp_atan2(_cimg_math_parser& mp) { + return std::atan2(_mp_arg(2),_mp_arg(3)); + } + + static double mp_avg(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + unsigned int siz = 0; + double sum = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k>(unsigned int)_mp_arg(3)); + } + + static double mp_bitwise_xor(_cimg_math_parser& mp) { + return (double)((longT)_mp_arg(2) ^ (longT)_mp_arg(3)); + } + + static double mp_bool(_cimg_math_parser& mp) { + return (double)(bool)_mp_arg(2); + } + + static double mp_break(_cimg_math_parser& mp) { + mp.break_type = 1; + mp.p_code = mp.p_break - 1; + return cimg::type::nan(); + } + + static double mp_breakpoint(_cimg_math_parser& mp) { + cimg_abort_init; + cimg_abort_test; + cimg::unused(mp); + return cimg::type::nan(); + } + + static double mp_c2o(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + mp_check_list(mp,"c2o"); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgin:mp.imglist[ind]; + const int + x = (int)_mp_arg(3), + y = (int)_mp_arg(4), + z = (int)_mp_arg(5), + c = (int)_mp_arg(6); + return (double)img.offset(x,y,z,c); + } + + static double mp_cbrt(_cimg_math_parser& mp) { + return cimg::cbrt(_mp_arg(2)); + } + + static double mp_ceil(_cimg_math_parser& mp) { + return std::ceil(_mp_arg(2)); + } + + static double mp_complex_abs(_cimg_math_parser& mp) { + return cimg::hypot(_mp_arg(2),_mp_arg(3)); + } + + static double mp_complex_conj(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = real; + ptrd[1] = -imag; + return cimg::type::nan(); + } + + static double mp_complex_div_sv(_cimg_math_parser& mp) { + const double + *ptr2 = &_mp_arg(3) + 1, + r1 = _mp_arg(2), + r2 = *(ptr2++), i2 = *ptr2; + double *ptrd = &_mp_arg(1) + 1; + const double denom = r2*r2 + i2*i2; + *(ptrd++) = r1*r2/denom; + *ptrd = -r1*i2/denom; + return cimg::type::nan(); + } + + static double mp_complex_div_vv(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1, + r1 = *(ptr1++), i1 = *ptr1, + r2 = *(ptr2++), i2 = *ptr2; + double *ptrd = &_mp_arg(1) + 1; + const double denom = r2*r2 + i2*i2; + *(ptrd++) = (r1*r2 + i1*i2)/denom; + *ptrd = (r2*i1 - r1*i2)/denom; + return cimg::type::nan(); + } + + static double mp_complex_exp(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3), exp_real = std::exp(real); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = exp_real*std::cos(imag); + ptrd[1] = exp_real*std::sin(imag); + return cimg::type::nan(); + } + + static double mp_complex_log(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = 0.5*std::log(real*real + imag*imag); + ptrd[1] = std::atan2(imag,real); + return cimg::type::nan(); + } + + static double mp_complex_mul(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1, + r1 = *(ptr1++), i1 = *ptr1, + r2 = *(ptr2++), i2 = *ptr2; + double *ptrd = &_mp_arg(1) + 1; + *(ptrd++) = r1*r2 - i1*i2; + *(ptrd++) = r1*i2 + r2*i1; + return cimg::type::nan(); + } + + static double mp_complex_one(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = 1; + ptrd[1] = 0; + return cimg::type::nan(); + } + + static void _mp_complex_pow(const double r1, const double i1, + const double r2, const double i2, + double *ptrd) { + double ro, io; + if (cimg::abs(i2)<1e-15) { // Exponent is real + if (cimg::abs(r1)<1e-15 && cimg::abs(i1)<1e-15) { + if (cimg::abs(r2)<1e-15) { ro = 1; io = 0; } + else ro = io = 0; + } else { + const double + mod1_2 = r1*r1 + i1*i1, + phi1 = std::atan2(i1,r1), + modo = std::pow(mod1_2,0.5*r2), + phio = r2*phi1; + ro = modo*std::cos(phio); + io = modo*std::sin(phio); + } + } else { // Exponent is complex + if (cimg::abs(r1)<1e-15 && cimg::abs(i1)<1e-15) ro = io = 0; + const double + mod1_2 = r1*r1 + i1*i1, + phi1 = std::atan2(i1,r1), + modo = std::pow(mod1_2,0.5*r2)*std::exp(-i2*phi1), + phio = r2*phi1 + 0.5*i2*std::log(mod1_2); + ro = modo*std::cos(phio); + io = modo*std::sin(phio); + } + *(ptrd++) = ro; + *ptrd = io; + } + + static double mp_complex_pow_ss(_cimg_math_parser& mp) { + const double val1 = _mp_arg(2), val2 = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(val1,0,val2,0,ptrd); + return cimg::type::nan(); + } + + static double mp_complex_pow_sv(_cimg_math_parser& mp) { + const double val1 = _mp_arg(2), *ptr2 = &_mp_arg(3) + 1; + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(val1,0,ptr2[0],ptr2[1],ptrd); + return cimg::type::nan(); + } + + static double mp_complex_pow_vs(_cimg_math_parser& mp) { + const double *ptr1 = &_mp_arg(2) + 1, val2 = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(ptr1[0],ptr1[1],val2,0,ptrd); + return cimg::type::nan(); + } + + static double mp_complex_pow_vv(_cimg_math_parser& mp) { + const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1; + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(ptr1[0],ptr1[1],ptr2[0],ptr2[1],ptrd); + return cimg::type::nan(); + } + + static double mp_complex_cos(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = std::cos(real)*std::cosh(imag); + ptrd[1] = -std::sin(real)*std::sinh(imag); + return cimg::type::nan(); + } + + static double mp_complex_sin(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = std::sin(real)*std::cosh(imag); + ptrd[1] = std::cos(real)*std::sinh(imag); + return cimg::type::nan(); + } + + static double mp_complex_sqr(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = cimg::sqr(real) - cimg::sqr(imag); + ptrd[1] = 2*real*imag; + return cimg::type::nan(); + } + + static double mp_complex_sqrt(_cimg_math_parser& mp) { + const double + real = _mp_arg(2), imag = _mp_arg(3), + r = std::sqrt(cimg::hypot(real,imag)), + theta = std::atan2(imag,real)/2; + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = r*std::cos(theta); + ptrd[1] = r*std::sin(theta); + return cimg::type::nan(); + } + + static double mp_complex_tan(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3), denom = std::cos(2*real) + std::cosh(2*imag); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = std::sin(2*real)/denom; + ptrd[1] = std::sinh(2*imag)/denom; + return cimg::type::nan(); + } + + static double mp_complex_cosh(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = std::cosh(real)*std::cos(imag); + ptrd[1] = std::sinh(real)*std::sin(imag); + return cimg::type::nan(); + } + + static double mp_complex_sinh(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = std::sinh(real)*std::cos(imag); + ptrd[1] = std::cosh(real)*std::sin(imag); + return cimg::type::nan(); + } + + static double mp_complex_tanh(_cimg_math_parser& mp) { + const double real = _mp_arg(2), imag = _mp_arg(3), denom = std::cosh(2*real) + std::cos(2*imag); + double *ptrd = &_mp_arg(1) + 1; + ptrd[0] = std::sinh(2*real)/denom; + ptrd[1] = std::sin(2*imag)/denom; + return cimg::type::nan(); + } + + static double mp_continue(_cimg_math_parser& mp) { + mp.break_type = 2; + mp.p_code = mp.p_break - 1; + return cimg::type::nan(); + } + + static double mp_convolve(_cimg_math_parser &mp) { + return _mp_correlate(mp,true); + } + + static double mp_copy(_cimg_math_parser& mp) { + return _mp_arg(2); + } + + static double mp_correlate(_cimg_math_parser &mp) { + return _mp_correlate(mp,false); + } + + static double _mp_correlate(_cimg_math_parser &mp, bool is_convolve) { + double *ptrd = &_mp_arg(1) + 1; + const double *const ptrA = &_mp_arg(2) + 1, *const ptrM = &_mp_arg(7) + 1; + const unsigned int + wA = (unsigned int)mp.opcode[3], + hA = (unsigned int)mp.opcode[4], + dA = (unsigned int)mp.opcode[5], + sA = (unsigned int)mp.opcode[6], + wM = (unsigned int)mp.opcode[8], + hM = (unsigned int)mp.opcode[9], + dM = (unsigned int)mp.opcode[10], + sM = (unsigned int)mp.opcode[11], + boundary_conditions = (unsigned int)_mp_arg(12), + channel_mode = (unsigned int)mp.opcode[14]; + const bool + is_normalized = (bool)_mp_arg(13), + interpolation_type = (bool)_mp_arg(30); + const int + xcenter = mp.opcode[15]!=~0U?(int)_mp_arg(15):(int)(~0U>>1), + ycenter = mp.opcode[16]!=~0U?(int)_mp_arg(16):(int)(~0U>>1), + zcenter = mp.opcode[17]!=~0U?(int)_mp_arg(17):(int)(~0U>>1), + xstart = (int)mp.opcode[18], + ystart = (int)mp.opcode[19], + zstart = (int)mp.opcode[20], + xend = (int)mp.opcode[21], + yend = (int)mp.opcode[22], + zend = (int)mp.opcode[23]; + const float + xstride = (float)_mp_arg(24), + ystride = (float)_mp_arg(25), + zstride = (float)_mp_arg(26), + xdilation = (float)_mp_arg(27), + ydilation = (float)_mp_arg(28), + zdilation = (float)_mp_arg(29); + CImg res; + if (is_convolve) res = CImg(ptrA,wA,hA,dA,sA,true). + get_convolve(CImg(ptrM,wM,hM,dM,sM,true), + boundary_conditions,is_normalized,channel_mode, + xcenter,ycenter,zcenter, + xstart,ystart,zstart, + xend,yend,zend, + xstride,ystride,zstride, + xdilation,ydilation,zdilation, + interpolation_type); + else res = CImg(ptrA,wA,hA,dA,sA,true). + get_correlate(CImg(ptrM,wM,hM,dM,sM,true), + boundary_conditions,is_normalized,channel_mode, + xcenter,ycenter,zcenter, + xstart,ystart,zstart, + xend,yend,zend, + xstride,ystride,zstride, + xdilation,ydilation,zdilation, + interpolation_type); + CImg(ptrd,res._width,res._height,res._depth,res._spectrum,true) = res; + return cimg::type::nan(); + } + + static double mp_cos(_cimg_math_parser& mp) { + return std::cos(_mp_arg(2)); + } + + static double mp_cosh(_cimg_math_parser& mp) { + return std::cosh(_mp_arg(2)); + } + + static double mp_cov(_cimg_math_parser& mp) { + const unsigned int + _siz = (unsigned int)mp.opcode[4], + siz = std::max(_siz,1U), + off = _siz?1:0, + sizm1 = siz>1?siz - 1:1; + const CImg + A(&_mp_arg(2) + off,1,siz,1,1,true), + B(&_mp_arg(3) + off,1,siz,1,1,true); + const double + avgA = (unsigned int)mp.opcode[5]==~0U?A.mean():_mp_arg(5), + avgB = (unsigned int)mp.opcode[6]==~0U?B.mean():_mp_arg(6); + double res = 0; + cimg_forY(A,k) res+=(A[k] - avgA)*(B[k] - avgB); + return res/sizm1; + } + + static double mp_critical(_cimg_math_parser& mp) { + const ulongT g_target = mp.opcode[1]; + cimg_pragma_openmp(critical(mp_critical)) + { + for (const CImg *const p_end = ++mp.p_code + mp.opcode[2]; + mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + } + --mp.p_code; + return mp.mem[g_target]; + } + + static double mp_image_crop(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5), c = (int)_mp_arg(6); + const unsigned int + dx = (unsigned int)mp.opcode[7], + dy = (unsigned int)mp.opcode[8], + dz = (unsigned int)mp.opcode[9], + dc = (unsigned int)mp.opcode[10]; + const unsigned int boundary_conditions = (unsigned int)_mp_arg(11); + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + const CImg &img = ind==~0U?mp.imgin:mp.imglist[ind]; + if (!img) std::memset(ptrd,0,dx*dy*dz*dc*sizeof(double)); + else CImg(ptrd,dx,dy,dz,dc,true) = img.get_crop(x,y,z,c, + x + dx - 1,y + dy - 1, + z + dz - 1,c + dc - 1, + boundary_conditions); + return cimg::type::nan(); + } + + static double mp_cross(_cimg_math_parser& mp) { + CImg + vout(&_mp_arg(1) + 1,1,3,1,1,true), + v1(&_mp_arg(2) + 1,1,3,1,1,true), + v2(&_mp_arg(3) + 1,1,3,1,1,true); + (vout = v1).cross(v2); + return cimg::type::nan(); + } + + static double mp_cut(_cimg_math_parser& mp) { + double val = _mp_arg(2), cmin = _mp_arg(3), cmax = _mp_arg(4); + return valcmax?cmax:val; + } + + static double mp_da_back_or_pop(_cimg_math_parser& mp) { + const bool is_pop_heap = mp.opcode[4]==2, is_pop = (bool)mp.opcode[4]; + const char *const s_op = is_pop_heap?"da_pop_heap":is_pop?"da_pop":"da_back"; + mp_check_list(mp,s_op); + const unsigned int + dim = (unsigned int)mp.opcode[2], + ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width()); + double *const ptrd = &_mp_arg(1) + (dim>1?1:0); + CImg &img = mp.imglist[ind]; + int siz = img?(int)cimg::float2uint((float)img[img._height - 1]):0; + if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': " + "Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.", + mp.imgout.pixel_type(),s_op,ind, + img.width(),img.height(),img.depth(),img.spectrum(), + img._width==1 && img._depth==1?"":" (contains invalid element counter)"); + if (!siz) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': " + "Specified dynamic array #%u contains no elements.", + mp.imgout.pixel_type(),s_op,ind); + const int siz1 = siz - 1; + if (is_pop_heap) { // Heapify-down + if (dim==1) cimg::swap(img[0],img[siz1]); + else { + T *ptr0 = img.data(), *ptr1 = img.data(0,siz1); + cimg_forC(img,c) { cimg::swap(*ptr0,*ptr1); ptr0+=img._height; ptr1+=img._height; } + } + int index = 0; + while (true) { + const int child_left = 2*index + 1, child_right = child_left + 1; + int smallest = index; + if (child_left::nan(); + if (dim==1) ret = img[siz1]; // Scalar element + else { + const T *ptrs = img.data(0,siz1); + cimg_forC(img,c) { ptrd[c] = *ptrs; ptrs+=img._height; } // Vector element + } + if (is_pop) { // Remove element from array + --siz; + if (img.height()>32 && siz &img = mp.imglist[ind]; + int siz = img?(int)cimg::float2uint((float)img[img._height - 1]):0; + if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': " + "Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.", + mp.imgout.pixel_type(),s_op,ind, + img.width(),img.height(),img.depth(),img.spectrum(), + img._width==1 && img._depth==1?"":" (contains invalid element counter)"); + if (siz) img.resize(1,siz,1,-100,0,0); else img.assign(); + return cimg::type::nan(); + } + + static double mp_da_insert_or_push(_cimg_math_parser& mp) { + const bool is_push_heap = mp.opcode[3]==~0U - 1, is_push = mp.opcode[3]>=~0U - 1; + const char *const s_op = is_push_heap?"da_push_heap":is_push?"da_push":"da_insert"; + mp_check_list(mp,s_op); + const unsigned int + dim = (unsigned int)mp.opcode[4], + _dim = std::max(1U,dim), + nb_elts = (unsigned int)mp.opcode[5] - 6, + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + siz = img?(int)cimg::float2uint((float)img[img._height - 1]):0, + pos0 = is_push?siz:(int)_mp_arg(3), + pos = pos0<0?pos0 + siz:pos0; + + if (img && _dim!=img._spectrum) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': " + "Element to insert has invalid size %u (should be %u).", + mp.imgout.pixel_type(),s_op,_dim,img._spectrum); + if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': " + "Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.", + mp.imgout.pixel_type(),s_op,ind, + img.width(),img.height(),img.depth(),img.spectrum(), + img._width==1 && img._depth==1?"":" (contains invalid element counter)"); + if (pos<0 || pos>siz) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function '%s()': " + "Invalid position %d (not in range -%d...%d).", + mp.imgout.pixel_type(),s_op,pos0,siz,siz); + + if (siz + nb_elts + 1>=img._height) // Increase size of dynamic array, if necessary + img.resize(1,2*siz + nb_elts + 1,1,_dim,0); + + if (pos!=siz) // Move existing data in dynamic array + cimg_forC(img,c) std::memmove(img.data(0,pos + nb_elts,0,c),img.data(0,pos,0,c),(siz - pos)*sizeof(T)); + + if (!dim) // Scalar or vector1() elements + for (unsigned int k = 0; k0) { // Heapify-up + const int index_parent = (index - 1)/2; + if (img[index]1 + for (unsigned int k = 0; k0) { // Heapify-up + const int index_parent = (index - 1)/2; + if (img[index]::nan(); + } + + static double mp_da_remove(_cimg_math_parser& mp) { + mp_check_list(mp,"da_remove"); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + int siz = img?(int)cimg::float2uint((float)img[img._height - 1]):0; + if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_remove()': " + "Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.", + mp.imgout.pixel_type(),ind, + img.width(),img.height(),img.depth(),img.spectrum(), + img._width==1 && img._depth==1?"":" (contains invalid element counter)"); + if (!siz) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_remove()': " + "Dynamic array is empty.", + mp.imgout.pixel_type()); + int + start0 = mp.opcode[3]==~0U?siz - 1:_mp_arg(3), + end0 = mp.opcode[4]==~0U?start0:_mp_arg(4), + start = start0<0?start0 + siz:start0, + end = end0<0?end0 + siz:end0; + if (start<0 || start>=siz || end<0 || end>=siz || start>end) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_remove()': " + "Invalid starting (%d) and ending (%d) positions " + "(not ordered, in range -%d...%d).", + mp.imgout.pixel_type(),start0,end0,siz,siz - 1); + if (end32 && siz::nan(); + } + + static double mp_da_size(_cimg_math_parser& mp) { + mp_check_list(mp,"da_size"); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int siz = img?(int)cimg::float2uint((float)img[img._height - 1]):0; + if (img && (img._width!=1 || img._depth!=1 || siz<0 || siz>img.height() - 1)) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'da_size()': " + "Specified image #%u of size (%d,%d,%d,%d) cannot be used as dynamic array%s.", + mp.imgout.pixel_type(),ind, + img.width(),img.height(),img.depth(),img.spectrum(), + img._width==1 && img._depth==1?"":" (contains invalid element counter)"); + return siz; + } + + static double mp_date(_cimg_math_parser& mp) { + const unsigned int + siz_out = (unsigned int)mp.opcode[2], + siz_arg1 = (unsigned int)mp.opcode[4], + siz_arg2 = (unsigned int)mp.opcode[6]; + double *ptr_out = &_mp_arg(1) + (siz_out?1:0); + const double + *ptr_arg1 = siz_arg1==~0U?0:&_mp_arg(3) + (siz_arg1?1:0), + *ptr_arg2 = siz_arg2==~0U?0:&_mp_arg(5) + 1; + + if (!ptr_arg2) { // No filename specified + if (!siz_arg1) return cimg::date((unsigned int)*ptr_arg1); + if (siz_arg1==~0U) for (unsigned int k = 0; k::nan(); + } + + // Filename specified. + CImg ss(siz_arg2 + 1); + cimg_forX(ss,i) ss[i] = (char)ptr_arg2[i]; + ss.back() = 0; + if (!siz_arg1) return cimg::fdate(ss,(unsigned int)*ptr_arg1); + for (unsigned int k = 0; k::nan(); + } + + static double mp_debug(_cimg_math_parser& mp) { + CImg expr(mp.opcode[2] - 4); + { + const ulongT *ptrs = mp.opcode._data + 4; + cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++); + } + cimg::strellipsize(expr); + const ulongT g_target = mp.opcode[1]; + +#if cimg_use_openmp==0 + const unsigned int n_thread = 0; +#else + const unsigned int n_thread = omp_get_thread_num(); +#endif + cimg_pragma_openmp(critical(mp_debug)) + { + std::fprintf(cimg::output(), + "\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c" + "Start debugging '%s', code length: %u -> mem[%u] (memsize: %u)", + (void*)&mp,n_thread,mp.debug_indent,' ', + expr._data,(unsigned int)mp.opcode[3],(unsigned int)g_target,mp.mem._width); + std::fflush(cimg::output()); + mp.debug_indent+=3; + } + const CImg *const p_end = ++mp.p_code + mp.opcode[3]; + CImg _op; + for ( ; mp.p_code &op = *mp.p_code; + mp.opcode._data = op._data; + + _op.assign(1,op._height - 1); + const ulongT *ptrs = op._data + 1; + for (ulongT *ptrd = _op._data, *const ptrde = _op._data + _op._height; ptrd mem[%u] = %.17g", + (void*)&mp,n_thread,mp.debug_indent,' ', + (void*)mp.opcode._data,(void*)*mp.opcode,_op.value_string().data(), + (unsigned int)target,mp.mem[target]); + std::fflush(cimg::output()); + } + } + cimg_pragma_openmp(critical(mp_debug)) + { + mp.debug_indent-=3; + std::fprintf(cimg::output(), + "\n[" cimg_appname "_math_parser] %p[thread #%u]:%*c" + "End debugging '%s' -> mem[%u] = %.17g (memsize: %u)", + (void*)&mp,n_thread,mp.debug_indent,' ', + expr._data,(unsigned int)g_target,mp.mem[g_target],mp.mem._width); + std::fflush(cimg::output()); + } + --mp.p_code; + return mp.mem[g_target]; + } + + static double mp_decrement(_cimg_math_parser& mp) { + return _mp_arg(2) - 1; + } + + static double mp_deg2rad(_cimg_math_parser& mp) { + return _mp_arg(2)*cimg::PI/180; + } + + static double mp_det(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2) + 1; + const unsigned int k = (unsigned int)mp.opcode[3]; + return CImg(ptrs,k,k,1,1,true).det(); + } + + static double mp_diag(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2], siz = mp.opcode[2] - 3; + double *ptrd = &_mp_arg(1) + 1; + std::memset(ptrd,0,siz*siz*sizeof(double)); + for (unsigned int i = 3; i::nan(); + } + + static double mp_display_memory(_cimg_math_parser& mp) { + cimg::unused(mp); + std::fputc('\n',cimg::output()); + CImg title(128); + cimg_snprintf(title,title._width,"%s (%u)","[" cimg_appname "_math_parser] Memory snapshot",mp.mem._width); + mp.mem.display(title); + return cimg::type::nan(); + } + + static double mp_display(_cimg_math_parser& mp) { + const unsigned int + _siz = (unsigned int)mp.opcode[3], + siz = _siz?_siz:1; + const double *const ptr = &_mp_arg(1) + (_siz?1:0); + const int + w = (int)_mp_arg(4), + h = (int)_mp_arg(5), + d = (int)_mp_arg(6), + s = (int)_mp_arg(7); + CImg img; + if (w>0 && h>0 && d>0 && s>0) { + if ((unsigned int)w*h*d*s<=siz) img.assign(ptr,w,h,d,s,true); + else img.assign(ptr,siz).resize(w,h,d,s,-1); + } else img.assign(ptr,1,siz,1,1,true); + + CImg expr(mp.opcode[2] - 8); + const ulongT *ptrs = mp.opcode._data + 8; + cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++); + ((CImg::string("[" cimg_appname "_math_parser] ",false,true),expr)>'x').move_to(expr); + cimg::strellipsize(expr); + std::fputc('\n',cimg::output()); + img.display(expr._data); + return cimg::type::nan(); + } + + static double mp_div(_cimg_math_parser& mp) { + return _mp_arg(2)/_mp_arg(3); + } + + static double mp_dot(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[4]; + return CImg(&_mp_arg(2) + 1,1,siz,1,1,true). + dot(CImg(&_mp_arg(3) + 1,1,siz,1,1,true)); + } + + static double mp_do(_cimg_math_parser& mp) { + const ulongT + mem_body = mp.opcode[1], + mem_cond = mp.opcode[2]; + const CImg + *const p_body = ++mp.p_code, + *const p_cond = p_body + mp.opcode[3], + *const p_end = p_cond + mp.opcode[4]; + const unsigned int vsiz = (unsigned int)mp.opcode[5]; + if (mp.opcode[6]) { // Set default value for result and condition if necessary + if (vsiz) CImg(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type::nan()); + else mp.mem[mem_body] = cimg::type::nan(); + } + if (mp.opcode[7]) mp.mem[mem_cond] = 0; + + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + do { + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + for (mp.p_code = p_cond; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + } while (mp.mem[mem_cond]); + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return mp.mem[mem_body]; + } + + static double mp_echo(_cimg_math_parser& mp) { + const unsigned int nb_args = (unsigned int)(mp.opcode[2] - 3)/2; + if (!nb_args) { std::fputc('\n',cimg::output()); return cimg::type::nan(); } // No arguments + CImgList _str; + CImg it; + for (unsigned int n = 0; n string + const double *ptr = &_mp_arg(3 + 2*n) + 1; + unsigned int l = 0; + while (l(ptr,l,1,1,1,true).move_to(_str); + } else { // Scalar argument -> number + it.assign(24); + cimg_snprintf(it,it._width,"%.17g",_mp_arg(3 + 2*n)); + CImg::string(it,false,true).move_to(_str); + } + } + CImg(1,1,1,1,0).move_to(_str); + const CImg str = _str>'x'; + std::fprintf(cimg::output(),"\n%s",str._data); + return cimg::type::nan(); + } + + static double mp_ellipse(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + unsigned int ind = (unsigned int)mp.opcode[3]; + if (ind!=~0U) { + mp_check_list(mp,"ellipse"); + ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width()); + } + CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + CImg color(img._spectrum,1,1,1,0); + bool is_invalid_arguments = false, is_outlined = false; + float r1 = 0, r2 = 0, angle = 0, opacity = 1; + unsigned int i = 4, pattern = ~0U; + int x0 = 0, y0 = 0; + if (i>=i_end) is_invalid_arguments = true; + else { + x0 = (int)cimg::round(_mp_arg(i++)); + if (i>=i_end) is_invalid_arguments = true; + else { + y0 = (int)cimg::round(_mp_arg(i++)); + if (i>=i_end) is_invalid_arguments = true; + else { + r1 = (float)_mp_arg(i++); + if (i>=i_end) r2 = r1; + else { + r2 = (float)_mp_arg(i++); + if (i args(i_end - 4); + cimg_forX(args,k) args[k] = _mp_arg(4 + k); + if (ind==~0U) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'ellipse()': " + "Invalid arguments '%s'. ", + mp.imgin.pixel_type(),args.value_string()._data); + else + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'ellipse()': " + "Invalid arguments '#%u%s%s'. ", + mp.imgin.pixel_type(),ind,args._width?",":"",args.value_string()._data); + } + return cimg::type::nan(); + } + + static double mp_eq(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)==_mp_arg(3)); + } + +#if cimg_use_cpp11==1 + static double mp_erf(_cimg_math_parser& mp) { + return std::erf(_mp_arg(2)); + } +#endif + + static double mp_erfinv(_cimg_math_parser& mp) { + return cimg::erfinv(_mp_arg(2)); + } + + static double mp_exp(_cimg_math_parser& mp) { + return std::exp(_mp_arg(2)); + } + + static double mp_expr(_cimg_math_parser& mp) { + const unsigned int + sizs = (unsigned int)mp.opcode[3], + w = (unsigned int)mp.opcode[4], + h = (unsigned int)mp.opcode[5], + d = (unsigned int)mp.opcode[6], + s = (unsigned int)mp.opcode[7], + sizd = w*h*d*s; + const double *ptrs = &_mp_arg(2) + 1; + double *ptrd = &_mp_arg(1); + CImg ss(sizs + 1); + cimg_for_inX(ss,0,ss.width() - 2,i) ss[i] = (char)ptrs[i]; + ss.back() = 0; + if (!sizd) return CImg(w,h,d,s,0).eval(ss,0,0,0,0,&mp.imglist); // Scalar result + CImg(++ptrd,w,h,d,s,true) = CImg(w,h,d,s,0).fill(ss,true,true,&mp.imglist); + return cimg::type::nan(); + } + + static double mp_eye(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int k = (unsigned int)mp.opcode[2]; + CImg(ptrd,k,k,1,1,true).identity_matrix(); + return cimg::type::nan(); + } + + static double mp_f2ui(_cimg_math_parser& mp) { + return (double)cimg::float2uint((float)_mp_arg(2)); + } + + static double mp_factorial(_cimg_math_parser& mp) { + return cimg::factorial((int)_mp_arg(2)); + } + + static double mp_fibonacci(_cimg_math_parser& mp) { + return cimg::fibonacci((int)_mp_arg(2)); + } + + static double mp_fill(_cimg_math_parser& mp) { + unsigned int siz = (unsigned int)mp.opcode[2]; + double + *ptrd = &_mp_arg(1), + *const ptrc = mp.opcode[3]!=~0U?&_mp_arg(3):0, + *const ptrs = &_mp_arg(4); + if (siz) ++ptrd; else ++siz; // Fill vector-valued slot + const CImg + *const p_body = ++mp.p_code, + *const p_end = p_body + mp.opcode[5]; + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + + unsigned int it = 0; + if (ptrc) { // Version with loop variable (3 arguments) + while (it_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + else ptrd[it] = *ptrs; + ++it; + } + *ptrc = (double)it; + } else // Version without loop variable (2 arguments) + while (it_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + else ptrd[it] = *ptrs; + ++it; + } + + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return *ptrd; + } + + static double mp_find(_cimg_math_parser& mp) { + const int _step = (int)_mp_arg(6), step = _step?_step:-1; + const ulongT siz = (ulongT)mp.opcode[3]; + longT ind = (longT)(mp.opcode[5]!=_cimg_mp_slot_nan?_mp_arg(5):step>0?0:siz - 1); + if (ind<0 || ind>=(longT)siz) return -1.; + const double + *const ptrb = &_mp_arg(2) + 1, + *const ptre = ptrb + siz, + val = _mp_arg(4), + *ptr = ptrb + ind; + + // Forward search + if (step>0) { + while (ptr=ptre?-1.:(double)(ptr - ptrb); + } + + // Backward search. + while (ptr>=ptrb && *ptr!=val) ptr+=step; + return ptr0?0:siz1 - 1); + if (ind<0 || ind>=(longT)siz1) return -1.; + const double + *const ptr1b = &_mp_arg(2) + 1, + *const ptr1e = ptr1b + siz1, + *const ptr2b = &_mp_arg(4) + 1, + *const ptr2e = ptr2b + siz2, + *ptr1 = ptr1b + ind, + *p1 = 0, + *p2 = 0; + + // Forward search. + if (step>0) { + do { + while (ptr1=ptr1e) return -1.; + p1 = ptr1 + 1; + p2 = ptr2b + 1; + while (p1=ptr1b && *ptr1!=*ptr2b) ptr1+=step; + if (ptr1=ptr1b); + return p2 &img = ind==~0U?mp.imgout:mp.imglist[ind]; + CImg color(img._spectrum,1,1,1,0); + bool is_high_connectivity = false; + float tolerance = 0, opacity = 1; + int x0 = 0, y0 = 0, z0 = 0; + unsigned int i = 4; + if (i::nan(); + } + + static double mp_floor(_cimg_math_parser& mp) { + return std::floor(_mp_arg(2)); + } + + static double mp_for(_cimg_math_parser& mp) { + const ulongT + mem_body = mp.opcode[1], + mem_cond = mp.opcode[3]; + const CImg + *const p_init = ++mp.p_code, + *const p_cond = p_init + mp.opcode[4], + *const p_body = p_cond + mp.opcode[5], + *const p_post = p_body + mp.opcode[6], + *const p_end = p_post + mp.opcode[7]; + const unsigned int vsiz = (unsigned int)mp.opcode[2]; + bool is_cond = false; + if (mp.opcode[8]) { // Set default value for result and condition if necessary + if (vsiz) CImg(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type::nan()); + else mp.mem[mem_body] = cimg::type::nan(); + } + if (mp.opcode[9]) mp.mem[mem_cond] = 0; + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + + for (mp.p_code = p_init; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + + if (!mp.break_type) do { + for (mp.p_code = p_cond; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; + + is_cond = (bool)mp.mem[mem_cond]; + if (is_cond && !mp.break_type) { + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + + for (mp.p_code = p_post; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + } + } while (is_cond); + + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return mp.mem[mem_body]; + } + + static double mp_fsize(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2) + 1; + const ulongT siz = (ulongT)mp.opcode[3]; + CImg ss(siz + 1); + cimg_forX(ss,i) ss[i] = (char)ptrs[i]; + ss.back() = 0; + return (double)cimg::fsize(ss); + } + +#if cimg_use_cpp11==1 + static double mp_gamma(_cimg_math_parser& mp) { + return std::tgamma(_mp_arg(2)); + } +#endif + + static double mp_gauss(_cimg_math_parser& mp) { + const double x = _mp_arg(2), s = _mp_arg(3); + return std::exp(-x*x/(2*s*s))/(_mp_arg(4)?std::sqrt(2*s*s*cimg::PI):1); + } + +#ifdef cimg_mp_func_get + static double mp_get(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2) + 1; + double *ptrd = &_mp_arg(1); + const unsigned int + sizs = (unsigned int)mp.opcode[3], + sizd = (unsigned int)mp.opcode[4]; + const bool to_string = (bool)mp.opcode[5]; + CImg ss(sizs + 1); + cimg_for_inX(ss,0,ss.width() - 2,i) ss[i] = (char)ptrs[i]; + ss.back() = 0; + if (sizd) cimg_mp_func_get(ptrd + 1,sizd,to_string,ss._data); + else cimg_mp_func_get(ptrd,0,to_string,ss._data); + return cimg::type::nan(); + } +#endif + + static double mp_gcd(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + CImg values; + if (i_end==5) { // Only a single argument + if ((unsigned)mp.opcode[4]==1) return _mp_arg(3); // Real value + else values.assign(&_mp_arg(3),(unsigned int)mp.opcode[4]); // Vector value + } else if (i_end==7 && (unsigned int)mp.opcode[4]==1 && (unsigned int)mp.opcode[6]==1) // Two real arguments + return (double)cimg::gcd((cimg_int64)_mp_arg(3),(cimg_int64)_mp_arg(5)); + else { + unsigned int siz = 0; + for (unsigned int i = 4; i1) for (unsigned int k = 0; k::nan(); + } +#endif + + static double mp_gt(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)>_mp_arg(3)); + } + + static double mp_gte(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)>=_mp_arg(3)); + } + + static double mp_i(_cimg_math_parser& mp) { + if (mp.imgin) + return (double)mp.imgin((int)mp.mem[_cimg_mp_slot_x],(int)mp.mem[_cimg_mp_slot_y], + (int)mp.mem[_cimg_mp_slot_z],(int)mp.mem[_cimg_mp_slot_c]); + return 0; + } + + static double mp_if(_cimg_math_parser& mp) { + const bool is_cond = (bool)_mp_arg(2); + const ulongT + mem_left = mp.opcode[3], + mem_right = mp.opcode[4]; + const CImg + *const p_right = ++mp.p_code + mp.opcode[5], + *const p_end = p_right + mp.opcode[6]; + const unsigned int vtarget = (unsigned int)mp.opcode[1], vsiz = (unsigned int)mp.opcode[7]; + if (is_cond) for ( ; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + else for (mp.p_code = p_right; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.p_code==mp.p_break) --mp.p_code; + else mp.p_code = p_end - 1; + if (vsiz) std::memcpy(&mp.mem[vtarget] + 1,&mp.mem[is_cond?mem_left:mem_right] + 1,sizeof(double)*vsiz); + return mp.mem[is_cond?mem_left:mem_right]; + } + + static double mp_image_d(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.depth(); + } + + static double mp_image_display(_cimg_math_parser& mp) { + mp_check_list(mp,"display"); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + cimg::mutex(6); + CImg &img = mp.imglist[ind]; + CImg title(256); + std::fputc('\n',cimg::output()); + cimg_snprintf(title,title._width,"[ Image #%u ]",ind); + img.display(title); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_draw(_cimg_math_parser& mp) { + const int x = (int)_mp_arg(4), y = (int)_mp_arg(5), z = (int)_mp_arg(6), c = (int)_mp_arg(7); + unsigned int ind = (unsigned int)mp.opcode[3]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width()); + } + CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + unsigned int + dx = (unsigned int)mp.opcode[8], + dy = (unsigned int)mp.opcode[9], + dz = (unsigned int)mp.opcode[10], + dc = (unsigned int)mp.opcode[11]; + dx = dx==~0U?img._width:(unsigned int)_mp_arg(8); + dy = dy==~0U?img._height:(unsigned int)_mp_arg(9); + dz = dz==~0U?img._depth:(unsigned int)_mp_arg(10); + dc = dc==~0U?img._spectrum:(unsigned int)_mp_arg(11); + + const ulongT sizS = mp.opcode[2]; + if (sizS<(ulongT)dx*dy*dz*dc) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Sprite vector (%lu values) and its specified geometry (%u,%u,%u,%u) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc); + const CImg S(&_mp_arg(1) + 1,dx,dy,dz,dc,true); + const float opacity = (float)_mp_arg(12); + + if (img._data) { + if (mp.opcode[13]!=~0U) { // Opacity mask specified + const ulongT sizM = mp.opcode[14]; + if (sizM<(ulongT)dx*dy*dz) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Mask vector (%lu values) and specified sprite geometry (%u,%u,%u,%u) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc); + const CImg M(&_mp_arg(13) + 1,dx,dy,dz,(unsigned int)(sizM/(dx*dy*dz)),true); + img.draw_image(x,y,z,c,S,M,opacity,(float)_mp_arg(15)); + } else img.draw_image(x,y,z,c,S,opacity); + } + return cimg::type::nan(); + } + + static double mp_image_h(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.height(); + } + + static double mp_image_median(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.median(); + } + + static double mp_image_norm(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.magnitude(2); + } + + static double mp_image_print(_cimg_math_parser& mp) { + mp_check_list(mp,"print"); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + cimg::mutex(6); + CImg &img = mp.imglist[ind]; + CImg title(256); + std::fputc('\n',cimg::output()); + cimg_snprintf(title,title._width,"[ Image #%u ]",ind); + img.print(title); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_resize(_cimg_math_parser& mp) { + mp_check_list(mp,"resize"); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + cimg::mutex(6); + CImg &img = mp.imglist[ind]; + const double + _w = mp.opcode[3]==~0U?-100:_mp_arg(3), + _h = mp.opcode[4]==~0U?-100:_mp_arg(4), + _d = mp.opcode[5]==~0U?-100:_mp_arg(5), + _s = mp.opcode[6]==~0U?-100:_mp_arg(6); + const unsigned int + w = (unsigned int)(_w>=0?_w:-_w*img.width()/100), + h = (unsigned int)(_h>=0?_h:-_h*img.height()/100), + d = (unsigned int)(_d>=0?_d:-_d*img.depth()/100), + s = (unsigned int)(_s>=0?_s:-_s*img.spectrum()/100), + interp = (int)_mp_arg(7); + if (mp.is_fill && img._data==mp.imgout._data) { + cimg::mutex(6,0); + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'resize()': " + "Cannot both fill and resize image (%u,%u,%u,%u) " + "to new dimensions (%u,%u,%u,%u).", + img.pixel_type(),img._width,img._height,img._depth,img._spectrum,w,h,d,s); + } + const unsigned int + boundary = (int)_mp_arg(8); + const float + cx = (float)_mp_arg(9), + cy = (float)_mp_arg(10), + cz = (float)_mp_arg(11), + cc = (float)_mp_arg(12); + img.resize(w,h,d,s,interp,boundary,cx,cy,cz,cc); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_s(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.spectrum(); + } + + static double mp_image_sort(_cimg_math_parser& mp) { + mp_check_list(mp,"sort"); + const bool is_increasing = (bool)_mp_arg(3); + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()), + axis = (unsigned int)_mp_arg(4); + cimg::mutex(6); + CImg &img = mp.imglist[ind]; + img.sort(is_increasing, + axis==0 || axis=='x'?'x': + axis==1 || axis=='y'?'y': + axis==2 || axis=='z'?'z': + axis==3 || axis=='c'?'c':0); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_stats(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind==~0U) + CImg(ptrd,14,1,1,1,true) = mp.imgout.get_stats(); + else { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg(ptrd,14,1,1,1,true) = mp.imglist[ind].get_stats(); + } + return cimg::type::nan(); + } + + static double mp_image_w(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.width(); + } + + static double mp_image_wh(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.width()*img.height(); + } + + static double mp_image_whd(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.width()*img.height()*img.depth(); + } + + static double mp_image_whds(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + return (double)img.width()*img.height()*img.depth()*img.spectrum(); + } + + static double mp_increment(_cimg_math_parser& mp) { + return _mp_arg(2) + 1; + } + + static double mp_inrange(_cimg_math_parser& mp) { + const unsigned int sizd = (unsigned int)mp.opcode[2]; + const bool + include_m = (bool)_mp_arg(9), + include_M = (bool)_mp_arg(10); + if (!sizd) { // Scalar result + const double val = _mp_arg(3); + const double m = _mp_arg(5), M = _mp_arg(7); + if (M>=m) return (double)((include_m?(val>=m):(val>m)) && (include_M?(val<=M):(val=M):(val>M)) && (include_m?(val<=m):(val=m) + ptrd[k] = (double)((include_m?(val>=m):(val>m)) && (include_M?(val<=M):(val=M):(val>M)) && (include_m?(val<=m):(val::nan(); + } + + static double mp_int(_cimg_math_parser& mp) { + return (double)(longT)_mp_arg(2); + } + + static double mp_ioff(_cimg_math_parser& mp) { + const unsigned int + boundary_conditions = (unsigned int)_mp_arg(3); + const CImg &img = mp.imgin; + const longT + off = (longT)_mp_arg(2), + whds = (longT)img.size(); + if (off>=0 && off ss(siz + 1); + cimg_forX(ss,i) ss[i] = (char)ptrs[i]; + ss.back() = 0; + return (double)cimg::is_directory(ss); + } + + static double mp_isin(_cimg_math_parser& mp) { + const unsigned int + i_end = (unsigned int)mp.opcode[2], + siz_ref = (unsigned int)mp.opcode[4]; + bool res = false; + if (siz_ref) { // Reference value is a vector + const CImg ref(&_mp_arg(3) + 1,siz_ref,1,1,1,true); + for (unsigned int i = 5; i(&_mp_arg(i) + 1,siz,1,1,1,true)==ref) { res = true; break; } + } + } else { // Reference value is a scalar + const double ref = _mp_arg(3); + for (unsigned i = 5; i::is_inf(_mp_arg(2)); + } + + static double mp_isint(_cimg_math_parser& mp) { + double val = _mp_arg(2), intpart; + const bool is_int = std::modf(val,&intpart)==0; + if (mp.opcode[3]==~0U) return is_int; + if (mp.opcode[4]==~0U) return is_int && val>=_mp_arg(3); + return is_int && val>=_mp_arg(3) && val<=_mp_arg(4); + } + + static double mp_isfile(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[3]; + const double *const ptrs = &_mp_arg(2) + (siz?1:0); + if (!siz) { char str[2] = {}; *str = *ptrs; return (double)cimg::is_file(str); } + CImg ss(siz + 1); + cimg_forX(ss,i) ss[i] = (char)ptrs[i]; + ss.back() = 0; + return (double)cimg::is_file(ss); + } + + static double mp_isnan(_cimg_math_parser& mp) { + return (double)cimg::type::is_nan(_mp_arg(2)); + } + + static double mp_isvarname(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[3]; + const double *ptrs = &_mp_arg(2) + (siz?1:0); + if (!siz) { + const char c = (char)*ptrs; + return (c>='a' && c<='z') || (c>='A' && c<='Z') || c=='_'; + } + if (*ptrs>='0' && *ptrs<='9') return 0; + for (unsigned int k = 0; k &img = mp.imgin; + const double + x = _mp_arg(2), y = _mp_arg(3), + z = _mp_arg(4), c = _mp_arg(5); + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._cubic_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + case 1 : // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._linear_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + default : // Nearest neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx &img = mp.imgin; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whds = (longT)img.size(); + if (off>=0 && off &img = mp.imgin; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c], + x = ox + _mp_arg(2), y = oy + _mp_arg(3), + z = oz + _mp_arg(4), c = oc + _mp_arg(5); + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._cubic_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + case 1 : // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._linear_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + default : // Nearest neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx values; + if (i_end==5) values.assign(&_mp_arg(3),(unsigned int)mp.opcode[4],1,1,1,true); // Only a single argument + else { + unsigned int siz = 0; + for (unsigned int i = 4; i1) std::memcpy(ptr,&_mp_arg(i),len*sizeof(double)); + else *ptr = _mp_arg(i); + ptr+=len; + } + } + longT ind = (longT)values[0]; + ++values._data; --values._width; // Skip first value + if (ind<0) ind+=values.width() + 1; + ind = cimg::cut(ind,(longT)1,(longT)values.width()); + const double &kth = values.kth_smallest((ulongT)(ind - 1)); + --values._data; ++values._width; + return kth; + } + + static double mp_lcm(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + CImg values; + if (i_end==5) { // Only a single argument + if ((unsigned)mp.opcode[4]==1) return _mp_arg(3); // Real value + else values.assign(&_mp_arg(3),(unsigned int)mp.opcode[4]); // Vector value + } else if (i_end==7 && (unsigned int)mp.opcode[4]==1 && (unsigned int)mp.opcode[6]==1) // Two real arguments + return (double)cimg::lcm((cimg_int64)_mp_arg(3),(cimg_int64)_mp_arg(5)); + else { + unsigned int siz = 0; + for (unsigned int i = 4; i1) for (unsigned int k = 0; k &img = mp.imglist[indi]; + const int _step = (int)_mp_arg(5), step = _step?_step:-1; + const ulongT siz = (ulongT)img.size(); + longT ind = (longT)(mp.opcode[4]!=_cimg_mp_slot_nan?_mp_arg(4):step>0?0:siz - 1); + if (ind<0 || ind>=(longT)siz) return -1.; + const T + *const ptrb = img.data(), + *const ptre = img.end(), + *ptr = ptrb + ind; + const double val = _mp_arg(3); + + // Forward search + if (step>0) { + while (ptr=ptre?-1.:(double)(ptr - ptrb); + } + + // Backward search. + while (ptr>=ptrb && (double)*ptr!=val) ptr+=step; + return ptr &img = mp.imglist[indi]; + const int _step = (int)_mp_arg(6), step = _step?_step:-1; + const ulongT + siz1 = (ulongT)img.size(), + siz2 = (ulongT)mp.opcode[4]; + longT ind = (longT)(mp.opcode[5]!=_cimg_mp_slot_nan?_mp_arg(5):step>0?0:siz1 - 1); + if (ind<0 || ind>=(longT)siz1) return -1.; + const T + *const ptr1b = img.data(), + *const ptr1e = ptr1b + siz1, + *ptr1 = ptr1b + ind, + *p1 = 0; + const double + *const ptr2b = &_mp_arg(3) + 1, + *const ptr2e = ptr2b + siz2, + *p2 = 0; + + // Forward search. + if (step>0) { + do { + while (ptr1=ptr1e) return -1.; + p1 = ptr1 + 1; + p2 = ptr2b + 1; + while (p1=ptr1b && *ptr1!=*ptr2b) ptr1+=step; + if (ptr1=ptr1b); + return p2 &img = mp.imglist[ind]; + const longT + off = (longT)_mp_arg(3), + whds = (longT)img.size(); + if (off>=0 && off &img = mp.imglist[ind]; + const double + x = _mp_arg(3), y = _mp_arg(4), + z = _mp_arg(5), c = _mp_arg(6); + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._cubic_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + case 1 : // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._linear_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + default : // Nearest neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx &img = mp.imglist[ind]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whds = (longT)img.size(); + if (off>=0 && off &img = mp.imglist[ind]; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c], + x = ox + _mp_arg(3), y = oy + _mp_arg(4), + z = oz + _mp_arg(5), c = oc + _mp_arg(6); + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._cubic_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.cubic_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + case 1 : // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), s2 = 2.f*img.spectrum(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), + mz = cimg::mod((float)z,d2), mc = cimg::mod((float)c,s2); + return (double)img._linear_atXYZ(mx=img._spectrum?img._spectrum - 1:c)); + default : // Dirichlet + if (c<0 || c>=img._spectrum) return (T)0; + return (double)img.linear_atXYZ((float)x,(float)y,(float)z,(int)c,(T)0); + } + default : // Nearest neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx::vector(mp.imglist[ind].median()).move_to(mp.list_median[ind]); + return *mp.list_median[ind]; + } + + static double mp_list_norm(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + if (!mp.list_norm) mp.list_norm.assign(mp.imglist._width); + if (!mp.list_norm[ind]) CImg::vector(mp.imglist[ind].magnitude(2)).move_to(mp.list_norm[ind]); + return *mp.list_norm[ind]; + } + + static double mp_list_id(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + bool get_stats = false; + cimg::mutex(13); + if (!mp.list_stats || mp.list_stats.size()!=mp.imglist._width) mp.list_stats.assign(mp.imglist._width); + if (!mp.list_stats[ind]) get_stats = true; + cimg::mutex(13,0); + + if (get_stats) { + CImg st = mp.imglist[ind].get_stats(); + cimg::mutex(13); + st.move_to(mp.list_stats[ind]); + cimg::mutex(13,0); + } + return std::sqrt(mp.list_stats(ind,3)); + } + + static double mp_list_set_ioff(_cimg_math_parser& mp) { + if (!mp.imglist.width()) return cimg::type::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const longT + off = (longT)_mp_arg(3), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + x = (int)_mp_arg(3), y = (int)_mp_arg(4), + z = (int)_mp_arg(5), c = (int)_mp_arg(6); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c]; + const int + x = (int)(ox + _mp_arg(3)), y = (int)(oy + _mp_arg(4)), + z = (int)(oz + _mp_arg(5)), c = (int)(oc + _mp_arg(6)); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const longT + off = (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const longT + off = (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_list_set_Ixyz_s(_cimg_math_parser& mp) { + if (!mp.imglist.width()) return cimg::type::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + x = (int)_mp_arg(3), + y = (int)_mp_arg(4), + z = (int)_mp_arg(5); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + x = (int)_mp_arg(3), + y = (int)_mp_arg(4), + z = (int)_mp_arg(5); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_list_set_Joff_s(_cimg_math_parser& mp) { + if (!mp.imglist.width()) return cimg::type::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_list_set_Jxyz_s(_cimg_math_parser& mp) { + if (!mp.imglist.width()) return cimg::type::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(3)), + y = (int)(oy + _mp_arg(4)), + z = (int)(oz + _mp_arg(5)); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z::nan(); + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + CImg &img = mp.imglist[ind]; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(3)), + y = (int)(oy + _mp_arg(4)), + z = (int)(oz + _mp_arg(5)); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_list_spectrum(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + return (double)mp.imglist[ind]._spectrum; + } + + static double mp_list_stats(_cimg_math_parser& mp) { + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()), + k = (unsigned int)mp.opcode[3]; + bool get_stats = false; + cimg::mutex(13); + if (!mp.list_stats || mp.list_stats.size()!=mp.imglist._width) mp.list_stats.assign(mp.imglist._width); + if (!mp.list_stats[ind]) get_stats = true; + cimg::mutex(13,0); + + if (get_stats) { + CImg st = mp.imglist[ind].get_stats(); + cimg::mutex(13); + st.move_to(mp.list_stats[ind]); + cimg::mutex(13,0); + } + return mp.list_stats(ind,k); + } + + static double mp_list_wh(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + return (double)mp.imglist[ind]._width*mp.imglist[ind]._height; + } + + static double mp_list_whd(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + return (double)mp.imglist[ind]._width*mp.imglist[ind]._height*mp.imglist[ind]._depth; + } + + static double mp_list_whds(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + return (double)mp.imglist[ind]._width*mp.imglist[ind]._height*mp.imglist[ind]._depth*mp.imglist[ind]._spectrum; + } + + static double mp_list_width(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + return (double)mp.imglist[ind]._width; + } + + static double mp_list_Ioff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()), + boundary_conditions = (unsigned int)_mp_arg(4), + vsiz = (unsigned int)mp.opcode[5]; + const CImg &img = mp.imglist[ind]; + const longT + off = (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_list_Ixyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()), + interpolation = (unsigned int)_mp_arg(6), + boundary_conditions = (unsigned int)_mp_arg(7), + vsiz = (unsigned int)mp.opcode[8]; + const CImg &img = mp.imglist[ind]; + const double x = _mp_arg(3), y = _mp_arg(4), z = _mp_arg(5); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2), + cx = mx::nan(); + } + + static double mp_list_Joff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()), + boundary_conditions = (unsigned int)_mp_arg(4), + vsiz = (unsigned int)mp.opcode[5]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z]; + const CImg &img = mp.imglist[ind]; + const longT + off = img.offset(ox,oy,oz) + (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_list_Jxyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()), + interpolation = (unsigned int)_mp_arg(6), + boundary_conditions = (unsigned int)_mp_arg(7), + vsiz = (unsigned int)mp.opcode[8]; + const CImg &img = mp.imglist[ind]; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], + x = ox + _mp_arg(3), y = oy + _mp_arg(4), z = oz + _mp_arg(5); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2), + cx = mx::nan(); + } + + static double mp_log(_cimg_math_parser& mp) { + return std::log(_mp_arg(2)); + } + + static double mp_log10(_cimg_math_parser& mp) { + return std::log10(_mp_arg(2)); + } + + static double mp_log2(_cimg_math_parser& mp) { + return cimg::log2(_mp_arg(2)); + } + + static double mp_logical_and(_cimg_math_parser& mp) { + const bool val_left = (bool)_mp_arg(2); + const CImg *const p_end = ++mp.p_code + mp.opcode[4]; + if (!val_left) { mp.p_code = p_end - 1; return 0; } + const ulongT mem_right = mp.opcode[3]; + for ( ; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + --mp.p_code; + return (double)(bool)mp.mem[mem_right]; + } + + static double mp_logical_not(_cimg_math_parser& mp) { + return (double)!_mp_arg(2); + } + + static double mp_logical_or(_cimg_math_parser& mp) { + const bool val_left = (bool)_mp_arg(2); + const CImg *const p_end = ++mp.p_code + mp.opcode[4]; + if (val_left) { mp.p_code = p_end - 1; return 1; } + const ulongT mem_right = mp.opcode[3]; + for ( ; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + --mp.p_code; + return (double)(bool)mp.mem[mem_right]; + } + + static double mp_lowercase(_cimg_math_parser& mp) { + return cimg::lowercase(_mp_arg(2)); + } + + static double mp_lt(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)<_mp_arg(3)); + } + + static double mp_lte(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)<=_mp_arg(3)); + } + + static double mp_map(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double + *ptrX = &_mp_arg(2) + 1, + *ptrP = &_mp_arg(3) + 1; + const unsigned int + sizX = (unsigned int)mp.opcode[4], + sizP = (unsigned int)mp.opcode[5], + nb_channelsX = (unsigned int)mp.opcode[6], + nb_channelsP = (unsigned int)mp.opcode[7], + boundary_conditions = (unsigned int)_mp_arg(8); + CImg(ptrd,sizX/nb_channelsX,1,1,nb_channelsX*nb_channelsP,true) = + CImg(ptrX,sizX/nb_channelsX,1,1,nb_channelsX,true). + get_map(CImg(ptrP,sizP/nb_channelsP,1,1,nb_channelsP,true),boundary_conditions); + return cimg::type::nan(); + } + + static double mp_matrix_eig(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptr1 = &_mp_arg(2) + 1; + const unsigned int k = (unsigned int)mp.opcode[3]; + CImg val, vec; + CImg(ptr1,k,k,1,1,true).symmetric_eigen(val,vec); + CImg(ptrd,1,k,1,1,true) = val; + CImg(ptrd + k,k,k,1,1,true) = vec.get_transpose(); + return cimg::type::nan(); + } + + static double mp_matrix_invert(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptr1 = &_mp_arg(2) + 1; + const unsigned int + w = (unsigned int)mp.opcode[3], + h = (unsigned int)mp.opcode[4]; + const bool use_LU = (bool)_mp_arg(5); + const float lambda = (float)_mp_arg(6); + CImg(ptrd,h,w,1,1,true) = CImg(ptr1,w,h,1,1,true).get_invert(use_LU,lambda); + return cimg::type::nan(); + } + + static double mp_matrix_mul(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double + *ptr1 = &_mp_arg(2) + 1, + *ptr2 = &_mp_arg(3) + 1; + const unsigned int + k = (unsigned int)mp.opcode[4], + l = (unsigned int)mp.opcode[5], + m = (unsigned int)mp.opcode[6]; + CImg(ptrd,m,k,1,1,true) = CImg(ptr1,l,k,1,1,true)*CImg(ptr2,m,l,1,1,true); + return cimg::type::nan(); + } + + static double mp_matrix_svd(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptr1 = &_mp_arg(2) + 1; + const unsigned int + k = (unsigned int)mp.opcode[3], + l = (unsigned int)mp.opcode[4]; + CImg U, S, V; + CImg(ptr1,k,l,1,1,true).SVD(U,S,V); + CImg(ptrd,k,l,1,1,true) = U; + CImg(ptrd + k*l,1,k,1,1,true) = S; + CImg(ptrd + k*l + k,k,k,1,1,true) = V; + return cimg::type::nan(); + } + + static double mp_max(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val, valmax = -cimg::type::inf(); + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; kvalmax) valmax = val; } + } else { val = _mp_arg(i); if (val>valmax) valmax = val; } + } + return valmax; + } + + static double mp_maxabs(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val, abs_val, valmaxabs = 0, abs_valmaxabs = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; kabs_valmaxabs) { valmaxabs = val; abs_valmaxabs = abs_val; } + } + } else { + val = _mp_arg(i); + abs_val = cimg::abs(val); + if (abs_val>abs_valmaxabs) { valmaxabs = val; abs_valmaxabs = abs_val; } + } + } + return valmaxabs; + } + + static double* _mp_memcopy_double(_cimg_math_parser& mp, const unsigned int ind, const ulongT *const p_ref, + const longT siz, const long inc) { + const longT + off = *p_ref?p_ref[1] + (longT)mp.mem[(longT)p_ref[2]] + 1:ind, + eoff = off + (siz - 1)*inc; + if (off<0 || eoff>=mp.mem.width()) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'copy()': " + "Out-of-bounds variable pointer " + "(length: %ld, increment: %ld, offset start: %ld, " + "offset end: %ld, offset max: %u).", + mp.imgin.pixel_type(),siz,inc,off,eoff,mp.mem._width - 1); + return &mp.mem[off]; + } + + static float* _mp_memcopy_float(_cimg_math_parser& mp, const ulongT *const p_ref, + const longT siz, const long inc, const bool is_out) { + const unsigned ind = (unsigned int)p_ref[1]; + const CImg &img = is_out? + (ind==~0U?mp.imgout:mp.imglist[cimg::mod((int)mp.mem[ind],mp.imglist.width())]): + (ind==~0U?mp.imgin:mp.imglist[cimg::mod((int)mp.mem[ind],mp.imglist.width())]); + const bool is_relative = (bool)p_ref[2]; + int ox, oy, oz, oc; + longT off = 0; + if (is_relative) { + ox = (int)mp.mem[_cimg_mp_slot_x]; + oy = (int)mp.mem[_cimg_mp_slot_y]; + oz = (int)mp.mem[_cimg_mp_slot_z]; + oc = (int)mp.mem[_cimg_mp_slot_c]; + off = img.offset(ox,oy,oz,oc); + } + if ((*p_ref)%2) { + const int + x = (int)mp.mem[p_ref[3]], + y = (int)mp.mem[p_ref[4]], + z = (int)mp.mem[p_ref[5]], + c = *p_ref==5?0:(int)mp.mem[p_ref[6]]; + off+=img.offset(x,y,z,c); + } else off+=(longT)mp.mem[p_ref[3]]; + const longT eoff = off + (siz - 1)*inc; + if (off<0 || eoff>=(longT)img.size()) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'copy()': " + "Out-of-bounds image pointer " + "(length: %ld, increment: %ld, offset start: %ld, " + "offset end: %ld, offset max: %lu).", + mp.imgin.pixel_type(),siz,inc,off,eoff,img.size() - 1); + return (float*)&img[off]; + } + + static double mp_memcopy(_cimg_math_parser& mp) { + longT siz = (longT)_mp_arg(4); + const longT inc_d = (longT)_mp_arg(5), inc_s = (longT)_mp_arg(6); + const float + _opacity = (float)_mp_arg(7), + opacity = (float)cimg::abs(_opacity), + omopacity = 1 - std::max(_opacity,0.f); + if (siz>0) { + const bool + is_doubled = mp.opcode[8]<=1, + is_doubles = mp.opcode[15]<=1; + if (is_doubled && is_doubles) { // (double*) <- (double*) + double *ptrd = _mp_memcopy_double(mp,(unsigned int)mp.opcode[2],&mp.opcode[8],siz,inc_d); + const double *ptrs = _mp_memcopy_double(mp,(unsigned int)mp.opcode[3],&mp.opcode[15],siz,inc_s); + if (inc_d==1 && inc_s==1 && _opacity>=1) { + if (ptrs + siz - 1ptrd + siz - 1) std::memcpy(ptrd,ptrs,siz*sizeof(double)); + else std::memmove(ptrd,ptrs,siz*sizeof(double)); + } else { + if (ptrs + (siz - 1)*inc_sptrd + (siz - 1)*inc_d) { + if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; } + } else { // Overlapping buffers + CImg buf((unsigned int)siz); + cimg_for(buf,ptr,double) { *ptr = *ptrs; ptrs+=inc_s; } + ptrs = buf; + if (_opacity>=1) while (siz-->0) { *ptrd = *(ptrs++); ptrd+=inc_d; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**(ptrs++); ptrd+=inc_d; } + } + } + } else if (is_doubled && !is_doubles) { // (double*) <- (float*) + double *ptrd = _mp_memcopy_double(mp,(unsigned int)mp.opcode[2],&mp.opcode[8],siz,inc_d); + const float *ptrs = _mp_memcopy_float(mp,&mp.opcode[15],siz,inc_s,false); + if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = omopacity**ptrd + _opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; } + } else if (!is_doubled && is_doubles) { // (float*) <- (double*) + float *ptrd = _mp_memcopy_float(mp,&mp.opcode[8],siz,inc_d,true); + const double *ptrs = _mp_memcopy_double(mp,(unsigned int)mp.opcode[3],&mp.opcode[15],siz,inc_s); + if (_opacity>=1) while (siz-->0) { *ptrd = (float)*ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = (float)(omopacity**ptrd + opacity**ptrs); ptrd+=inc_d; ptrs+=inc_s; } + } else { // (float*) <- (float*) + float *ptrd = _mp_memcopy_float(mp,&mp.opcode[8],siz,inc_d,true); + const float *ptrs = _mp_memcopy_float(mp,&mp.opcode[15],siz,inc_s,false); + if (inc_d==1 && inc_s==1 && _opacity>=1) { + if (ptrs + siz - 1ptrd + siz - 1) std::memcpy(ptrd,ptrs,siz*sizeof(float)); + else std::memmove(ptrd,ptrs,siz*sizeof(float)); + } else { + if (ptrs + (siz - 1)*inc_sptrd + (siz - 1)*inc_d) { + if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; } + } else { // Overlapping buffers + CImg buf((unsigned int)siz); + cimg_for(buf,ptr,float) { *ptr = *ptrs; ptrs+=inc_s; } + ptrs = buf; + if (_opacity>=1) while (siz-->0) { *ptrd = *(ptrs++); ptrd+=inc_d; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**(ptrs++); ptrd+=inc_d; } + } + } + } + } + return _mp_arg(1); + } + + static double mp_min(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val, valmin = cimg::type::inf(); + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k::inf(), abs_valminabs = cimg::type::inf(); + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k values; + if (i_end==5) { // Only a single argument + if ((unsigned)mp.opcode[4]==1) return _mp_arg(3); // Real value + else values.assign(&_mp_arg(3),(unsigned int)mp.opcode[4],1,1,1,true); // Vector value + } else { + unsigned int siz = 0; + for (unsigned int i = 4; i1) std::memcpy(ptr,&_mp_arg(i),len*sizeof(double)); + else *ptr = _mp_arg(i); + ptr+=len; + } + } + return values.median(); + } + + static double mp_modulo(_cimg_math_parser& mp) { + return cimg::mod(_mp_arg(2),_mp_arg(3)); + } + + static double mp_mproj(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double + *ptrS = &_mp_arg(2) + 1, + *ptrD = &_mp_arg(5) + 1; + const unsigned int + wS = (unsigned int)mp.opcode[3], + hS = (unsigned int)mp.opcode[4], + wD = (unsigned int)mp.opcode[6]; + const int + method = std::max(0,(int)_mp_arg(7)), + max_iter = std::max(0,(int)_mp_arg(8)); + const double + max_residual = std::max(0.,_mp_arg(9)); + + CImg(ptrd,wS,wD,1,1,true) = CImg(ptrS,wS,hS,1,1,false). + project_matrix(CImg(ptrD,wD,hS,1,1,true),method,max_iter,max_residual); + return cimg::type::nan(); + } + + static double mp_mse(_cimg_math_parser& mp) { + const unsigned int + _siz = (unsigned int)mp.opcode[4], + siz = std::max(_siz,1U), + off = _siz?1:0; + return CImg(&_mp_arg(2) + off,1,siz,1,1,true). + MSE(CImg(&_mp_arg(3) + off,1,siz,1,1,true)); + } + + static double mp_mul(_cimg_math_parser& mp) { + return _mp_arg(2)*_mp_arg(3); + } + + static double mp_mul2(_cimg_math_parser& mp) { + return _mp_arg(2)*_mp_arg(3)*_mp_arg(4); + } + + static double mp_neq(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)!=_mp_arg(3)); + } + + static double mp_o2c(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) { + mp_check_list(mp,"o2c"); + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.imglist.width()); + } + const CImg &img = ind==~0U?mp.imgin:mp.imglist[ind]; + longT offset = (longT)_mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + if (!img) + ptrd[0] = ptrd[1] = ptrd[2] = ptrd[3] = cimg::type::nan(); + else { + *(ptrd++) = (double)(offset%img.width()); + offset/=img.width(); + *(ptrd++) = (double)(offset%img.height()); + offset/=img.height(); + *(ptrd++) = (double)(offset%img.depth()); + offset/=img.depth(); + *ptrd = (double)(offset%img.spectrum()); + } + return cimg::type::nan(); + } + + static double mp_permutations(_cimg_math_parser& mp) { + return cimg::permutations((int)_mp_arg(2),(int)_mp_arg(3),(bool)_mp_arg(4)); + } + + static double mp_polygon(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + unsigned int ind = (unsigned int)mp.opcode[3]; + if (ind!=~0U) { + if (!mp.imglist.width()) return cimg::type::nan(); + ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.imglist.width()); + } + CImg &img = ind==~0U?mp.imgout:mp.imglist[ind]; + bool is_invalid_arguments = i_end<=4, is_outlined = false, is_closed = true; + if (!is_invalid_arguments) { + int nbv = (int)_mp_arg(4); + if (!nbv) is_invalid_arguments = true; + else { + if (nbv<0) { nbv = -nbv; is_outlined = true; } + CImg points(nbv,2,1,1,0); + CImg color(img._spectrum,1,1,1,0); + float opacity = 1; + unsigned int i = 5, pattern=~0U; + cimg_foroff(points,k) if (i args(i_end - 4); + cimg_forX(args,k) args[k] = _mp_arg(4 + k); + if (ind==~0U) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'polygon()': " + "Invalid arguments '%s'. ", + mp.imgin.pixel_type(),args.value_string()._data); + else + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'polygon()': " + "Invalid arguments '#%u%s%s'. ", + mp.imgin.pixel_type(),ind,args._width?",":"",args.value_string()._data); + } + return cimg::type::nan(); + } + + static double mp_pow(_cimg_math_parser& mp) { + const double v = _mp_arg(2), p = _mp_arg(3); + return std::pow(v,p); + } + + static double mp_pow0_25(_cimg_math_parser& mp) { + const double val = _mp_arg(2); + return std::sqrt(std::sqrt(val)); + } + + static double mp_pow3(_cimg_math_parser& mp) { + const double val = _mp_arg(2); + return val*val*val; + } + + static double mp_pow4(_cimg_math_parser& mp) { + const double val = _mp_arg(2); + return val*val*val*val; + } + + static double mp_print(_cimg_math_parser& mp) { + const double val = _mp_arg(1); + const bool print_char = (bool)mp.opcode[3]; + cimg_pragma_openmp(critical(mp_print)) + { + CImg _expr(mp.opcode[2] - 4); + const ulongT *ptrs = mp.opcode._data + 4; + cimg_for(_expr,ptrd,char) *ptrd = (char)*(ptrs++); + cimg::strellipsize(_expr); + cimg::mutex(6); + if (print_char) + std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = %.17g = '%c'", + _expr._data,val,(int)val); + else + std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = %.17g", + _expr._data,val); + std::fflush(cimg::output()); + cimg::mutex(6,0); + } + return val; + } + + static double mp_prod(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double prod = 1; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k + *const p_body = ++mp.p_code, + *const p_end = p_body + mp.opcode[4]; + + if (nb_it>=1) { + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + + double it = 0; + if (ptrc) { // Version with loop variable (3 arguments) + while (it<=nb_itm1) { + *ptrc = it; + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + ++it; + } + *ptrc = it; + } else // Version without loop variable (2 arguments) + while (it<=nb_itm1) { + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + ++it; + } + mp.break_type = _break_type; + } + + mp.p_code = p_end - 1; + return *ptrs; + } + + static double mp_rol(_cimg_math_parser& mp) { + return cimg::rol(_mp_arg(2),(unsigned int)_mp_arg(3)); + } + + static double mp_ror(_cimg_math_parser& mp) { + return cimg::ror(_mp_arg(2),(unsigned int)_mp_arg(3)); + } + + static double mp_rot2d(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const float + theta = (float)_mp_arg(2), + ca = std::cos(theta), + sa = std::sin(theta); + *(ptrd++) = ca; + *(ptrd++) = -sa; + *(ptrd++) = sa; + *ptrd = ca; + return cimg::type::nan(); + } + + static double mp_rot3d(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const float + x = (float)_mp_arg(2), + y = (float)_mp_arg(3), + z = (float)_mp_arg(4), + theta = (float)_mp_arg(5); + CImg(ptrd,3,3,1,1,true) = CImg::rotation_matrix(x,y,z,theta*180/cimg::PI); + return cimg::type::nan(); + } + + static double mp_round(_cimg_math_parser& mp) { + return cimg::round(_mp_arg(2),_mp_arg(3),(int)_mp_arg(4)); + } + +#ifdef cimg_mp_func_run + static double mp_run(_cimg_math_parser& mp) { + const unsigned int nb_args = (unsigned int)(mp.opcode[2] - 3)/2; + CImgList _str; + CImg it; + for (unsigned int n = 0; n string + const double *ptr = &_mp_arg(3 + 2*n) + 1; + unsigned int l = 0; + while (l(ptr,l,1,1,1,true).move_to(_str); + } else { // Scalar argument -> number + it.assign(24); + cimg_snprintf(it,it._width,"%.17g",_mp_arg(3 + 2*n)); + CImg::string(it,false,true).move_to(_str); + } + } + CImg(1,1,1,1,0).move_to(_str); + CImg str = _str>'x'; +#if cimg_use_openmp==0 + const unsigned int n_thread = 0; +#else + const unsigned int n_thread = omp_get_thread_num(); +#endif + cimg_mp_func_run(str._data,n_thread && mp.is_noncritical_run); + return cimg::type::nan(); + } +#endif + + static double mp_self_add(_cimg_math_parser& mp) { + return _mp_arg(1)+=_mp_arg(2); + } + + static double mp_self_bitwise_and(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val & (longT)_mp_arg(2)); + } + + static double mp_self_bitwise_left_shift(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val<<(unsigned int)_mp_arg(2)); + } + + static double mp_self_bitwise_or(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val | (longT)_mp_arg(2)); + } + + static double mp_self_bitwise_right_shift(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val>>(unsigned int)_mp_arg(2)); + } + + static double mp_self_decrement(_cimg_math_parser& mp) { + return --_mp_arg(1); + } + + static double mp_self_increment(_cimg_math_parser& mp) { + return ++_mp_arg(1); + } + + static double mp_self_map_vector_s(_cimg_math_parser& mp) { // Vector += scalar + unsigned int + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[2]; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,3); + l_opcode[2] = mp.opcode[4]; // Scalar argument + l_opcode.swap(mp.opcode); + ulongT &target = mp.opcode[1]; + while (siz-->0) { target = ptrd++; (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_self_map_vector_v(_cimg_math_parser& mp) { // Vector += vector + unsigned int + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[2], + ptrs = (unsigned int)mp.opcode[4] + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,4); + l_opcode.swap(mp.opcode); + ulongT &target = mp.opcode[1], &argument = mp.opcode[2]; + while (siz-->0) { target = ptrd++; argument = ptrs++; (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_self_mul(_cimg_math_parser& mp) { + return _mp_arg(1)*=_mp_arg(2); + } + + static double mp_self_div(_cimg_math_parser& mp) { + return _mp_arg(1)/=_mp_arg(2); + } + + static double mp_self_modulo(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = cimg::mod(val,_mp_arg(2)); + } + + static double mp_self_pow(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = std::pow(val,_mp_arg(2)); + } + + static double mp_self_sub(_cimg_math_parser& mp) { + return _mp_arg(1)-=_mp_arg(2); + } + +#ifdef cimg_mp_func_set + static double mp_set(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(1); + double *ptrd = &_mp_arg(3) + 1; + const unsigned int + sizs = (unsigned int)mp.opcode[2], + sizd = (unsigned int)mp.opcode[4]; + CImg sd(sizd + 1); + cimg_for_inX(sd,0,sd.width() - 2,i) sd[i] = (char)ptrd[i]; + sd.back() = 0; + if (sizs) cimg_mp_func_set(ptrs + 1,sizs,sd._data); + else cimg_mp_func_set(ptrs,0,sd._data); + return *ptrs; + } +#endif + + static double mp_set_ioff(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const longT + off = (longT)_mp_arg(2), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const int + x = (int)_mp_arg(2), y = (int)_mp_arg(3), + z = (int)_mp_arg(4), c = (int)_mp_arg(5); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c &img = mp.imgout; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c]; + const int + x = (int)(ox + _mp_arg(2)), y = (int)(oy + _mp_arg(3)), + z = (int)(oz + _mp_arg(4)), c = (int)(oc + _mp_arg(5)); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c &img = mp.imgout; + const longT + off = (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const longT + off = (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_set_Ixyz_s(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const int + x = (int)_mp_arg(2), + y = (int)_mp_arg(3), + z = (int)_mp_arg(4); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z &img = mp.imgout; + const int + x = (int)_mp_arg(2), + y = (int)_mp_arg(3), + z = (int)_mp_arg(4); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_set_Joff_s(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_set_Jxyz_s(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(2)), + y = (int)(oy + _mp_arg(3)), + z = (int)(oz + _mp_arg(4)); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z &img = mp.imgout; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(2)), + y = (int)(oy + _mp_arg(3)), + z = (int)(oz + _mp_arg(4)); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_shift(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const unsigned int siz = (unsigned int)mp.opcode[3]; + const int + shift = (int)_mp_arg(4), + boundary_conditions = (int)_mp_arg(5); + CImg(ptrd,siz,1,1,1,true) = + CImg(ptrs,siz,1,1,1,true).get_shift(shift,0,0,0,boundary_conditions); + return cimg::type::nan(); + } + + static double mp_sign(_cimg_math_parser& mp) { + return cimg::sign(_mp_arg(2)); + } + + static double mp_sin(_cimg_math_parser& mp) { + return std::sin(_mp_arg(2)); + } + + static double mp_sinc(_cimg_math_parser& mp) { + return cimg::sinc(_mp_arg(2)); + } + + static double mp_sinh(_cimg_math_parser& mp) { + return std::sinh(_mp_arg(2)); + } + + static double mp_solve(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double + *ptr1 = &_mp_arg(2) + 1, + *ptr2 = &_mp_arg(3) + 1; + const unsigned int + k = (unsigned int)mp.opcode[4], + l = (unsigned int)mp.opcode[5], + m = (unsigned int)mp.opcode[6]; + const bool use_LU = (bool)_mp_arg(7); + CImg(ptrd,m,k,1,1,true) = CImg(ptr2,m,l,1,1,false). + solve(CImg(ptr1,k,l,1,1,true),use_LU); + return cimg::type::nan(); + } + + static double mp_sort(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const bool is_increasing = (bool)_mp_arg(4); + const unsigned int + siz = (unsigned int)mp.opcode[3], + nb_elts = mp.opcode[5]==~0U?siz:(unsigned int)_mp_arg(5), + siz_elt = (unsigned int)_mp_arg(6); + const ulongT sn = siz_elt*nb_elts; + if (sn>siz || siz_elt<1) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'sort()': " + "Arguments 'nb_elts=%g' and 'siz_elt=%g' are invalid " + "for sorting a vector of size %u.", + mp.imgin.pixel_type(),_mp_arg(5),_mp_arg(6),siz); + CImg(ptrd,siz_elt,nb_elts,1,1,true) = CImg(ptrs,siz_elt,nb_elts,1,1,true). + get_sort(is_increasing,siz_elt>1?'y':0); + if (sn(ptrd + sn,siz - sn,1,1,1,true) = CImg(ptrs + sn,siz - sn,1,1,1,true); + return cimg::type::nan(); + } + + static double mp_sqr(_cimg_math_parser& mp) { + return cimg::sqr(_mp_arg(2)); + } + + static double mp_sqrt(_cimg_math_parser& mp) { + return std::sqrt(_mp_arg(2)); + } + + static double mp_srand(_cimg_math_parser& mp) { + mp.rng = (cimg_uint64)_mp_arg(2); + return cimg::type::nan(); + } + + static double mp_srand0(_cimg_math_parser& mp) { + cimg::srand(&mp.rng); + +#if cimg_use_openmp!=0 + mp.rng+=omp_get_thread_num(); +#endif + return cimg::type::nan(); + } + + static double mp_std(_cimg_math_parser& mp) { + return std::sqrt(mp_var(mp)); + } + + static double mp_string_init(_cimg_math_parser& mp) { + const unsigned char *ptrs = (unsigned char*)&mp.opcode[3]; + unsigned int + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[2]; + while (siz-->0) mp.mem[ptrd++] = (double)*(ptrs++); + return cimg::type::nan(); + } + +#ifdef cimg_mp_func_store + static double mp_store(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2), + *ptr2 = &_mp_arg(4) + 1; + const unsigned int + siz1 = (unsigned int)mp.opcode[3], + siz2 = (unsigned int)mp.opcode[5]; + const int + w = (int)_mp_arg(6), + h = (int)_mp_arg(7), + d = (int)_mp_arg(8), + s = (int)_mp_arg(9); + + const bool is_compressed = (bool)_mp_arg(10); + if (w<0 || h<0 || d<0 || s<0) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'store()': " + "Specified image dimensions (%d,%d,%d,%d) are invalid.", + pixel_type(),w,h,d,s); + CImg ss(siz2 + 1); + cimg_for_inX(ss,0,ss.width() - 2,i) ss[i] = (char)ptr2[i]; + ss.back() = 0; + if (siz1) cimg_mp_func_store(ptr1 + 1,siz1, + (unsigned int)w,(unsigned int)h,(unsigned int)d,(unsigned int)s, + is_compressed,ss._data); + else cimg_mp_func_store(ptr1,1,(unsigned int)w,(unsigned int)h,(unsigned int)d,(unsigned int)s, + is_compressed,ss._data); + return cimg::type::nan(); + } +#endif + + static double mp_s2v(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2); + const ulongT siz = (ulongT)mp.opcode[3]; + longT ind = (longT)_mp_arg(4); + const bool is_strict = (bool)_mp_arg(5); + double val = cimg::type::nan(); + if (ind<0 || ind>=(longT)siz) return val; + if (!siz) return *ptrs>='0' && *ptrs<='9'?*ptrs - '0':val; + + CImg ss(siz + 1 - ind); + ptrs+=1 + ind; + cimg_forX(ss,i) ss[i] = (char)ptrs[i]; + ss.back() = 0; + + const char *s = ss._data; + while (*s && *s<=32) ++s; + const bool is_negative = *s=='-'; + if (is_negative || *s=='+') ++s; + int err = 0; + char sep; + if (*s=='0' && (s[1]=='x' || s[1]=='X') && + ((s[2]>='0' && s[2]<='9') || (s[2]>='a' && s[2]<='f') || (s[2]>='a' && s[2]<='f'))) { // Hexadecimal number + val = (double)std::strtoll(s + 2,0,16); + err = 1; + } else if (*s=='0' && (s[1]=='b' || s[1]=='B') && (s[2]=='0' || s[2]=='1')) { // Binary number + val = (double)std::strtoll(s + 2,0,2); + err = 1; + } else if (*s>32) { // Decimal number + err = cimg_sscanf(s,"%lf%c",&val,&sep); +#if cimg_OS==2 + // Check for +/-NaN and +/-inf as Microsoft's sscanf() version is not able + // to read those particular values. + if (!err && (*s=='i' || *s=='I' || *s=='n' || *s=='N')) { + if (!cimg::strncasecmp(s,"inf",3)) { val = cimg::type::inf(); err = 1 + (s[3]!=0); } + else if (!cimg::strncasecmp(s,"nan",3)) { val = cimg::type::nan(); err = 1 + (s[3]!=0); } + } +#endif + } + if (err<=0 || (is_strict && err!=1)) return cimg::type::nan(); + if (is_negative) val = -val; + return val; + } + + static double mp_string(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int nb_args = (unsigned int)(mp.opcode[3] - 3)/2; + CImgList _str; + CImg it; + for (unsigned int n = 0; n string + const double *ptr = &_mp_arg(4 + 2*n) + 1; + unsigned int l = 0; + while (l(ptr,l,1,1,1,true).move_to(_str); + } else { // Scalar argument -> number + it.assign(24); + cimg_snprintf(it,it._width,"%.17g",_mp_arg(4 + 2*n)); + CImg::string(it,false,true).move_to(_str); + } + } + const CImg str = _str>'x'; + const unsigned int sizd = std::min(str._width,(unsigned int)mp.opcode[2]); + std::memset(ptrd,0,mp.opcode[2]*sizeof(double)); + for (unsigned int k = 0; k::nan(); + } + + static double mp_sub(_cimg_math_parser& mp) { + return _mp_arg(2) - _mp_arg(3); + } + + static double mp_sum(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double sum = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k(ptrs,k,k,1,1,true).trace(); + } + + static double mp_transpose(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptrs = &_mp_arg(2) + 1; + const unsigned int + k = (unsigned int)mp.opcode[3], + l = (unsigned int)mp.opcode[4]; + CImg(ptrd,l,k,1,1,true) = CImg(ptrs,k,l,1,1,true).get_transpose(); + return cimg::type::nan(); + } + + static double mp_rand_double(_cimg_math_parser& mp) { + return cimg::rand(_mp_arg(2),_mp_arg(3),&mp.rng); + } + + static double mp_rand_double_0_1(_cimg_math_parser& mp) { + return (double)cimg::_rand(&mp.rng)/~0U; + } + + static double mp_rand_double_0_N(_cimg_math_parser& mp) { + return _mp_arg(2)*mp_rand_double_0_1(mp); + } + + static double mp_rand_double_m1_1(_cimg_math_parser& mp) { + return 2*mp_rand_double_0_1(mp) - 1; + } + + static double mp_rand_double_gaussian(_cimg_math_parser& mp) { + return cimg::grand(&mp.rng); + } + + static double mp_rand_double_ext(_cimg_math_parser& mp) { + const double eps = 1e-5; + const bool + include_min = (bool)_mp_arg(4), + include_max = (bool)_mp_arg(5); + double + m = _mp_arg(2), + M = _mp_arg(3); + if (m>M) cimg::swap(m,M); + if (!include_min) m = m>0?m*(1 + eps):m<0?m*(1 - eps):eps; + if (!include_max) M = M>0?M*(1 - eps):M<0?M*(1 + eps):-eps; + return cimg::rand(m,M,&mp.rng); + } + + static double mp_rand_int(_cimg_math_parser& mp) { + double + _m = _mp_arg(2), + _M = _mp_arg(3); + if (_m>_M) cimg::swap(_m,_M); + const int + m = (int)std::ceil(_m), + M = (int)std::floor(_M); + if (m>M) return cimg::type::nan(); + if (M==m) return m; + int val = 0; + do { val = (int)std::floor(cimg::rand(m,M + 1,&mp.rng)); } while (val>M); + return val; + } + + static double mp_rand_int_0_1(_cimg_math_parser& mp) { + return cimg::_rand(&mp.rng)<(~0U>>1); + } + + static double mp_rand_int_0_N(_cimg_math_parser& mp) { + const double _M = _mp_arg(2); + const bool sgn = _M>=0; + const int M = (int)std::floor(sgn?_M:-_M); + if (!M) return 0; + int val = 0; + do { val = (int)std::floor(cimg::rand(M + 1,&mp.rng)); } while (val>M); + return (sgn?1:-1)*val; + } + + static double mp_rand_int_m1_1(_cimg_math_parser& mp) { + const unsigned int + th = ~0U/3, + val = cimg::_rand(&mp.rng); + return val_M) cimg::swap(_m,_M); + int + m = (int)std::ceil(_m), + M = (int)std::floor(_M), + val = 0; + if (!include_min) ++m; + if (!include_max) --M; + if (m>M) return cimg::type::nan(); + if (M==m) return m; + do { val = (int)std::floor(cimg::rand(m,M + 1,&mp.rng)); } while (val>M); + return val; + } + + static double mp_ui2f(_cimg_math_parser& mp) { + return (double)cimg::uint2float((unsigned int)_mp_arg(2)); + } + + static double mp_uppercase(_cimg_math_parser& mp) { + return cimg::uppercase(_mp_arg(2)); + } + + static double mp_var(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + unsigned int siz = 0; + double val, S = 0, S2 = 0; + for (unsigned int i = 3; i1) { + const double *ptr = &_mp_arg(i); + for (unsigned int k = 0; k::nan(); + } + + static double mp_vector_crop(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptrs = &_mp_arg(2) + 1; + const longT + length = (longT)mp.opcode[3], + start = (longT)_mp_arg(4), + sublength = (longT)mp.opcode[5], + step = (longT)_mp_arg(6); + if (start<0 || start + step*(sublength-1)>=length) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Value accessor '[]': " + "Out-of-bounds sub-vector request " + "(length: %ld, start: %ld, sub-length: %ld, step: %ld).", + mp.imgin.pixel_type(),length,start,sublength,step); + ptrs+=start; + if (step==1) std::memcpy(ptrd,ptrs,sublength*sizeof(double)); + else for (longT k = 0; k::nan(); + } + + static double mp_vector_crop_ext(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const unsigned int + w = (unsigned int)mp.opcode[3], + h = (unsigned int)mp.opcode[4], + d = (unsigned int)mp.opcode[5], + s = (unsigned int)mp.opcode[6], + dx = (unsigned int)mp.opcode[11], + dy = (unsigned int)mp.opcode[12], + dz = (unsigned int)mp.opcode[13], + dc = (unsigned int)mp.opcode[14], + boundary_conditions = (int)_mp_arg(15); + const int x = (int)_mp_arg(7), y = (int)_mp_arg(8), z = (int)_mp_arg(9), c = (int)_mp_arg(10); + CImg(ptrd,dx,dy,dz,dc,true) = CImg(ptrs,w,h,d,s,true). + get_crop(x,y,z,c,x + dx - 1,y + dy - 1,z + dz - 1,c + dc - 1,boundary_conditions); + return cimg::type::nan(); + } + + static double mp_vector_cumulate(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + wA = (unsigned int)mp.opcode[3], + hA = (unsigned int)mp.opcode[4], + dA = (unsigned int)mp.opcode[5], + sA = (unsigned int)mp.opcode[6], + sizp = (unsigned int)mp.opcode[8]; + const double + *const ptrs = &_mp_arg(2) + 1, + *const ptrp = sizp!=~0U?&_mp_arg(7) + 1:0; + CImg str; + if (ptrp) { + str.assign(std::max(1U,sizp) + 1); + if (!sizp) str[0] = _mp_arg(7); + else for (unsigned int p = 0; p(ptrd,wA,hA,dA,sA,true) = CImg(ptrs,wA,hA,dA,sA,true). + get_cumulate(str); + return cimg::type::nan(); + } + + static double mp_vector_draw(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(7) + 1; + const unsigned int + sizD = (unsigned int)mp.opcode[2], + sizS = (unsigned int)mp.opcode[8]; + const int + w = (int)_mp_arg(3), h = (int)_mp_arg(4), d = (int)_mp_arg(5), s = (int)_mp_arg(6), + x = (int)_mp_arg(9), y = (int)_mp_arg(10), z = (int)_mp_arg(11), c = (int)_mp_arg(12); + int dx = (int)mp.opcode[13], dy = (int)mp.opcode[14], dz = (int)mp.opcode[15], dc = (int)mp.opcode[16]; + dx = (unsigned int)dx==~0U?w:(int)_mp_arg(13); + dy = (unsigned int)dy==~0U?h:(int)_mp_arg(14); + dz = (unsigned int)dz==~0U?d:(int)_mp_arg(15); + dc = (unsigned int)dc==~0U?s:(int)_mp_arg(16); + + if (w<=0 || h<=0 || d<=0 || s<=0) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Invalid specified target vector geometry (%d,%d,%d,%d).", + mp.imgin.pixel_type(),w,h,d,s); + if (sizD<(ulongT)w*h*d*s) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Target vector (%lu values) and its specified target geometry (%d,%d,%d,%d) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizD,w,h,d,s,(ulongT)w*h*d*s); + if (dx<=0 || dy<=0 || dz<=0 || dc<=0) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Invalid specified sprite geometry (%d,%d,%d,%d).", + mp.imgin.pixel_type(),dx,dy,dz,dc); + if (sizS<(ulongT)dx*dy*dz*dc) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Sprite vector (%lu values) and its specified sprite geometry (%d,%d,%d,%d) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc); + + CImg D(ptrd,w,h,d,s,true); + const CImg S(ptrs,dx,dy,dz,dc,true); + const float opacity = (float)_mp_arg(17); + + if (mp.opcode[18]!=~0U) { // Opacity mask specified + const ulongT sizM = mp.opcode[19]; + if (sizM<(ulongT)dx*dy*dz) + throw CImgArgumentException("[" cimg_appname "_math_parser] CImg<%s>: Function 'draw()': " + "Mask vector (%lu values) and specified sprite geometry (%u,%u,%u,%u) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc); + const CImg M(&_mp_arg(18) + 1,dx,dy,dz,(unsigned int)(sizM/(dx*dy*dz)),true); + D.draw_image(x,y,z,c,S,M,opacity,(float)_mp_arg(20)); + } else D.draw_image(x,y,z,c,S,opacity); + + return cimg::type::nan(); + } + + static double mp_vector_equalize(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + siz = (unsigned int)mp.opcode[3], + nb_levels = (unsigned int)mp.opcode[4]; + const double *const ptrs = &_mp_arg(2) + 1; + CImg img(ptrs,siz,1,1,1,true); + double min_value = 0, max_value = 0; + if ((unsigned int)mp.opcode[5]==~0U || (unsigned int)mp.opcode[6]==~0U) + min_value = img.min_max(max_value); + if ((unsigned int)mp.opcode[5]!=~0U) min_value = _mp_arg(5); + if ((unsigned int)mp.opcode[6]!=~0U) max_value = _mp_arg(6); + CImg(ptrd,siz,1,1,1,true) = img.get_equalize(nb_levels,min_value,max_value); + return cimg::type::nan(); + } + + static double mp_vector_histogram(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + siz = (unsigned int)mp.opcode[3], + nb_levels = (unsigned int)mp.opcode[4]; + const double *const ptrs = &_mp_arg(2) + 1; + CImg img(ptrs,siz,1,1,1,true); + double min_value = 0, max_value = 0; + if ((unsigned int)mp.opcode[5]==~0U || (unsigned int)mp.opcode[6]==~0U) + min_value = img.min_max(max_value); + if ((unsigned int)mp.opcode[5]!=~0U) min_value = _mp_arg(5); + if ((unsigned int)mp.opcode[6]!=~0U) max_value = _mp_arg(6); + CImg(ptrd,nb_levels,1,1,1,true) = img.get_histogram(nb_levels,min_value,max_value); + return cimg::type::nan(); + } + + static double _mp_vector_hypot(_cimg_math_parser& mp) { + switch ((unsigned int)mp.opcode[2]) { + case 5 : return cimg::abs(_mp_arg(4)); + case 6 : return cimg::hypot(_mp_arg(4),_mp_arg(5)); + case 7 : return cimg::hypot(_mp_arg(4),_mp_arg(5),_mp_arg(6)); + }; + return _mp_vector_norm2(mp); + } + + static double mp_vector_index(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + sizA = (unsigned int)mp.opcode[3], + sizP = (unsigned int)mp.opcode[5], + dim_colors = (unsigned int)mp.opcode[6], + nb_colors = sizP/dim_colors, + wA = sizA/dim_colors; + const double dithering = _mp_arg(7); + const bool map_colors = (bool)mp.opcode[8]; + const double + *const ptrs = &_mp_arg(2) + 1, + *const ptrp = &_mp_arg(4) + 1; + CImg colormap(ptrp,nb_colors,1,1,dim_colors,true); + CImg(ptrd,wA,1,1,map_colors?dim_colors:1,true) = CImg(ptrs,wA,1,1,dim_colors,true). + get_index(colormap,dithering,map_colors); + return cimg::type::nan(); + } + + static double mp_vector_init(_cimg_math_parser& mp) { + unsigned int + ptrs = 4U, + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[3]; + switch (mp.opcode[2] - 4) { + case 0 : std::memset(mp.mem._data + ptrd,0,siz*sizeof(double)); break; // 0 values given + case 1 : { const double val = _mp_arg(ptrs); while (siz-->0) mp.mem[ptrd++] = val; } break; + default : while (siz-->0) { mp.mem[ptrd++] = _mp_arg(ptrs++); if (ptrs>=mp.opcode[2]) ptrs = 4U; } + } + return cimg::type::nan(); + } + + static double mp_vector_eq(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2) + 1, + *ptr2 = &_mp_arg(4) + 1; + unsigned int p1 = (unsigned int)mp.opcode[3], p2 = (unsigned int)mp.opcode[5], n; + const int N = (int)_mp_arg(6); + const bool case_sensitive = (bool)_mp_arg(7); + bool still_equal = true; + double value; + if (!N) return true; + + // Compare all values. + if (N<0) { + if (p1>0 && p2>0) { // Vector == vector + if (p1!=p2) return false; + if (case_sensitive) + while (still_equal && p1--) still_equal = *(ptr1++)==*(ptr2++); + else + while (still_equal && p1--) + still_equal = cimg::lowercase(*(ptr1++))==cimg::lowercase(*(ptr2++)); + return still_equal; + } else if (p1>0 && !p2) { // Vector == scalar + value = _mp_arg(4); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && p1--) still_equal = *(ptr1++)==value; + return still_equal; + } else if (!p1 && p2>0) { // Scalar == vector + value = _mp_arg(2); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && p2--) still_equal = *(ptr2++)==value; + return still_equal; + } else { // Scalar == scalar + if (case_sensitive) return _mp_arg(2)==_mp_arg(4); + else return cimg::lowercase(_mp_arg(2))==cimg::lowercase(_mp_arg(4)); + } + } + + // Compare only first N values. + if (p1>0 && p2>0) { // Vector == vector + n = cimg::min((unsigned int)N,p1,p2); + if (case_sensitive) + while (still_equal && n--) still_equal = *(ptr1++)==(*ptr2++); + else + while (still_equal && n--) still_equal = cimg::lowercase(*(ptr1++))==cimg::lowercase(*(ptr2++)); + return still_equal; + } else if (p1>0 && !p2) { // Vector == scalar + n = std::min((unsigned int)N,p1); + value = _mp_arg(4); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && n--) still_equal = *(ptr1++)==value; + return still_equal; + } else if (!p1 && p2>0) { // Scalar == vector + n = std::min((unsigned int)N,p2); + value = _mp_arg(2); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && n--) still_equal = *(ptr2++)==value; + return still_equal; + } // Scalar == scalar + if (case_sensitive) return _mp_arg(2)==_mp_arg(4); + return cimg::lowercase(_mp_arg(2))==cimg::lowercase(_mp_arg(4)); + } + + static double mp_vector_lerp(_cimg_math_parser& mp) { + unsigned int siz = (unsigned int)mp.opcode[2]; + double *ptrd = &_mp_arg(1) + 1; + const double + *ptrs1 = &_mp_arg(3) + 1, + *ptrs2 = &_mp_arg(4) + 1, + t = _mp_arg(5); + for (unsigned int k = 0; k::nan(); + } + + static double mp_vector_off(_cimg_math_parser& mp) { + const unsigned int + ptr = (unsigned int)mp.opcode[2] + 1, + siz = (unsigned int)mp.opcode[3]; + const int off = (int)_mp_arg(4); + return off>=0 && off<(int)siz?mp.mem[ptr + off]:cimg::type::nan(); + } + + static double mp_vector_map_sv(_cimg_math_parser& mp) { // Operator(scalar,vector,[...]) + unsigned int + nb_args = (unsigned int)mp.opcode[2], + siz_vector = (unsigned int)mp.opcode[3], + ptrs = (unsigned int)mp.opcode[6] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[4]; + CImg l_opcode(mp.opcode._data + 3,nb_args + 2); + l_opcode[0] = mp.opcode[1]; + l_opcode.swap(mp.opcode); + ulongT &argument2 = mp.opcode[3]; + while (siz_vector-->0) { argument2 = ptrs++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_map_v(_cimg_math_parser& mp) { // Operator(vector,[...]) + unsigned int + nb_args = (unsigned int)mp.opcode[2], + siz_vector = (unsigned int)mp.opcode[3], + ptrs = (unsigned int)mp.opcode[5] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[4]; + CImg l_opcode(mp.opcode._data + 3,nb_args + 2); + l_opcode[0] = l_opcode[1]; + l_opcode.swap(mp.opcode); + ulongT &argument = mp.opcode[2]; + while (siz_vector-->0) { argument = ptrs++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_map_vv(_cimg_math_parser& mp) { // Operator(vector,vector,[...]) + unsigned int + nb_args = (unsigned int)mp.opcode[2], + siz_vector = (unsigned int)mp.opcode[3], + ptrs1 = (unsigned int)mp.opcode[5] + 1, + ptrs2 = (unsigned int)mp.opcode[6] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[4]; + CImg l_opcode(mp.opcode._data + 3,nb_args + 2); + l_opcode[0] = l_opcode[1]; + l_opcode.swap(mp.opcode); + ulongT &argument1 = mp.opcode[2], &argument2 = mp.opcode[3]; + while (siz_vector-->0) { argument1 = ptrs1++; argument2 = ptrs2++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_mirror(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + wA = (unsigned int)mp.opcode[3], + hA = (unsigned int)mp.opcode[4], + dA = (unsigned int)mp.opcode[5], + sA = (unsigned int)mp.opcode[6], + sizp = (unsigned int)mp.opcode[8]; + const double + *const ptrs = &_mp_arg(2) + 1, + *const ptrp = &_mp_arg(7) + 1; + CImg str(std::max(1U,sizp) + 1); + if (!sizp) str[0] = _mp_arg(7); + else for (unsigned int p = 0; p(ptrd,wA,hA,dA,sA,true) = CImg(ptrs,wA,hA,dA,sA,true). + get_mirror(str); + return cimg::type::nan(); + } + + static double mp_vector_neq(_cimg_math_parser& mp) { + return !mp_vector_eq(mp); + } + + static double mp_vector_noise(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + siz = (unsigned int)mp.opcode[3], + noise_type = (unsigned int)_mp_arg(5); + const double + *const ptrs = &_mp_arg(2) + 1, + amplitude = _mp_arg(4); + CImg(ptrd,siz,1,1,1,true) = CImg(ptrs,siz,1,1,1,true).get_noise(amplitude,noise_type); + return cimg::type::nan(); + } + + + static double mp_vector_normalize(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int siz = (unsigned int)mp.opcode[3]; + const double + *const ptrs = &_mp_arg(2) + 1, + min_value = _mp_arg(4), + max_value = _mp_arg(5), + constant_case_ratio = _mp_arg(6); + CImg(ptrd,siz,1,1,1,true) = CImg(ptrs,siz,1,1,1,true). + get_normalize(min_value,max_value,constant_case_ratio); + return cimg::type::nan(); + } + + static double _mp_vector_norm0(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[2]; + double res = 0; + for (unsigned int i = siz - 1; i>3; --i) res+=(double)(_mp_arg(i)?1:0); + return res; + } + + static double _mp_vector_norm1(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[2]; + double res = 0; + for (unsigned int i = siz - 1; i>3; --i) res+=(double)cimg::abs(_mp_arg(i)); + return res; + } + + static double _mp_vector_norm2(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[2]; + double res = 0; + for (unsigned int i = siz - 1; i>3; --i) res+=(double)cimg::sqr(_mp_arg(i)); + return (double)std::sqrt(res); + } + + static double _mp_vector_norminf(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[2]; + double res = 0; + for (unsigned int i = siz - 1; i>3; --i) { + const double val = (double)cimg::abs(_mp_arg(i)); + if (val>res) res = val; + } + return res; + } + + static double _mp_vector_normp(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[2]; + const double p = _mp_arg(3); + double res = 0; + for (unsigned int i = siz - 1; i>3; --i) res+=(double)std::pow(cimg::abs(_mp_arg(i)),p); + res = (double)std::pow(res,1.0/p); + return res; + } + + static double mp_vector_normp(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[3]; + const double p = _mp_arg(4); + if (siz>0) { // Vector-valued argument + const double *ptrs = &_mp_arg(2) + 1; + double res = 0; + if (p==2) { // L2 + for (unsigned int i = 0; i::is_inf(p)) { // L-inf + for (unsigned int i = 0; ires) res = val; + } + } else { // L-p + for (unsigned int i = 0; i0?res:0; + } + // Scalar-valued argument. + const double val = _mp_arg(2); + return p?cimg::abs(val):(val!=0); + } + + static double mp_vector_permute(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + wA = (unsigned int)mp.opcode[3], + hA = (unsigned int)mp.opcode[4], + dA = (unsigned int)mp.opcode[5], + sA = (unsigned int)mp.opcode[6], + sizp = (unsigned int)mp.opcode[8]; + const double + *const ptrs = &_mp_arg(2) + 1, + *const ptrp = &_mp_arg(7) + 1; + CImg str(sizp + 1); + for (unsigned int p = 0; p(ptrd,wA,hA,dA,sA,true) = CImg(ptrs,wA,hA,dA,sA,true). + get_permute_axes(str); + return cimg::type::nan(); + } + + static double mp_vector_print(_cimg_math_parser& mp) { + const bool print_string = (bool)mp.opcode[4]; + cimg_pragma_openmp(critical(mp_vector_print)) + { + CImg _expr(mp.opcode[2] - 5); + const ulongT *ptrs = mp.opcode._data + 5; + cimg_for(_expr,ptrd,char) *ptrd = (char)*(ptrs++); + cimg::strellipsize(_expr); + unsigned int + ptr = (unsigned int)mp.opcode[1] + 1, + siz0 = (unsigned int)mp.opcode[3], + siz = siz0; + cimg::mutex(6); + std::fprintf(cimg::output(),"\n[" cimg_appname "_math_parser] %s = [ ",_expr._data); + unsigned int count = 0; + while (siz-->0) { + if (count>=64 && siz>=64) { + std::fprintf(cimg::output(),"...,"); + ptr = (unsigned int)mp.opcode[1] + 1 + siz0 - 64; + siz = 64; + } else std::fprintf(cimg::output(),"%.17g%s",mp.mem[ptr++],siz?",":""); + ++count; + } + if (print_string) { + CImg str(siz0 + 1); + ptr = (unsigned int)mp.opcode[1] + 1; + for (unsigned int k = 0; k::nan(); + } + + static double mp_vector_rand(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptr_pdf = (unsigned int)mp.opcode[5]!=~0U?&_mp_arg(5) + 1:0; + const unsigned int + siz = (unsigned int)mp.opcode[2], + siz_pdf = (unsigned int)mp.opcode[6], + prec = (unsigned int)mp.opcode[7]!=~0U?(unsigned int)std::abs(_mp_arg(7)):65536; + const double + val_min = _mp_arg(3), + val_max = _mp_arg(4); + if (!ptr_pdf) + CImg(ptrd,siz,1,1,1,true).rand(val_min,val_max); + else { + CImg pdf(ptr_pdf,siz_pdf,1,1,1,true); + CImg(ptrd,siz,1,1,1,true).rand(val_min,val_max,pdf,prec); + } + return cimg::type::nan(); + } + + static double mp_vector_resize(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int siz = (unsigned int)mp.opcode[2], p2 = (unsigned int)mp.opcode[4]; + const int + interpolation = (int)_mp_arg(5), + boundary_conditions = (int)_mp_arg(6); + if (p2) { // Resize vector + const double *const ptrs = &_mp_arg(3) + 1; + CImg(ptrd,siz,1,1,1,true) = CImg(ptrs,p2,1,1,1,true). + get_resize(siz,1,1,1,interpolation,boundary_conditions); + } else { // Resize scalar + const double value = _mp_arg(3); + CImg(ptrd,siz,1,1,1,true) = CImg(1,1,1,1,value).resize(siz,1,1,1,interpolation, + boundary_conditions); + } + return cimg::type::nan(); + } + + static double mp_vector_resize_ext(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + siz = (unsigned int)mp.opcode[2], + ow = (unsigned int)mp.opcode[4], + oh = (unsigned int)mp.opcode[5], + od = (unsigned int)mp.opcode[6], + os = (unsigned int)mp.opcode[7], + nw = (unsigned int)mp.opcode[8], + nh = (unsigned int)mp.opcode[9], + nd = (unsigned int)mp.opcode[10], + ns = (unsigned int)mp.opcode[11]; + const int + interpolation = (int)_mp_arg(12), + boundary_conditions = (int)_mp_arg(13); + const float + ax = (float)_mp_arg(14), + ay = (float)_mp_arg(15), + az = (float)_mp_arg(16), + ac = (float)_mp_arg(17); + if (siz) { // Resize vector + const double *const ptrs = &_mp_arg(3) + 1; + CImg(ptrd,nw,nh,nd,ns,true) = CImg(ptrs,ow,oh,od,os,true). + get_resize(nw,nh,nd,ns,interpolation,boundary_conditions,ax,ay,az,ac); + } else { // Resize scalar + const double value = _mp_arg(3); + CImg(ptrd,nw,nh,nd,ns,true) = CImg(1,1,1,1,value). + resize(nw,nh,nd,ns,interpolation,boundary_conditions,ax,ay,az,ac); + } + return cimg::type::nan(); + } + + static double mp_vector_reverse(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const unsigned int siz = (unsigned int)mp.opcode[3]; + CImg(ptrd,siz,1,1,1,true) = CImg(ptrs,siz,1,1,1,true).get_mirror('x'); + return cimg::type::nan(); + } + + static double mp_vector_set_off(_cimg_math_parser& mp) { + const unsigned int + ptr = (unsigned int)mp.opcode[2] + 1, + siz = (unsigned int)mp.opcode[3]; + const int off = (int)_mp_arg(4); + if (off>=0 && off<(int)siz) mp.mem[ptr + off] = _mp_arg(1); + return _mp_arg(1); + } + + static double mp_vector_unitnorm(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[3]; + const double p = _mp_arg(4); + if (siz>0) { // Vector-valued argument + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + if (ptrd!=ptrs) std::memcpy(ptrd,ptrs,siz*sizeof(double)); + CImg vec(ptrd,siz,1,1,1,true); + const double mag = vec.magnitude(p); + if (mag>0) vec/=mag; + return cimg::type::nan(); + } + // Scalar-valued argument. + const double val = _mp_arg(2); + return val?(_mp_arg(2)?1:val):0; + } + + static double mp_vector_warp(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int + wA = (unsigned int)mp.opcode[3], + hA = (unsigned int)mp.opcode[4], + dA = (unsigned int)mp.opcode[5], + sA = (unsigned int)mp.opcode[6], + wB = (unsigned int)mp.opcode[8], + hB = (unsigned int)mp.opcode[9], + dB = (unsigned int)mp.opcode[10], + sB = (unsigned int)mp.opcode[11]; + const int + mode = (int)_mp_arg(12), + interpolation = (int)_mp_arg(13), + boundary_conditions = (int)_mp_arg(14); + const double + *const ptrs = &_mp_arg(2) + 1, + *const ptrw = &_mp_arg(7) + 1; + CImg(ptrd,wB,hB,dB,sA,true) = CImg(ptrs,wA,hA,dA,sA,true). + get_warp(CImg(ptrw,wB,hB,dB,sB,true),mode,interpolation,boundary_conditions); + return cimg::type::nan(); + } + +#define _cimg_mp_vfunc(func) \ + const longT sizd = (longT)mp.opcode[2];\ + const unsigned int nbargs = (unsigned int)(mp.opcode[3] - 4)/2; \ + double *const ptrd = &_mp_arg(1) + (sizd?1:0); \ + cimg_pragma_openmp(parallel cimg_openmp_if_size(sizd,256)) \ + { CImg vec(nbargs); double res; \ + cimg_pragma_openmp(for) for (longT k = sizd?sizd - 1:0; k>=0; --k) { \ + cimg_forX(vec,n) vec[n] = *(&_mp_arg(4 + 2*n) + (k+1)*(mp.opcode[4 + 2*n + 1]?1:0)); \ + func; ptrd[k] = res; \ + }} \ + return sizd?cimg::type::nan():*ptrd; + + static double _mp_vargkth(CImg& vec) { + const double val = (+vec).get_shared_points(1,vec.width() - 1). + kth_smallest((ulongT)cimg::cut((longT)*vec - 1,(longT)0,(longT)vec.width() - 2)); + cimg_for_inX(vec,1,vec.width() - 1,ind) if (vec[ind]==val) return ind - 1.; + return 1.; + } + + static double mp_vargkth(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = _mp_vargkth(vec)); + } + + static double mp_vargmax(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = (double)(&vec.max() - vec.data())); + } + + static double mp_vargmaxabs(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = (double)(&vec.maxabs() - vec.data())); + } + + static double mp_vargmin(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = (double)(&vec.min() - vec.data())); + } + + static double mp_vargminabs(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = (double)(&vec.minabs() - vec.data())); + } + + static double mp_vavg(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.mean()); + } + + static double mp_vkth(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.get_shared_points(1,vec.width() - 1). + kth_smallest((ulongT)cimg::cut((longT)*vec - 1,(longT)0,(longT)vec.width() - 2))); + } + + static double mp_vmax(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.max()); + } + + static double mp_vmaxabs(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.maxabs()); + } + + static double mp_vmedian(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.median()); + } + + static double mp_vmin(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.min()); + } + + static double mp_vminabs(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.minabs()); + } + + static double mp_vprod(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.product()); + } + + static double mp_vstd(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = std::sqrt(vec.get_stats()[3])); + } + + static double mp_vsum(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.sum()); + } + + static double mp_vvar(_cimg_math_parser& mp) { + _cimg_mp_vfunc(res = vec.get_stats()[3]); + } + + static double mp_v2s(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + sizd = (unsigned int)mp.opcode[2], + sizs = (unsigned int)mp.opcode[4]; + std::memset(ptrd,0,sizd*sizeof(double)); + const int nb_digits = (int)_mp_arg(5); + CImg format(8); + switch (nb_digits) { + case -1 : std::strcpy(format,"%g"); break; + case 0 : std::strcpy(format,"%.17g"); break; + default : + if (nb_digits>=-1) cimg_snprintf(format,format._width,"%%.%dg",nb_digits); + else cimg_snprintf(format,format._width,"%%.%dld",-nb_digits); + } + CImg str; + if (sizs) { // Vector expression + const double *ptrs = &_mp_arg(3) + 1; + if (nb_digits>=-1) CImg(ptrs,sizs,1,1,1,true).value_string(',',sizd + 1,format).move_to(str); + else CImg(ptrs,sizs,1,1,1).value_string(',',sizd + 1,format).move_to(str); + } else { // Scalar expression + str.assign(sizd + 1); + if (nb_digits>=-1) cimg_snprintf(str,sizd + 1,format,_mp_arg(3)); + else cimg_snprintf(str,sizd + 1,format,(long)_mp_arg(3)); + } + const unsigned int l = std::min(sizd,(unsigned int)std::strlen(str) + 1); + CImg(ptrd,l,1,1,1,true) = str.get_shared_points(0,l - 1); + return cimg::type::nan(); + } + + static double mp_while(_cimg_math_parser& mp) { + const ulongT + mem_body = mp.opcode[1], + mem_cond = mp.opcode[2]; + const CImg + *const p_cond = ++mp.p_code, + *const p_body = p_cond + mp.opcode[3], + *const p_end = p_body + mp.opcode[4]; + const unsigned int vsiz = (unsigned int)mp.opcode[5]; + bool is_cond = false; + if (mp.opcode[6]) { // Set default value for result and condition if necessary + if (vsiz) CImg(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type::nan()); + else mp.mem[mem_body] = cimg::type::nan(); + } + if (mp.opcode[7]) mp.mem[mem_cond] = 0; + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + do { + for (mp.p_code = p_cond; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; + is_cond = (bool)mp.mem[mem_cond]; + if (is_cond && !mp.break_type) // Evaluate body + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + } while (is_cond); + + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return mp.mem[mem_body]; + } + + static double mp_Ioff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + boundary_conditions = (unsigned int)_mp_arg(3), + vsiz = (unsigned int)mp.opcode[4]; + const CImg &img = mp.imgin; + const longT + off = (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_Ixyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + interpolation = (unsigned int)_mp_arg(5), + boundary_conditions = (unsigned int)_mp_arg(6), + vsiz = (unsigned int)mp.opcode[7]; + const CImg &img = mp.imgin; + const double x = _mp_arg(2), y = _mp_arg(3), z = _mp_arg(4); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2), + cx = mx::nan(); + } + + static double mp_Joff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + boundary_conditions = (unsigned int)_mp_arg(3), + vsiz = (unsigned int)mp.opcode[4]; + const CImg &img = mp.imgin; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], + oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z]; + const longT + off = img.offset(ox,oy,oz) + (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_Jxyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + interpolation = (unsigned int)_mp_arg(5), + boundary_conditions = (unsigned int)_mp_arg(6), + vsiz = (unsigned int)mp.opcode[7]; + const CImg &img = mp.imgin; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], + x = ox + _mp_arg(2), y = oy + _mp_arg(3), z = oz + _mp_arg(4); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + switch (interpolation) { + case 2 : // Cubic interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float + w2 = 2.f*img.width(), h2 = 2.f*img.height(), d2 = 2.f*img.depth(), + mx = cimg::mod((float)x,w2), my = cimg::mod((float)y,h2), mz = cimg::mod((float)z,d2), + cx = mx::nan(); + } + +#undef _mp_arg + + }; // struct _cimg_math_parser {} + +#define _cimg_create_pointwise_functions(name,func,min_size) \ + CImg& name() { \ + if (is_empty()) return *this; \ + cimg_openmp_for(*this,func((typename cimg::superset::type)*ptr),min_size); \ + return *this; \ + } \ + CImg get_##name() const { \ + return CImg(*this,false).name(); \ + } + + //! Compute the square value of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square value \f$I_{(x,y,z,c)}^2\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg img("reference.jpg"); + (img,img.get_sqr().normalize(0,255)).display(); + \endcode + \image html ref_sqr.jpg + **/ + _cimg_create_pointwise_functions(sqr,cimg::sqr,524288) + + //! Compute the square root of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square root \f$\sqrt{I_{(x,y,z,c)}}\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg img("reference.jpg"); + (img,img.get_sqrt().normalize(0,255)).display(); + \endcode + \image html ref_sqrt.jpg + **/ + _cimg_create_pointwise_functions(sqrt,std::sqrt,8192) + + //! Compute the exponential of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its exponential \f$e^{I_{(x,y,z,c)}}\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(exp,std::exp,4096) + + //! Compute the error function of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its error function. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ +#if cimg_use_cpp11==1 + _cimg_create_pointwise_functions(erf,std::erf,4096) +#endif + + //! Compute the logarithm of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its logarithm + \f$\mathrm{log}_{e}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(log,std::log,262144) + + //! Compute the base-2 logarithm of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-2 logarithm + \f$\mathrm{log}_{2}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(log2,cimg::log2,4096) + + //! Compute the base-10 logarithm of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-10 logarithm + \f$\mathrm{log}_{10}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(log10,std::log10,4096) + + //! Compute the absolute value of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its absolute value \f$|I_{(x,y,z,c)}|\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(abs,cimg::abs,524288) + + //! Compute the sign of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sign + \f$\mathrm{sign}(I_{(x,y,z,c)})\f$. + \note + - The sign is set to: + - \c 1 if pixel value is strictly positive. + - \c -1 if pixel value is strictly negative. + - \c 0 if pixel value is equal to \c 0. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(sign,cimg::sign,32768) + + //! Compute the cosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its cosine \f$\cos(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being in \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(cos,std::cos,8192) + + //! Compute the sine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sine \f$\sin(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being in \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(sin,std::sin,8192) + + //! Compute the sinc of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sinc + \f$\mathrm{sinc}(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being exin \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(sinc,cimg::sinc,2048) + + //! Compute the tangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its tangent \f$\tan(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being exin \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(tan,std::tan,2048) + + //! Compute the hyperbolic cosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic cosine + \f$\mathrm{cosh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(cosh,std::cosh,2048) + + //! Compute the hyperbolic sine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic sine + \f$\mathrm{sinh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(sinh,std::sinh,2048) + + //! Compute the hyperbolic tangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic tangent + \f$\mathrm{tanh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(tanh,std::tanh,2048) + + //! Compute the arccosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosine + \f$\mathrm{acos}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(acos,std::acos,8192) + + //! Compute the arcsine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arcsine + \f$\mathrm{asin}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(asin,std::asin,8192) + + //! Compute the arctangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent + \f$\mathrm{atan}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(atan,std::atan,8192) + + //! Compute the arctangent2 of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent2 + \f$\mathrm{atan2}(I_{(x,y,z,c)})\f$. + \param img Image whose pixel values specify the second argument of the \c atan2() function. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg + img_x(100,100,1,1,"x-w/2",false), // Define an horizontal centered gradient, from '-width/2' to 'width/2' + img_y(100,100,1,1,"y-h/2",false), // Define a vertical centered gradient, from '-height/2' to 'height/2' + img_atan2 = img_y.get_atan2(img_x); // Compute atan2(y,x) for each pixel value + (img_x,img_y,img_atan2).display(); + \endcode + **/ + template + CImg& atan2(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return atan2(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_atan2(const CImg& img) const { + return CImg(*this,false).atan2(img); + } + + //! Compute the hyperbolic arccosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosineh + \f$\mathrm{acosh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(acosh,cimg::acosh,8192) + + //! Compute the hyperbolic arcsine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic arcsine + \f$\mathrm{asinh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(asinh,cimg::asinh,8192) + + //! Compute the hyperbolic arctangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic arctangent + \f$\mathrm{atanh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + _cimg_create_pointwise_functions(atanh,cimg::atanh,8192) + + //! In-place pointwise multiplication. + /** + Compute the pointwise multiplication between the image instance and the specified input image \c img. + \param img Input image, as the second operand of the multiplication. + \note + - Similar to operator+=(const CImg&), except that it performs a pointwise multiplication + instead of an addition. + - It does \e not perform a \e matrix multiplication. For this purpose, use operator*=(const CImg&) instead. + \par Example + \code + CImg + img("reference.jpg"), + shade(img.width,img.height(),1,1,"-(x-w/2)^2-(y-h/2)^2",false); + shade.normalize(0,1); + (img,shade,img.get_mul(shade)).display(); + \endcode + **/ + template + CImg& mul(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return mul(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_mul(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).mul(img); + } + + //! In-place pointwise division. + /** + Similar to mul(const CImg&), except that it performs a pointwise division instead of a multiplication. + **/ + template + CImg& div(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return div(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_div(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).div(img); + } + + //! Raise each pixel value to a specified power. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its power \f$I_{(x,y,z,c)}^p\f$. + \param p Exponent value. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg + img0("reference.jpg"), // Load reference color image + img1 = (img0/255).pow(1.8)*=255, // Compute gamma correction, with gamma = 1.8 + img2 = (img0/255).pow(0.5)*=255; // Compute gamma correction, with gamma = 0.5 + (img0,img1,img2).display(); + \endcode + **/ + CImg& pow(const double p) { + if (is_empty()) return *this; + if (p==-4) { cimg_openmp_for(*this,1/(Tfloat)cimg::pow4(*ptr),32768); return *this; } + if (p==-3) { cimg_openmp_for(*this,1/(Tfloat)cimg::pow3(*ptr),32768); return *this; } + if (p==-2) { cimg_openmp_for(*this,1/(Tfloat)cimg::sqr(*ptr),32768); return *this; } + if (p==-1) { cimg_openmp_for(*this,1/(Tfloat)*ptr,32768); return *this; } + if (p==-0.5) { cimg_openmp_for(*this,1/std::sqrt((Tfloat)*ptr),8192); return *this; } + if (p==0) return fill((T)1); + if (p==0.5) return sqrt(); + if (p==1) return *this; + if (p==2) return sqr(); + if (p==3) { cimg_openmp_for(*this,cimg::pow3(*ptr),262144); return *this; } + if (p==4) { cimg_openmp_for(*this,cimg::pow4(*ptr),131072); return *this; } + cimg_openmp_for(*this,std::pow((Tfloat)*ptr,(Tfloat)p),1024); + return *this; + } + + //! Raise each pixel value to a specified power \newinstance. + CImg get_pow(const double p) const { + return CImg(*this,false).pow(p); + } + + //! Raise each pixel value to a power, specified from an expression. + /** + Similar to operator+=(const char*), except it performs a pointwise exponentiation instead of an addition. + **/ + CImg& pow(const char *const expression) { + return pow((+*this)._fill(expression,true,3,0,"pow",this,0)); + } + + //! Raise each pixel value to a power, specified from an expression \newinstance. + CImg get_pow(const char *const expression) const { + return CImg(*this,false).pow(expression); + } + + //! Raise each pixel value to a power, pointwisely specified from another image. + /** + Similar to operator+=(const CImg& img), except that it performs an exponentiation instead of an addition. + **/ + template + CImg& pow(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return pow(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_pow(const CImg& img) const { + return CImg(*this,false).pow(img); + } + + //! Compute the bitwise left rotation of each pixel value. + /** + Similar to operator<<=(unsigned int), except that it performs a left rotation instead of a left shift. + **/ + CImg& rol(const unsigned int n=1) { + if (is_empty()) return *this; + cimg_openmp_for(*this,cimg::rol(*ptr,n),32768); + return *this; + } + + //! Compute the bitwise left rotation of each pixel value \newinstance. + CImg get_rol(const unsigned int n=1) const { + return (+*this).rol(n); + } + + //! Compute the bitwise left rotation of each pixel value. + /** + Similar to operator<<=(const char*), except that it performs a left rotation instead of a left shift. + **/ + CImg& rol(const char *const expression) { + return rol((+*this)._fill(expression,true,3,0,"rol",this,0)); + } + + //! Compute the bitwise left rotation of each pixel value \newinstance. + CImg get_rol(const char *const expression) const { + return (+*this).rol(expression); + } + + //! Compute the bitwise left rotation of each pixel value. + /** + Similar to operator<<=(const CImg&), except that it performs a left rotation instead of a left shift. + **/ + template + CImg& rol(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return rol(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_rol(const CImg& img) const { + return (+*this).rol(img); + } + + //! Compute the bitwise right rotation of each pixel value. + /** + Similar to operator>>=(unsigned int), except that it performs a right rotation instead of a right shift. + **/ + CImg& ror(const unsigned int n=1) { + if (is_empty()) return *this; + cimg_openmp_for(*this,cimg::ror(*ptr,n),32768); + return *this; + } + + //! Compute the bitwise right rotation of each pixel value \newinstance. + CImg get_ror(const unsigned int n=1) const { + return (+*this).ror(n); + } + + //! Compute the bitwise right rotation of each pixel value. + /** + Similar to operator>>=(const char*), except that it performs a right rotation instead of a right shift. + **/ + CImg& ror(const char *const expression) { + return ror((+*this)._fill(expression,true,3,0,"ror",this,0)); + } + + //! Compute the bitwise right rotation of each pixel value \newinstance. + CImg get_ror(const char *const expression) const { + return (+*this).ror(expression); + } + + //! Compute the bitwise right rotation of each pixel value. + /** + Similar to operator>>=(const CImg&), except that it performs a right rotation instead of a right shift. + **/ + template + CImg& ror(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return ror(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_ror(const CImg& img) const { + return (+*this).ror(img); + } + + //! Pointwise min operator between instance image and a value. + /** + \param val Value used as the reference argument of the min operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{val})\f$. + **/ + CImg& min(const T& value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,std::min(*ptr,value),65536); + return *this; + } + + //! Pointwise min operator between instance image and a value \newinstance. + CImg get_min(const T& value) const { + return (+*this).min(value); + } + + //! Pointwise min operator between two images. + /** + \param img Image used as the reference argument of the min operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. + **/ + template + CImg& min(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return min(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_min(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).min(img); + } + + //! Pointwise min operator between an image and an expression. + /** + \param expression Math formula as a C-string. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. + **/ + CImg& min(const char *const expression) { + return min((+*this)._fill(expression,true,3,0,"min",this,0)); + } + + //! Pointwise min operator between an image and an expression \newinstance. + CImg get_min(const char *const expression) const { + return CImg(*this,false).min(expression); + } + + //! Pointwise max operator between instance image and a value. + /** + \param val Value used as the reference argument of the max operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{val})\f$. + **/ + CImg& max(const T& value) { + if (is_empty()) return *this; + cimg_openmp_for(*this,std::max(*ptr,value),65536); + return *this; + } + + //! Pointwise max operator between instance image and a value \newinstance. + CImg get_max(const T& value) const { + return (+*this).max(value); + } + + //! Pointwise max operator between two images. + /** + \param img Image used as the reference argument of the max operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. + **/ + template + CImg& max(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return max(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_max(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).max(img); + } + + //! Pointwise max operator between an image and an expression. + /** + \param expression Math formula as a C-string. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. + **/ + CImg& max(const char *const expression) { + return max((+*this)._fill(expression,true,3,0,"max",this,0)); + } + + //! Pointwise max operator between an image and an expression \newinstance. + CImg get_max(const char *const expression) const { + return CImg(*this,false).max(expression); + } + + //! Pointwise minabs operator between instance image and a value. + /** + \param val Value used as the reference argument of the minabs operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{minabs}(I_{(x,y,z,c)},\mathrm{val})\f$. + **/ + CImg& minabs(const T& value) { + if (is_empty()) return *this; + const T absvalue = cimg::abs(value); + cimg_openmp_for(*this,cimg::minabs(*ptr,value,absvalue),65536); + return *this; + } + + //! Pointwise minabs operator between instance image and a value \newinstance. + CImg get_minabs(const T& value) const { + return (+*this).minabs(value); + } + + //! Pointwise minabs operator between two images. + /** + \param img Image used as the reference argument of the minabs operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{minabs}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. + **/ + template + CImg& minabs(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return minabs(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_minabs(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).minabs(img); + } + + //! Pointwise minabs operator between an image and an expression. + /** + \param expression Math formula as a C-string. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{minabs}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. + **/ + CImg& minabs(const char *const expression) { + return minabs((+*this)._fill(expression,true,3,0,"minabs",this,0)); + } + + //! Pointwise minabs operator between an image and an expression \newinstance. + CImg get_minabs(const char *const expression) const { + return CImg(*this,false).minabs(expression); + } + + //! Pointwise maxabs operator between instance image and a value. + /** + \param val Value used as the reference argument of the maxabs operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{maxabs}(I_{(x,y,z,c)},\mathrm{val})\f$. + **/ + CImg& maxabs(const T& value) { + if (is_empty()) return *this; + const T absvalue = cimg::abs(value); + cimg_openmp_for(*this,cimg::maxabs(*ptr,value,absvalue),65536); + return *this; + } + + //! Pointwise maxabs operator between instance image and a value \newinstance. + CImg get_maxabs(const T& value) const { + return (+*this).maxabs(value); + } + + //! Pointwise maxabs operator between two images. + /** + \param img Image used as the reference argument of the maxabs operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{maxabs}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. + **/ + template + CImg& maxabs(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return maxabs(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_maxabs(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).maxabs(img); + } + + //! Pointwise maxabs operator between an image and an expression. + /** + \param expression Math formula as a C-string. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{maxabs}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. + **/ + CImg& maxabs(const char *const expression) { + return maxabs((+*this)._fill(expression,true,3,0,"maxabs",this,0)); + } + + //! Pointwise maxabs operator between an image and an expression \newinstance. + CImg get_maxabs(const char *const expression) const { + return CImg(*this,false).maxabs(expression); + } + + //! Return a reference to the minimum pixel value. + /** + **/ + T& min() { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "min(): Empty instance.", + cimg_instance); + T *ptr_min = _data; + T min_value = *ptr_min; + cimg_for(*this,ptrs,T) if (*ptrsmax_value) max_value = *(ptr_max=ptrs); + return *ptr_max; + } + + //! Return a reference to the maximum pixel value \const. + const T& max() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "max(): Empty instance.", + cimg_instance); + const T *ptr_max = _data; + T max_value = *ptr_max; + cimg_for(*this,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs); + return *ptr_max; + } + + //! Return a reference to the maximum pixel value in absolute value. + /** + **/ + T& maxabs() { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "maxabs(): Empty instance.", + cimg_instance); + T *ptr_maxabs = _data; + T maxabs_value = *ptr_maxabs; + cimg_for(*this,ptrs,T) { + const T ma = cimg::abs(*ptrs); + if (ma>maxabs_value) { maxabs_value = ma; ptr_maxabs = ptrs; } + } + return *ptr_maxabs; + } + + //! Return a reference to the maximum pixel value in absolute value \const. + const T& maxabs() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "maxabs(): Empty instance.", + cimg_instance); + const T *ptr_maxabs = _data; + T maxabs_value = *ptr_maxabs; + cimg_for(*this,ptrs,T) { + const T ma = cimg::abs(*ptrs); + if (ma>maxabs_value) { maxabs_value = ma; ptr_maxabs = ptrs; } + } + return *ptr_maxabs; + } + + //! Return a reference to the minimum pixel value as well as the maximum pixel value. + /** + \param[out] max_val Maximum pixel value. + **/ + template + T& min_max(t& max_val) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "min_max(): Empty instance.", + cimg_instance); + T *ptr_min = _data; + T min_value = *ptr_min, max_value = min_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the minimum pixel value as well as the maximum pixel value \const. + template + const T& min_max(t& max_val) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "min_max(): Empty instance.", + cimg_instance); + const T *ptr_min = _data; + T min_value = *ptr_min, max_value = min_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the maximum pixel value as well as the minimum pixel value. + /** + \param[out] min_val Minimum pixel value. + **/ + template + T& max_min(t& min_val) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "max_min(): Empty instance.", + cimg_instance); + T *ptr_max = _data; + T max_value = *ptr_max, min_value = max_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val + const T& max_min(t& min_val) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "max_min(): Empty instance.", + cimg_instance); + const T *ptr_max = _data; + T max_value = *ptr_max, min_value = max_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val=size()) return max(); + CImg arr(*this,false); + ulongT l = 0, ir = size() - 1; + for ( ; ; ) { + if (ir<=l + 1) { + if (ir==l + 1 && arr[ir]>1; + cimg::swap(arr[mid],arr[l + 1]); + if (arr[l]>arr[ir]) cimg::swap(arr[l],arr[ir]); + if (arr[l + 1]>arr[ir]) cimg::swap(arr[l + 1],arr[ir]); + if (arr[l]>arr[l + 1]) cimg::swap(arr[l],arr[l + 1]); + ulongT i = l + 1, j = ir; + const T pivot = arr[l + 1]; + for ( ; ; ) { + do ++i; while (arr[i]pivot); + if (j=k) ir = j - 1; + if (j<=k) l = i; + } + } + } + + //! Return the median pixel value. + /** + **/ + T median() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "median(): Empty instance.", + cimg_instance); + const ulongT s = size(); + switch (s) { + case 1 : return _data[0]; + case 2 : return cimg::median(_data[0],_data[1]); + case 3 : return cimg::median(_data[0],_data[1],_data[2]); + case 5 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4]); + case 7 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6]); + case 9 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6],_data[7],_data[8]); + case 13 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6],_data[7],_data[8], + _data[9],_data[10],_data[11],_data[12]); + } + const T res = kth_smallest(s>>1); + return (s%2)?res:(T)((res + kth_smallest((s>>1) - 1))/2); + } + + //! Return greatest common diviser of all image values. + T gcd() const { + if (is_empty()) return 0; + const ulongT siz = size(); + longT res = (longT)*_data; + for (ulongT k = 1; k + double variance_mean(const unsigned int variance_method, t& mean) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "variance_mean(): Empty instance.", + cimg_instance); + + double variance = 0, average = 0; + const ulongT siz = size(); + switch (variance_method) { + case 0 : { // Least mean square (standard definition) + double S = 0, S2 = 0; + cimg_for(*this,ptrs,T) { const double val = (double)*ptrs; S+=val; S2+=val*val; } + variance = (S2 - S*S/siz)/siz; + average = S; + } break; + case 1 : { // Least mean square (robust definition) + double S = 0, S2 = 0; + cimg_for(*this,ptrs,T) { const double val = (double)*ptrs; S+=val; S2+=val*val; } + variance = siz>1?(S2 - S*S/siz)/(siz - 1):0; + average = S; + } break; + case 2 : { // Least Median of Squares (MAD) + CImg buf(*this,false); + buf.sort(); + const ulongT siz2 = siz>>1; + const double med_i = (double)buf[siz2]; + cimg_for(buf,ptrs,Tfloat) { + const double val = (double)*ptrs; *ptrs = (Tfloat)cimg::abs(val - med_i); average+=val; + } + buf.sort(); + const double sig = (double)(1.4828*buf[siz2]); + variance = sig*sig; + } break; + default : { // Least trimmed of Squares + CImg buf(*this,false); + const ulongT siz2 = siz>>1; + cimg_for(buf,ptrs,Tfloat) { + const double val = (double)*ptrs; (*ptrs)=(Tfloat)((*ptrs)*val); average+=val; + } + buf.sort(); + double a = 0; + const Tfloat *ptrs = buf._data; + for (ulongT j = 0; j0?variance:0; + } + + //! Return estimated variance of the noise. + /** + \param variance_method Method used to compute the variance (see variance(const unsigned int) const). + \note Because of structures such as edges in images it is + recommended to use a robust variance estimation. The variance of the + noise is estimated by computing the variance of the Laplacian \f$(\Delta + I)^2 \f$ scaled by a factor \f$c\f$ insuring \f$ c E[(\Delta I)^2]= + \sigma^2\f$ where \f$\sigma\f$ is the noise variance. + **/ + double variance_noise(const unsigned int variance_method=2) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "variance_noise(): Empty instance.", + cimg_instance); + + const ulongT siz = size(); + if (!siz || !_data) return 0; + if (variance_method>1) { // Compute a scaled version of the Laplacian + CImg tmp(*this,false); + if (_depth==1) { + const double cste = 1./std::sqrt(20.); // Depends on how the Laplacian is computed + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*262144 && + _spectrum>=2)) + cimg_forC(*this,c) { + CImg_3x3(I,T); + cimg_for3x3(*this,x,y,0,c,I,T) { + tmp(x,y,c) = cste*((double)Inc + (double)Ipc + (double)Icn + + (double)Icp - 4*(double)Icc); + } + } + } else { + const double cste = 1./std::sqrt(42.); // Depends on how the Laplacian is computed + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*262144 && + _spectrum>=2)) + cimg_forC(*this,c) { + CImg_3x3x3(I,T); + cimg_for3x3x3(*this,x,y,z,c,I,T) { + tmp(x,y,z,c) = cste*( + (double)Incc + (double)Ipcc + (double)Icnc + (double)Icpc + + (double)Iccn + (double)Iccp - 6*(double)Iccc); + } + } + } + return tmp.variance(variance_method); + } + + // Version that doesn't need intermediate images. + double variance = 0, S = 0, S2 = 0; + if (_depth==1) { + const double cste = 1./std::sqrt(20.); + CImg_3x3(I,T); + cimg_forC(*this,c) cimg_for3x3(*this,x,y,0,c,I,T) { + const double val = cste*((double)Inc + (double)Ipc + + (double)Icn + (double)Icp - 4*(double)Icc); + S+=val; S2+=val*val; + } + } else { + const double cste = 1./std::sqrt(42.); + CImg_3x3x3(I,T); + cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,T) { + const double val = cste * + ((double)Incc + (double)Ipcc + (double)Icnc + + (double)Icpc + + (double)Iccn + (double)Iccp - 6*(double)Iccc); + S+=val; S2+=val*val; + } + } + if (variance_method) variance = siz>1?(S2 - S*S/siz)/(siz - 1):0; + else variance = (S2 - S*S/siz)/siz; + return variance>0?variance:0; + } + + //! Compute the MSE (Mean-Squared Error) between two images. + /** + \param img Image used as the second argument of the MSE operator. + **/ + template + double MSE(const CImg& img) const { + if (img.size()!=size()) + throw CImgArgumentException(_cimg_instance + "MSE(): Instance and specified image (%u,%u,%u,%u,%p) have different dimensions.", + cimg_instance, + img._width,img._height,img._depth,img._spectrum,img._data); + double vMSE = 0; + const t* ptr2 = img._data; + cimg_for(*this,ptr1,T) { + const double diff = (double)*ptr1 - (double)*(ptr2++); + vMSE+=diff*diff; + } + const ulongT siz = img.size(); + if (siz) vMSE/=siz; + return vMSE; + } + + //! Compute the PSNR (Peak Signal-to-Noise Ratio) between two images. + /** + \param img Image used as the second argument of the PSNR operator. + \param max_value Maximum theoretical value of the signal. + **/ + template + double PSNR(const CImg& img, const double max_value=255) const { + const double vMSE = (double)std::sqrt(MSE(img)); + return (vMSE!=0)?(double)(20*std::log10(max_value/vMSE)):(double)(cimg::type::max()); + } + + //! Evaluate math formula. + /** + \param expression Math formula, as a C-string. + \param x Value of the pre-defined variable \c x. + \param y Value of the pre-defined variable \c y. + \param z Value of the pre-defined variable \c z. + \param c Value of the pre-defined variable \c c. + \param list_images A list of images attached to the specified math formula. + **/ + double eval(const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + CImgList *const list_images=0) { + return _eval(this,expression,x,y,z,c,list_images); + } + + //! Evaluate math formula \const. + double eval(const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + CImgList *const list_images=0) const { + return _eval(0,expression,x,y,z,c,list_images); + } + + // Fast function to pre-evaluate common expressions. + // (return 'true' in case of success, and set value of 'res'). + template + bool __eval(const char *const expression, t &res) const { + +#define __eval_op(op) if (__eval_get(++ptr,val2) && !*ptr) { res = (t)(op); return true; } else return false; + + double val1, val2; + if (!expression || !*expression || *expression==';' || *expression=='[') return false; + if (!expression[1]) switch (*expression) { + case 'w' : res = (t)_width; return true; + case 'h' : res = (t)_height; return true; + case 'd' : res = (t)_depth; return true; + case 's' : res = (t)_spectrum; return true; + case 'r' : res = (t)_is_shared; return true; + default : if (*expression>='0' && *expression<='9') { res = (t)(*expression - '0'); return true; } + } + if (*expression=='w' && expression[1]=='h') { + if (!expression[2]) { res = (t)(_width*_height); return true; } + if (expression[2]=='d') { + if (!expression[3]) { res = (t)(_width*_height*_depth); return true; } + if (expression[3]=='s' && !expression[4]) { res = (t)(_width*_height*_depth*_spectrum); return true; } + } + if (expression[2]=='s' && !expression[3]) { res = (t)(_width*_height*_spectrum); return true; } + } + const char *ptr = expression; + while (*ptr && cimg::is_blank(*ptr)) ++ptr; + if (*ptr=='\'' && *(++ptr)) { // Detect 'stringA' op 'stringB' (op='==' or '!=') + const char *ptr2 = std::strchr(ptr,'\''); + if (ptr2) { + const char *ptr3 = ptr2 + 1; + while (*ptr3 && cimg::is_blank(*ptr3)) ++ptr3; + const char *ptr4 = ptr3; + if ((*ptr3=='!' || *ptr3=='=') && *(++ptr4)=='=') { + ++ptr4; + while (*ptr4 && cimg::is_blank(*ptr4)) ++ptr4; + if (*ptr4=='\'' && *(++ptr4)) { + const char *const ptr5 = std::strchr(ptr4,'\''); + if (ptr5) { + const char *ptr6 = ptr5 + 1; + while (*ptr6 && cimg::is_blank(*ptr6)) ++ptr6; + if (!*ptr6) { + CImg str1(ptr,ptr2 - ptr,1,1,1,true), str2(ptr4,ptr5 - ptr4,1,1,1,true); + if (*ptr3=='!') res = (t)!(str1==str2); else res = (t)(str1==str2); + return true; + } + } + } + } + } + return false; + } + if (__eval_get(ptr,val1)) { // Detect 'value1' op 'value2' + switch (*ptr) { + case 0 : res = (t)val1; return true; + case '+' : __eval_op(val1 + val2); + case '-' : __eval_op(val1 - val2); + case '*' : __eval_op(val1 * val2); + case '/' : __eval_op(val1 / val2); + case '%' : __eval_op(cimg::mod(val1,val2)); + case '&' : if (ptr[1]=='&') { ++ptr; __eval_op(val1 && val2); } else { __eval_op((long)val1 & (long)val2); } + case '|' : if (ptr[1]=='|') { ++ptr; __eval_op(val1 || val2); } else { __eval_op((long)val1 | (long)val2); } + case '>' : if (ptr[1]=='=') { ++ptr; __eval_op(val1>=val2); } else { __eval_op(val1>val2); } + case '<' : if (ptr[1]=='=') { ++ptr; __eval_op(val1<=val2); } else { __eval_op(val1 *const img_output, const char *const expression, + const double x, const double y, const double z, const double c, + CImgList *const list_images) const { + if (!expression || !*expression) return 0; + double _val = 0; + if (__eval(expression,_val)) return _val; + _cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' || *expression=='+' || + *expression=='*' || *expression==':'),"eval", + *this,img_output,list_images,false); + mp.begin_t(); + const double val = mp(x,y,z,c); + mp.end_t(); + mp.end(); + return val; + } + + //! Evaluate math formula. + /** + \param[out] output Contains values of output vector returned by the evaluated expression + (or is empty if the returned type is scalar). + \param expression Math formula, as a C-string. + \param x Value of the pre-defined variable \c x. + \param y Value of the pre-defined variable \c y. + \param z Value of the pre-defined variable \c z. + \param c Value of the pre-defined variable \c c. + \param list_images A list of input images attached to the specified math formula. + **/ + template + void eval(CImg &output, const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + CImgList *const list_images=0) { + _eval(output,this,expression,x,y,z,c,list_images); + } + + //! Evaluate math formula \const. + template + void eval(CImg& output, const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + CImgList *const list_images=0) const { + _eval(output,0,expression,x,y,z,c,list_images); + } + + template + void _eval(CImg& output, CImg *const img_output, const char *const expression, + const double x, const double y, const double z, const double c, + CImgList *const list_images) const { + if (!expression || !*expression) { output.assign(1); *output = 0; return; } + double _val = 0; + if (__eval(expression,_val)) { output.assign(1); *output = _val; return; } + _cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' || *expression=='+' || + *expression=='*' || *expression==':'),"eval", + *this,img_output,list_images,false); + output.assign(1,std::max(1U,mp.result_dim)); + mp.begin_t(); + mp(x,y,z,c,output._data); + mp.end_t(); + mp.end(); + } + + //! Evaluate math formula on a set of variables. + /** + \param expression Math formula, as a C-string. + \param xyzc Set of values (x,y,z,c) used for the evaluation. + \param list_images A list of input images attached to the specified math formula. + **/ + template + CImg eval(const char *const expression, const CImg& xyzc, + CImgList *const list_images=0) { + return _eval(this,expression,xyzc,list_images); + } + + //! Evaluate math formula on a set of variables \const. + template + CImg eval(const char *const expression, const CImg& xyzc, + CImgList *const list_images=0) const { + return _eval(0,expression,xyzc,list_images); + } + + template + CImg _eval(CImg *const output, const char *const expression, const CImg& xyzc, + CImgList *const list_images=0) const { + CImg res(1,xyzc.size()/4); + if (!expression || !*expression) return res.fill(0); + _cimg_math_parser mp(expression,"eval",*this,output,list_images,false); + +#if cimg_use_openmp!=0 + cimg_pragma_openmp(parallel if (res._height>=512)) + { + _cimg_math_parser + *const _mp = omp_get_thread_num()?new _cimg_math_parser(mp):&mp, + &lmp = *_mp; + cimg_pragma_openmp(barrier) + lmp.begin_t(); + cimg_pragma_openmp(for) + for (int i = 0; i[min, max, mean, variance, xmin, ymin, zmin, cmin, xmax, ymax, zmax, cmax, sum, product]. + **/ + CImg get_stats(const unsigned int variance_method=1) const { + if (is_empty()) return CImg(); + const ulongT siz = size(); + const longT off_end = (longT)siz; + double S = 0, S2 = 0, P = 1; + longT offm = 0, offM = 0; + T m = *_data, M = m; + + cimg_pragma_openmp(parallel reduction(+:S,S2) reduction(*:P) cimg_openmp_if_size(siz,131072)) { + longT loffm = 0, loffM = 0; + T lm = *_data, lM = lm; + cimg_pragma_openmp(for) + for (longT off = 0; offlM) { lM = val; loffM = off; } + S+=_val; + S2+=_val*_val; + P*=_val; + } + cimg_pragma_openmp(critical(get_stats)) { + if (lmM || (lM==M && loffM1?(S2 - S*S/siz)/(siz - 1):0): + variance(variance_method)), + variance_value = _variance_value>0?_variance_value:0; + int + xm = 0, ym = 0, zm = 0, cm = 0, + xM = 0, yM = 0, zM = 0, cM = 0; + contains(_data[offm],xm,ym,zm,cm); + contains(_data[offM],xM,yM,zM,cM); + return CImg(1,14).fill((double)m,(double)M,mean_value,variance_value, + (double)xm,(double)ym,(double)zm,(double)cm, + (double)xM,(double)yM,(double)zM,(double)cM, + S,P); + } + + //! Compute statistics vector from the pixel values \inplace. + CImg& stats(const unsigned int variance_method=1) { + return get_stats(variance_method).move_to(*this); + } + + //@} + //------------------------------------- + // + //! \name Vector / Matrix Operations + //@{ + //------------------------------------- + + //! Compute norm of the image, viewed as a matrix. + /** + \param magnitude_type Can be: + - \c 0: L0-norm + - \c 1: L1-norm + - \c 2: L2-norm + - \c p>2 : Lp-norm + - \c ~0U: Linf-norm + **/ + double magnitude(const float magnitude_type=2) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "magnitude(): Empty instance.", + cimg_instance); + const ulongT siz = size(); + double res = 0; + if (magnitude_type==2) { // L2 + cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(size(),8192)) + for (longT off = 0; off<(longT)siz; ++off) res+=(double)cimg::sqr(_data[off]); + res = (double)std::sqrt(res); + } else if (magnitude_type==1) { // L1 + cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(size(),8192)) + for (longT off = 0; off<(longT)siz; ++off) res+=(double)cimg::abs(_data[off]); + } else if (!magnitude_type) { // L0 + cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(size(),8192)) + for (longT off = 0; off<(longT)siz; ++off) res+=(double)(_data[off]?1:0); + } else if (cimg::type::is_inf(magnitude_type)) { // L-inf + cimg_for(*this,ptrs,T) { const double val = (double)cimg::abs(*ptrs); if (val>res) res = val; } + } else { // L-p + cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(size(),8192)) + for (longT off = 0; off<(longT)siz; ++off) + res+=(double)std::pow((double)cimg::abs(_data[off]),(double)magnitude_type); + res = (double)std::pow(res,1.0/magnitude_type); + } + return res; + } + + //! Compute the trace of the image, viewed as a matrix. + /** + **/ + double trace() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "trace(): Empty instance.", + cimg_instance); + double res = 0; + cimg_forX(*this,k) res+=(double)(*this)(k,k); + return res; + } + + //! Compute the determinant of the image, viewed as a matrix. + /** + **/ + double det() const { + if (is_empty() || _width!=_height || _depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "det(): Instance is not a square matrix.", + cimg_instance); + + switch (_width) { + case 1 : return (double)((*this)(0,0)); + case 2 : return (double)((*this)(0,0))*(double)((*this)(1,1)) - (double)((*this)(0,1))*(double)((*this)(1,0)); + case 3 : { + const double + a = (double)_data[0], d = (double)_data[1], g = (double)_data[2], + b = (double)_data[3], e = (double)_data[4], h = (double)_data[5], + c = (double)_data[6], f = (double)_data[7], i = (double)_data[8]; + return i*a*e - a*h*f - i*b*d + b*g*f + c*d*h - c*g*e; + } + default : { + CImg lu(*this,false); + CImg indx; + bool d; + lu._LU(indx,d); + double res = d?(double)1:(double)-1; + cimg_forX(lu,i) res*=lu(i,i); + return res; + } + } + } + + //! Compute the dot product between instance and argument, viewed as matrices. + /** + \param img Image used as a second argument of the dot product. + **/ + template + double dot(const CImg& img) const { + const ulongT nb = std::min(size(),img.size()); + double res = 0; + cimg_pragma_openmp(parallel for reduction(+:res) cimg_openmp_if_size(nb,8192)) + for (longT off = 0; off<(longT)nb; ++off) res+=(double)_data[off]*(double)img[off]; + return res; + } + + //! Get vector-valued pixel located at specified position. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + CImg get_vector_at(const unsigned int x, const unsigned int y=0, const unsigned int z=0) const { + CImg res; + if (res._height!=_spectrum) res.assign(1,_spectrum); + const ulongT whd = (ulongT)_width*_height*_depth; + const T *ptrs = data(x,y,z); + T *ptrd = res._data; + cimg_forC(*this,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return res; + } + + //! Get (square) matrix-valued pixel located at specified position. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \note - The spectrum() of the image must be a square. + **/ + CImg get_matrix_at(const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) const { + const int n = (int)cimg::round(std::sqrt((double)_spectrum)); + const T *ptrs = data(x,y,z,0); + const ulongT whd = (ulongT)_width*_height*_depth; + CImg res(n,n); + T *ptrd = res._data; + cimg_forC(*this,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return res; + } + + //! Get tensor-valued pixel located at specified position. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + CImg get_tensor_at(const unsigned int x, const unsigned int y=0, const unsigned int z=0) const { + const T *ptrs = data(x,y,z,0); + const ulongT whd = (ulongT)_width*_height*_depth; + if (_spectrum==6) + return tensor(*ptrs,*(ptrs + whd),*(ptrs + 2*whd),*(ptrs + 3*whd),*(ptrs + 4*whd),*(ptrs + 5*whd)); + if (_spectrum==3) + return tensor(*ptrs,*(ptrs + whd),*(ptrs + 2*whd)); + return tensor(*ptrs); + } + + //! Set vector-valued pixel at specified position. + /** + \param vec Vector to put on the instance image. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + template + CImg& set_vector_at(const CImg& vec, const unsigned int x, const unsigned int y=0, const unsigned int z=0) { + if (x<_width && y<_height && z<_depth) { + const t *ptrs = vec._data; + const ulongT whd = (ulongT)_width*_height*_depth; + T *ptrd = data(x,y,z); + for (unsigned int k = std::min((unsigned int)vec.size(),_spectrum); k; --k) { + *ptrd = (T)*(ptrs++); ptrd+=whd; + } + } + return *this; + } + + //! Set (square) matrix-valued pixel at specified position. + /** + \param mat Matrix to put on the instance image. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + template + CImg& set_matrix_at(const CImg& mat, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) { + return set_vector_at(mat,x,y,z); + } + + //! Set tensor-valued pixel at specified position. + /** + \param ten Tensor to put on the instance image. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + template + CImg& set_tensor_at(const CImg& ten, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) { + T *ptrd = data(x,y,z,0); + const ulongT siz = (ulongT)_width*_height*_depth; + if (ten._height==2) { + *ptrd = (T)ten[0]; ptrd+=siz; + *ptrd = (T)ten[1]; ptrd+=siz; + *ptrd = (T)ten[3]; + } + else { + *ptrd = (T)ten[0]; ptrd+=siz; + *ptrd = (T)ten[1]; ptrd+=siz; + *ptrd = (T)ten[2]; ptrd+=siz; + *ptrd = (T)ten[4]; ptrd+=siz; + *ptrd = (T)ten[5]; ptrd+=siz; + *ptrd = (T)ten[8]; + } + return *this; + } + + //! Resize image to become a diagonal matrix. + /** + \note Transform the image as a diagonal matrix so that each of its initial value becomes a diagonal coefficient. + **/ + CImg& diagonal() { + return get_diagonal().move_to(*this); + } + + //! Resize image to become a diagonal matrix \newinstance. + CImg get_diagonal() const { + if (is_empty()) return *this; + const unsigned int siz = (unsigned int)size(); + CImg res(siz,siz,1,1,0); + cimg_foroff(*this,off) res((unsigned int)off,(unsigned int)off) = (*this)[off]; + return res; + } + + //! Replace the image by an identity matrix. + /** + \note If the instance image is not square, it is resized to a square matrix using its maximum + dimension as a reference. + **/ + CImg& identity_matrix() { + return identity_matrix(std::max(_width,_height)).move_to(*this); + } + + //! Replace the image by an identity matrix \newinstance. + CImg get_identity_matrix() const { + return identity_matrix(std::max(_width,_height)); + } + + //! Fill image with a linear sequence of values. + /** + \param a0 Starting value of the sequence. + \param a1 Ending value of the sequence. + **/ + CImg& sequence(const T& a0, const T& a1) { + if (is_empty()) return *this; + const ulongT siz = size() - 1; + T* ptr = _data; + if (siz) { + const double delta = (double)a1 - (double)a0; + cimg_foroff(*this,l) *(ptr++) = (T)(a0 + delta*l/siz); + } else *ptr = a0; + return *this; + } + + //! Fill image with a linear sequence of values \newinstance. + CImg get_sequence(const T& a0, const T& a1) const { + return (+*this).sequence(a0,a1); + } + + //! Transpose the image, viewed as a matrix. + /** + \note Equivalent to \code permute_axes("yxzc"); \endcode. + **/ + CImg& transpose() { + if (_width==1) { _width = _height; _height = 1; return *this; } + if (_height==1) { _height = _width; _width = 1; return *this; } + if (_width==_height) { + cimg_forYZC(*this,y,z,c) for (int x = y; x get_transpose() const { + return get_permute_axes("yxzc"); + } + + //! Compute the cross product between two \c 1x3 images, viewed as 3D vectors. + /** + \param img Image used as the second argument of the cross product. + \note The first argument of the cross product is \c *this. + **/ + template + CImg& cross(const CImg& img) { + if (_width!=1 || _height<3 || img._width!=1 || img._height<3) + throw CImgInstanceException(_cimg_instance + "cross(): Instance and/or specified image (%u,%u,%u,%u,%p) are not 3D vectors.", + cimg_instance, + img._width,img._height,img._depth,img._spectrum,img._data); + + const T x = (*this)[0], y = (*this)[1], z = (*this)[2]; + (*this)[0] = (T)(y*img[2] - z*img[1]); + (*this)[1] = (T)(z*img[0] - x*img[2]); + (*this)[2] = (T)(x*img[1] - y*img[0]); + return *this; + } + + //! Compute the cross product between two \c 1x3 images, viewed as 3D vectors \newinstance. + template + CImg<_cimg_Tt> get_cross(const CImg& img) const { + return CImg<_cimg_Tt>(*this).cross(img); + } + + //! Invert the instance image, viewed as a matrix. + /** + If the instance matrix is not square, the Moore-Penrose pseudo-inverse is computed instead. + \param use_LU Choose the inverting algorithm. Can be: + - \c true: LU solver (faster but sometimes less precise). + - \c false: SVD solver (more precise but slower). + \param lambda is used only in the Moore-Penrose pseudoinverse for estimating A^t.(A^t.A + lambda.Id)^-1. + **/ + CImg& invert(const bool use_LU=false, const float lambda=0) { + if (_depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "invert(): Instance is not a matrix.", + cimg_instance); + if (lambda<0) + throw CImgArgumentException(_cimg_instance + "invert(): Specified lambda (%g) should be >=0.", + cimg_instance); + + if (_width!=_height) return get_invert(use_LU,lambda).move_to(*this); // Non-square matrix: Pseudoinverse + + // Square matrix. + const double dete = _width>3?-1.:det(); + if (dete!=0. && _width==2) { + const double + a = _data[0], c = _data[1], + b = _data[2], d = _data[3]; + _data[0] = (T)(d/dete); _data[1] = (T)(-c/dete); + _data[2] = (T)(-b/dete); _data[3] = (T)(a/dete); + } else if (dete!=0. && _width==3) { + const double + a = _data[0], d = _data[1], g = _data[2], + b = _data[3], e = _data[4], h = _data[5], + c = _data[6], f = _data[7], i = _data[8]; + _data[0] = (T)((i*e - f*h)/dete), _data[1] = (T)((g*f - i*d)/dete), _data[2] = (T)((d*h - g*e)/dete); + _data[3] = (T)((h*c - i*b)/dete), _data[4] = (T)((i*a - c*g)/dete), _data[5] = (T)((g*b - a*h)/dete); + _data[6] = (T)((b*f - e*c)/dete), _data[7] = (T)((d*c - a*f)/dete), _data[8] = (T)((a*e - d*b)/dete); + } else { + +#ifdef cimg_use_lapack + int INFO = (int)use_LU, N = _width, LWORK = 4*N, *const IPIV = new int[N]; + Tfloat + *const lapA = new Tfloat[N*N], + *const WORK = new Tfloat[LWORK]; + cimg_forXY(*this,k,l) lapA[k*N + l] = (Tfloat)((*this)(k,l)); + cimg::getrf(N,lapA,IPIV,INFO); + if (INFO) + cimg::warn(_cimg_instance + "invert(): LAPACK function dgetrf_() returned error code %d.", + cimg_instance, + INFO); + else { + cimg::getri(N,lapA,IPIV,WORK,LWORK,INFO); + if (INFO) + cimg::warn(_cimg_instance + "invert(): LAPACK function dgetri_() returned error code %d.", + cimg_instance, + INFO); + } + if (!INFO) cimg_forXY(*this,k,l) (*this)(k,l) = (T)(lapA[k*N + l]); else fill(0); + delete[] IPIV; delete[] lapA; delete[] WORK; +#else + if (use_LU) { // LU solver + CImg A(*this,false), indx; + bool d; + A._LU(indx,d); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,16*16)) + cimg_forX(*this,j) { + CImg col(1,_width,1,1,0); + col(j) = 1; + col._solve(A,indx); + cimg_forX(*this,i) (*this)(j,i) = (T)col(i); + } + } else _get_invert_svd(false).move_to(*this); // SVD solver +#endif + } + return *this; + } + + //! Invert the instance image, viewed as a matrix \newinstance. + CImg get_invert(const bool use_LU=false, const float lambda=0) const { + if (_depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "invert(): Instance is not a matrix.", + cimg_instance); + if (lambda<0) + throw CImgArgumentException(_cimg_instance + "invert(): Specified lambda (%g) should be >=0.", + cimg_instance); + + if (_width==_height) return CImg(*this,false).invert(use_LU,lambda); // Square matrix + + // Non-square matrix: Pseudoinverse + if (use_LU) { + if (_width<_height) { // under-solved system -> (A^t.A)^-1.A^t + CImg AtA(width(),width()); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,128*128)) + cimg_forY(AtA,i) + for (int j = 0; j<=i; ++j) { + double res = 0; + cimg_forY(*this,k) res+=(*this)(i,k)*(*this)(j,k); + AtA(j,i) = AtA(i,j) = (Tfloat)res; + } + if (lambda!=0) cimg_forY(AtA,i) AtA(i,i)+=lambda; + AtA.invert(true); + return AtA*get_transpose(); + } else { // over-resolved linear system -> A^t.(A.A^t)^-1 + CImg AAt(height(),height()); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,128*128)) + cimg_forY(AAt,i) + for (int j = 0; j<=i; ++j) { + double res = 0; + cimg_forX(*this,k) res+=(*this)(k,i)*(*this)(k,j); + AAt(j,i) = AAt(i,j) = (Tfloat)res; + } + if (lambda!=0) cimg_forY(AAt,i) AAt(i,i)+=lambda; + AAt.invert(true); + return get_transpose()*AAt; + } + } + return _get_invert_svd(lambda); + } + + // SVD solver, both used for inverse and pseudoinverse. + CImg _get_invert_svd(const float lambda) const { + CImg U, S, V; + SVD(U,S,V,false); + const Tfloat eps = (sizeof(Tfloat)<=4?5.96e-8f:1.11e-16f)*std::max(_width,_height)*S.max(); + cimg_forX(V,x) { + const Tfloat s = S(x), invs = lambda?1/(lambda + s):s>eps?1/s:0; + cimg_forY(V,y) V(x,y)*=invs; + } + return V*U.transpose(); + } + + //! Solve a system of linear equations. + /** + \param A Matrix of the linear system. + \param use_LU In case of non square system (least-square solution), + choose between SVD (\c false) or LU (\c true) solver. + LU solver is faster for large matrices, but numerically less stable. + \note Solve \c AX = B where \c B=*this. + **/ + template + CImg& solve(const CImg& A, const bool use_LU=false) { + if (_depth!=1 || _spectrum!=1 || _height!=A._height || A._depth!=1 || A._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "solve(): Instance and specified matrix (%u,%u,%u,%u,%p) have " + "incompatible dimensions.", + cimg_instance, + A._width,A._height,A._depth,A._spectrum,A._data); + typedef _cimg_Ttfloat Ttfloat; + + if (A.size()==1) return (*this)/=A[0]; + if (A._width==2 && A._height==2 && _height==2) { // 2x2 linear system + const double a = (double)A[0], b = (double)A[1], c = (double)A[2], d = (double)A[3], + fa = std::fabs(a), fb = std::fabs(b), fc = std::fabs(c), fd = std::fabs(d), + det = a*d - b*c, fM = cimg::max(fa,fb,fc,fd); + if (fM==fa) + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256)) + cimg_forX(*this,k) { + const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), y = (a*v - c*u)/det; + (*this)(k,0) = (T)((u - b*y)/a); (*this)(k,1) = (T)y; + } else if (fM==fc) + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256)) + cimg_forX(*this,k) { + const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), y = (a*v - c*u)/det; + (*this)(k,0) = (T)((v - d*y)/c); (*this)(k,1) = (T)y; + } else if (fM==fb) + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256)) + cimg_forX(*this,k) { + const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), x = (d*u - b*v)/det; + (*this)(k,0) = (T)x; (*this)(k,1) = (T)((u - a*x)/b); + } else + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256)) + cimg_forX(*this,k) { + const double u = (double)(*this)(k,0), v = (double)(*this)(k,1), x = (d*u - b*v)/det; + (*this)(k,0) = (T)x; (*this)(k,1) = (T)((v - c*x)/d); + } + return *this; + } + + if (A._width==A._height) { // Square linear system +#ifdef cimg_use_lapack + char TRANS = 'N'; + int INFO, N = _height, LWORK = 4*N, *const IPIV = new int[N]; + Ttfloat + *const lapA = new Ttfloat[N*N], + *const lapB = new Ttfloat[N], + *const WORK = new Ttfloat[LWORK]; + cimg_forXY(A,k,l) lapA[k*N + l] = (Ttfloat)(A(k,l)); + cimg_forX(*this,i) { + cimg_forY(*this,j) lapB[j] = (Ttfloat)((*this)(i,j)); + cimg::getrf(N,lapA,IPIV,INFO); + if (INFO) + cimg::warn(_cimg_instance + "solve(): LAPACK library function dgetrf_() returned error code %d.", + cimg_instance, + INFO); + else { + cimg::getrs(TRANS,N,lapA,IPIV,lapB,INFO); + if (INFO) + cimg::warn(_cimg_instance + "solve(): LAPACK library function dgetrs_() returned error code %d.", + cimg_instance, + INFO); + } + if (!INFO) cimg_forY(*this,j) (*this)(i,j) = (T)(lapB[j]); else cimg_forY(*this,j) (*this)(i,j) = (T)0; + } + delete[] IPIV; delete[] lapA; delete[] lapB; delete[] WORK; +#else + CImg lu(A,false); + CImg indx; + bool d; + lu._LU(indx,d); + CImg res(_width,A._width); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width*_height,16)) + cimg_forX(*this,i) res.draw_image(i,get_column(i)._solve(lu,indx)); + res.move_to(*this); +#endif + } else { // Least-square solution for non-square systems + +#ifdef cimg_use_lapack + char TRANS = 'N'; + int INFO, N = A._width, M = A._height, LWORK = -1, LDA = M, LDB = M, NRHS = _width; + Ttfloat WORK_QUERY; + Ttfloat + * const lapA = new Ttfloat[M*N], + * const lapB = new Ttfloat[M*NRHS]; + cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, &WORK_QUERY, LWORK, INFO); + LWORK = (int) WORK_QUERY; + Ttfloat *const WORK = new Ttfloat[LWORK]; + cimg_forXY(A,k,l) lapA[k*M + l] = (Ttfloat)(A(k,l)); + cimg_forXY(*this,k,l) lapB[k*M + l] = (Ttfloat)((*this)(k,l)); + cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, WORK, LWORK, INFO); + if (INFO != 0) + cimg::warn(_cimg_instance + "solve(): LAPACK library function sgels() returned error code %d.", + cimg_instance, + INFO); + assign(NRHS, N); + if (!INFO) cimg_forXY(*this,k,l) (*this)(k,l) = (T)lapB[k*M + l]; + else (A.get_invert(use_LU)*(*this)).move_to(*this); + delete[] lapA; delete[] lapB; delete[] WORK; +#else + (A.get_invert(use_LU)*(*this)).move_to(*this); +#endif + } + return *this; + } + + //! Solve a system of linear equations \newinstance. + template + CImg<_cimg_Ttfloat> get_solve(const CImg& A, const bool use_LU=false) const { + typedef _cimg_Ttfloat Ttfloat; + return CImg(*this,false).solve(A,use_LU); + } + + template + CImg& _solve(const CImg& A, const CImg& indx) { + typedef _cimg_Ttfloat Ttfloat; + const int N = height(); + int ii = -1; + Ttfloat sum; + for (int i = 0; i=0) for (int j = ii; j<=i - 1; ++j) sum-=A(j,i)*(*this)(j); + else if (sum!=0) ii = i; + (*this)(i) = (T)sum; + } + for (int i = N - 1; i>=0; --i) { + sum = (*this)(i); + for (int j = i + 1; j + CImg& solve_tridiagonal(const CImg& A) { + const unsigned int siz = (unsigned int)size(); + if (A._width!=3 || A._height!=siz) + throw CImgArgumentException(_cimg_instance + "solve_tridiagonal(): Instance and tridiagonal matrix " + "(%u,%u,%u,%u,%p) have incompatible dimensions.", + cimg_instance, + A._width,A._height,A._depth,A._spectrum,A._data); + typedef _cimg_Ttfloat Ttfloat; + const Ttfloat eps = 1e-4f; + CImg B = A.get_column(1), V(*this,false); + for (int i = 1; i<(int)siz; ++i) { + const Ttfloat m = A(0,i)/(B[i - 1]?B[i - 1]:eps); + B[i] -= m*A(2,i - 1); + V[i] -= m*V[i - 1]; + } + (*this)[siz - 1] = (T)(V[siz - 1]/(B[siz - 1]?B[siz - 1]:eps)); + for (int i = (int)siz - 2; i>=0; --i) (*this)[i] = (T)((V[i] - A(2,i)*(*this)[i + 1])/(B[i]?B[i]:eps)); + return *this; + } + + //! Solve a tridiagonal system of linear equations \newinstance. + template + CImg<_cimg_Ttfloat> get_solve_tridiagonal(const CImg& A) const { + return CImg<_cimg_Ttfloat>(*this,false).solve_tridiagonal(A); + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix. + /** + \param[out] val Vector of the estimated eigenvalues, in decreasing order. + \param[out] vec Matrix of the estimated eigenvectors, sorted by columns. + **/ + template + const CImg& eigen(CImg& val, CImg &vec) const { + if (is_empty()) { val.assign(); vec.assign(); } + else { + if (_width!=_height || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "eigen(): Instance is not a square matrix.", + cimg_instance); + + if (val.size()<(ulongT)_width) val.assign(1,_width); + if (vec.size()<(ulongT)_width*_width) vec.assign(_width,_width); + switch (_width) { + case 1 : { val[0] = (t)(*this)[0]; vec[0] = (t)1; } break; + case 2 : { + const double a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3], e = a + d; + double f = e*e - 4*(a*d - b*c); + if (f<0) cimg::warn(_cimg_instance + "eigen(): Complex eigenvalues found.", + cimg_instance); + f = std::sqrt(f); + const double + l1 = 0.5*(e - f), + l2 = 0.5*(e + f), + b2 = b*b, + norm1 = std::sqrt(cimg::sqr(l2 - a) + b2), + norm2 = std::sqrt(cimg::sqr(l1 - a) + b2); + val[0] = (t)l2; + val[1] = (t)l1; + if (norm1>0) { vec(0,0) = (t)(b/norm1); vec(0,1) = (t)((l2 - a)/norm1); } else { vec(0,0) = 1; vec(0,1) = 0; } + if (norm2>0) { vec(1,0) = (t)(b/norm2); vec(1,1) = (t)((l1 - a)/norm2); } else { vec(1,0) = 1; vec(1,1) = 0; } + } break; + default : + throw CImgInstanceException(_cimg_instance + "eigen(): Eigenvalues computation of general matrices is limited " + "to 2x2 matrices.", + cimg_instance); + } + } + return *this; + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix. + /** + \return A list of two images [val; vec], whose meaning is similar as in eigen(CImg&,CImg&) const. + **/ + CImgList get_eigen() const { + CImgList res(2); + eigen(res[0],res[1]); + return res; + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix. + /** + \param[out] val Vector of the estimated eigenvalues, in decreasing order. + \param[out] vec Matrix of the estimated eigenvectors, sorted by columns. + **/ + template + const CImg& symmetric_eigen(CImg& val, CImg& vec) const { + if (is_empty()) { val.assign(); vec.assign(); return *this; } + if (_width!=_height || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "eigen(): Instance is not a square matrix.", + cimg_instance); + val.assign(1,_width); + vec.assign(_width,_width); + + if (_width==1) { val[0] = cimg::abs((*this)[0]); vec[0] = 1; return *this; } + if (_width==2) { + const double + a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3], + e = a + d, f = std::sqrt(std::max(e*e - 4*(a*d - b*c),0.0)), + l1 = 0.5*(e - f), l2 = 0.5*(e + f), + n = std::sqrt(cimg::sqr(l2 - a) + b*b); + val[0] = (t)l2; + val[1] = (t)l1; + if (n>0) { vec[0] = (t)(b/n); vec[2] = (t)((l2 - a)/n); } else { vec[0] = 1; vec[2] = 0; } + vec[1] = -vec[2]; + vec[3] = vec[0]; + return *this; + } + +#ifdef cimg_use_lapack + char JOB = 'V', UPLO = 'U'; + int N = _width, LWORK = 4*N, INFO; + Tfloat + *const lapA = new Tfloat[N*N], + *const lapW = new Tfloat[N], + *const WORK = new Tfloat[LWORK]; + cimg_forXY(*this,k,l) lapA[k*N + l] = (Tfloat)((*this)(k,l)); + cimg::syev(JOB,UPLO,N,lapA,lapW,WORK,LWORK,INFO); + if (INFO) + cimg::warn(_cimg_instance + "symmetric_eigen(): LAPACK library function dsyev_() returned error code %d.", + cimg_instance, + INFO); + if (!INFO) { + cimg_forY(val,i) val(i) = (T)lapW[N - 1 -i]; + cimg_forXY(vec,k,l) vec(k,l) = (T)(lapA[(N - 1 - k)*N + l]); + } else { val.fill(0); vec.fill(0); } + delete[] lapA; delete[] lapW; delete[] WORK; + +#else + CImg V(_width,_width); + Tfloat M = 0, m = (Tfloat)min_max(M), maxabs = cimg::max((Tfloat)1,cimg::abs(m),cimg::abs(M)); + (CImg(*this,false)/=maxabs).SVD(vec,val,V,false); + if (maxabs!=1) val*=maxabs; + + bool is_ambiguous = false; + float eig = 0; + cimg_forY(val,p) { // Check for ambiguous cases + if (val[p]>eig) eig = (float)val[p]; + t scal = 0; + cimg_forY(vec,y) scal+=vec(p,y)*V(p,y); + if (cimg::abs(scal)<0.9f) is_ambiguous = true; + if (scal<0) val[p] = -val[p]; + } + if (is_ambiguous) { + ++(eig*=2); + SVD(vec,val,V,false,40,eig); + val-=eig; + } + + CImg permutations; // Sort eigenvalues in decreasing order + CImg tmp(_width); + val.sort(permutations,false); + cimg_forY(vec,k) { + cimg_forY(permutations,y) tmp(y) = vec(permutations(y),k); + std::memcpy(vec.data(0,k),tmp._data,sizeof(t)*_width); + } +#endif + return *this; + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix. + /** + \return A list of two images [val; vec], whose meaning are similar as in + symmetric_eigen(CImg&,CImg&) const. + **/ + CImgList get_symmetric_eigen() const { + CImgList res(2); + symmetric_eigen(res[0],res[1]); + return res; + } + + //! Sort pixel values and get sorting permutations. + /** + \param[out] permutations Permutation map used for the sorting. + \param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way. + **/ + template + CImg& sort(CImg& permutations, const bool is_increasing=true) { + permutations.assign(_width,_height,_depth,_spectrum); + if (is_empty()) return *this; + cimg_foroff(permutations,off) permutations[off] = (t)off; + return _quicksort(0,size() - 1,permutations,is_increasing,true); + } + + //! Sort pixel values and get sorting permutations \newinstance. + template + CImg get_sort(CImg& permutations, const bool is_increasing=true) const { + return (+*this).sort(permutations,is_increasing); + } + + //! Sort pixel values. + /** + \param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way. + \param axis Tells if the value sorting must be done along a specific axis. Can be: + - \c 0: All pixel values are sorted, independently on their initial position. + - \c 'x': Image columns are sorted, according to the first value in each column. + - \c 'y': Image rows are sorted, according to the first value in each row. + - \c 'z': Image slices are sorted, according to the first value in each slice. + - \c 'c': Image channels are sorted, according to the first value in each channel. + **/ + CImg& sort(const bool is_increasing=true, const char axis=0) { + if (is_empty()) return *this; + CImg perm; + switch (cimg::lowercase(axis)) { + case 0 : + _quicksort(0,size() - 1,perm,is_increasing,false); + break; + case 'x' : { + perm.assign(_width); + get_crop(0,0,0,0,_width - 1,0,0,0).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(perm[x],y,z,c); + } break; + case 'y' : { + perm.assign(_height); + get_crop(0,0,0,0,0,_height - 1,0,0).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,perm[y],z,c); + } break; + case 'z' : { + perm.assign(_depth); + get_crop(0,0,0,0,0,0,_depth - 1,0).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,y,perm[z],c); + } break; + case 'c' : { + perm.assign(_spectrum); + get_crop(0,0,0,0,0,0,0,_spectrum - 1).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,y,z,perm[c]); + } break; + default : + throw CImgArgumentException(_cimg_instance + "sort(): Invalid specified axis '%c' " + "(should be { x | y | z | c }).", + cimg_instance,axis); + } + return *this; + } + + //! Sort pixel values \newinstance. + CImg get_sort(const bool is_increasing=true, const char axis=0) const { + return (+*this).sort(is_increasing,axis); + } + + template + CImg& _quicksort(const long indm, const long indM, CImg& permutations, + const bool is_increasing, const bool is_permutations) { + if (indm(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + if ((*this)[mid]>(*this)[indM]) { + cimg::swap((*this)[indM],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indM],permutations[mid]); + } + if ((*this)[indm]>(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + } else { + if ((*this)[indm]<(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + if ((*this)[mid]<(*this)[indM]) { + cimg::swap((*this)[indM],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indM],permutations[mid]); + } + if ((*this)[indm]<(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + } + if (indM - indm>=3) { + const T pivot = (*this)[mid]; + long i = indm, j = indM; + if (is_increasing) { + do { + while ((*this)[i]pivot) --j; + if (i<=j) { + if (is_permutations) cimg::swap(permutations[i],permutations[j]); + cimg::swap((*this)[i++],(*this)[j--]); + } + } while (i<=j); + } else { + do { + while ((*this)[i]>pivot) ++i; + while ((*this)[j] A; // Input matrix (assumed to contain some values) + CImg<> U,S,V; + A.SVD(U,S,V) + \endcode + **/ + template + const CImg& SVD(CImg& U, CImg& S, CImg& V, const bool sorting=true, + const unsigned int max_iteration=40, const float lambda=0) const { + typedef _cimg_Ttfloat Ttfloat; + const Ttfloat eps = (Ttfloat)1e-25; + + if (is_empty()) { U.assign(); S.assign(); V.assign(); } + else if (_depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "SVD(): Instance has invalid dimensions (depth or channels different from 1).", + cimg_instance); + else { + U = *this; + if (lambda!=0) { + const unsigned int delta = std::min(U._width,U._height); + for (unsigned int i = 0; i rv1(_width); + Ttfloat anorm = 0, c, f, g = 0, h, s, scale = 0; + int l = 0; + + cimg_forX(U,i) { + l = i + 1; + rv1[i] = scale*g; + g = s = scale = 0; + if (i=0?-1:1)*std::sqrt(s)); + h = f*g - s; + U(i,i) = f - g; + for (int j = l; j=0?-1:1)*std::sqrt(s)); + h = f*g - s; + U(l,i) = f - g; + for (int k = l; k=0; --i) { + if (i=0; --i) { + l = i + 1; + g = S[i]; + for (int j = l; j=0; --k) { + int nm = 0; + for (unsigned int its = 0; its=1; --l) { + nm = l - 1; + if ((cimg::abs(rv1[l]) + anorm)==anorm) { flag = false; break; } + if ((cimg::abs(S[nm]) + anorm)==anorm) break; + } + if (flag) { + c = 0; + s = 1; + for (int i = l; i<=k; ++i) { + f = s*rv1[i]; + rv1[i] = c*rv1[i]; + if ((cimg::abs(f) + anorm)==anorm) break; + g = S[i]; + h = cimg::hypot(f,g); + S[i] = h; + h = 1/h; + c = g*h; + s = -f*h; + cimg_forY(U,j) { + const t y = U(nm,j), z = U(i,j); + U(nm,j) = y*c + z*s; + U(i,j) = z*c - y*s; + } + } + } + + const t z = S[k]; + if (l==k) { if (z<0) { S[k] = -z; cimg_forX(U,j) V(k,j) = -V(k,j); } break; } + nm = k - 1; + t x = S[l], y = S[nm]; + g = rv1[nm]; + h = rv1[k]; + f = ((y - z)*(y + z) + (g - h)*(g + h))/std::max(eps,(Ttfloat)2*h*y); + g = cimg::hypot(f,(Ttfloat)1); + f = ((x - z)*(x + z) + h*((y/(f + (f>=0?g:-g))) - h))/std::max(eps,(Ttfloat)x); + c = s = 1; + for (int j = l; j<=nm; ++j) { + const int i = j + 1; + g = rv1[i]; + h = s*g; + g = c*g; + t y1 = S[i], z1 = cimg::hypot(f,h); + rv1[j] = z1; + c = f/std::max(eps,(Ttfloat)z1); + s = h/std::max(eps,(Ttfloat)z1); + f = x*c + g*s; + g = g*c - x*s; + h = y1*s; + y1*=c; + cimg_forX(U,jj) { + const t x2 = V(j,jj), z2 = V(i,jj); + V(j,jj) = x2*c + z2*s; + V(i,jj) = z2*c - x2*s; + } + z1 = cimg::hypot(f,h); + S[j] = z1; + if (z1) { + z1 = 1/std::max(eps,(Ttfloat)z1); + c = f*z1; + s = h*z1; + } + f = c*g + s*y1; + x = c*y1 - s*g; + cimg_forY(U,jj) { + const t y2 = U(j,jj), z2 = U(i,jj); + U(j,jj) = y2*c + z2*s; + U(i,jj) = z2*c - y2*s; + } + } + rv1[l] = 0; + rv1[k] = f; + S[k] = x; + } + } + + if (sorting) { + CImg permutations; + CImg tmp(_width); + S.sort(permutations,false); + cimg_forY(U,k) { + cimg_forY(permutations,y) tmp(y) = U(permutations(y),k); + std::memcpy(U.data(0,k),tmp._data,sizeof(t)*_width); + } + cimg_forY(V,k) { + cimg_forY(permutations,y) tmp(y) = V(permutations(y),k); + std::memcpy(V.data(0,k),tmp._data,sizeof(t)*_width); + } + } + } + return *this; + } + + //! Compute the SVD of the instance image, viewed as a general matrix. + /** + \return A list of three images [U; S; V], whose meaning is similar as in + SVD(CImg&,CImg&,CImg&,bool,unsigned int,float) const. + **/ + CImgList get_SVD(const bool sorting=true, + const unsigned int max_iteration=40, const float lambda=0) const { + CImgList res(3); + SVD(res[0],res[1],res[2],sorting,max_iteration,lambda); + return res; + } + + // [internal] Compute the LU decomposition of a permuted matrix. + template + CImg& _LU(CImg& indx, bool& d) { + const int N = width(); + int imax = 0; + CImg vv(N); + indx.assign(N); + d = true; + + bool return0 = false; + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=512)) + cimg_forX(*this,i) { + Tfloat vmax = 0; + cimg_forX(*this,j) { + const Tfloat tmp = cimg::abs((*this)(j,i)); + if (tmp>vmax) vmax = tmp; + } + if (vmax==0) return0 = true; else vv[i] = 1/vmax; + } + if (return0) { indx.fill(0); return fill(0); } + + cimg_forX(*this,j) { + for (int i = 0; i=vmax) { vmax = tmp; imax = i; } + } + if (j!=imax) { + cimg_forX(*this,k) cimg::swap((*this)(k,imax),(*this)(k,j)); + d = !d; + vv[imax] = vv[j]; + } + indx[j] = (t)imax; + if ((*this)(j,j)==0) (*this)(j,j) = (T)1e-20; + if (j=3 = orthogonal matching pursuit where an orthogonal projection step is performed + every 'method-2' iterations. + \param max_iter Sets the max number of iterations processed for each signal. + If set to '0' (default), 'max_iter' is set to the number of dictionary columns. + (only meaningful for matching pursuit and its variants). + \param max_residual Gives a stopping criterion on signal reconstruction accuracy. + (only meaningful for matching pursuit and its variants). + \return A matrix W whose columns correspond to the sparse weights of associated to each input matrix column. + Thus, the matrix product D*W is an approximation of the input matrix. + **/ + template + CImg& project_matrix(const CImg& dictionary, const unsigned int method=0, + const unsigned int max_iter=0, const double max_residual=1e-6) { + return get_project_matrix(dictionary,method,max_iter,max_residual).move_to(*this); + } + + template + CImg get_project_matrix(const CImg& dictionary, const unsigned int method=0, + const unsigned int max_iter=0, const double max_residual=1e-6) const { + if (_depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "project_matrix(): Instance image is not a matrix.", + cimg_instance); + if (dictionary._height!=_height || dictionary._depth!=1 || dictionary._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "project_matrix(): Specified dictionary (%u,%u,%u,%u) has an invalid size.", + cimg_instance, + dictionary._width,dictionary._height,dictionary._depth,dictionary._spectrum); + + if (!method) return get_solve(dictionary); + CImg W(_width,dictionary._width,1,1,0); + + // Compute dictionary norm and normalize it. + CImg D(dictionary,false), Dnorm(D._width); + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=2 && _width*_height>=32)) + cimg_forX(Dnorm,d) { + Tfloat norm = 0; + cimg_forY(D,y) norm+=cimg::sqr(D(d,y)); + Dnorm[d] = std::max((Tfloat)1e-8,std::sqrt(norm)); + } + cimg_forXY(D,d,y) D(d,y)/=Dnorm[d]; + + // Matching pursuit. + const unsigned int proj_step = method<3?1:method - 2; + bool is_orthoproj = false; + + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=2 && _width*_height>=32)) + cimg_forX(*this,x) { + CImg S = get_column(x); + const CImg S0 = method<2?CImg():S; + Tfloat residual = S.magnitude(2)/S._height; + const unsigned int nmax = max_iter?max_iter:D._width; + + for (unsigned int n = 0; nmax_residual; ++n) { + + // Find best matching column in D. + int dmax = 0; + Tfloat absdotmax = 0, dotmax = 0; + cimg_pragma_openmp(parallel for cimg_openmp_if(D._width>=2 && D._width*D._height>=32)) + cimg_forX(D,d) { + Tfloat _dot = 0; + cimg_forY(D,y) _dot+=S[y]*D(d,y); + Tfloat absdot = cimg::abs(_dot); + cimg_pragma_openmp(critical(get_project_matrix)) { + if (absdot>absdotmax) { + absdotmax = absdot; + dotmax = _dot; + dmax = d; + } + } + } + + if (!n || method<3 || n%proj_step) { + // Matching Pursuit: Subtract component to signal. + W(x,dmax)+=dotmax; + residual = 0; + cimg_forY(S,y) { + S[y]-=dotmax*D(dmax,y); + residual+=cimg::sqr(S[y]); + } + residual = std::sqrt(residual)/S._height; + is_orthoproj = false; + + } else { + // Orthogonal Matching Pursuit: Orthogonal projection step. + W(x,dmax) = 1; // Used as a marker only. + unsigned int nbW = 0; + cimg_forY(W,d) if (W(x,d)) ++nbW; + CImg sD(nbW,D._height); + CImg inds(nbW); + int sd = 0; + cimg_forY(W,d) if (W(x,d)) { + cimg_forY(sD,y) sD(sd,y) = D(d,y); + inds[sd++] = d; + } + S0.get_solve(sD).move_to(sD); // sD is now a one-column vector of weights + + // Recompute residual signal. + S = S0; + cimg_forY(sD,k) { + const Tfloat weight = sD[k]; + const unsigned int ind = inds[k]; + W(x,ind) = weight; + cimg_forY(S,y) S[y]-=weight*D(ind,y); + } + residual = S.magnitude(2)/S._height; + is_orthoproj = true; + } + } + + // Perform last orthoprojection step if needed. + if (method>=2 && !is_orthoproj) { + unsigned int nbW = 0; + cimg_forY(W,d) if (W(x,d)) ++nbW; + if (nbW) { // Avoid degenerated case where 0 coefs are used + CImg sD(nbW,D._height); + CImg inds(nbW); + int sd = 0; + cimg_forY(W,d) if (W(x,d)) { + cimg_forY(sD,y) sD(sd,y) = D(d,y); + inds[sd++] = d; + } + S0.get_solve(sD).move_to(sD); + cimg_forY(sD,k) W(x,inds[k]) = sD[k]; + } + } + } + + // Normalize resulting coefficients according to initial (non-normalized) dictionary. + cimg_forXY(W,x,y) W(x,y)/=Dnorm[y]; + return W; + } + + //! Compute minimal path in a graph, using the Dijkstra algorithm. + /** + \param distance An object having operator()(unsigned int i, unsigned int j) which returns distance + between two nodes (i,j). + \param nb_nodes Number of graph nodes. + \param starting_node Index of the starting node. + \param ending_node Index of the ending node (set to ~0U to ignore ending node). + \param previous_node Array that gives the previous node index in the path to the starting node + (optional parameter). + \return Array of distances of each node to the starting node. + **/ + template + static CImg dijkstra(const tf& distance, const unsigned int nb_nodes, + const unsigned int starting_node, const unsigned int ending_node, + CImg& previous_node) { + if (starting_node>=nb_nodes) + throw CImgArgumentException("CImg<%s>::dijkstra(): Specified index of starting node %u is higher " + "than number of nodes %u.", + pixel_type(),starting_node,nb_nodes); + CImg dist(1,nb_nodes,1,1,cimg::type::max()); + dist(starting_node) = 0; + previous_node.assign(1,nb_nodes,1,1,(t)-1); + previous_node(starting_node) = (t)starting_node; + CImg Q(nb_nodes); + cimg_forX(Q,u) Q(u) = (unsigned int)u; + cimg::swap(Q(starting_node),Q(0)); + unsigned int sizeQ = nb_nodes; + while (sizeQ) { + // Update neighbors from minimal vertex + const unsigned int umin = Q(0); + if (umin==ending_node) sizeQ = 0; + else { + const T dmin = dist(umin); + const T infty = cimg::type::max(); + for (unsigned int q = 1; qdist(Q(left))) || + (rightdist(Q(right)));) { + if (right + static CImg dijkstra(const tf& distance, const unsigned int nb_nodes, + const unsigned int starting_node, const unsigned int ending_node=~0U) { + CImg foo; + return dijkstra(distance,nb_nodes,starting_node,ending_node,foo); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm. + /** + \param starting_node Index of the starting node. + \param ending_node Index of the ending node. + \param previous_node Array that gives the previous node index in the path to the starting node + (optional parameter). + \return Array of distances of each node to the starting node. + \note image instance corresponds to the adjacency matrix of the graph. + **/ + template + CImg& dijkstra(const unsigned int starting_node, const unsigned int ending_node, + CImg& previous_node) { + return get_dijkstra(starting_node,ending_node,previous_node).move_to(*this); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm \newinstance. + template + CImg get_dijkstra(const unsigned int starting_node, const unsigned int ending_node, + CImg& previous_node) const { + if (_width!=_height || _depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "dijkstra(): Instance is not a graph adjacency matrix.", + cimg_instance); + + return dijkstra(*this,_width,starting_node,ending_node,previous_node); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm. + CImg& dijkstra(const unsigned int starting_node, const unsigned int ending_node=~0U) { + return get_dijkstra(starting_node,ending_node).move_to(*this); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm \newinstance. + CImg get_dijkstra(const unsigned int starting_node, const unsigned int ending_node=~0U) const { + CImg foo; + return get_dijkstra(starting_node,ending_node,foo); + } + + //! Return an image containing the character codes of specified string. + /** + \param str input C-string to encode as an image. + \param is_last_zero Tells if the ending \c '0' character appear in the resulting image. + \param is_shared Return result that shares its buffer with \p str. + **/ + static CImg string(const char *const str, const bool is_last_zero=true, const bool is_shared=false) { + if (!str) return CImg(); + return CImg(str,(unsigned int)std::strlen(str) + (is_last_zero?1:0),1,1,1,is_shared); + } + + //! Return a \c 1x1 image containing specified value. + /** + \param a0 First vector value. + **/ + static CImg row_vector(const T& a0) { + return vector(a0); + } + + //! Return a \c 2x1 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + **/ + static CImg row_vector(const T& a0, const T& a1) { + CImg r(2,1); + r[0] = a0; r[1] = a1; + return r; + } + + //! Return a \c 3x1 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + \param a2 Third vector value. + **/ + static CImg row_vector(const T& a0, const T& a1, const T& a2) { + CImg r(3,1); + r[0] = a0; r[1] = a1; r[2] = a2; + return r; + } + + //! Return a \c 4x1 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + \param a2 Third vector value. + \param a3 Fourth vector value. + **/ + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3) { + CImg r(4,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; + return r; + } + + //! Return a \c 5x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { + CImg r(5,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; + return r; + } + + //! Return a \c 6x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { + CImg r(6,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; + return r; + } + + //! Return a \c 7x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6) { + CImg r(7,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; + return r; + } + + //! Return a \c 8x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7) { + CImg r(8,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; + return r; + } + + //! Return a \c 9x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8) { + CImg r(9,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; + return r; + } + + //! Return a \c 10x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9) { + CImg r(10,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + return r; + } + + //! Return a \c 11x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10) { + CImg r(11,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; + return r; + } + + //! Return a \c 12x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11) { + CImg r(12,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; + return r; + } + + //! Return a \c 13x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12) { + CImg r(13,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; + return r; + } + + //! Return a \c 14x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13) { + CImg r(14,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; + return r; + } + + //! Return a \c 15x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14) { + CImg r(15,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; + return r; + } + + //! Return a \c 16x1 image containing specified values. + static CImg row_vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15) { + CImg r(16,1); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; + return r; + } + + //! Return a \c 1x1 image containing specified value. + /** + \param a0 First vector value. + **/ + static CImg vector(const T& a0) { + CImg r(1,1); + r[0] = a0; + return r; + } + + //! Return a \c 1x2 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + **/ + static CImg vector(const T& a0, const T& a1) { + CImg r(1,2); + r[0] = a0; r[1] = a1; + return r; + } + + //! Return a \c 1x3 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + \param a2 Third vector value. + **/ + static CImg vector(const T& a0, const T& a1, const T& a2) { + CImg r(1,3); + r[0] = a0; r[1] = a1; r[2] = a2; + return r; + } + + //! Return a \c 1x4 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + \param a2 Third vector value. + \param a3 Fourth vector value. + **/ + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3) { + CImg r(1,4); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; + return r; + } + + //! Return a \c 1x5 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { + CImg r(1,5); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; + return r; + } + + //! Return a \c 1x6 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { + CImg r(1,6); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; + return r; + } + + //! Return a \c 1x7 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6) { + CImg r(1,7); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; + return r; + } + + //! Return a \c 1x8 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7) { + CImg r(1,8); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; + return r; + } + + //! Return a \c 1x9 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8) { + CImg r(1,9); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; + return r; + } + + //! Return a \c 1x10 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9) { + CImg r(1,10); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + return r; + } + + //! Return a \c 1x11 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10) { + CImg r(1,11); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; + return r; + } + + //! Return a \c 1x12 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11) { + CImg r(1,12); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; + return r; + } + + //! Return a \c 1x13 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12) { + CImg r(1,13); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; + return r; + } + + //! Return a \c 1x14 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13) { + CImg r(1,14); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; + return r; + } + + //! Return a \c 1x15 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14) { + CImg r(1,15); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; + return r; + } + + //! Return a \c 1x16 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15) { + CImg r(1,16); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; + return r; + } + + //! Return a \c 1x17 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15, + const T& a16) { + CImg r(1,17); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; + return r; + } + + //! Return a \c 1x18 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15, + const T& a16, const T& a17) { + CImg r(1,18); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17; + return r; + } + + //! Return a \c 1x19 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15, + const T& a16, const T& a17, const T& a18) { + CImg r(1,19); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17; + r[18] = a18; + return r; + } + + //! Return a \c 1x20 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15, + const T& a16, const T& a17, const T& a18, const T& a19) { + CImg r(1,20); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17; + r[18] = a18; r[19] = a19; + return r; + } + + //! Return a \c 1x21 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15, + const T& a16, const T& a17, const T& a18, const T& a19, + const T& a20) { + CImg r(1,21); + r[0] = a0; r[1] = a1; r[2] = a2; r[3] = a3; r[4] = a4; r[5] = a5; r[6] = a6; r[7] = a7; r[8] = a8; r[9] = a9; + r[10] = a10; r[11] = a11; r[12] = a12; r[13] = a13; r[14] = a14; r[15] = a15; r[16] = a16; r[17] = a17; + r[18] = a18; r[19] = a19; r[20] = a20; + return r; + } + + //! Return a 1x1 matrix containing specified coefficients. + /** + \param a0 First matrix value. + \note Equivalent to vector(const T&). + **/ + static CImg matrix(const T& a0) { + return vector(a0); + } + + //! Return a 2x2 matrix containing specified coefficients. + /** + \param a0 First matrix value. + \param a1 Second matrix value. + \param a2 Third matrix value. + \param a3 Fourth matrix value. + **/ + static CImg matrix(const T& a0, const T& a1, + const T& a2, const T& a3) { + CImg r(2,2); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; + *(ptr++) = a2; *(ptr++) = a3; + return r; + } + + //! Return a 3x3 matrix containing specified coefficients. + /** + \param a0 First matrix value. + \param a1 Second matrix value. + \param a2 Third matrix value. + \param a3 Fourth matrix value. + \param a4 Fifth matrix value. + \param a5 Sixth matrix value. + \param a6 Seventh matrix value. + \param a7 Eighth matrix value. + \param a8 Ninth matrix value. + **/ + static CImg matrix(const T& a0, const T& a1, const T& a2, + const T& a3, const T& a4, const T& a5, + const T& a6, const T& a7, const T& a8) { + CImg r(3,3); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; + *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; + *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; + return r; + } + + //! Return a 4x4 matrix containing specified coefficients. + static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15) { + CImg r(4,4); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15; + return r; + } + + //! Return a 5x5 matrix containing specified coefficients. + static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, + const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, + const T& a10, const T& a11, const T& a12, const T& a13, const T& a14, + const T& a15, const T& a16, const T& a17, const T& a18, const T& a19, + const T& a20, const T& a21, const T& a22, const T& a23, const T& a24) { + CImg r(5,5); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; + *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; + *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; + *(ptr++) = a15; *(ptr++) = a16; *(ptr++) = a17; *(ptr++) = a18; *(ptr++) = a19; + *(ptr++) = a20; *(ptr++) = a21; *(ptr++) = a22; *(ptr++) = a23; *(ptr++) = a24; + return r; + } + + //! Return a 1x1 symmetric matrix containing specified coefficients. + /** + \param a0 First matrix value. + \note Equivalent to vector(const T&). + **/ + static CImg tensor(const T& a0) { + return matrix(a0); + } + + //! Return a 2x2 symmetric matrix tensor containing specified coefficients. + static CImg tensor(const T& a0, const T& a1, const T& a2) { + return matrix(a0,a1,a1,a2); + } + + //! Return a 3x3 symmetric matrix containing specified coefficients. + static CImg tensor(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { + return matrix(a0,a1,a2,a1,a3,a4,a2,a4,a5); + } + + //! Return a 1x1 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0) { + return matrix(a0); + } + + //! Return a 2x2 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1) { + return matrix(a0,0,0,a1); + } + + //! Return a 3x3 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1, const T& a2) { + return matrix(a0,0,0,0,a1,0,0,0,a2); + } + + //! Return a 4x4 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1, const T& a2, const T& a3) { + return matrix(a0,0,0,0,0,a1,0,0,0,0,a2,0,0,0,0,a3); + } + + //! Return a 5x5 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { + return matrix(a0,0,0,0,0,0,a1,0,0,0,0,0,a2,0,0,0,0,0,a3,0,0,0,0,0,a4); + } + + //! Return a NxN identity matrix. + /** + \param N Dimension of the matrix. + **/ + static CImg identity_matrix(const unsigned int N) { + CImg res(N,N,1,1,0); + cimg_forX(res,x) res(x,x) = 1; + return res; + } + + //! Return a N-numbered sequence vector from \p a0 to \p a1. + /** + \param N Size of the resulting vector. + \param a0 Starting value of the sequence. + \param a1 Ending value of the sequence. + **/ + static CImg sequence(const unsigned int N, const T& a0, const T& a1) { + if (N) return CImg(1,N).sequence(a0,a1); + return CImg(); + } + + //! Return a 3x3 rotation matrix from an { axis + angle } or a quaternion. + /** + \param x X-coordinate of the rotation axis, or first quaternion coordinate. + \param y Y-coordinate of the rotation axis, or second quaternion coordinate. + \param z Z-coordinate of the rotation axis, or third quaternion coordinate. + \param w Angle of the rotation axis (in degree), or fourth quaternion coordinate. + \param is_quaternion Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w). + **/ + static CImg rotation_matrix(const float x, const float y, const float z, const float w, + const bool is_quaternion=false) { + double X, Y, Z, W, N; + if (is_quaternion) { + N = std::sqrt((double)x*x + (double)y*y + (double)z*z + (double)w*w); + if (N>0) { X = x/N; Y = y/N; Z = z/N; W = w/N; } + else { X = Y = Z = 0; W = 1; } + return CImg::matrix((T)(X*X + Y*Y - Z*Z - W*W),(T)(2*Y*Z - 2*X*W),(T)(2*X*Z + 2*Y*W), + (T)(2*X*W + 2*Y*Z),(T)(X*X - Y*Y + Z*Z - W*W),(T)(2*Z*W - 2*X*Y), + (T)(2*Y*W - 2*X*Z),(T)(2*X*Y + 2*Z*W),(T)(X*X - Y*Y - Z*Z + W*W)); + } + N = cimg::hypot((double)x,(double)y,(double)z); + if (N>0) { X = x/N; Y = y/N; Z = z/N; } + else { X = Y = 0; Z = 1; } + const double ang = w*cimg::PI/180, c = std::cos(ang), omc = 1 - c, s = std::sin(ang); + return CImg::matrix((T)(X*X*omc + c),(T)(X*Y*omc - Z*s),(T)(X*Z*omc + Y*s), + (T)(X*Y*omc + Z*s),(T)(Y*Y*omc + c),(T)(Y*Z*omc - X*s), + (T)(X*Z*omc - Y*s),(T)(Y*Z*omc + X*s),(T)(Z*Z*omc + c)); + } + + //@} + //----------------------------------- + // + //! \name Value Manipulation + //@{ + //----------------------------------- + + //! Fill all pixel values with specified value. + /** + \param val Fill value. + **/ + CImg& fill(const T& val) { + if (is_empty()) return *this; + if (val && sizeof(T)!=1) cimg_for(*this,ptrd,T) *ptrd = val; + else std::memset(_data,(int)(ulongT)val,sizeof(T)*size()); // Double cast to allow val to be (void*) + return *this; + } + + //! Fill all pixel values with specified value \newinstance. + CImg get_fill(const T& val) const { + return CImg(_width,_height,_depth,_spectrum).fill(val); + } + + //! Fill sequentially all pixel values with specified values. + /** + \param val0 First fill value. + \param val1 Second fill value. + **/ + CImg& fill(const T& val0, const T& val1) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 1; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 2; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 3; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 4; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 5; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 6; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 7; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 8; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 9; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 10; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 11; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 12; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 13; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12,val13); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 14; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12,val13,val14); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14, const T& val15) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 15; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14, const T& val15) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12,val13,val14,val15); + } + + //! Fill sequentially pixel values according to a given expression. + /** + \param expression C-string describing a math formula, or a sequence of values. + \param repeat_values In case a list of values is provided, tells if this list must be repeated for the filling. + \param allow_formula Tells that mathematical formulas are authorized for the filling. + \param list_images In case of a mathematical expression, attach a list of images to the specified expression. + **/ + CImg& fill(const char *const expression, const bool repeat_values, const bool allow_formula=true, + CImgList *const list_images=0) { + return _fill(expression,repeat_values,allow_formula?3:1,list_images,"fill",0,0); + } + + // bits of 'mode' can enable/disable these properties: + // . 1 = Allow list of values. + // . 2 = Allow formula. + // . 4 = Evaluate but does not fill image values. + CImg& _fill(const char *const expression, const bool repeat_values, const unsigned int mode, + CImgList *const list_images, const char *const calling_function, + const CImg *provides_copy, CImg *const result_end) { + if (is_empty() || !expression || !*expression) return *this; + const unsigned int excmode = cimg::exception_mode(); + cimg::exception_mode(0); + CImg is_error_expr; + bool is_done = false, is_value_sequence = false; + cimg_abort_init; + if (result_end) result_end->assign(); + + // Detect value sequence. + if (mode&1) { + double value; + char sep; + const int err = cimg_sscanf(expression,"%lf %c",&value,&sep); + if (err==1 || (err==2 && sep==',')) { + if (err==1) { if (mode&4) return *this; return fill((T)value); } + else is_value_sequence = true; + } + } + + // Try to fill values according to a formula. + if (mode&2 && !is_value_sequence) { + _cimg_abort_init_openmp; + try { + CImg base = provides_copy?provides_copy->get_shared():get_shared(); + _cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' || *expression=='+' || + *expression=='*' || *expression==':'), + calling_function,base,this,list_images,true); + if (!provides_copy && expression && + *expression!='>' && *expression!='<' && *expression!=':' && + mp.need_input_copy) + base.assign().assign(*this,false); // Needs input copy + + // Determine M2, smallest image dimension (used as axis for the most inner loop in parallelized iterations). + // M1 is the total number of parallelized iterations. + unsigned int M1 = 0, M2 = 0; + cimg::unused(M1,M2); + if (mp.result_dim) { + M2 = cimg::min(_width,_height,_depth); + M1 = M2==_width?_height*_depth:M2==_height?_width*_depth:_width*_height; + } else { + M2 = cimg::min(_width,_height,_depth,_spectrum); + M1 = M2==_width?_height*_depth*_spectrum:M2==_height?_width*_depth*_spectrum: + M2==_depth?_width*_height*_spectrum:_width*_height*_depth; + } + + bool is_parallelizable = false; + cimg_openmp_if(*expression=='*' || *expression==':' || (mp.is_parallelizable && + (M2>=2 || M1>=4096) && M1*M2>=32)) + is_parallelizable = true; + + if (mp.result_dim) { // Vector-valued expression + const unsigned int N = std::min(mp.result_dim,_spectrum); + const ulongT whd = (ulongT)_width*_height*_depth; + T *ptrd = *expression=='<'?_data + _width*_height*_depth - 1:_data; + + if (*expression=='<') { + CImg res(1,mp.result_dim); + mp.begin_t(); + cimg_rofYZ(*this,y,z) { + cimg_abort_test; + if (mode&4) cimg_rofX(*this,x) mp(x,y,z,0); + else cimg_rofX(*this,x) { + mp(x,y,z,0,res._data); + const double *ptrs = res._data; + T *_ptrd = ptrd--; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } + } + } + mp.end_t(); + + } else if (*expression=='>' || *expression=='+' || !is_parallelizable) { + CImg res(1,mp.result_dim); + mp.begin_t(); + cimg_forYZ(*this,y,z) { + cimg_abort_test; + if (mode&4) cimg_forX(*this,x) mp(x,y,z,0); + else cimg_forX(*this,x) { + mp(x,y,z,0,res._data); + const double *ptrs = res._data; + T *_ptrd = ptrd++; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } + } + } + mp.end_t(); + + } else { + +#if cimg_use_openmp!=0 + cimg_pragma_openmp(parallel) + { + _cimg_math_parser + *const _mp = omp_get_thread_num()?new _cimg_math_parser(mp):&mp, + &lmp = *_mp; + lmp.is_fill = true; + cimg_pragma_openmp(barrier) + lmp.begin_t(); + +#define _cimg_fill_openmp_vector(_YZ,_y,_z,_X,_x,_sx,_sy,_sz,_off) \ + cimg_pragma_openmp(for cimg_openmp_collapse(2)) \ + cimg_for##_YZ(*this,_y,_z) _cimg_abort_try_openmp { \ + cimg_abort_test; \ + if (mode&4) cimg_for##_X(*this,_x) lmp(x,y,z,0); \ + else { \ + CImg res(1,lmp.result_dim); \ + T *__ptrd = data(_sx,_sy,_sz,0); \ + const ulongT off = (ulongT)_off; \ + cimg_for##_X(*this,_x) { \ + lmp(x,y,z,0,res._data); \ + const double *ptrs = res._data; \ + T *_ptrd = __ptrd; \ + for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } \ + __ptrd+=off; \ + } \ + } \ + } _cimg_abort_catch_openmp _cimg_abort_catch_fill_openmp + + if (M2==_width) { _cimg_fill_openmp_vector(YZ,y,z,X,x,0,y,z,1) } + else if (M2==_height) { _cimg_fill_openmp_vector(XZ,x,z,Y,y,x,0,z,_width) } + else { _cimg_fill_openmp_vector(XY,x,y,Z,z,x,y,0,_width*_height) } + + lmp.end_t(); + cimg_pragma_openmp(barrier) cimg_pragma_openmp(critical) { lmp.merge(mp); } + if (&lmp!=&mp) delete &lmp; + } +#endif + } + + } else { // Scalar-valued expression + T *ptrd = *expression=='<'?end() - 1:_data; + if (*expression=='<') { + mp.begin_t(); + if (mode&4) cimg_rofYZC(*this,y,z,c) { cimg_abort_test; cimg_rofX(*this,x) mp(x,y,z,c); } + else cimg_rofYZC(*this,y,z,c) { cimg_abort_test; cimg_rofX(*this,x) *(ptrd--) = (T)mp(x,y,z,c); } + mp.end_t(); + + } else if (*expression=='>' || *expression=='+' || !is_parallelizable) { + mp.begin_t(); + if (mode&4) cimg_forYZC(*this,y,z,c) { cimg_abort_test; cimg_forX(*this,x) mp(x,y,z,c); } + else cimg_forYZC(*this,y,z,c) { cimg_abort_test; cimg_forX(*this,x) *(ptrd++) = (T)mp(x,y,z,c); } + mp.end_t(); + + } else { + +#if cimg_use_openmp!=0 + cimg_pragma_openmp(parallel) + { + _cimg_math_parser + *const _mp = omp_get_thread_num()?new _cimg_math_parser(mp):&mp, + &lmp = *_mp; + lmp.is_fill = true; + cimg_pragma_openmp(barrier) + lmp.begin_t(); + +#define _cimg_fill_openmp_scalar(_YZC,_y,_z,_c,_X,_x,_sx,_sy,_sz,_sc,_off) \ + cimg_pragma_openmp(for cimg_openmp_collapse(3)) \ + cimg_for##_YZC(*this,_y,_z,_c) _cimg_abort_try_openmp { \ + cimg_abort_test; \ + if (mode&4) cimg_for##_X(*this,_x) lmp(x,y,z,c); \ + else { \ + T *_ptrd = data(_sx,_sy,_sz,_sc); \ + const ulongT off = (ulongT)_off; \ + cimg_for##_X(*this,_x) { *_ptrd = (T)lmp(x,y,z,c); _ptrd+=off; } \ + } \ + } _cimg_abort_catch_openmp _cimg_abort_catch_fill_openmp + + if (M2==_width) { _cimg_fill_openmp_scalar(YZC,y,z,c,X,x,0,y,z,c,1) } + else if (M2==_height) { _cimg_fill_openmp_scalar(XZC,x,z,c,Y,y,x,0,z,c,_width) } + else if (M2==_depth) { _cimg_fill_openmp_scalar(XYC,x,y,c,Z,z,x,y,0,c,_width*_height) } + else { _cimg_fill_openmp_scalar(XYZ,x,y,z,C,c,x,y,z,0,_width*_height*_depth) } + + lmp.end_t(); + cimg_pragma_openmp(barrier) cimg_pragma_openmp(critical) { lmp.merge(mp); } + if (&lmp!=&mp) delete &lmp; + } +#endif + } + } + mp.end(); + + if (result_end && mp.result_end) // Transfer result of the end() block if requested. + result_end->assign(mp.result_end + (mp.result_end_dim?1:0),std::max(1U,mp.result_end_dim)); + + is_done = true; + } catch (CImgException& e) { CImg::string(e._message).move_to(is_error_expr); } + } + + // Try to fill values according to a value sequence. + if (!is_done && mode&1) is_done = !_fill_from_values(expression,repeat_values); + + if (!is_done) { + cimg::exception_mode(excmode); + if (is_error_expr) throw CImgArgumentException(_cimg_instance + "%s", + cimg_instance,is_error_expr._data); + else throw CImgArgumentException(_cimg_instance + "%s(): Invalid sequence of filling values '%s'.", + cimg_instance,calling_function,expression); + } + cimg::exception_mode(excmode); + cimg_abort_test; + return *this; + } + + //! Fill sequentially pixel values according to a given expression \newinstance. + CImg get_fill(const char *const expression, const bool repeat_values, const bool allow_formula=true, + CImgList *const list_images=0) const { + return (+*this).fill(expression,repeat_values,allow_formula?1:0,list_images); + } + + //! Fill sequentially pixel values according to a value sequence, given as a string. + /** + \param values C-string describing a sequence of values. + \param repeat_values Tells if this sequence must be repeated when filling. + **/ + CImg& fill_from_values(const char *const values, const bool repeat_values) { + if (_fill_from_values(values,repeat_values)) + throw CImgArgumentException(_cimg_instance + "Invalid sequence of filling values '%s'.", + cimg_instance,values); + return *this; + } + + //! Fill sequentially pixel values according to a value sequence, given as a string \newinstance. + CImg get_fill_from_values(const char *const values, const bool repeat_values) const { + return (+*this).fill_from_values(values,repeat_values); + } + + // Fill image according to a value sequence, given as a string. + // Return 'true' if an error occured, 'false' otherwise. + bool _fill_from_values(const char *const values, const bool repeat_values) { + CImg item(256); + const char *nvalues = values; + const ulongT siz = size(); + T *ptrd = _data; + ulongT nb = 0; + char sep = 0; + for (double val = 0; *nvalues && nb0 && cimg_sscanf(item,"%lf",&val)==1 && (sep==',' || sep==';' || err==1)) { + nvalues+=std::strlen(item) + (err>1); + *(ptrd++) = (T)val; + } else break; + } + if (nb + CImg& fill(const CImg& values, const bool repeat_values=true) { + if (is_empty() || !values) return *this; + T *ptrd = _data, *ptre = ptrd + size(); + for (t *ptrs = values._data, *ptrs_end = ptrs + values.size(); ptrs + CImg get_fill(const CImg& values, const bool repeat_values=true) const { + return repeat_values?CImg(_width,_height,_depth,_spectrum).fill(values,repeat_values): + (+*this).fill(values,repeat_values); + } + + //! Fill pixel values along the X-axis at a specified pixel position. + /** + \param y Y-coordinate of the filled column. + \param z Z-coordinate of the filled column. + \param c C-coordinate of the filled column. + \param a0 First fill value. + **/ + CImg& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const int a0, ...) { +#define _cimg_fill1(x,y,z,c,off,siz,t) { \ + va_list ap; va_start(ap,a0); T *ptrd = data(x,y,z,c); *ptrd = (T)a0; \ + for (unsigned int k = 1; k& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const double a0, ...) { + if (y<_height && z<_depth && c<_spectrum) _cimg_fill1(0,y,z,c,1,_width,double); + return *this; + } + + //! Fill pixel values along the Y-axis at a specified pixel position. + /** + \param x X-coordinate of the filled row. + \param z Z-coordinate of the filled row. + \param c C-coordinate of the filled row. + \param a0 First fill value. + **/ + CImg& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const int a0, ...) { + if (x<_width && z<_depth && c<_spectrum) _cimg_fill1(x,0,z,c,_width,_height,int); + return *this; + } + + //! Fill pixel values along the Y-axis at a specified pixel position \overloading. + CImg& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const double a0, ...) { + if (x<_width && z<_depth && c<_spectrum) _cimg_fill1(x,0,z,c,_width,_height,double); + return *this; + } + + //! Fill pixel values along the Z-axis at a specified pixel position. + /** + \param x X-coordinate of the filled slice. + \param y Y-coordinate of the filled slice. + \param c C-coordinate of the filled slice. + \param a0 First fill value. + **/ + CImg& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const int a0, ...) { + const ulongT wh = (ulongT)_width*_height; + if (x<_width && y<_height && c<_spectrum) _cimg_fill1(x,y,0,c,wh,_depth,int); + return *this; + } + + //! Fill pixel values along the Z-axis at a specified pixel position \overloading. + CImg& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const double a0, ...) { + const ulongT wh = (ulongT)_width*_height; + if (x<_width && y<_height && c<_spectrum) _cimg_fill1(x,y,0,c,wh,_depth,double); + return *this; + } + + //! Fill pixel values along the C-axis at a specified pixel position. + /** + \param x X-coordinate of the filled channel. + \param y Y-coordinate of the filled channel. + \param z Z-coordinate of the filled channel. + \param a0 First filling value. + **/ + CImg& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const int a0, ...) { + const ulongT whd = (ulongT)_width*_height*_depth; + if (x<_width && y<_height && z<_depth) _cimg_fill1(x,y,z,0,whd,_spectrum,int); + return *this; + } + + //! Fill pixel values along the C-axis at a specified pixel position \overloading. + CImg& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const double a0, ...) { + const ulongT whd = (ulongT)_width*_height*_depth; + if (x<_width && y<_height && z<_depth) _cimg_fill1(x,y,z,0,whd,_spectrum,double); + return *this; + } + + //! Discard specified sequence of values in the image buffer, along a specific axis. + /** + \param values Sequence of values to discard. + \param axis Axis along which the values are discarded. If set to \c 0 (default value) + the method does it for all the buffer values and returns a one-column vector. + \note Discarded values will change the image geometry, so the resulting image + is returned as a one-column vector. + **/ + template + CImg& discard(const CImg& values, const char axis=0) { + if (is_empty() || !values) return *this; + return get_discard(values,axis).move_to(*this); + } + + template + CImg get_discard(const CImg& values, const char axis=0) const { + if (!values) return +*this; + CImg res; + if (is_empty()) return res; + const ulongT vsiz = values.size(); + const char _axis = cimg::lowercase(axis); + ulongT j = 0; + unsigned int k = 0; + int i0 = 0; + res.assign(width(),height(),depth(),spectrum()); + switch (_axis) { + case 'x' : { + cimg_forX(*this,i) { + if ((*this)(i)!=(T)values[j]) { + if (j) --i; + res.draw_image(k,get_columns(i0,i)); + k+=i - i0 + 1; i0 = i + 1; j = 0; + } else { ++j; if (j>=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = (int)i + 1; }} + } + if ((ulongT)i0& discard(const char axis=0) { + return get_discard(axis).move_to(*this); + } + + //! Discard neighboring duplicates in the image buffer, along the specified axis \newinstance. + CImg get_discard(const char axis=0) const { + CImg res; + if (is_empty()) return res; + const char _axis = cimg::lowercase(axis); + T current = *_data?(T)0:(T)1; + int j = 0; + res.assign(width(),height(),depth(),spectrum()); + switch (_axis) { + case 'x' : { + cimg_forX(*this,i) + if ((*this)(i)!=current) { res.draw_image(j++,get_column(i)); current = (*this)(i); } + res.resize(j,-100,-100,-100,0); + } break; + case 'y' : { + cimg_forY(*this,i) + if ((*this)(0,i)!=current) { res.draw_image(0,j++,get_row(i)); current = (*this)(0,i); } + res.resize(-100,j,-100,-100,0); + } break; + case 'z' : { + cimg_forZ(*this,i) + if ((*this)(0,0,i)!=current) { res.draw_image(0,0,j++,get_slice(i)); current = (*this)(0,0,i); } + res.resize(-100,-100,j,-100,0); + } break; + case 'c' : { + cimg_forC(*this,i) + if ((*this)(0,0,0,i)!=current) { res.draw_image(0,0,0,j++,get_channel(i)); current = (*this)(0,0,0,i); } + res.resize(-100,-100,-100,j,0); + } break; + default : { + res.unroll('y'); + cimg_foroff(*this,i) { + const T val = (*this)[i]; + if (val!=current) res[j++] = current = val; + } + res.resize(-100,j,-100,-100,0); + } + } + return res; + } + + //! Invert endianness of all pixel values. + /** + **/ + CImg& invert_endianness() { + cimg::invert_endianness(_data,size()); + return *this; + } + + //! Invert endianness of all pixel values \newinstance. + CImg get_invert_endianness() const { + return (+*this).invert_endianness(); + } + + //! Fill image with random values in specified range. + /** + \param val_min Minimal authorized random value. + \param val_max Maximal authorized random value. + \note Random variables are uniformly distributed in [val_min,val_max]. + **/ + CImg& rand(const T& val_min, const T& val_max) { + const float delta = (float)val_max - (float)val_min + (cimg::type::is_float()?0:1); + if (cimg::type::is_float()) cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),524288)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for) + cimg_rofoff(*this,off) _data[off] = (T)(val_min + delta*cimg::rand(1,&rng)); + cimg::srand(rng); + } else cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),524288)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for) + cimg_rofoff(*this,off) _data[off] = std::min(val_max,(T)(val_min + delta*cimg::rand(1,&rng))); + cimg::srand(rng); + } + return *this; + } + + //! Fill image with random values in specified range \newinstance. + CImg get_rand(const T& val_min, const T& val_max) const { + return (+*this).rand(val_min,val_max); + } + + //! Fill image with random values following specified distribution and range. + /** + \param val_min Minimal authorized random value. + \param val_max Maximal authorized random value. + \param pdf Probability density function. + \param precision Precision of generated values. Set to '0' for automatic precision. + A negative value means 'percentage of the pdf size'. + **/ + template + CImg& rand(const T& val_min, const T& val_max, const CImg& pdf, const int precision=65536) { + typedef _cimg_tfloat tfloat; + const unsigned int + siz = (unsigned int)pdf.size(), + prec = precision<0?(unsigned int)(-(float)siz*precision/100):(unsigned int)precision; + if (siz<2 || precision<2) return fill(val_min); + const tfloat + delta = (tfloat)val_max - (tfloat)val_min, + delta_over_siz1 = delta/(siz - 1); + + // Compute inverse cdf. + CImg cdf = pdf.get_max((t)0).cumulate(), icdf(prec); + unsigned int k = 0; + tfloat p = 0; + cdf*=(prec - 1)/cdf.back(); + cimg_forX(icdf,x) { + while (k=siz) { while (x + CImg get_rand(const T& val_min, const T& val_max, const CImg& pdf, const int precision=65536) const { + return (+*this).rand(val_min,val_max,pdf,precision); + } + + //! Round pixel values. + /** + \param y Rounding precision. + \param rounding_type Rounding type. Can be: + - \c -1: Backward. + - \c 0: Nearest. + - \c 1: Forward. + **/ + CImg& round(const double y=1, const int rounding_type=0) { + if (y>0) cimg_openmp_for(*this,cimg::round(*ptr,y,rounding_type),8192); + return *this; + } + + //! Round pixel values \newinstance. + CImg get_round(const double y=1, const unsigned int rounding_type=0) const { + return (+*this).round(y,rounding_type); + } + + //! Add random noise to pixel values. + /** + \param sigma Amplitude of the random additive noise. If \p sigma<0, it stands for a percentage of the + global value range. + \param noise_type Type of additive noise (can be \p 0=gaussian, \p 1=uniform, \p 2=Salt and Pepper, + \p 3=Poisson or \p 4=Rician). + \return A reference to the modified image instance. + \note + - For Poisson noise (\p noise_type=3), parameter \p sigma is ignored, as Poisson noise only depends on + the image value itself. + - Function \p CImg::get_noise() is also defined. It returns a non-shared modified copy of the image instance. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_noise(40); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_noise.jpg + **/ + CImg& noise(const double amplitude, const unsigned int noise_type=0) { + if (is_empty()) return *this; + const Tfloat vmin = (Tfloat)cimg::type::min(), vmax = (Tfloat)cimg::type::max(); + Tfloat namplitude = (Tfloat)amplitude, m = 0, M = 0; + if (namplitude==0 && noise_type!=3) return *this; + if (namplitude<0 || noise_type==2) m = (Tfloat)min_max(M); + if (namplitude<0) namplitude = (Tfloat)(-namplitude*(M-m)/100.); + switch (noise_type) { + case 0 : { // Gaussian noise + cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for) + cimg_rofoff(*this,off) { + Tfloat val = (Tfloat)(_data[off] + namplitude*cimg::grand(&rng)); + if (val>vmax) val = vmax; + if (valvmax) val = vmax; + if (val::is_float()) { --m; ++M; } + else { m = (Tfloat)cimg::type::min(); M = (Tfloat)cimg::type::max(); } + } + cimg_pragma_openmp(parallel cimg_openmp_if_size(size(),131072)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for) + cimg_rofoff(*this,off) if (cimg::rand(100,&rng)vmax) val = vmax; + if (val get_noise(const double amplitude, const unsigned int noise_type=0) const { + return (+*this).noise(amplitude,noise_type); + } + + //! Linearly normalize pixel values. + /** + \param min_value Minimum desired value of the resulting image. + \param max_value Maximum desired value of the resulting image. + \param constant_case_ratio In case of instance image having a constant value, tell what ratio + of [min_value,max_value] is used to fill the normalized image + (=0 for min_value, =1 for max_value, =0.5 for (min_value + max_value)/2). + \par Example + \code + const CImg img("reference.jpg"), res = img.get_normalize(160,220); + (img,res).display(); + \endcode + \image html ref_normalize2.jpg + **/ + CImg& normalize(const T& min_value, const T& max_value, + const float constant_case_ratio=0) { + if (is_empty()) return *this; + const T a = min_value get_normalize(const T& min_value, const T& max_value, + const float ratio_if_constant_image=0) const { + return CImg(*this,false).normalize((Tfloat)min_value,(Tfloat)max_value,ratio_if_constant_image); + } + + //! Normalize multi-valued pixels of the image instance, with respect to their L2-norm. + /** + \par Example + \code + const CImg img("reference.jpg"), res = img.get_normalize(); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_normalize.jpg + **/ + CImg& normalize() { + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + T *ptrd = data(0,y,z,0); + cimg_forX(*this,x) { + const T *ptrs = ptrd; + float n = 0; + cimg_forC(*this,c) { n+=cimg::sqr((float)*ptrs); ptrs+=whd; } + n = (float)std::sqrt(n); + T *_ptrd = ptrd++; + if (n>0) cimg_forC(*this,c) { *_ptrd = (T)(*_ptrd/n); _ptrd+=whd; } + else cimg_forC(*this,c) { *_ptrd = (T)0; _ptrd+=whd; } + } + } + return *this; + } + + //! Normalize multi-valued pixels of the image instance, with respect to their L2-norm \newinstance. + CImg get_normalize() const { + return CImg(*this,false).normalize(); + } + + //! Compute Lp-norm of each multi-valued pixel of the image instance. + /** + \param norm_type Type of computed vector norm (can be \p -1=Linf, or \p greater or equal than 0). + \par Example + \code + const CImg img("reference.jpg"), res = img.get_norm(); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_norm.jpg + **/ + CImg& norm(const int norm_type=2) { + if (_spectrum==1 && norm_type) return abs(); + return get_norm(norm_type).move_to(*this); + } + + //! Compute L2-norm of each multi-valued pixel of the image instance \newinstance. + CImg get_norm(const int norm_type=2) const { + if (is_empty()) return *this; + if (_spectrum==1 && norm_type) return get_abs(); + const ulongT whd = (ulongT)_width*_height*_depth; + CImg res(_width,_height,_depth); + switch (norm_type) { + case -1 : { // Linf-norm + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { const Tfloat val = (Tfloat)cimg::abs(*_ptrs); if (val>n) n = val; _ptrs+=whd; } + *(ptrd++) = n; + } + } + } break; + case 0 : { // L0-norm + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + unsigned int n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=*_ptrs==0?0:1; _ptrs+=whd; } + *(ptrd++) = (Tfloat)n; + } + } + } break; + case 1 : { // L1-norm + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=cimg::abs(*_ptrs); _ptrs+=whd; } + *(ptrd++) = n; + } + } + } break; + case 2 : { // L2-norm + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=cimg::sqr((Tfloat)*_ptrs); _ptrs+=whd; } + *(ptrd++) = (Tfloat)std::sqrt((Tfloat)n); + } + } + } break; + default : { // Linf-norm + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=std::pow(cimg::abs((Tfloat)*_ptrs),(Tfloat)norm_type); _ptrs+=whd; } + *(ptrd++) = (Tfloat)std::pow((Tfloat)n,1/(Tfloat)norm_type); + } + } + } + } + return res; + } + + //! Cut pixel values in specified range. + /** + \param min_value Minimum desired value of the resulting image. + \param max_value Maximum desired value of the resulting image. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_cut(160,220); + (img,res).display(); + \endcode + \image html ref_cut.jpg + **/ + CImg& cut(const T& min_value, const T& max_value) { + if (is_empty()) return *this; + const T a = min_value get_cut(const T& min_value, const T& max_value) const { + return (+*this).cut(min_value,max_value); + } + + //! Uniformly quantize pixel values. + /** + \param nb_levels Number of quantization levels. + \param keep_range Tells if resulting values keep the same range as the original ones. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_quantize(4); + (img,res).display(); + \endcode + \image html ref_quantize.jpg + **/ + CImg& quantize(const unsigned int nb_levels, const bool keep_range=true) { + if (!nb_levels) + throw CImgArgumentException(_cimg_instance + "quantize(): Invalid quantization request with 0 values.", + cimg_instance); + + if (is_empty()) return *this; + Tfloat m, M = (Tfloat)max_min(m), range = M - m; + if (range>0) { + if (keep_range) + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) + cimg_rofoff(*this,off) { + const unsigned int val = (unsigned int)((_data[off] - m)*nb_levels/range); + _data[off] = (T)(m + std::min(val,nb_levels - 1)*range/nb_levels); + } else + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) + cimg_rofoff(*this,off) { + const unsigned int val = (unsigned int)((_data[off] - m)*nb_levels/range); + _data[off] = (T)std::min(val,nb_levels - 1); + } + } + return *this; + } + + //! Uniformly quantize pixel values \newinstance. + CImg get_quantize(const unsigned int n, const bool keep_range=true) const { + return (+*this).quantize(n,keep_range); + } + + //! Return the Otsu threshold. + /** + \param nb_levels Number of histogram levels used for the estimation. + **/ + T otsu(const unsigned int nb_levels=256) const { + T m,M = max_min(m); + CImg hist = get_histogram(nb_levels,m,M); + ulongT sum = 0, sumB = 0, wB = 0; + double best_variance = 0; + unsigned int best_t = 0; + cimg_forX(hist,t) sum+=t*hist[t]; + cimg_forX(hist,t) { + wB+=hist[t]; + if (wB) { + const ulongT wF = size() - wB; + if (!wF) break; + sumB+=t*hist[t]; + const double + mB = (double)sumB/wB, + mF = (double)(sum - sumB)/wF, + variance = wB*wF*cimg::sqr(mB - mF); + if (variance>best_variance) { best_variance = variance; best_t = t; } + } + } + return m + best_t*(M - m)/(hist.width() - 1); + } + + //! Threshold pixel values. + /** + \param value Threshold value + \param soft_threshold Tells if soft thresholding must be applied (instead of hard one). + \param strict_threshold Tells if threshold value is strict. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_threshold(128); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_threshold.jpg + **/ + CImg& threshold(const T& value, const bool soft_threshold=false, const bool strict_threshold=false) { + if (is_empty()) return *this; + if (strict_threshold) { + if (soft_threshold) + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) + cimg_rofoff(*this,off) { + const T v = _data[off]; + _data[off] = v>value?(T)(v-value):v<-(float)value?(T)(v + value):(T)0; + } + else + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),65536)) + cimg_rofoff(*this,off) _data[off] = _data[off]>value?(T)1:(T)0; + } else { + if (soft_threshold) + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32768)) + cimg_rofoff(*this,off) { + const T v = _data[off]; + _data[off] = v>=value?(T)(v-value):v<=-(float)value?(T)(v + value):(T)0; + } + else + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),65536)) + cimg_rofoff(*this,off) _data[off] = _data[off]>=value?(T)1:(T)0; + } + return *this; + } + + //! Threshold pixel values \newinstance. + CImg get_threshold(const T& value, const bool soft_threshold=false, const bool strict_threshold=false) const { + return (+*this).threshold(value,soft_threshold,strict_threshold); + } + + //! Compute the histogram of pixel values. + /** + \param nb_levels Number of desired histogram levels. + \param min_value Minimum pixel value considered for the histogram computation. + All pixel values lower than \p min_value will not be counted. + \param max_value Maximum pixel value considered for the histogram computation. + All pixel values higher than \p max_value will not be counted. + \note + - The histogram H of an image I is the 1D function where H(x) counts the number of occurrences of the value x + in the image I. + - The resulting histogram is always defined in 1D. Histograms of multi-valued images are not multi-dimensional. + \par Example + \code + const CImg img = CImg("reference.jpg").histogram(256); + img.display_graph(0,3); + \endcode + \image html ref_histogram.jpg + **/ + CImg& histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) { + return get_histogram(nb_levels,min_value,max_value).move_to(*this); + } + + //! Compute the histogram of pixel values \overloading. + CImg& histogram(const unsigned int nb_levels) { + return get_histogram(nb_levels).move_to(*this); + } + + //! Compute the histogram of pixel values \newinstance. + CImg get_histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) const { + if (!nb_levels || is_empty()) return CImg(); + const double + vmin = (double)(min_value res(nb_levels,1,1,1,0); + cimg_rof(*this,ptrs,T) { + const T val = *ptrs; + if (val>=vmin && val<=vmax) ++res[val==vmax?nb_levels - 1:(unsigned int)((val - vmin)*nb_levels/(vmax - vmin))]; + } + return res; + } + + //! Compute the histogram of pixel values \newinstance. + CImg get_histogram(const unsigned int nb_levels) const { + if (!nb_levels || is_empty()) return CImg(); + T vmax = 0, vmin = min_max(vmax); + return get_histogram(nb_levels,vmin,vmax); + } + + //! Equalize histogram of pixel values. + /** + \param nb_levels Number of histogram levels used for the equalization. + \param min_value Minimum pixel value considered for the histogram computation. + All pixel values lower than \p min_value will not be counted. + \param max_value Maximum pixel value considered for the histogram computation. + All pixel values higher than \p max_value will not be counted. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_equalize(256); + (img,res).display(); + \endcode + \image html ref_equalize.jpg + **/ + CImg& equalize(const unsigned int nb_levels, const T& min_value, const T& max_value) { + if (!nb_levels || is_empty()) return *this; + const T + vmin = min_value hist = get_histogram(nb_levels,vmin,vmax); + ulongT cumul = 0; + cimg_forX(hist,pos) { cumul+=hist[pos]; hist[pos] = cumul; } + if (!cumul) cumul = 1; + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),1048576)) + cimg_rofoff(*this,off) { + const int pos = (int)((_data[off] - vmin)*(nb_levels - 1.)/(vmax - vmin)); + if (pos>=0 && pos<(int)nb_levels) _data[off] = (T)(vmin + (vmax - vmin)*hist[pos]/cumul); + } + return *this; + } + + //! Equalize histogram of pixel values \overloading. + CImg& equalize(const unsigned int nb_levels) { + if (!nb_levels || is_empty()) return *this; + T vmax = 0, vmin = min_max(vmax); + return equalize(nb_levels,vmin,vmax); + } + + //! Equalize histogram of pixel values \newinstance. + CImg get_equalize(const unsigned int nblevels, const T& val_min, const T& val_max) const { + return (+*this).equalize(nblevels,val_min,val_max); + } + + //! Equalize histogram of pixel values \newinstance. + CImg get_equalize(const unsigned int nblevels) const { + return (+*this).equalize(nblevels); + } + + //! Index multi-valued pixels regarding to a specified palette. + /** + \param colormap Multi-valued colormap used as the basis for multi-valued pixel indexing. + \param dithering Level of dithering (0=disable, 1=standard level). + \param map_colors Tell if the values of the resulting image are the colormap indices or the colormap vectors. + \note + - \p img.index(colormap,dithering,1) is equivalent to img.index(colormap,dithering,0).map(colormap). + \par Example + \code + const CImg img("reference.jpg"), colormap(3,1,1,3, 0,128,255, 0,128,255, 0,128,255); + const CImg res = img.get_index(colormap,1,true); + (img,res).display(); + \endcode + \image html ref_index.jpg + **/ + template + CImg& index(const CImg& colormap, const float dithering=1, const bool map_colors=false) { + return get_index(colormap,dithering,map_colors).move_to(*this); + } + + //! Index multi-valued pixels regarding to a specified colormap \newinstance. + template + CImg::Tuint> + get_index(const CImg& colormap, const float dithering=1, const bool map_colors=true) const { + if (colormap._spectrum!=_spectrum) + throw CImgArgumentException(_cimg_instance + "index(): Instance and specified colormap (%u,%u,%u,%u,%p) " + "have incompatible dimensions.", + cimg_instance, + colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data); + + typedef typename CImg::Tuint tuint; + if (is_empty()) return CImg(); + const ulongT + whd = (ulongT)_width*_height*_depth, + pwhd = (ulongT)colormap._width*colormap._height*colormap._depth; + CImg res(_width,_height,_depth,map_colors?_spectrum:1); + if (dithering>0) { // Dithered versions + tuint *ptrd = res._data; + const float ndithering = cimg::cut(dithering,0,1)/16; + Tfloat valm = 0, valM = (Tfloat)max_min(valm); + if (valm==valM && valm>=0 && valM<=255) { valm = 0; valM = 255; } + CImg cache = get_crop(-1,0,0,0,_width,1,0,_spectrum - 1); + Tfloat *cache_current = cache.data(1,0,0,0), *cache_next = cache.data(1,1,0,0); + const ulongT cwhd = (ulongT)cache._width*cache._height*cache._depth; + switch (_spectrum) { + case 1 : { // Optimized for scalars + cimg_forYZ(*this,y,z) { + if (yvalM?valM:_val0; + Tfloat distmin = cimg::type::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0valM?valM:_val0, + _val1 = (Tfloat)*ptrs1, val1 = _val1valM?valM:_val1; + Tfloat distmin = cimg::type::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0valM?valM:_val0, + _val1 = (Tfloat)*ptrs1, val1 = _val1valM?valM:_val1, + _val2 = (Tfloat)*ptrs2, val2 = _val2valM?valM:_val2; + Tfloat distmin = cimg::type::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd, + *ptrp_end = ptrp1; ptrp0::max(); const t *ptrmin = colormap._data; + for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrpvalM?valM:_val; + dist+=cimg::sqr((*_ptrs=val) - (Tfloat)*_ptrp); _ptrs+=cwhd; _ptrp+=pwhd; + } + if (dist=(cimg_openmp_sizefactor)*64 && + _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z); + for (const T *ptrs0 = data(0,y,z), *ptrs_end = ptrs0 + _width; ptrs0::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0=(cimg_openmp_sizefactor)*64 && + _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z), *ptrd1 = ptrd + whd; + for (const T *ptrs0 = data(0,y,z), *ptrs1 = ptrs0 + whd, *ptrs_end = ptrs0 + _width; ptrs0::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0=(cimg_openmp_sizefactor)*64 && + _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z), *ptrd1 = ptrd + whd, *ptrd2 = ptrd1 + whd; + for (const T *ptrs0 = data(0,y,z), *ptrs1 = ptrs0 + whd, *ptrs2 = ptrs1 + whd, + *ptrs_end = ptrs0 + _width; ptrs0::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd, + *ptrp_end = ptrp1; ptrp0=(cimg_openmp_sizefactor)*64 && + _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z); + for (const T *ptrs = data(0,y,z), *ptrs_end = ptrs + _width; ptrs::max(); const t *ptrmin = colormap._data; + for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrp img("reference.jpg"), + palette1(3,1,1,3, 0,128,255, 0,128,255, 0,128,255), + palette2(3,1,1,3, 255,0,0, 0,255,0, 0,0,255), + res = img.get_index(palette1,0).map(palette2); + (img,res).display(); + \endcode + \image html ref_map.jpg + **/ + template + CImg& map(const CImg& palette, const unsigned int boundary_conditions=0) { + return get_map(palette,boundary_conditions).move_to(*this); + } + + //! Map predefined palette on the scalar (indexed) image instance \newinstance. + template + CImg get_map(const CImg& palette, const unsigned int boundary_conditions=0) const { + const ulongT + whd = (ulongT)_width*_height*_depth, siz = size(), + cwhd = (ulongT)palette._width*palette._height*palette._depth, + cwhd2 = 2*cwhd; + CImg res(_width,_height,_depth,_spectrum*palette._spectrum); + switch (palette._spectrum) { + + case 1 : { // Optimized for scalars + switch (boundary_conditions) { + case 3 : // Mirror + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),256)) + for (longT off = 0; off<(longT)siz; ++off) { + const ulongT ind = ((ulongT)_data[off])%cwhd2; + res[off] = palette[ind& label(const bool is_high_connectivity=false, const Tfloat tolerance=0, + const bool is_L2_norm=true) { + if (is_empty()) return *this; + return get_label(is_high_connectivity,tolerance,is_L2_norm).move_to(*this); + } + + //! Label connected components \newinstance. + CImg get_label(const bool is_high_connectivity=false, const Tfloat tolerance=0, + const bool is_L2_norm=true) const { + if (is_empty()) return CImg(); + + // Create neighborhood tables. + int dx[13], dy[13], dz[13], nb = 0; + dx[nb] = 1; dy[nb] = 0; dz[nb++] = 0; + dx[nb] = 0; dy[nb] = 1; dz[nb++] = 0; + if (is_high_connectivity) { + dx[nb] = 1; dy[nb] = 1; dz[nb++] = 0; + dx[nb] = 1; dy[nb] = -1; dz[nb++] = 0; + } + if (_depth>1) { // 3D version + dx[nb] = 0; dy[nb] = 0; dz[nb++]=1; + if (is_high_connectivity) { + dx[nb] = 1; dy[nb] = 1; dz[nb++] = -1; + dx[nb] = 1; dy[nb] = 0; dz[nb++] = -1; + dx[nb] = 1; dy[nb] = -1; dz[nb++] = -1; + dx[nb] = 0; dy[nb] = 1; dz[nb++] = -1; + + dx[nb] = 0; dy[nb] = 1; dz[nb++] = 1; + dx[nb] = 1; dy[nb] = -1; dz[nb++] = 1; + dx[nb] = 1; dy[nb] = 0; dz[nb++] = 1; + dx[nb] = 1; dy[nb] = 1; dz[nb++] = 1; + } + } + return _label(nb,dx,dy,dz,tolerance,is_L2_norm); + } + + //! Label connected components \overloading. + /** + \param connectivity_mask Mask of the neighboring pixels. + \param tolerance Tolerance used to determine if two neighboring pixels belong to the same region. + \param is_L2_norm If true, tolerance is compared against L2 difference, otherwise L1 is used. + **/ + template + CImg& label(const CImg& connectivity_mask, const Tfloat tolerance=0, + const bool is_L2_norm=true) { + if (is_empty()) return *this; + return get_label(connectivity_mask,tolerance,is_L2_norm).move_to(*this); + } + + //! Label connected components \newinstance. + template + CImg get_label(const CImg& connectivity_mask, const Tfloat tolerance=0, + const bool is_L2_norm=true) const { + if (is_empty()) return CImg(); + int nb = 0; + cimg_for(connectivity_mask,ptr,t) if (*ptr) ++nb; + CImg dx(nb,1,1,1,0), dy(nb,1,1,1,0), dz(nb,1,1,1,0); + nb = 0; + cimg_forXYZ(connectivity_mask,x,y,z) if ((x || y || z) && + connectivity_mask(x,y,z)) { + dx[nb] = x; dy[nb] = y; dz[nb++] = z; + } + return _label(nb,dx,dy,dz,tolerance,is_L2_norm); + } + + CImg _label(const unsigned int nb, const int *const dx, + const int *const dy, const int *const dz, + const Tfloat tolerance, const bool is_L2_norm) const { + CImg res(_width,_height,_depth); + const Tfloat _tolerance = _spectrum>1 && is_L2_norm?cimg::sqr(tolerance):tolerance; + + // Init label numbers. + ulongT *ptr = res.data(); + cimg_foroff(res,p) *(ptr++) = p; + + // For each neighbour-direction, label. + for (unsigned int n = 0; n& _system_strescape() { +#define cimg_system_strescape(c,s) case c : if (p!=ptrs) CImg(ptrs,(unsigned int)(p-ptrs),1,1,1,false).\ + move_to(list); \ + CImg(s,(unsigned int)std::strlen(s),1,1,1,false).move_to(list); ptrs = p + 1; break + CImgList list; + const T *ptrs = _data; + cimg_for(*this,p,T) switch ((int)*p) { + cimg_system_strescape('\\',"\\\\"); + cimg_system_strescape('\"',"\\\""); + cimg_system_strescape('!',"\"\\!\""); + cimg_system_strescape('`',"\\`"); + cimg_system_strescape('$',"\\$"); + } + if (ptrs(ptrs,(unsigned int)(end()-ptrs),1,1,1,false).move_to(list); + return (list>'x').move_to(*this); + } + + //@} + //--------------------------------- + // + //! \name Color Base Management + //@{ + //--------------------------------- + + //! Return palette \e "default", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_default.jpg + **/ + static const CImg& default_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) { + palette.assign(1,256,1,3); + for (unsigned int index = 0, r = 16; r<256; r+=32) + for (unsigned int g = 16; g<256; g+=32) + for (unsigned int b = 32; b<256; b+=64) { + palette(0,index,0) = (Tuchar)r; + palette(0,index,1) = (Tuchar)g; + palette(0,index++,2) = (Tuchar)b; + } + } + cimg::mutex(8,0); + return palette; + } + + //! Return palette \e "HSV", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_hsv.jpg + **/ + static const CImg& HSV_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) { + CImg tmp(1,256,1,3,1); + tmp.get_shared_channel(0).sequence(0,359); + palette = tmp.HSVtoRGB(); + } + cimg::mutex(8,0); + return palette; + } + + //! Return palette \e "lines", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_lines.jpg + **/ + static const CImg& lines_LUT256() { + static const unsigned char pal[] = { + 0,255,255,0,0,28,125,125,235,210,186,182,36,0,125,255, + 53,32,255,210,89,186,65,45,125,210,210,97,130,194,0,125, + 206,53,190,89,255,146,20,190,154,73,255,36,130,215,0,138, + 101,210,61,194,206,0,77,45,255,154,174,0,190,239,89,125, + 16,36,158,223,117,0,97,69,223,255,40,239,0,0,255,0, + 97,170,93,255,138,40,117,210,0,170,53,158,186,255,0,121, + 227,121,186,40,20,190,89,255,77,57,130,142,255,73,186,85, + 210,8,32,166,243,130,210,40,255,45,61,142,223,49,121,255, + 20,162,158,73,89,255,53,138,210,190,57,235,36,73,255,49, + 210,0,210,85,57,97,255,121,85,174,40,255,162,178,0,121, + 166,125,53,146,166,255,97,121,65,89,235,231,12,170,36,190, + 85,255,166,97,198,77,20,146,109,166,255,28,40,202,121,81, + 247,0,210,255,49,0,65,255,36,166,93,77,255,85,251,0, + 170,178,0,182,255,0,162,16,154,142,162,223,223,0,0,81, + 215,4,215,162,215,125,77,206,121,36,125,231,101,16,255,121, + 0,57,190,215,65,125,89,142,255,101,73,53,146,223,125,125, + 0,255,0,255,0,206,93,138,49,255,0,202,154,85,45,219, + 251,53,0,255,40,130,219,158,16,117,186,130,202,49,65,239, + 89,202,49,28,247,134,150,0,255,117,202,4,215,81,186,57, + 202,89,73,210,40,93,45,251,206,28,223,142,40,134,162,125, + 32,247,97,170,0,255,57,134,73,247,162,0,251,40,142,142, + 8,166,206,81,154,194,93,89,125,243,28,109,227,0,190,65, + 194,186,0,255,53,45,109,186,186,0,255,130,49,170,69,210, + 154,0,109,227,45,255,125,105,81,81,255,0,219,134,170,85, + 146,28,170,89,223,97,8,210,255,158,49,40,125,174,174,125, + 0,227,166,28,219,130,0,93,239,0,85,255,81,178,125,49, + 89,255,53,206,73,113,146,255,0,150,36,219,162,0,210,125, + 69,134,255,85,40,89,235,49,215,121,0,206,36,223,174,69, + 40,182,178,130,69,45,255,210,85,77,215,0,231,146,0,194, + 125,174,0,255,40,89,121,206,57,0,206,170,231,150,81,0, + 125,255,4,174,4,190,121,255,4,166,109,130,49,239,170,93, + 16,174,210,0,255,16,105,158,93,255,0,125,0,255,158,85, + 0,255,0,0,255,170,166,61,121,28,198,215,45,243,61,97, + 255,53,81,130,109,255,8,117,235,121,40,178,174,0,182,49, + 162,121,255,69,206,0,219,125,0,101,255,239,121,32,210,130, + 36,231,32,125,81,142,215,158,4,178,255,0,40,251,125,125, + 219,89,130,0,166,255,24,65,194,125,255,125,77,125,93,125, + 202,24,138,174,178,32,255,85,194,40,85,36,174,174,125,210, + 85,255,53,16,93,206,40,130,170,202,93,255,0,24,117,255, + 97,113,105,81,255,186,194,57,69,206,57,53,223,190,4,255, + 85,97,130,255,85,0,125,223,85,219,0,215,146,77,40,239, + 89,36,142,154,227,0,255,85,162,0,162,0,235,178,45,166, + 0,247,255,20,69,210,89,142,53,255,40,146,166,255,69,0, + 174,154,142,130,162,0,215,255,0,89,40,255,166,61,146,69, + 162,40,255,32,121,255,117,178,0,186,206,0,57,215,215,81, + 158,77,166,210,77,89,210,0,24,202,150,186,0,255,20,97, + 57,170,235,251,16,73,142,251,93,0,202,0,255,121,219,4, + 73,219,8,162,206,16,219,93,117,0,255,8,130,174,223,45 }; + static const CImg palette(pal,1,256,1,3,false); + return palette; + } + + //! Return palette \e "hot", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_hot.jpg + **/ + static const CImg& hot_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) { + palette.assign(1,4,1,3,(T)0); + palette[1] = palette[2] = palette[3] = palette[6] = palette[7] = palette[11] = 255; + palette.resize(1,256,1,3,3); + } + cimg::mutex(8,0); + return palette; + } + + //! Return palette \e "cool", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_cool.jpg + **/ + static const CImg& cool_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) palette.assign(1,2,1,3).fill((T)0,(T)255,(T)255,(T)0,(T)255,(T)255).resize(1,256,1,3,3); + cimg::mutex(8,0); + return palette; + } + + //! Return palette \e "jet", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_jet.jpg + **/ + static const CImg& jet_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) { + palette.assign(1,4,1,3,(T)0); + palette[2] = palette[3] = palette[5] = palette[6] = palette[8] = palette[9] = 255; + palette.resize(1,256,1,3,3); + } + cimg::mutex(8,0); + return palette; + } + + //! Return palette \e "flag", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_palette_flag.jpg + **/ + static const CImg& flag_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) { + palette.assign(1,4,1,3,(T)0); + palette[0] = palette[1] = palette[5] = palette[9] = palette[10] = 255; + palette.resize(1,256,1,3,0,2); + } + cimg::mutex(8,0); + return palette; + } + + //! Return palette \e "cube", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 palette is returned: + \image html ref_colormap_cube.jpg + **/ + static const CImg& cube_LUT256() { + static CImg palette; + cimg::mutex(8); + if (!palette) { + palette.assign(1,8,1,3,(T)0); + palette[1] = palette[3] = palette[5] = palette[7] = + palette[10] = palette[11] = palette[12] = palette[13] = + palette[20] = palette[21] = palette[22] = palette[23] = 255; + palette.resize(1,256,1,3,3); + } + cimg::mutex(8,0); + return palette; + } + + //! Convert pixel values from sRGB to RGB color spaces. + CImg& sRGBtoRGB() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32)) + cimg_rofoff(*this,off) { + const Tfloat + sval = (Tfloat)_data[off]/255, + val = (Tfloat)(sval<=0.04045f?sval/12.92f:std::pow((sval + 0.055f)/(1.055f),2.4f)); + _data[off] = (T)cimg::cut(val*255,0,255); + } + return *this; + } + + //! Convert pixel values from sRGB to RGB color spaces \newinstance. + CImg get_sRGBtoRGB() const { + return CImg(*this,false).sRGBtoRGB(); + } + + //! Convert pixel values from RGB to sRGB color spaces. + CImg& RGBtosRGB() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if_size(size(),32)) + cimg_rofoff(*this,off) { + const Tfloat + val = (Tfloat)_data[off]/255, + sval = (Tfloat)(val<=0.0031308f?val*12.92f:1.055f*std::pow(val,0.416667f) - 0.055f); + _data[off] = (T)cimg::cut(sval*255,0,255); + } + return *this; + } + + //! Convert pixel values from RGB to sRGB color spaces \newinstance. + CImg get_RGBtosRGB() const { + return CImg(*this,false).RGBtosRGB(); + } + + //! Convert pixel values from RGB to HSI color spaces. + CImg& RGBtoHSI() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoHSI(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) + for (longT N = 0; N get_RGBtoHSI() const { + return CImg(*this,false).RGBtoHSI(); + } + + //! Convert pixel values from HSI to RGB color spaces. + CImg& HSItoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "HSItoRGB(): Instance is not a HSI image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) + for (longT N = 0; N get_HSItoRGB() const { + return CImg< Tuchar>(*this,false).HSItoRGB(); + } + + //! Convert pixel values from RGB to HSL color spaces. + CImg& RGBtoHSL() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoHSL(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) + for (longT N = 0; N get_RGBtoHSL() const { + return CImg(*this,false).RGBtoHSL(); + } + + //! Convert pixel values from HSL to RGB color spaces. + CImg& HSLtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "HSLtoRGB(): Instance is not a HSL image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) + for (longT N = 0; N get_HSLtoRGB() const { + return CImg(*this,false).HSLtoRGB(); + } + + //! Convert pixel values from RGB to HSV color spaces. + CImg& RGBtoHSV() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoHSV(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) + for (longT N = 0; N get_RGBtoHSV() const { + return CImg(*this,false).RGBtoHSV(); + } + + //! Convert pixel values from HSV to RGB color spaces. + CImg& HSVtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "HSVtoRGB(): Instance is not a HSV image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,256)) + for (longT N = 0; N get_HSVtoRGB() const { + return CImg(*this,false).HSVtoRGB(); + } + + //! Convert pixel values from RGB to YCbCr color spaces. + CImg& RGBtoYCbCr() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoYCbCr(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,512)) + for (longT N = 0; N get_RGBtoYCbCr() const { + return CImg(*this,false).RGBtoYCbCr(); + } + + //! Convert pixel values from RGB to YCbCr color spaces. + CImg& YCbCrtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "YCbCrtoRGB(): Instance is not a YCbCr image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,512)) + for (longT N = 0; N get_YCbCrtoRGB() const { + return CImg(*this,false).YCbCrtoRGB(); + } + + //! Convert pixel values from RGB to YUV color spaces. + CImg& RGBtoYUV() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoYUV(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,16384)) + for (longT N = 0; N get_RGBtoYUV() const { + return CImg(*this,false).RGBtoYUV(); + } + + //! Convert pixel values from YUV to RGB color spaces. + CImg& YUVtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "YUVtoRGB(): Instance is not a YUV image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,16384)) + for (longT N = 0; N get_YUVtoRGB() const { + return CImg< Tuchar>(*this,false).YUVtoRGB(); + } + + //! Convert pixel values from RGB to CMY color spaces. + CImg& RGBtoCMY() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoCMY(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) + for (longT N = 0; N get_RGBtoCMY() const { + return CImg(*this,false).RGBtoCMY(); + } + + //! Convert pixel values from CMY to RGB color spaces. + CImg& CMYtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "CMYtoRGB(): Instance is not a CMY image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) + for (longT N = 0; N get_CMYtoRGB() const { + return CImg(*this,false).CMYtoRGB(); + } + + //! Convert pixel values from CMY to CMYK color spaces. + CImg& CMYtoCMYK() { + return get_CMYtoCMYK().move_to(*this); + } + + //! Convert pixel values from CMY to CMYK color spaces \newinstance. + CImg get_CMYtoCMYK() const { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "CMYtoCMYK(): Instance is not a CMY image.", + cimg_instance); + + CImg res(_width,_height,_depth,4); + const T *ps1 = data(0,0,0,0), *ps2 = data(0,0,0,1), *ps3 = data(0,0,0,2); + Tfloat *pd1 = res.data(0,0,0,0), *pd2 = res.data(0,0,0,1), *pd3 = res.data(0,0,0,2), *pd4 = res.data(0,0,0,3); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,1024)) + for (longT N = 0; N=255) C = M = Y = 0; + else { const Tfloat K1 = 255 - K; C = 255*(C - K)/K1; M = 255*(M - K)/K1; Y = 255*(Y - K)/K1; } + pd1[N] = (Tfloat)cimg::cut(C,0,255), + pd2[N] = (Tfloat)cimg::cut(M,0,255), + pd3[N] = (Tfloat)cimg::cut(Y,0,255), + pd4[N] = (Tfloat)cimg::cut(K,0,255); + } + return res; + } + + //! Convert pixel values from CMYK to CMY color spaces. + CImg& CMYKtoCMY() { + return get_CMYKtoCMY().move_to(*this); + } + + //! Convert pixel values from CMYK to CMY color spaces \newinstance. + CImg get_CMYKtoCMY() const { + if (_spectrum!=4) + throw CImgInstanceException(_cimg_instance + "CMYKtoCMY(): Instance is not a CMYK image.", + cimg_instance); + + CImg res(_width,_height,_depth,3); + const T *ps1 = data(0,0,0,0), *ps2 = data(0,0,0,1), *ps3 = data(0,0,0,2), *ps4 = data(0,0,0,3); + Tfloat *pd1 = res.data(0,0,0,0), *pd2 = res.data(0,0,0,1), *pd3 = res.data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,1024)) + for (longT N = 0; N& RGBtoXYZ(const bool use_D65=true) { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoXYZ(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) + for (longT N = 0; N get_RGBtoXYZ(const bool use_D65=true) const { + return CImg(*this,false).RGBtoXYZ(use_D65); + } + + //! Convert pixel values from XYZ to RGB color spaces. + /** + \param use_D65 Tell to use the D65 illuminant (D50 otherwise). + **/ + CImg& XYZtoRGB(const bool use_D65=true) { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "XYZtoRGB(): Instance is not a XYZ image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,2048)) + for (longT N = 0; N get_XYZtoRGB(const bool use_D65=true) const { + return CImg(*this,false).XYZtoRGB(use_D65); + } + + //! Convert pixel values from XYZ to Lab color spaces. + CImg& XYZtoLab(const bool use_D65=true) { +#define _cimg_Labf(x) (24389*(x)>216?cimg::cbrt(x):(24389*(x)/27 + 16)/116) + + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "XYZtoLab(): Instance is not a XYZ image.", + cimg_instance); + const CImg white = CImg(1,1,1,3,255).RGBtoXYZ(use_D65); + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,128)) + for (longT N = 0; N get_XYZtoLab(const bool use_D65=true) const { + return CImg(*this,false).XYZtoLab(use_D65); + } + + //! Convert pixel values from Lab to XYZ color spaces. + CImg& LabtoXYZ(const bool use_D65=true) { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "LabtoXYZ(): Instance is not a Lab image.", + cimg_instance); + const CImg white = CImg(1,1,1,3,255).RGBtoXYZ(use_D65); + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,128)) + for (longT N = 0; N216?cX*cX*cX:(116*cX - 16)*27/24389), + Y = (Tfloat)(27*L>216?cY*cY*cY:27*L/24389), + Z = (Tfloat)(24389*cZ>216?cZ*cZ*cZ:(116*cZ - 16)*27/24389); + p1[N] = (T)(X*white[0]); + p2[N] = (T)(Y*white[1]); + p3[N] = (T)(Z*white[2]); + } + return *this; + } + + //! Convert pixel values from Lab to XYZ color spaces \newinstance. + CImg get_LabtoXYZ(const bool use_D65=true) const { + return CImg(*this,false).LabtoXYZ(use_D65); + } + + //! Convert pixel values from XYZ to xyY color spaces. + CImg& XYZtoxyY() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "XYZtoxyY(): Instance is not a XYZ image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,4096)) + for (longT N = 0; N0?sum:1; + p1[N] = (T)(X/nsum); + p2[N] = (T)(Y/nsum); + p3[N] = (T)Y; + } + return *this; + } + + //! Convert pixel values from XYZ to xyY color spaces \newinstance. + CImg get_XYZtoxyY() const { + return CImg(*this,false).XYZtoxyY(); + } + + //! Convert pixel values from xyY pixels to XYZ color spaces. + CImg& xyYtoXYZ() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "xyYtoXYZ(): Instance is not a xyY image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const longT whd = (longT)width()*height()*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(whd,4096)) + for (longT N = 0; N0?py:1; + p1[N] = (T)(px*Y/ny); + p2[N] = (T)Y; + p3[N] = (T)((1 - px - py)*Y/ny); + } + return *this; + } + + //! Convert pixel values from xyY pixels to XYZ color spaces \newinstance. + CImg get_xyYtoXYZ() const { + return CImg(*this,false).xyYtoXYZ(); + } + + //! Convert pixel values from RGB to Lab color spaces. + CImg& RGBtoLab(const bool use_D65=true) { + return RGBtoXYZ(use_D65).XYZtoLab(use_D65); + } + + //! Convert pixel values from RGB to Lab color spaces \newinstance. + CImg get_RGBtoLab(const bool use_D65=true) const { + return CImg(*this,false).RGBtoLab(use_D65); + } + + //! Convert pixel values from Lab to RGB color spaces. + CImg& LabtoRGB(const bool use_D65=true) { + return LabtoXYZ().XYZtoRGB(use_D65); + } + + //! Convert pixel values from Lab to RGB color spaces \newinstance. + CImg get_LabtoRGB(const bool use_D65=true) const { + return CImg(*this,false).LabtoRGB(use_D65); + } + + //! Convert pixel values from RGB to xyY color spaces. + CImg& RGBtoxyY(const bool use_D65=true) { + return RGBtoXYZ(use_D65).XYZtoxyY(); + } + + //! Convert pixel values from RGB to xyY color spaces \newinstance. + CImg get_RGBtoxyY(const bool use_D65=true) const { + return CImg(*this,false).RGBtoxyY(use_D65); + } + + //! Convert pixel values from xyY to RGB color spaces. + CImg& xyYtoRGB(const bool use_D65=true) { + return xyYtoXYZ().XYZtoRGB(use_D65); + } + + //! Convert pixel values from xyY to RGB color spaces \newinstance. + CImg get_xyYtoRGB(const bool use_D65=true) const { + return CImg(*this,false).xyYtoRGB(use_D65); + } + + //! Convert pixel values from RGB to CMYK color spaces. + CImg& RGBtoCMYK() { + return RGBtoCMY().CMYtoCMYK(); + } + + //! Convert pixel values from RGB to CMYK color spaces \newinstance. + CImg get_RGBtoCMYK() const { + return CImg(*this,false).RGBtoCMYK(); + } + + //! Convert pixel values from CMYK to RGB color spaces. + CImg& CMYKtoRGB() { + return CMYKtoCMY().CMYtoRGB(); + } + + //! Convert pixel values from CMYK to RGB color spaces \newinstance. + CImg get_CMYKtoRGB() const { + return CImg(*this,false).CMYKtoRGB(); + } + + //@} + //------------------------------------------ + // + //! \name Geometric / Spatial Manipulation + //@{ + //------------------------------------------ + + static float _cimg_lanczos(const float x) { + if (x<=-2 || x>=2) return 0; + const float a = (float)cimg::PI*x, b = 0.5f*a; + return (float)(x?std::sin(a)*std::sin(b)/(a*b):1); + } + + //! Resize image to new dimensions. + /** + \param size_x Number of columns (new size along the X-axis). + \param size_y Number of rows (new size along the Y-axis). + \param size_z Number of slices (new size along the Z-axis). + \param size_c Number of vector-channels (new size along the C-axis). + \param interpolation_type Method of interpolation: + - -1 = no interpolation: raw memory resizing. + - 0 = no interpolation: additional space is filled according to \p boundary_conditions. + - 1 = nearest-neighbor interpolation. + - 2 = moving average interpolation. + - 3 = linear interpolation. + - 4 = grid interpolation. + - 5 = cubic interpolation. + - 6 = lanczos interpolation. + \param boundary_conditions Type of boundary conditions used if necessary. + \param centering_x Set centering type (only if \p interpolation_type=0). + \param centering_y Set centering type (only if \p interpolation_type=0). + \param centering_z Set centering type (only if \p interpolation_type=0). + \param centering_c Set centering type (only if \p interpolation_type=0). + \note If pd[x,y,z,v]<0, it corresponds to a percentage of the original size (the default value is -100). + **/ + CImg& resize(const int size_x, const int size_y=-100, + const int size_z=-100, const int size_c=-100, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) { + if (!size_x || !size_y || !size_z || !size_c) return assign(); + const unsigned int + _sx = (unsigned int)(size_x<0?-size_x*width()/100:size_x), + _sy = (unsigned int)(size_y<0?-size_y*height()/100:size_y), + _sz = (unsigned int)(size_z<0?-size_z*depth()/100:size_z), + _sc = (unsigned int)(size_c<0?-size_c*spectrum()/100:size_c), + sx = _sx?_sx:1, sy = _sy?_sy:1, sz = _sz?_sz:1, sc = _sc?_sc:1; + if (sx==_width && sy==_height && sz==_depth && sc==_spectrum) return *this; + if (is_empty()) return assign(sx,sy,sz,sc,(T)0); + if (interpolation_type==-1 && sx*sy*sz*sc==size()) { + _width = sx; _height = sy; _depth = sz; _spectrum = sc; + return *this; + } + return get_resize(sx,sy,sz,sc,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c).move_to(*this); + } + + //! Resize image to new dimensions \newinstance. + CImg get_resize(const int size_x, const int size_y = -100, + const int size_z = -100, const int size_c = -100, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) const { + if (centering_x<0 || centering_x>1 || centering_y<0 || centering_y>1 || + centering_z<0 || centering_z>1 || centering_c<0 || centering_c>1) + throw CImgArgumentException(_cimg_instance + "resize(): Specified centering arguments (%g,%g,%g,%g) are outside range [0,1].", + cimg_instance, + centering_x,centering_y,centering_z,centering_c); + + if (!size_x || !size_y || !size_z || !size_c) return CImg(); + const unsigned int + sx = std::max(1U,(unsigned int)(size_x>=0?size_x:-size_x*width()/100)), + sy = std::max(1U,(unsigned int)(size_y>=0?size_y:-size_y*height()/100)), + sz = std::max(1U,(unsigned int)(size_z>=0?size_z:-size_z*depth()/100)), + sc = std::max(1U,(unsigned int)(size_c>=0?size_c:-size_c*spectrum()/100)); + if (sx==_width && sy==_height && sz==_depth && sc==_spectrum) return +*this; + if (is_empty()) return CImg(sx,sy,sz,sc,(T)0); + CImg res; + switch (interpolation_type) { + + // Raw resizing. + // + case -1 : + std::memcpy(res.assign(sx,sy,sz,sc,(T)0)._data,_data,sizeof(T)*std::min(size(),(ulongT)sx*sy*sz*sc)); + break; + + // No interpolation. + // + case 0 : { + const int + xc = (int)(centering_x*((int)sx - width())), + yc = (int)(centering_y*((int)sy - height())), + zc = (int)(centering_z*((int)sz - depth())), + cc = (int)(centering_c*((int)sc - spectrum())); + + switch (boundary_conditions) { + case 3 : { // Mirror + res.assign(sx,sy,sz,sc); + const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(), s2 = 2*spectrum(); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),1024*1024)) + cimg_forXYZC(res,x,y,z,c) { + const int + mx = cimg::mod(x - xc,w2), my = cimg::mod(y - yc,h2), + mz = cimg::mod(z - zc,d2), mc = cimg::mod(c - cc,s2); + res(x,y,z,c) = (*this)(mx sprite; + if (xc>0) { // X-backward + res.get_crop(xc,yc,zc,cc,xc,yc + height() - 1,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int x = xc - 1; x>=0; --x) res.draw_image(x,yc,zc,cc,sprite); + } + if (xc + width()<(int)sx) { // X-forward + res.get_crop(xc + width() - 1,yc,zc,cc,xc + width() - 1,yc + height() - 1, + zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int x = xc + width(); x<(int)sx; ++x) res.draw_image(x,yc,zc,cc,sprite); + } + if (yc>0) { // Y-backward + res.get_crop(0,yc,zc,cc,sx - 1,yc,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int y = yc - 1; y>=0; --y) res.draw_image(0,y,zc,cc,sprite); + } + if (yc + height()<(int)sy) { // Y-forward + res.get_crop(0,yc + height() - 1,zc,cc,sx - 1,yc + height() - 1, + zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int y = yc + height(); y<(int)sy; ++y) res.draw_image(0,y,zc,cc,sprite); + } + if (zc>0) { // Z-backward + res.get_crop(0,0,zc,cc,sx - 1,sy - 1,zc,cc + spectrum() - 1).move_to(sprite); + for (int z = zc - 1; z>=0; --z) res.draw_image(0,0,z,cc,sprite); + } + if (zc + depth()<(int)sz) { // Z-forward + res.get_crop(0,0,zc +depth() - 1,cc,sx - 1,sy - 1,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int z = zc + depth(); z<(int)sz; ++z) res.draw_image(0,0,z,cc,sprite); + } + if (cc>0) { // C-backward + res.get_crop(0,0,0,cc,sx - 1,sy - 1,sz - 1,cc).move_to(sprite); + for (int c = cc - 1; c>=0; --c) res.draw_image(0,0,0,c,sprite); + } + if (cc + spectrum()<(int)sc) { // C-forward + res.get_crop(0,0,0,cc + spectrum() - 1,sx - 1,sy - 1,sz - 1,cc + spectrum() - 1).move_to(sprite); + for (int c = cc + spectrum(); c<(int)sc; ++c) res.draw_image(0,0,0,c,sprite); + } + } break; + default : // Dirichlet + res.assign(sx,sy,sz,sc,(T)0).draw_image(xc,yc,zc,cc,*this); + } + break; + } break; + + // Nearest neighbor interpolation. + // + case 1 : { + res.assign(sx,sy,sz,sc); + CImg off_x(sx), off_y(sy + 1), off_z(sz + 1), off_c(sc + 1); + const ulongT + wh = (ulongT)_width*_height, + whd = (ulongT)_width*_height*_depth, + sxy = (ulongT)sx*sy, + sxyz = (ulongT)sx*sy*sz, + one = (ulongT)1; + if (sx==_width) off_x.fill(1); + else { + ulongT *poff_x = off_x._data, curr = 0; + cimg_forX(res,x) { + const ulongT old = curr; + curr = (x + one)*_width/sx; + *(poff_x++) = curr - old; + } + } + if (sy==_height) off_y.fill(_width); + else { + ulongT *poff_y = off_y._data, curr = 0; + cimg_forY(res,y) { + const ulongT old = curr; + curr = (y + one)*_height/sy; + *(poff_y++) = _width*(curr - old); + } + *poff_y = 0; + } + if (sz==_depth) off_z.fill(wh); + else { + ulongT *poff_z = off_z._data, curr = 0; + cimg_forZ(res,z) { + const ulongT old = curr; + curr = (z + one)*_depth/sz; + *(poff_z++) = wh*(curr - old); + } + *poff_z = 0; + } + if (sc==_spectrum) off_c.fill(whd); + else { + ulongT *poff_c = off_c._data, curr = 0; + cimg_forC(res,c) { + const ulongT old = curr; + curr = (c + one)*_spectrum/sc; + *(poff_c++) = whd*(curr - old); + } + *poff_c = 0; + } + + T *ptrd = res._data; + const T* ptrc = _data; + const ulongT *poff_c = off_c._data; + for (unsigned int c = 0; c_width) get_resize(sx,_height,_depth,_spectrum,1).move_to(res); + else { + CImg tmp(sx,_height,_depth,_spectrum,0); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(sx>=256 && _height*_depth*_spectrum>=256)) + cimg_forYZC(tmp,y,z,v) { + for (unsigned int a = _width*sx, b = _width, c = sx, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + tmp(t,y,z,v)+=(Tfloat)(*this)(s,y,z,v)*d; + if (!b) { tmp(t++,y,z,v)/=_width; b = _width; } + if (!c) { ++s; c = sx; } + } + } + tmp.move_to(res); + } + instance_first = false; + } + + if (sy!=_height) { + if (sy>_height) get_resize(sx,sy,_depth,_spectrum,1).move_to(res); + else { + CImg tmp(sx,sy,_depth,_spectrum,0); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(sy>=256 && _width*_depth*_spectrum>=256)) + cimg_forXZC(tmp,x,z,v) { + for (unsigned int a = _height*sy, b = _height, c = sy, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + if (instance_first) tmp(x,t,z,v)+=(Tfloat)(*this)(x,s,z,v)*d; + else tmp(x,t,z,v)+=(Tfloat)res(x,s,z,v)*d; + if (!b) { tmp(x,t++,z,v)/=_height; b = _height; } + if (!c) { ++s; c = sy; } + } + } + tmp.move_to(res); + } + instance_first = false; + } + + if (sz!=_depth) { + if (sz>_depth) get_resize(sx,sy,sz,_spectrum,1).move_to(res); + else { + CImg tmp(sx,sy,sz,_spectrum,0); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(sz>=256 && _width*_height*_spectrum>=256)) + cimg_forXYC(tmp,x,y,v) { + for (unsigned int a = _depth*sz, b = _depth, c = sz, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + if (instance_first) tmp(x,y,t,v)+=(Tfloat)(*this)(x,y,s,v)*d; + else tmp(x,y,t,v)+=(Tfloat)res(x,y,s,v)*d; + if (!b) { tmp(x,y,t++,v)/=_depth; b = _depth; } + if (!c) { ++s; c = sz; } + } + } + tmp.move_to(res); + } + instance_first = false; + } + + if (sc!=_spectrum) { + if (sc>_spectrum) get_resize(sx,sy,sz,sc,1).move_to(res); + else { + CImg tmp(sx,sy,sz,sc,0); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(sc>=256 && _width*_height*_depth>=256)) + cimg_forXYZ(tmp,x,y,z) { + for (unsigned int a = _spectrum*sc, b = _spectrum, c = sc, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + if (instance_first) tmp(x,y,z,t)+=(Tfloat)(*this)(x,y,z,s)*d; + else tmp(x,y,z,t)+=(Tfloat)res(x,y,z,s)*d; + if (!b) { tmp(x,y,z,t++)/=_spectrum; b = _spectrum; } + if (!c) { ++s; c = sc; } + } + } + tmp.move_to(res); + } + instance_first = false; + } + + } break; + + // Linear interpolation. + // + case 3 : { + CImg off(cimg::max(sx,sy,sz,sc)); + CImg foff(off._width); + CImg resx, resy, resz, resc; + double curr, old; + + if (sx!=_width) { + if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx); + else { + const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.)/(sx - 1):0): + (double)_width/sx; + resx.assign(sx,_height,_depth,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forX(resx,x) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(width() - 1.,curr + fx); + *(poff++) = (unsigned int)curr - (unsigned int)old; + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resx._width>=256 && resx._height*resx._depth*resx._spectrum>=256)) + cimg_forYZC(resx,y,z,c) { + const T *ptrs = data(0,y,z,c), *const ptrsmax = ptrs + _width - 1; + T *ptrd = resx.data(0,y,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forX(resx,x) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrssy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy); + else { + const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.)/(sy - 1):0): + (double)_height/sy; + resy.assign(sx,sy,_depth,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forY(resy,y) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(height() - 1.,curr + fy); + *(poff++) = sx*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resy._height>=256 && resy._width*resy._depth*resy._spectrum>=256)) + cimg_forXZC(resy,x,z,c) { + const T *ptrs = resx.data(x,0,z,c), *const ptrsmax = ptrs + (_height - 1)*sx; + T *ptrd = resy.data(x,0,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forY(resy,y) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrssz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz); + else { + const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.)/(sz - 1):0): + (double)_depth/sz; + const unsigned int sxy = sx*sy; + resz.assign(sx,sy,sz,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forZ(resz,z) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(depth() - 1.,curr + fz); + *(poff++) = sxy*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resz._depth>=256 && resz._width*resz._height*resz._spectrum>=256)) + cimg_forXYC(resz,x,y,c) { + const T *ptrs = resy.data(x,y,0,c), *const ptrsmax = ptrs + (_depth - 1)*sxy; + T *ptrd = resz.data(x,y,0,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forZ(resz,z) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrssc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc); + else { + const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.)/(sc - 1):0): + (double)_spectrum/sc; + const unsigned int sxyz = sx*sy*sz; + resc.assign(sx,sy,sz,sc); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forC(resc,c) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(spectrum() - 1.,curr + fc); + *(poff++) = sxyz*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resc._spectrum>=256 && resc._width*resc._height*resc._depth>=256)) + cimg_forXYZ(resc,x,y,z) { + const T *ptrs = resz.data(x,y,z,0), *const ptrsmax = ptrs + (_spectrum - 1)*sxyz; + T *ptrd = resc.data(x,y,z,0); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forC(resc,c) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrs resx, resy, resz, resc; + if (sx!=_width) { + if (sx<_width) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else { + resx.assign(sx,_height,_depth,_spectrum,(T)0); + const int dx = (int)(2*sx), dy = 2*width(); + int err = (int)(dy + centering_x*(sx*dy/width() - dy)), xs = 0; + cimg_forX(resx,x) if ((err-=dy)<=0) { + cimg_forYZC(resx,y,z,c) resx(x,y,z,c) = (*this)(xs,y,z,c); + ++xs; + err+=dx; + } + } + } else resx.assign(*this,true); + + if (sy!=_height) { + if (sy<_height) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy); + else { + resy.assign(sx,sy,_depth,_spectrum,(T)0); + const int dx = (int)(2*sy), dy = 2*height(); + int err = (int)(dy + centering_y*(sy*dy/height() - dy)), ys = 0; + cimg_forY(resy,y) if ((err-=dy)<=0) { + cimg_forXZC(resy,x,z,c) resy(x,y,z,c) = resx(x,ys,z,c); + ++ys; + err+=dx; + } + } + resx.assign(); + } else resy.assign(resx,true); + + if (sz!=_depth) { + if (sz<_depth) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz); + else { + resz.assign(sx,sy,sz,_spectrum,(T)0); + const int dx = (int)(2*sz), dy = 2*depth(); + int err = (int)(dy + centering_z*(sz*dy/depth() - dy)), zs = 0; + cimg_forZ(resz,z) if ((err-=dy)<=0) { + cimg_forXYC(resz,x,y,c) resz(x,y,z,c) = resy(x,y,zs,c); + ++zs; + err+=dx; + } + } + resy.assign(); + } else resz.assign(resy,true); + + if (sc!=_spectrum) { + if (sc<_spectrum) resz.get_resize(sx,sy,sz,sc,1).move_to(resc); + else { + resc.assign(sx,sy,sz,sc,(T)0); + const int dx = (int)(2*sc), dy = 2*spectrum(); + int err = (int)(dy + centering_c*(sc*dy/spectrum() - dy)), cs = 0; + cimg_forC(resc,c) if ((err-=dy)<=0) { + cimg_forXYZ(resc,x,y,z) resc(x,y,z,c) = resz(x,y,z,cs); + ++cs; + err+=dx; + } + } + resz.assign(); + } else resc.assign(resz,true); + + return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc; + } break; + + // Cubic interpolation. + // + case 5 : { + const Tfloat vmin = (Tfloat)cimg::type::min(), vmax = (Tfloat)cimg::type::max(); + CImg off(cimg::max(sx,sy,sz,sc)); + CImg foff(off._width); + CImg resx, resy, resz, resc; + double curr, old; + + if (sx!=_width) { + if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else { + if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx); + else { + const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.)/(sx - 1):0): + (double)_width/sx; + resx.assign(sx,_height,_depth,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forX(resx,x) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(width() - 1.,curr + fx); + *(poff++) = (unsigned int)curr - (unsigned int)old; + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resx._width>=256 && resx._height*resx._depth*resx._spectrum>=256)) + cimg_forYZC(resx,y,z,c) { + const T *const ptrs0 = data(0,y,z,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_width - 2); + T *ptrd = resx.data(0,y,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forX(resx,x) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - 1):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + 1):val1, + val3 = ptrsvmax?vmax:val); + ptrs+=*(poff++); + } + } + } + } + } else resx.assign(*this,true); + + if (sy!=_height) { + if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy); + else { + if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy); + else { + const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.)/(sy - 1):0): + (double)_height/sy; + resy.assign(sx,sy,_depth,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forY(resy,y) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(height() - 1.,curr + fy); + *(poff++) = sx*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resy._height>=256 && resy._width*resy._depth*resy._spectrum>=256)) + cimg_forXZC(resy,x,z,c) { + const T *const ptrs0 = resx.data(x,0,z,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_height - 2)*sx; + T *ptrd = resy.data(x,0,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forY(resy,y) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - sx):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + sx):val1, + val3 = ptrsvmax?vmax:val); + ptrd+=sx; + ptrs+=*(poff++); + } + } + } + } + resx.assign(); + } else resy.assign(resx,true); + + if (sz!=_depth) { + if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz); + else { + if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz); + else { + const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.)/(sz - 1):0): + (double)_depth/sz; + const unsigned int sxy = sx*sy; + resz.assign(sx,sy,sz,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forZ(resz,z) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(depth() - 1.,curr + fz); + *(poff++) = sxy*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resz._depth>=256 && resz._width*resz._height*resz._spectrum>=256)) + cimg_forXYC(resz,x,y,c) { + const T *const ptrs0 = resy.data(x,y,0,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_depth - 2)*sxy; + T *ptrd = resz.data(x,y,0,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forZ(resz,z) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - sxy):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + sxy):val1, + val3 = ptrsvmax?vmax:val); + ptrd+=sxy; + ptrs+=*(poff++); + } + } + } + } + resy.assign(); + } else resz.assign(resy,true); + + if (sc!=_spectrum) { + if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc); + else { + if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc); + else { + const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.)/(sc - 1):0): + (double)_spectrum/sc; + const unsigned int sxyz = sx*sy*sz; + resc.assign(sx,sy,sz,sc); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forC(resc,c) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(spectrum() - 1.,curr + fc); + *(poff++) = sxyz*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resc._spectrum>=256 && resc._width*resc._height*resc._depth>=256)) + cimg_forXYZ(resc,x,y,z) { + const T *const ptrs0 = resz.data(x,y,z,0), *ptrs = ptrs0, *const ptrsmax = ptrs + (_spectrum - 2)*sxyz; + T *ptrd = resc.data(x,y,z,0); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forC(resc,c) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - sxyz):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + sxyz):val1, + val3 = ptrsvmax?vmax:val); + ptrd+=sxyz; + ptrs+=*(poff++); + } + } + } + } + resz.assign(); + } else resc.assign(resz,true); + + return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc; + } break; + + // Lanczos interpolation. + // + case 6 : { + const double vmin = (double)cimg::type::min(), vmax = (double)cimg::type::max(); + CImg off(cimg::max(sx,sy,sz,sc)); + CImg foff(off._width); + CImg resx, resy, resz, resc; + double curr, old; + + if (sx!=_width) { + if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else { + if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx); + else { + const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.)/(sx - 1):0): + (double)_width/sx; + resx.assign(sx,_height,_depth,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forX(resx,x) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(width() - 1.,curr + fx); + *(poff++) = (unsigned int)curr - (unsigned int)old; + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resx._width>=256 && resx._height*resx._depth*resx._spectrum>=256)) + cimg_forYZC(resx,y,z,c) { + const T *const ptrs0 = data(0,y,z,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + 1, + *const ptrsmax = ptrs0 + (_width - 2); + T *ptrd = resx.data(0,y,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forX(resx,x) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - 1):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + 1):val2, + val4 = ptrsvmax?vmax:val); + ptrs+=*(poff++); + } + } + } + } + } else resx.assign(*this,true); + + if (sy!=_height) { + if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy); + else { + if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy); + else { + const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.)/(sy - 1):0): + (double)_height/sy; + resy.assign(sx,sy,_depth,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forY(resy,y) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(height() - 1.,curr + fy); + *(poff++) = sx*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resy._height>=256 && resy._width*resy._depth*resy._spectrum>=256)) + cimg_forXZC(resy,x,z,c) { + const T *const ptrs0 = resx.data(x,0,z,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sx, + *const ptrsmax = ptrs0 + (_height - 2)*sx; + T *ptrd = resy.data(x,0,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forY(resy,y) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - sx):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sx):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + sx):val2, + val4 = ptrsvmax?vmax:val); + ptrd+=sx; + ptrs+=*(poff++); + } + } + } + } + resx.assign(); + } else resy.assign(resx,true); + + if (sz!=_depth) { + if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz); + else { + if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz); + else { + const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.)/(sz - 1):0): + (double)_depth/sz; + const unsigned int sxy = sx*sy; + resz.assign(sx,sy,sz,_spectrum); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forZ(resz,z) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(depth() - 1.,curr + fz); + *(poff++) = sxy*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resz._depth>=256 && resz._width*resz._height*resz._spectrum>=256)) + cimg_forXYC(resz,x,y,c) { + const T *const ptrs0 = resy.data(x,y,0,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxy, + *const ptrsmax = ptrs0 + (_depth - 2)*sxy; + T *ptrd = resz.data(x,y,0,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forZ(resz,z) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - sxy):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sxy):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + sxy):val2, + val4 = ptrsvmax?vmax:val); + ptrd+=sxy; + ptrs+=*(poff++); + } + } + } + } + resy.assign(); + } else resz.assign(resy,true); + + if (sc!=_spectrum) { + if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc); + else { + if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc); + else { + const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.)/(sc - 1):0): + (double)_spectrum/sc; + const unsigned int sxyz = sx*sy*sz; + resc.assign(sx,sy,sz,sc); + curr = old = 0; + { + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forC(resc,c) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(spectrum() - 1.,curr + fc); + *(poff++) = sxyz*((unsigned int)curr - (unsigned int)old); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(resc._spectrum>=256 && resc._width*resc._height*resc._depth>=256)) + cimg_forXYZ(resc,x,y,z) { + const T *const ptrs0 = resz.data(x,y,z,0), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxyz, + *const ptrsmax = ptrs + (_spectrum - 2)*sxyz; + T *ptrd = resc.data(x,y,z,0); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forC(resc,c) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - sxyz):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sxyz):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + sxyz):val2, + val4 = ptrsvmax?vmax:val); + ptrd+=sxyz; + ptrs+=*(poff++); + } + } + } + } + resz.assign(); + } else resc.assign(resz,true); + + return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc; + } break; + + // Unknown interpolation. + // + default : + throw CImgArgumentException(_cimg_instance + "resize(): Invalid specified interpolation %d " + "(should be { -1=raw | 0=none | 1=nearest | 2=average | 3=linear | 4=grid | " + "5=cubic | 6=lanczos }).", + cimg_instance, + interpolation_type); + } + return res; + } + + //! Resize image to dimensions of another image. + /** + \param src Reference image used for dimensions. + \param interpolation_type Interpolation method. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param centering_x Set centering type (only if \p interpolation_type=0). + \param centering_y Set centering type (only if \p interpolation_type=0). + \param centering_z Set centering type (only if \p interpolation_type=0). + \param centering_c Set centering type (only if \p interpolation_type=0). + **/ + template + CImg& resize(const CImg& src, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) { + return resize(src._width,src._height,src._depth,src._spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to dimensions of another image \newinstance. + template + CImg get_resize(const CImg& src, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) const { + return get_resize(src._width,src._height,src._depth,src._spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to dimensions of a display window. + /** + \param disp Reference display window used for dimensions. + \param interpolation_type Interpolation method. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param centering_x Set centering type (only if \p interpolation_type=0). + \param centering_y Set centering type (only if \p interpolation_type=0). + \param centering_z Set centering type (only if \p interpolation_type=0). + \param centering_c Set centering type (only if \p interpolation_type=0). + **/ + CImg& resize(const CImgDisplay& disp, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) { + return resize(disp.width(),disp.height(),_depth,_spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to dimensions of a display window \newinstance. + CImg get_resize(const CImgDisplay& disp, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) const { + return get_resize(disp.width(),disp.height(),_depth,_spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to half-size along XY axes, using an optimized filter. + CImg& resize_halfXY() { + return get_resize_halfXY().move_to(*this); + } + + //! Resize image to half-size along XY axes, using an optimized filter \newinstance. + CImg get_resize_halfXY() const { + if (is_empty()) return *this; + static const Tfloat kernel[9] = { 0.07842776544f, 0.1231940459f, 0.07842776544f, + 0.1231940459f, 0.1935127547f, 0.1231940459f, + 0.07842776544f, 0.1231940459f, 0.07842776544f }; + CImg I(9), res(_width/2,_height/2,_depth,_spectrum); + T *ptrd = res._data; + cimg_forZC(*this,z,c) cimg_for3x3(*this,x,y,z,c,I,T) + if (x%2 && y%2) *(ptrd++) = (T) + (I[0]*kernel[0] + I[1]*kernel[1] + I[2]*kernel[2] + + I[3]*kernel[3] + I[4]*kernel[4] + I[5]*kernel[5] + + I[6]*kernel[6] + I[7]*kernel[7] + I[8]*kernel[8]); + return res; + } + + //! Resize image to double-size, using the Scale2X algorithm. + /** + \note Use anisotropic upscaling algorithm + described here. + **/ + CImg& resize_doubleXY() { + return get_resize_doubleXY().move_to(*this); + } + + //! Resize image to double-size, using the Scale2X algorithm \newinstance. + CImg get_resize_doubleXY() const { +#define _cimg_gs2x_for3(bound,i) \ + for (int i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + _p1##i = i++, ++_n1##i, ptrd1+=(res)._width, ptrd2+=(res)._width) + +#define _cimg_gs2x_for3x3(img,x,y,z,c,I,T) \ + _cimg_gs2x_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,z,c)), \ + (I[7] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + + if (is_empty()) return *this; + CImg res(_width<<1,_height<<1,_depth,_spectrum); + CImg_3x3(I,T); + cimg_forZC(*this,z,c) { + T + *ptrd1 = res.data(0,0,z,c), + *ptrd2 = ptrd1 + res._width; + _cimg_gs2x_for3x3(*this,x,y,z,c,I,T) { + if (Icp!=Icn && Ipc!=Inc) { + *(ptrd1++) = Ipc==Icp?Ipc:Icc; + *(ptrd1++) = Icp==Inc?Inc:Icc; + *(ptrd2++) = Ipc==Icn?Ipc:Icc; + *(ptrd2++) = Icn==Inc?Inc:Icc; + } else { *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; } + } + } + return res; + } + + //! Resize image to triple-size, using the Scale3X algorithm. + /** + \note Use anisotropic upscaling algorithm + described here. + **/ + CImg& resize_tripleXY() { + return get_resize_tripleXY().move_to(*this); + } + + //! Resize image to triple-size, using the Scale3X algorithm \newinstance. + CImg get_resize_tripleXY() const { +#define _cimg_gs3x_for3(bound,i) \ + for (int i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + _p1##i = i++, ++_n1##i, ptrd1+=2*(res)._width, ptrd2+=2*(res)._width, ptrd3+=2*(res)._width) + +#define _cimg_gs3x_for3x3(img,x,y,z,c,I,T) \ + _cimg_gs3x_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,z,c)), \ + (I[6] = I[7] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + + if (is_empty()) return *this; + CImg res(3*_width,3*_height,_depth,_spectrum); + CImg_3x3(I,T); + cimg_forZC(*this,z,c) { + T + *ptrd1 = res.data(0,0,z,c), + *ptrd2 = ptrd1 + res._width, + *ptrd3 = ptrd2 + res._width; + _cimg_gs3x_for3x3(*this,x,y,z,c,I,T) { + if (Icp != Icn && Ipc != Inc) { + *(ptrd1++) = Ipc==Icp?Ipc:Icc; + *(ptrd1++) = (Ipc==Icp && Icc!=Inp) || (Icp==Inc && Icc!=Ipp)?Icp:Icc; + *(ptrd1++) = Icp==Inc?Inc:Icc; + *(ptrd2++) = (Ipc==Icp && Icc!=Ipn) || (Ipc==Icn && Icc!=Ipp)?Ipc:Icc; + *(ptrd2++) = Icc; + *(ptrd2++) = (Icp==Inc && Icc!=Inn) || (Icn==Inc && Icc!=Inp)?Inc:Icc; + *(ptrd3++) = Ipc==Icn?Ipc:Icc; + *(ptrd3++) = (Ipc==Icn && Icc!=Inn) || (Icn==Inc && Icc!=Ipn)?Icn:Icc; + *(ptrd3++) = Icn==Inc?Inc:Icc; + } else { + *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd1++) = Icc; + *(ptrd2++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; + *(ptrd3++) = Icc; *(ptrd3++) = Icc; *(ptrd3++) = Icc; + } + } + } + return res; + } + + //! Mirror image content along specified axis. + /** + \param axis Mirror axis + **/ + CImg& mirror(const char axis) { + if (is_empty()) return *this; + T *pf, *pb, *buf = 0; + switch (cimg::lowercase(axis)) { + case 'x' : { + pf = _data; pb = data(_width - 1); + const unsigned int width2 = _width/2; + for (unsigned int yzv = 0; yzv<_height*_depth*_spectrum; ++yzv) { + for (unsigned int x = 0; x get_mirror(const char axis) const { + return (+*this).mirror(axis); + } + + //! Mirror image content along specified axes. + /** + \param axes Mirror axes, as a C-string. + \note \c axes may contains multiple characters, e.g. \c "xyz" + **/ + CImg& mirror(const char *const axes) { + for (const char *s = axes; *s; ++s) mirror(*s); + return *this; + } + + //! Mirror image content along specified axes \newinstance. + CImg get_mirror(const char *const axes) const { + return (+*this).mirror(axes); + } + + //! Shift image content. + /** + \param delta_x Amount of displacement along the X-axis. + \param delta_y Amount of displacement along the Y-axis. + \param delta_z Amount of displacement along the Z-axis. + \param delta_c Amount of displacement along the C-axis. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& shift(const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, + const unsigned int boundary_conditions=0) { + if (is_empty()) return *this; + if (boundary_conditions==3) + return get_crop(-delta_x,-delta_y,-delta_z,-delta_c, + width() - delta_x - 1, + height() - delta_y - 1, + depth() - delta_z - 1, + spectrum() - delta_c - 1,3).move_to(*this); + if (delta_x) // Shift along X-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_x,width()), ndelta_x = (ml<=width()/2)?ml:(ml-width()); + if (!ndelta_x) return *this; + CImg buf(cimg::abs(ndelta_x)); + if (ndelta_x>0) cimg_forYZC(*this,y,z,c) { + std::memcpy(buf,data(0,y,z,c),ndelta_x*sizeof(T)); + std::memmove(data(0,y,z,c),data(ndelta_x,y,z,c),(_width-ndelta_x)*sizeof(T)); + std::memcpy(data(_width-ndelta_x,y,z,c),buf,ndelta_x*sizeof(T)); + } else cimg_forYZC(*this,y,z,c) { + std::memcpy(buf,data(_width + ndelta_x,y,z,c),-ndelta_x*sizeof(T)); + std::memmove(data(-ndelta_x,y,z,c),data(0,y,z,c),(_width + ndelta_x)*sizeof(T)); + std::memcpy(data(0,y,z,c),buf,-ndelta_x*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_x<0) { + const int ndelta_x = (-delta_x>=width())?width() - 1:-delta_x; + if (!ndelta_x) return *this; + cimg_forYZC(*this,y,z,c) { + std::memmove(data(0,y,z,c),data(ndelta_x,y,z,c),(_width-ndelta_x)*sizeof(T)); + T *ptrd = data(_width - 1,y,z,c); + const T val = *ptrd; + for (int l = 0; l=width())?width() - 1:delta_x; + if (!ndelta_x) return *this; + cimg_forYZC(*this,y,z,c) { + std::memmove(data(ndelta_x,y,z,c),data(0,y,z,c),(_width-ndelta_x)*sizeof(T)); + T *ptrd = data(0,y,z,c); + const T val = *ptrd; + for (int l = 0; l=width()) return fill((T)0); + if (delta_x<0) cimg_forYZC(*this,y,z,c) { + std::memmove(data(0,y,z,c),data(-delta_x,y,z,c),(_width + delta_x)*sizeof(T)); + std::memset(data(_width + delta_x,y,z,c),0,-delta_x*sizeof(T)); + } else cimg_forYZC(*this,y,z,c) { + std::memmove(data(delta_x,y,z,c),data(0,y,z,c),(_width-delta_x)*sizeof(T)); + std::memset(data(0,y,z,c),0,delta_x*sizeof(T)); + } + } + + if (delta_y) // Shift along Y-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_y,height()), ndelta_y = (ml<=height()/2)?ml:(ml-height()); + if (!ndelta_y) return *this; + CImg buf(width(),cimg::abs(ndelta_y)); + if (ndelta_y>0) cimg_forZC(*this,z,c) { + std::memcpy(buf,data(0,0,z,c),_width*ndelta_y*sizeof(T)); + std::memmove(data(0,0,z,c),data(0,ndelta_y,z,c),_width*(_height-ndelta_y)*sizeof(T)); + std::memcpy(data(0,_height-ndelta_y,z,c),buf,_width*ndelta_y*sizeof(T)); + } else cimg_forZC(*this,z,c) { + std::memcpy(buf,data(0,_height + ndelta_y,z,c),-ndelta_y*_width*sizeof(T)); + std::memmove(data(0,-ndelta_y,z,c),data(0,0,z,c),_width*(_height + ndelta_y)*sizeof(T)); + std::memcpy(data(0,0,z,c),buf,-ndelta_y*_width*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_y<0) { + const int ndelta_y = (-delta_y>=height())?height() - 1:-delta_y; + if (!ndelta_y) return *this; + cimg_forZC(*this,z,c) { + std::memmove(data(0,0,z,c),data(0,ndelta_y,z,c),_width*(_height-ndelta_y)*sizeof(T)); + T *ptrd = data(0,_height-ndelta_y,z,c), *ptrs = data(0,_height - 1,z,c); + for (int l = 0; l=height())?height() - 1:delta_y; + if (!ndelta_y) return *this; + cimg_forZC(*this,z,c) { + std::memmove(data(0,ndelta_y,z,c),data(0,0,z,c),_width*(_height-ndelta_y)*sizeof(T)); + T *ptrd = data(0,1,z,c), *ptrs = data(0,0,z,c); + for (int l = 0; l=height()) return fill((T)0); + if (delta_y<0) cimg_forZC(*this,z,c) { + std::memmove(data(0,0,z,c),data(0,-delta_y,z,c),_width*(_height + delta_y)*sizeof(T)); + std::memset(data(0,_height + delta_y,z,c),0,-delta_y*_width*sizeof(T)); + } else cimg_forZC(*this,z,c) { + std::memmove(data(0,delta_y,z,c),data(0,0,z,c),_width*(_height-delta_y)*sizeof(T)); + std::memset(data(0,0,z,c),0,delta_y*_width*sizeof(T)); + } + } + + if (delta_z) // Shift along Z-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_z,depth()), ndelta_z = (ml<=depth()/2)?ml:(ml-depth()); + if (!ndelta_z) return *this; + CImg buf(width(),height(),cimg::abs(ndelta_z)); + if (ndelta_z>0) cimg_forC(*this,c) { + std::memcpy(buf,data(0,0,0,c),_width*_height*ndelta_z*sizeof(T)); + std::memmove(data(0,0,0,c),data(0,0,ndelta_z,c),_width*_height*(_depth-ndelta_z)*sizeof(T)); + std::memcpy(data(0,0,_depth-ndelta_z,c),buf,_width*_height*ndelta_z*sizeof(T)); + } else cimg_forC(*this,c) { + std::memcpy(buf,data(0,0,_depth + ndelta_z,c),-ndelta_z*_width*_height*sizeof(T)); + std::memmove(data(0,0,-ndelta_z,c),data(0,0,0,c),_width*_height*(_depth + ndelta_z)*sizeof(T)); + std::memcpy(data(0,0,0,c),buf,-ndelta_z*_width*_height*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_z<0) { + const int ndelta_z = (-delta_z>=depth())?depth() - 1:-delta_z; + if (!ndelta_z) return *this; + cimg_forC(*this,c) { + std::memmove(data(0,0,0,c),data(0,0,ndelta_z,c),_width*_height*(_depth-ndelta_z)*sizeof(T)); + T *ptrd = data(0,0,_depth-ndelta_z,c), *ptrs = data(0,0,_depth - 1,c); + for (int l = 0; l=depth())?depth() - 1:delta_z; + if (!ndelta_z) return *this; + cimg_forC(*this,c) { + std::memmove(data(0,0,ndelta_z,c),data(0,0,0,c),_width*_height*(_depth-ndelta_z)*sizeof(T)); + T *ptrd = data(0,0,1,c), *ptrs = data(0,0,0,c); + for (int l = 0; l=depth()) return fill((T)0); + if (delta_z<0) cimg_forC(*this,c) { + std::memmove(data(0,0,0,c),data(0,0,-delta_z,c),_width*_height*(_depth + delta_z)*sizeof(T)); + std::memset(data(0,0,_depth + delta_z,c),0,_width*_height*(-delta_z)*sizeof(T)); + } else cimg_forC(*this,c) { + std::memmove(data(0,0,delta_z,c),data(0,0,0,c),_width*_height*(_depth-delta_z)*sizeof(T)); + std::memset(data(0,0,0,c),0,delta_z*_width*_height*sizeof(T)); + } + } + + if (delta_c) // Shift along C-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_c,spectrum()), ndelta_c = (ml<=spectrum()/2)?ml:(ml-spectrum()); + if (!ndelta_c) return *this; + CImg buf(width(),height(),depth(),cimg::abs(ndelta_c)); + if (ndelta_c>0) { + std::memcpy(buf,_data,_width*_height*_depth*ndelta_c*sizeof(T)); + std::memmove(_data,data(0,0,0,ndelta_c),_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T)); + std::memcpy(data(0,0,0,_spectrum-ndelta_c),buf,_width*_height*_depth*ndelta_c*sizeof(T)); + } else { + std::memcpy(buf,data(0,0,0,_spectrum + ndelta_c),-ndelta_c*_width*_height*_depth*sizeof(T)); + std::memmove(data(0,0,0,-ndelta_c),_data,_width*_height*_depth*(_spectrum + ndelta_c)*sizeof(T)); + std::memcpy(_data,buf,-ndelta_c*_width*_height*_depth*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_c<0) { + const int ndelta_c = (-delta_c>=spectrum())?spectrum() - 1:-delta_c; + if (!ndelta_c) return *this; + std::memmove(_data,data(0,0,0,ndelta_c),_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T)); + T *ptrd = data(0,0,0,_spectrum-ndelta_c), *ptrs = data(0,0,0,_spectrum - 1); + for (int l = 0; l=spectrum())?spectrum() - 1:delta_c; + if (!ndelta_c) return *this; + std::memmove(data(0,0,0,ndelta_c),_data,_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T)); + T *ptrd = data(0,0,0,1); + for (int l = 0; l=spectrum()) return fill((T)0); + if (delta_c<0) { + std::memmove(_data,data(0,0,0,-delta_c),_width*_height*_depth*(_spectrum + delta_c)*sizeof(T)); + std::memset(data(0,0,0,_spectrum + delta_c),0,_width*_height*_depth*(-delta_c)*sizeof(T)); + } else { + std::memmove(data(0,0,0,delta_c),_data,_width*_height*_depth*(_spectrum-delta_c)*sizeof(T)); + std::memset(_data,0,delta_c*_width*_height*_depth*sizeof(T)); + } + } + return *this; + } + + //! Shift image content \newinstance. + CImg get_shift(const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, + const unsigned int boundary_conditions=0) const { + return (+*this).shift(delta_x,delta_y,delta_z,delta_c,boundary_conditions); + } + + //! Permute axes order. + /** + \param axes_order Axes permutations, as a C-string of 4 characters. + This function permutes image content regarding the specified axes permutation. + **/ + CImg& permute_axes(const char *const axes_order) { + if (is_empty() || !axes_order) return *this; + const unsigned uicase = _permute_axes_uicase(axes_order); + if (_permute_axes_is_optim(uicase)) { // Data layout allow to do nothing but set the new dimensions + CImg res(*this,true); + for (unsigned int i = 0; i<4; ++i) { + const unsigned int + axis = (uicase>>(4*(3 - i)))&15, + value = !axis?_width:axis==1?_height:axis==2?_depth:_spectrum; + if (!i) res._width = value; else if (i==1) res._height = value; + else if (i==2) res._depth = value; else res._spectrum = value; + } + _width = res._width; _height = res._height; _depth = res._depth; _spectrum = res._spectrum; + return *this; + } + return get_permute_axes(axes_order).move_to(*this); + } + + //! Permute axes order \newinstance. + CImg get_permute_axes(const char *const axes_order) const { + const T foo = (T)0; + return _permute_axes(axes_order,foo); + } + + unsigned int _permute_axes_uicase(const char *const axes_order) const { // Convert axes to integer case number + unsigned char s_axes[4] = { 0,1,2,3 }, n_axes[4] = { }; + bool is_error = false; + if (axes_order) for (unsigned int l = 0; axes_order[l]; ++l) { + int c = cimg::lowercase(axes_order[l]); + if (l>=4 || (c!='x' && c!='y' && c!='z' && c!='c')) { is_error = true; break; } + else { ++n_axes[c%=4]; s_axes[l] = (unsigned char)c; } + } + is_error|=(*n_axes>1) || (n_axes[1]>1) || (n_axes[2]>1) || (n_axes[3]>1); + if (is_error) + throw CImgArgumentException(_cimg_instance + "permute_axes(): Invalid specified axes order '%s'.", + cimg_instance, + axes_order); + return (s_axes[0]<<12) | (s_axes[1]<<8) | (s_axes[2]<<4) | (s_axes[3]); + } + + bool _permute_axes_is_optim(const unsigned int uicase) const { // Determine cases where nothing has to be done + const unsigned int co = ((_width>1)<<3)|((_height>1)<<2)|((_depth>1)<<1)|(_spectrum>1); + if (co<=2 || uicase==0x0123) return true; + switch (uicase) { + case (0x0132) : if ((co>=4 && co<=6) || (co>=8 && co<=10) || (co>=12 && co<=14)) return true; break; + case (0x0213) : if ((co>=3 && co<=5) || (co>=8 && co<=13)) return true; break; + case (0x0231) : if (co==3 || co==4 || (co>=8 && co<=12)) return true; break; + case (0x0312) : if (co==4 || co==6 || co==8 || co==9 || co==10 || co==12 || co==14) return true; break; + case (0x0321) : if (co==4 || (co>=8 && co<=10) || co==12) return true; break; + case (0x1023) : if (co>=3 && co<=11) return true; break; + case (0x1032) : if ((co>=4 && co<=6) || (co>=8 && co<=10)) return true; break; + case (0x1203) : if (co>=3 && co<=9) return true; break; + case (0x1230) : if (co>=3 && co<=8) return true; break; + case (0x1302) : if ((co>=4 && co<=6) || co==8 || co==10) return true; break; + case (0x1320) : if ((co>=4 && co<=6) || co==8) return true; break; + case (0x2013) : if ((co>=3 && co<=5) || co==8 || co==9 || co==12 || co==13) return true; break; + case (0x2031) : if (co==3 || co==4 || co==8 || co==9 || co==12) return true; break; + case (0x2103) : if ((co>=3 && co<=5) || co==8 || co==9) return true; break; + case (0x2130) : if ((co>=3 && co<=5) || co==8) return true; break; + case (0x2301) : if (co==3 || co==4 || co==8 || co==12) return true; break; + case (0x2310) : if (co==3 || co==4 || co==8) return true; break; + case (0x3012) : if (co==4 || co==6 || co==8 || co==10 || co==12 || co==14) return true; break; + case (0x3021) : if (co==4 || co==8 || co==10 || co==12) return true; break; + case (0x3102) : if (co==4 || co==6 || co==8 || co==10) return true; break; + case (0x3120) : if (co==4 || co==6 || co==8) return true; break; + case (0x3201) : if (co==4 || co==8 || co==12) return true; break; + case (0x3210) : if (co==4 || co==8) return true; break; + } + return false; + } + + template + CImg _permute_axes(const char *const axes_order, const t&) const { + if (is_empty() || !axes_order) return CImg(*this,false); + CImg res; + const unsigned uicase = _permute_axes_uicase(axes_order); + + if (_permute_axes_is_optim(uicase)) { // Data layout allow to do nothing but set the new dimensions + res.assign(*this,false); + for (unsigned int i = 0; i<4; ++i) { + const unsigned int + axis = (uicase>>(4*(3 - i)))&15, + value = !axis?_width:axis==1?_height:axis==2?_depth:_spectrum; + if (!i) res._width = value; else if (i==1) res._height = value; + else if (i==2) res._depth = value; else res._spectrum = value; + } + return res; + } + + const T* ptrs = _data; + ulongT wh, whd; + + switch (uicase) { + case 0x0123 : // xyzc + return +*this; + case 0x0132 : // xycz + res.assign(_width,_height,_spectrum,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,y,c,z,wh,whd) = (t)*(ptrs++); + break; + case 0x0213 : // xzyc + res.assign(_width,_depth,_height,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,z,y,c,wh,whd) = (t)*(ptrs++); + break; + case 0x0231 : // xzcy + res.assign(_width,_depth,_spectrum,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,z,c,y,wh,whd) = (t)*(ptrs++); + break; + case 0x0312 : // xcyz + res.assign(_width,_spectrum,_height,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,c,y,z,wh,whd) = (t)*(ptrs++); + break; + case 0x0321 : // xczy + res.assign(_width,_spectrum,_depth,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,c,z,y,wh,whd) = (t)*(ptrs++); + break; + case 0x1023 : // yxzc + res.assign(_height,_width,_depth,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,x,z,c,wh,whd) = (t)*(ptrs++); + break; + case 0x1032 : // yxcz + res.assign(_height,_width,_spectrum,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,x,c,z,wh,whd) = (t)*(ptrs++); + break; + case 0x1203 : // yzxc + res.assign(_height,_depth,_width,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,z,x,c,wh,whd) = (t)*(ptrs++); + break; + case 0x1230 : // yzcx + res.assign(_height,_depth,_spectrum,_width); + switch (_width) { + case 1 : { + t *ptr_r = res.data(0,0,0,0); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)*(ptrs++); + } + } break; + case 2 : { + t *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)ptrs[0]; + *(ptr_g++) = (t)ptrs[1]; + ptrs+=2; + } + } break; + case 3 : { // Optimization for the classical conversion from interleaved RGB to planar RGB + t *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1), *ptr_b = res.data(0,0,0,2); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)ptrs[0]; + *(ptr_g++) = (t)ptrs[1]; + *(ptr_b++) = (t)ptrs[2]; + ptrs+=3; + } + } break; + case 4 : { // Optimization for the classical conversion from interleaved RGBA to planar RGBA + t + *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1), + *ptr_b = res.data(0,0,0,2), *ptr_a = res.data(0,0,0,3); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)ptrs[0]; + *(ptr_g++) = (t)ptrs[1]; + *(ptr_b++) = (t)ptrs[2]; + *(ptr_a++) = (t)ptrs[3]; + ptrs+=4; + } + } break; + default : { + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,z,c,x,wh,whd) = *(ptrs++); + return res; + } + } + break; + case 0x1302 : // ycxz + res.assign(_height,_spectrum,_width,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,c,x,z,wh,whd) = (t)*(ptrs++); + break; + case 0x1320 : // yczx + res.assign(_height,_spectrum,_depth,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,c,z,x,wh,whd) = (t)*(ptrs++); + break; + case 0x2013 : // zxyc + res.assign(_depth,_width,_height,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,x,y,c,wh,whd) = (t)*(ptrs++); + break; + case 0x2031 : // zxcy + res.assign(_depth,_width,_spectrum,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,x,c,y,wh,whd) = (t)*(ptrs++); + break; + case 0x2103 : // zyxc + res.assign(_depth,_height,_width,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,y,x,c,wh,whd) = (t)*(ptrs++); + break; + case 0x2130 : // zycx + res.assign(_depth,_height,_spectrum,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,y,c,x,wh,whd) = (t)*(ptrs++); + break; + case 0x2301 : // zcxy + res.assign(_depth,_spectrum,_width,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,c,x,y,wh,whd) = (t)*(ptrs++); + break; + case 0x2310 : // zcyx + res.assign(_depth,_spectrum,_height,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,c,y,x,wh,whd) = (t)*(ptrs++); + break; + case 0x3012 : // cxyz + res.assign(_spectrum,_width,_height,_depth); + switch (_spectrum) { + case 1 : { + const T *ptr_r = data(0,0,0,0); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) *(ptrd++) = (t)*(ptr_r++); + } break; + case 2 : { + const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) { + ptrd[0] = (t)*(ptr_r++); + ptrd[1] = (t)*(ptr_g++); + ptrd+=2; + } + } break; + case 3 : { // Optimization for the classical conversion from planar RGB to interleaved RGB + const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) { + ptrd[0] = (t)*(ptr_r++); + ptrd[1] = (t)*(ptr_g++); + ptrd[2] = (t)*(ptr_b++); + ptrd+=3; + } + } break; + case 4 : { // Optimization for the classical conversion from planar RGBA to interleaved RGBA + const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) { + ptrd[0] = (t)*(ptr_r++); + ptrd[1] = (t)*(ptr_g++); + ptrd[2] = (t)*(ptr_b++); + ptrd[3] = (t)*(ptr_a++); + ptrd+=4; + } + } break; + default : { + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,x,y,z,wh,whd) = (t)*(ptrs++); + } + } + break; + case 0x3021 : // cxzy + res.assign(_spectrum,_width,_depth,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,x,z,y,wh,whd) = (t)*(ptrs++); + break; + case 0x3102 : // cyxz + res.assign(_spectrum,_height,_width,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,y,x,z,wh,whd) = (t)*(ptrs++); + break; + case 0x3120 : // cyzx + res.assign(_spectrum,_height,_depth,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,y,z,x,wh,whd) = (t)*(ptrs++); + break; + case 0x3201 : // czxy + res.assign(_spectrum,_depth,_width,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,z,x,y,wh,whd) = (t)*(ptrs++); + break; + case 0x3210 : // czyx + res.assign(_spectrum,_depth,_height,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,z,y,x,wh,whd) = (t)*(ptrs++); + break; + } + return res; + } + + //! Unroll pixel values along specified axis. + /** + \param axis Unroll axis (can be \c 'x', \c 'y', \c 'z' or c 'c'). + **/ + CImg& unroll(const char axis) { + const unsigned int siz = (unsigned int)size(); + if (siz) switch (cimg::lowercase(axis)) { + case 'x' : _width = siz; _height = _depth = _spectrum = 1; break; + case 'y' : _height = siz; _width = _depth = _spectrum = 1; break; + case 'z' : _depth = siz; _width = _height = _spectrum = 1; break; + case 'c' : _spectrum = siz; _width = _height = _depth = 1; break; + } + return *this; + } + + //! Unroll pixel values along specified axis \newinstance. + CImg get_unroll(const char axis) const { + return (+*this).unroll(axis); + } + + //! Rotate image with arbitrary angle. + /** + \param angle Rotation angle, in degrees. + \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \note The size of the image is modified. + **/ + CImg& rotate(const float angle, const unsigned int interpolation=1, + const unsigned int boundary_conditions=0) { + const float nangle = cimg::mod(angle,360.f); + if (nangle==0.f) return *this; + return get_rotate(nangle,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate image with arbitrary angle \newinstance. + CImg get_rotate(const float angle, const unsigned int interpolation=1, + const unsigned int boundary_conditions=0) const { + if (is_empty()) return *this; + CImg res; + const float nangle = cimg::mod(angle,360.f); + if (boundary_conditions!=1 && cimg::mod(nangle,90.f)==0) { // Optimized version for orthogonal angles + const int wm1 = width() - 1, hm1 = height() - 1; + const int iangle = (int)nangle/90; + switch (iangle) { + case 1 : { // 90 deg + res.assign(_height,_width,_depth,_spectrum); + T *ptrd = res._data; + cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(y,hm1 - x,z,c); + } break; + case 2 : { // 180 deg + res.assign(_width,_height,_depth,_spectrum); + T *ptrd = res._data; + cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(wm1 - x,hm1 - y,z,c); + } break; + case 3 : { // 270 deg + res.assign(_height,_width,_depth,_spectrum); + T *ptrd = res._data; + cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(wm1 - y,x,z,c); + } break; + default : // 0 deg + return *this; + } + } else { // Generic angle + const float + rad = (float)(nangle*cimg::PI/180.), + ca = (float)std::cos(rad), sa = (float)std::sin(rad), + ux = cimg::abs((_width - 1)*ca), uy = cimg::abs((_width - 1)*sa), + vx = cimg::abs((_height - 1)*sa), vy = cimg::abs((_height - 1)*ca), + w2 = 0.5f*(_width - 1), h2 = 0.5f*(_height - 1); + res.assign((int)cimg::round(1 + ux + vx),(int)cimg::round(1 + uy + vy),_depth,_spectrum); + const float rw2 = 0.5f*(res._width - 1), rh2 = 0.5f*(res._height - 1); + _rotate(res,nangle,interpolation,boundary_conditions,w2,h2,rw2,rh2); + } + return res; + } + + //! Rotate image with arbitrary angle, around a center point. + /** + \param angle Rotation angle, in degrees. + \param cx X-coordinate of the rotation center. + \param cy Y-coordinate of the rotation center. + \param interpolation Type of interpolation, { 0=nearest | 1=linear | 2=cubic | 3=mirror }. + \param boundary_conditions Boundary conditions, { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& rotate(const float angle, const float cx, const float cy, + const unsigned int interpolation, const unsigned int boundary_conditions=0) { + return get_rotate(angle,cx,cy,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate image with arbitrary angle, around a center point \newinstance. + CImg get_rotate(const float angle, const float cx, const float cy, + const unsigned int interpolation, const unsigned int boundary_conditions=0) const { + if (is_empty()) return *this; + CImg res(_width,_height,_depth,_spectrum); + _rotate(res,angle,interpolation,boundary_conditions,cx,cy,cx,cy); + return res; + } + + // [internal] Perform 2D rotation with arbitrary angle. + void _rotate(CImg& res, const float angle, + const unsigned int interpolation, const unsigned int boundary_conditions, + const float w2, const float h2, + const float rw2, const float rh2) const { + const float + rad = (float)(angle*cimg::PI/180.), + ca = (float)std::cos(rad), sa = (float)std::sin(rad); + + switch (boundary_conditions) { + case 3 : { // Mirror + + switch (interpolation) { + case 2 : { // Cubic interpolation + const float ww = 2.f*width(), hh = 2.f*height(); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2, + mx = cimg::mod(w2 + xc*ca + yc*sa,ww), + my = cimg::mod(h2 - xc*sa + yc*ca,hh); + res(x,y,z,c) = _cubic_atXY_c(mx{ 0=nearest | 1=linear | 2=cubic }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \note Most of the time, size of the image is modified. + **/ + CImg rotate(const float u, const float v, const float w, const float angle, + const unsigned int interpolation, const unsigned int boundary_conditions) { + const float nangle = cimg::mod(angle,360.f); + if (nangle==0.f) return *this; + return get_rotate(u,v,w,nangle,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate volumetric image with arbitrary angle and axis \newinstance. + CImg get_rotate(const float u, const float v, const float w, const float angle, + const unsigned int interpolation, const unsigned int boundary_conditions) const { + if (is_empty()) return *this; + CImg res; + const float + w1 = _width - 1, h1 = _height - 1, d1 = _depth -1, + w2 = 0.5f*w1, h2 = 0.5f*h1, d2 = 0.5f*d1; + CImg R = CImg::rotation_matrix(u,v,w,angle); + const CImg + X = R*CImg(8,3,1,1, + 0.f,w1,w1,0.f,0.f,w1,w1,0.f, + 0.f,0.f,h1,h1,0.f,0.f,h1,h1, + 0.f,0.f,0.f,0.f,d1,d1,d1,d1); + float + xm, xM = X.get_shared_row(0).max_min(xm), + ym, yM = X.get_shared_row(1).max_min(ym), + zm, zM = X.get_shared_row(2).max_min(zm); + const int + dx = (int)cimg::round(xM - xm), + dy = (int)cimg::round(yM - ym), + dz = (int)cimg::round(zM - zm); + R.transpose(); + res.assign(1 + dx,1 + dy,1 + dz,_spectrum); + const float rw2 = 0.5f*dx, rh2 = 0.5f*dy, rd2 = 0.5f*dz; + _rotate(res,R,interpolation,boundary_conditions,w2,h2,d2,rw2,rh2,rd2); + return res; + } + + //! Rotate volumetric image with arbitrary angle and axis, around a center point. + /** + \param u X-coordinate of the 3D rotation axis. + \param v Y-coordinate of the 3D rotation axis. + \param w Z-coordinate of the 3D rotation axis. + \param angle Rotation angle, in degrees. + \param cx X-coordinate of the rotation center. + \param cy Y-coordinate of the rotation center. + \param cz Z-coordinate of the rotation center. + \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic | 3=mirror }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic }. + \note Most of the time, size of the image is modified. + **/ + CImg rotate(const float u, const float v, const float w, const float angle, + const float cx, const float cy, const float cz, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) { + const float nangle = cimg::mod(angle,360.f); + if (nangle==0.f) return *this; + return get_rotate(u,v,w,nangle,cx,cy,cz,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate volumetric image with arbitrary angle and axis, around a center point \newinstance. + CImg get_rotate(const float u, const float v, const float w, const float angle, + const float cx, const float cy, const float cz, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const { + if (is_empty()) return *this; + CImg res(_width,_height,_depth,_spectrum); + CImg R = CImg::rotation_matrix(u,v,w,-angle); + _rotate(res,R,interpolation,boundary_conditions,cx,cy,cz,cx,cy,cz); + return res; + } + + // [internal] Perform 3D rotation with arbitrary axis and angle. + void _rotate(CImg& res, const CImg& R, + const unsigned int interpolation, const unsigned int boundary_conditions, + const float w2, const float h2, const float d2, + const float rw2, const float rh2, const float rd2) const { + switch (boundary_conditions) { + case 3 : // Mirror + switch (interpolation) { + case 2 : { // Cubic interpolation + const float ww = 2.f*width(), hh = 2.f*height(), dd = 2.f*depth(); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(res.size(),2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww), + Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh), + Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd); + cimg_forC(res,c) res(x,y,z,c) = _cubic_atXYZ_c(X{ 0=nearest | 1=linear | 2=cubic }. + \param boundary_conditions Boundary conditions { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + template + CImg& warp(const CImg& p_warp, const unsigned int mode=0, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) { + return get_warp(p_warp,mode,interpolation,boundary_conditions).move_to(*this); + } + + //! Warp image content by a warping field \newinstance + template + CImg get_warp(const CImg& p_warp, const unsigned int mode=0, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const { + if (is_empty() || !p_warp) return *this; + if (mode && !is_sameXYZ(p_warp)) + throw CImgArgumentException(_cimg_instance + "warp(): Instance and specified relative warping field (%u,%u,%u,%u,%p) " + "have different XYZ dimensions.", + cimg_instance, + p_warp._width,p_warp._height,p_warp._depth,p_warp._spectrum,p_warp._data); + + CImg res(p_warp._width,p_warp._height,p_warp._depth,_spectrum); + + if (p_warp._spectrum==1) { // 1D warping + if (mode>=3) { // Forward-relative warp + res.fill((T)0); + if (interpolation>=1) // Linear interpolation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atX(*(ptrs++),x + (float)*(ptrs0++),y,z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = x + (int)cimg::round(*(ptrs0++)); + if (X>=0 && X=1) // Linear interpolation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atX(*(ptrs++),(float)*(ptrs0++),y,z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = (int)cimg::round(*(ptrs0++)); + if (X>=0 && X=3) { // Forward-relative warp + res.fill((T)0); + if (interpolation>=1) // Linear interpolation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXY(*(ptrs++),x + (float)*(ptrs0++),y + (float)*(ptrs1++),z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = x + (int)cimg::round(*(ptrs0++)), Y = y + (int)cimg::round(*(ptrs1++)); + if (X>=0 && X=0 && Y=1) // Linear interpolation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXY(*(ptrs++),(float)*(ptrs0++),(float)*(ptrs1++),z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = (int)cimg::round(*(ptrs0++)), Y = (int)cimg::round(*(ptrs1++)); + if (X>=0 && X=0 && Y=3) { // Forward-relative warp + res.fill((T)0); + if (interpolation>=1) // Linear interpolation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXYZ(*(ptrs++),x + (float)*(ptrs0++),y + (float)*(ptrs1++), + z + (float)*(ptrs2++),c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int + X = x + (int)cimg::round(*(ptrs0++)), + Y = y + (int)cimg::round(*(ptrs1++)), + Z = z + (int)cimg::round(*(ptrs2++)); + if (X>=0 && X=0 && Y=0 && Z=1) // Linear interpolation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(res.size(),4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXYZ(*(ptrs++),(float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = p_warp.data(0,y,z,0), *ptrs1 = p_warp.data(0,y,z,1), *ptrs2 = p_warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int + X = (int)cimg::round(*(ptrs0++)), + Y = (int)cimg::round(*(ptrs1++)), + Z = (int)cimg::round(*(ptrs2++)); + if (X>=0 && X=0 && Y=0 && Z get_projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) const { + if (is_empty() || _depth<2) return +*this; + const unsigned int + _x0 = (x0>=_width)?_width - 1:x0, + _y0 = (y0>=_height)?_height - 1:y0, + _z0 = (z0>=_depth)?_depth - 1:z0; + const CImg + img_xy = get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1), + img_zy = get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1).permute_axes("xzyc"). + resize(_depth,_height,1,-100,-1), + img_xz = get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1).resize(_width,_depth,1,-100,-1); + return CImg(_width + _depth,_height + _depth,1,_spectrum,cimg::min(img_xy.min(),img_zy.min(),img_xz.min())). + draw_image(0,0,img_xy).draw_image(img_xy._width,0,img_zy). + draw_image(0,img_xy._height,img_xz); + } + + //! Construct a 2D representation of a 3D image, with XY,XZ and YZ views \inplace. + CImg& projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) { + if (_depth<2) return *this; + return get_projections2d(x0,y0,z0).move_to(*this); + } + + //! Crop image region. + /** + \param x0 = X-coordinate of the upper-left crop rectangle corner. + \param y0 = Y-coordinate of the upper-left crop rectangle corner. + \param z0 = Z-coordinate of the upper-left crop rectangle corner. + \param c0 = C-coordinate of the upper-left crop rectangle corner. + \param x1 = X-coordinate of the lower-right crop rectangle corner. + \param y1 = Y-coordinate of the lower-right crop rectangle corner. + \param z1 = Z-coordinate of the lower-right crop rectangle corner. + \param c1 = C-coordinate of the lower-right crop rectangle corner. + \param boundary_conditions = Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& crop(const int x0, const int y0, const int z0, const int c0, + const int x1, const int y1, const int z1, const int c1, + const unsigned int boundary_conditions=0) { + return get_crop(x0,y0,z0,c0,x1,y1,z1,c1,boundary_conditions).move_to(*this); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int y0, const int z0, const int c0, + const int x1, const int y1, const int z1, const int c1, + const unsigned int boundary_conditions=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "crop(): Empty instance.", + cimg_instance); + const int + nx0 = x0=0 && nx1=0 && ny1=0 && nz1=0 && nc1 res(1U + nx1 - nx0,1U + ny1 - ny0,1U + nz1 - nz0,1U + nc1 - nc0); + if (nx0<0 || nx1>=width() || ny0<0 || ny1>=height() || nz0<0 || nz1>=depth() || nc0<0 || nc1>=spectrum()) + switch (_boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(), s2 = 2*spectrum(); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && + _height*_depth*_spectrum>=4)) + cimg_forXYZC(res,x,y,z,c) { + const int + mx = cimg::mod(nx0 + x,w2), + my = cimg::mod(ny0 + y,h2), + mz = cimg::mod(nz0 + z,d2), + mc = cimg::mod(nc0 + c,s2); + res(x,y,z,c) = (*this)(mx=(cimg_openmp_sizefactor)*16 && + _height*_depth*_spectrum>=4)) + cimg_forXYZC(res,x,y,z,c) { + res(x,y,z,c) = (*this)(cimg::mod(nx0 + x,width()),cimg::mod(ny0 + y,height()), + cimg::mod(nz0 + z,depth()),cimg::mod(nc0 + c,spectrum())); + } + } break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && + _height*_depth*_spectrum>=4)) + cimg_forXYZC(res,x,y,z,c) res(x,y,z,c) = _atXYZC(nx0 + x,ny0 + y,nz0 + z,nc0 + c); + break; + default : // Dirichlet + res.fill((T)0).draw_image(-nx0,-ny0,-nz0,-nc0,*this); + } + else res.draw_image(-nx0,-ny0,-nz0,-nc0,*this); + return res; + } + + //! Crop image region \overloading. + CImg& crop(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const unsigned int boundary_conditions=0) { + return crop(x0,y0,z0,0,x1,y1,z1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const unsigned int boundary_conditions=0) const { + return get_crop(x0,y0,z0,0,x1,y1,z1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \overloading. + CImg& crop(const int x0, const int y0, + const int x1, const int y1, + const unsigned int boundary_conditions=0) { + return crop(x0,y0,0,0,x1,y1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int y0, + const int x1, const int y1, + const unsigned int boundary_conditions=0) const { + return get_crop(x0,y0,0,0,x1,y1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \overloading. + CImg& crop(const int x0, const int x1, const unsigned int boundary_conditions=0) { + return crop(x0,0,0,0,x1,_height - 1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int x1, const unsigned int boundary_conditions=0) const { + return get_crop(x0,0,0,0,x1,_height - 1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Autocrop image region, regarding the specified background value. + CImg& autocrop(const T& value, const char *const axes="czyx") { + if (is_empty()) return *this; + for (const char *s = axes; *s; ++s) { + const char axis = cimg::lowercase(*s); + const CImg coords = _autocrop(value,axis); + if (coords[0]==-1 && coords[1]==-1) return assign(); // Image has only 'value' pixels + else switch (axis) { + case 'x' : { + const int x0 = coords[0], x1 = coords[1]; + if (x0>=0 && x1>=0) crop(x0,x1); + } break; + case 'y' : { + const int y0 = coords[0], y1 = coords[1]; + if (y0>=0 && y1>=0) crop(0,y0,_width - 1,y1); + } break; + case 'z' : { + const int z0 = coords[0], z1 = coords[1]; + if (z0>=0 && z1>=0) crop(0,0,z0,_width - 1,_height - 1,z1); + } break; + default : { + const int c0 = coords[0], c1 = coords[1]; + if (c0>=0 && c1>=0) crop(0,0,0,c0,_width - 1,_height - 1,_depth - 1,c1); + } + } + } + return *this; + } + + //! Autocrop image region, regarding the specified background value \newinstance. + CImg get_autocrop(const T& value, const char *const axes="czyx") const { + return (+*this).autocrop(value,axes); + } + + //! Autocrop image region, regarding the specified background color. + /** + \param color Color used for the crop. If \c 0, color is guessed. + \param axes Axes used for the crop. + **/ + CImg& autocrop(const T *const color=0, const char *const axes="zyx") { + if (is_empty()) return *this; + if (!color) { // Guess color + const CImg col1 = get_vector_at(0,0,0); + const unsigned int w = _width, h = _height, d = _depth, s = _spectrum; + autocrop(col1,axes); + if (_width==w && _height==h && _depth==d && _spectrum==s) { + const CImg col2 = get_vector_at(w - 1,h - 1,d - 1); + autocrop(col2,axes); + } + return *this; + } + for (const char *s = axes; *s; ++s) { + const char axis = cimg::lowercase(*s); + switch (axis) { + case 'x' : { + int x0 = width(), x1 = -1; + cimg_forC(*this,c) { + const CImg coords = get_shared_channel(c)._autocrop(color[c],'x'); + const int nx0 = coords[0], nx1 = coords[1]; + if (nx0>=0 && nx1>=0) { x0 = std::min(x0,nx0); x1 = std::max(x1,nx1); } + } + if (x0==width() && x1==-1) return assign(); else crop(x0,x1); + } break; + case 'y' : { + int y0 = height(), y1 = -1; + cimg_forC(*this,c) { + const CImg coords = get_shared_channel(c)._autocrop(color[c],'y'); + const int ny0 = coords[0], ny1 = coords[1]; + if (ny0>=0 && ny1>=0) { y0 = std::min(y0,ny0); y1 = std::max(y1,ny1); } + } + if (y0==height() && y1==-1) return assign(); else crop(0,y0,_width - 1,y1); + } break; + default : { + int z0 = depth(), z1 = -1; + cimg_forC(*this,c) { + const CImg coords = get_shared_channel(c)._autocrop(color[c],'z'); + const int nz0 = coords[0], nz1 = coords[1]; + if (nz0>=0 && nz1>=0) { z0 = std::min(z0,nz0); z1 = std::max(z1,nz1); } + } + if (z0==depth() && z1==-1) return assign(); else crop(0,0,z0,_width - 1,_height - 1,z1); + } + } + } + return *this; + } + + //! Autocrop image region, regarding the specified background color \newinstance. + CImg get_autocrop(const T *const color=0, const char *const axes="zyx") const { + return (+*this).autocrop(color,axes); + } + + CImg _autocrop(const T& value, const char axis) const { + CImg res; + switch (cimg::lowercase(axis)) { + case 'x' : { + int x0 = -1, x1 = -1; + cimg_forX(*this,x) cimg_forYZC(*this,y,z,c) + if ((*this)(x,y,z,c)!=value) { x0 = x; x = width(); y = height(); z = depth(); c = spectrum(); } + if (x0>=0) { + for (int x = width() - 1; x>=0; --x) cimg_forYZC(*this,y,z,c) + if ((*this)(x,y,z,c)!=value) { x1 = x; x = 0; y = height(); z = depth(); c = spectrum(); } + } + res = CImg::vector(x0,x1); + } break; + case 'y' : { + int y0 = -1, y1 = -1; + cimg_forY(*this,y) cimg_forXZC(*this,x,z,c) + if ((*this)(x,y,z,c)!=value) { y0 = y; x = width(); y = height(); z = depth(); c = spectrum(); } + if (y0>=0) { + for (int y = height() - 1; y>=0; --y) cimg_forXZC(*this,x,z,c) + if ((*this)(x,y,z,c)!=value) { y1 = y; x = width(); y = 0; z = depth(); c = spectrum(); } + } + res = CImg::vector(y0,y1); + } break; + case 'z' : { + int z0 = -1, z1 = -1; + cimg_forZ(*this,z) cimg_forXYC(*this,x,y,c) + if ((*this)(x,y,z,c)!=value) { z0 = z; x = width(); y = height(); z = depth(); c = spectrum(); } + if (z0>=0) { + for (int z = depth() - 1; z>=0; --z) cimg_forXYC(*this,x,y,c) + if ((*this)(x,y,z,c)!=value) { z1 = z; x = width(); y = height(); z = 0; c = spectrum(); } + } + res = CImg::vector(z0,z1); + } break; + default : { + int c0 = -1, c1 = -1; + cimg_forC(*this,c) cimg_forXYZ(*this,x,y,z) + if ((*this)(x,y,z,c)!=value) { c0 = c; x = width(); y = height(); z = depth(); c = spectrum(); } + if (c0>=0) { + for (int c = spectrum() - 1; c>=0; --c) cimg_forXYZ(*this,x,y,z) + if ((*this)(x,y,z,c)!=value) { c1 = c; x = width(); y = height(); z = depth(); c = 0; } + } + res = CImg::vector(c0,c1); + } + } + return res; + } + + //! Return specified image column. + /** + \param x0 Image column. + **/ + CImg get_column(const int x0) const { + return get_columns(x0,x0); + } + + //! Return specified image column \inplace. + CImg& column(const int x0) { + return columns(x0,x0); + } + + //! Return specified range of image columns. + /** + \param x0 Starting image column. + \param x1 Ending image column. + **/ + CImg& columns(const int x0, const int x1) { + return get_columns(x0,x1).move_to(*this); + } + + //! Return specified range of image columns \inplace. + CImg get_columns(const int x0, const int x1) const { + return get_crop(x0,0,0,0,x1,height() - 1,depth() - 1,spectrum() - 1); + } + + //! Return specified image row. + CImg get_row(const int y0) const { + return get_rows(y0,y0); + } + + //! Return specified image row \inplace. + /** + \param y0 Image row. + **/ + CImg& row(const int y0) { + return rows(y0,y0); + } + + //! Return specified range of image rows. + /** + \param y0 Starting image row. + \param y1 Ending image row. + **/ + CImg get_rows(const int y0, const int y1) const { + return get_crop(0,y0,0,0,width() - 1,y1,depth() - 1,spectrum() - 1); + } + + //! Return specified range of image rows \inplace. + CImg& rows(const int y0, const int y1) { + return get_rows(y0,y1).move_to(*this); + } + + //! Return specified image slice. + /** + \param z0 Image slice. + **/ + CImg get_slice(const int z0) const { + return get_slices(z0,z0); + } + + //! Return specified image slice \inplace. + CImg& slice(const int z0) { + return slices(z0,z0); + } + + //! Return specified range of image slices. + /** + \param z0 Starting image slice. + \param z1 Ending image slice. + **/ + CImg get_slices(const int z0, const int z1) const { + return get_crop(0,0,z0,0,width() - 1,height() - 1,z1,spectrum() - 1); + } + + //! Return specified range of image slices \inplace. + CImg& slices(const int z0, const int z1) { + return get_slices(z0,z1).move_to(*this); + } + + //! Return specified image channel. + /** + \param c0 Image channel. + **/ + CImg get_channel(const int c0) const { + return get_channels(c0,c0); + } + + //! Return specified image channel \inplace. + CImg& channel(const int c0) { + return channels(c0,c0); + } + + //! Return specified range of image channels. + /** + \param c0 Starting image channel. + \param c1 Ending image channel. + **/ + CImg get_channels(const int c0, const int c1) const { + return get_crop(0,0,0,c0,width() - 1,height() - 1,depth() - 1,c1); + } + + //! Return specified range of image channels \inplace. + CImg& channels(const int c0, const int c1) { + return get_channels(c0,c1).move_to(*this); + } + + //! Return stream line of a 2D or 3D vector field. + CImg get_streamline(const float x, const float y, const float z, + const float L=256, const float dl=0.1f, + const unsigned int interpolation_type=2, const bool is_backward_tracking=false, + const bool is_oriented_only=false) const { + if (_spectrum!=2 && _spectrum!=3) + throw CImgInstanceException(_cimg_instance + "streamline(): Instance is not a 2D or 3D vector field.", + cimg_instance); + if (_spectrum==2) { + if (is_oriented_only) { + typename CImg::_functor4d_streamline2d_oriented func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,true, + 0,0,0,_width - 1.f,_height - 1.f,0.f); + } else { + typename CImg::_functor4d_streamline2d_directed func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,false, + 0,0,0,_width - 1.f,_height - 1.f,0.f); + } + } + if (is_oriented_only) { + typename CImg::_functor4d_streamline3d_oriented func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,true, + 0,0,0,_width - 1.f,_height - 1.f,_depth - 1.f); + } + typename CImg::_functor4d_streamline3d_directed func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,false, + 0,0,0,_width - 1.f,_height - 1.f,_depth - 1.f); + } + + //! Return stream line of a 3D vector field. + /** + \param func Vector field function. + \param x X-coordinate of the starting point of the streamline. + \param y Y-coordinate of the starting point of the streamline. + \param z Z-coordinate of the starting point of the streamline. + \param L Streamline length. + \param dl Streamline length increment. + \param interpolation_type Type of interpolation. + Can be { 0=nearest int | 1=linear | 2=2nd-order RK | 3=4th-order RK. }. + \param is_backward_tracking Tells if the streamline is estimated forward or backward. + \param is_oriented_only Tells if the direction of the vectors must be ignored. + \param x0 X-coordinate of the first bounding-box vertex. + \param y0 Y-coordinate of the first bounding-box vertex. + \param z0 Z-coordinate of the first bounding-box vertex. + \param x1 X-coordinate of the second bounding-box vertex. + \param y1 Y-coordinate of the second bounding-box vertex. + \param z1 Z-coordinate of the second bounding-box vertex. + **/ + template + static CImg streamline(const tfunc& func, + const float x, const float y, const float z, + const float L=256, const float dl=0.1f, + const unsigned int interpolation_type=2, const bool is_backward_tracking=false, + const bool is_oriented_only=false, + const float x0=0, const float y0=0, const float z0=0, + const float x1=0, const float y1=0, const float z1=0) { + if (dl<=0) + throw CImgArgumentException("CImg<%s>::streamline(): Invalid specified integration length %g " + "(should be >0).", + pixel_type(), + dl); + + const bool is_bounded = (x0!=x1 || y0!=y1 || z0!=z1); + if (L<=0 || (is_bounded && (xx1 || yy1 || zz1))) return CImg(); + const unsigned int size_L = (unsigned int)cimg::round(L/dl + 1); + CImg coordinates(size_L,3); + const float dl2 = dl/2; + float + *ptr_x = coordinates.data(0,0), + *ptr_y = coordinates.data(0,1), + *ptr_z = coordinates.data(0,2), + pu = (float)(dl*func(x,y,z,0)), + pv = (float)(dl*func(x,y,z,1)), + pw = (float)(dl*func(x,y,z,2)), + X = x, Y = y, Z = z; + + switch (interpolation_type) { + case 0 : { // Nearest integer interpolation + cimg_forX(coordinates,l) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + const int + xi = (int)(X>0?X + 0.5f:X - 0.5f), + yi = (int)(Y>0?Y + 0.5f:Y - 0.5f), + zi = (int)(Z>0?Z + 0.5f:Z - 0.5f); + float + u = (float)(dl*func((float)xi,(float)yi,(float)zi,0)), + v = (float)(dl*func((float)xi,(float)yi,(float)zi,1)), + w = (float)(dl*func((float)xi,(float)yi,(float)zi,2)); + if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; } + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } break; + case 1 : { // First-order interpolation + cimg_forX(coordinates,l) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + float + u = (float)(dl*func(X,Y,Z,0)), + v = (float)(dl*func(X,Y,Z,1)), + w = (float)(dl*func(X,Y,Z,2)); + if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; } + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } break; + case 2 : { // Second order interpolation + cimg_forX(coordinates,l) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + float + u0 = (float)(dl2*func(X,Y,Z,0)), + v0 = (float)(dl2*func(X,Y,Z,1)), + w0 = (float)(dl2*func(X,Y,Z,2)); + if (is_oriented_only && u0*pu + v0*pv + w0*pw<0) { u0 = -u0; v0 = -v0; w0 = -w0; } + float + u = (float)(dl*func(X + u0,Y + v0,Z + w0,0)), + v = (float)(dl*func(X + u0,Y + v0,Z + w0,1)), + w = (float)(dl*func(X + u0,Y + v0,Z + w0,2)); + if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; } + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } break; + default : { // Fourth order interpolation + cimg_forX(coordinates,k) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + float + u0 = (float)(dl2*func(X,Y,Z,0)), + v0 = (float)(dl2*func(X,Y,Z,1)), + w0 = (float)(dl2*func(X,Y,Z,2)); + if (is_oriented_only && u0*pu + v0*pv + w0*pw<0) { u0 = -u0; v0 = -v0; w0 = -w0; } + float + u1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,0)), + v1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,1)), + w1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,2)); + if (is_oriented_only && u1*pu + v1*pv + w1*pw<0) { u1 = -u1; v1 = -v1; w1 = -w1; } + float + u2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,0)), + v2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,1)), + w2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,2)); + if (is_oriented_only && u2*pu + v2*pv + w2*pw<0) { u2 = -u2; v2 = -v2; w2 = -w2; } + float + u3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,0)), + v3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,1)), + w3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,2)); + if (is_oriented_only && u2*pu + v2*pv + w2*pw<0) { u3 = -u3; v3 = -v3; w3 = -w3; } + const float + u = (u0 + u3)/3 + (u1 + u2)/1.5f, + v = (v0 + v3)/3 + (v1 + v2)/1.5f, + w = (w0 + w3)/3 + (w1 + w2)/1.5f; + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } + } + if (ptr_x!=coordinates.data(0,1)) coordinates.resize((int)(ptr_x-coordinates.data()),3,1,1,0); + return coordinates; + } + + //! Return stream line of a 3D vector field \overloading. + static CImg streamline(const char *const expression, + const float x, const float y, const float z, + const float L=256, const float dl=0.1f, + const unsigned int interpolation_type=2, const bool is_backward_tracking=true, + const bool is_oriented_only=false, + const float x0=0, const float y0=0, const float z0=0, + const float x1=0, const float y1=0, const float z1=0) { + _functor4d_streamline_expr func(expression); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,is_oriented_only,x0,y0,z0,x1,y1,z1); + } + + struct _functor4d_streamline2d_directed { + const CImg& ref; + _functor4d_streamline2d_directed(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return c<2?(float)ref._linear_atXY(x,y,(int)z,c):0; + } + }; + + struct _functor4d_streamline3d_directed { + const CImg& ref; + _functor4d_streamline3d_directed(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return (float)ref._linear_atXYZ(x,y,z,c); + } + }; + + struct _functor4d_streamline2d_oriented { + const CImg& ref; + CImg *pI; + _functor4d_streamline2d_oriented(const CImg& pref):ref(pref),pI(0) { pI = new CImg(2,2,1,2); } + ~_functor4d_streamline2d_oriented() { delete pI; } + float operator()(const float x, const float y, const float z, const unsigned int c) const { +#define _cimg_vecalign2d(i,j) \ + if (I(i,j,0)*I(0,0,0) + I(i,j,1)*I(0,0,1)<0) { I(i,j,0) = -I(i,j,0); I(i,j,1) = -I(i,j,1); } + int + xi = (int)x - (x>=0?0:1), nxi = xi + 1, + yi = (int)y - (y>=0?0:1), nyi = yi + 1, + zi = (int)z; + const float + dx = x - xi, + dy = y - yi; + if (c==0) { + CImg& I = *pI; + if (xi<0) xi = 0; + if (nxi<0) nxi = 0; + if (xi>=ref.width()) xi = ref.width() - 1; + if (nxi>=ref.width()) nxi = ref.width() - 1; + if (yi<0) yi = 0; + if (nyi<0) nyi = 0; + if (yi>=ref.height()) yi = ref.height() - 1; + if (nyi>=ref.height()) nyi = ref.height() - 1; + I(0,0,0) = (float)ref(xi,yi,zi,0); I(0,0,1) = (float)ref(xi,yi,zi,1); + I(1,0,0) = (float)ref(nxi,yi,zi,0); I(1,0,1) = (float)ref(nxi,yi,zi,1); + I(1,1,0) = (float)ref(nxi,nyi,zi,0); I(1,1,1) = (float)ref(nxi,nyi,zi,1); + I(0,1,0) = (float)ref(xi,nyi,zi,0); I(0,1,1) = (float)ref(xi,nyi,zi,1); + _cimg_vecalign2d(1,0); _cimg_vecalign2d(1,1); _cimg_vecalign2d(0,1); + } + return c<2?(float)pI->_linear_atXY(dx,dy,0,c):0; + } + }; + + struct _functor4d_streamline3d_oriented { + const CImg& ref; + CImg *pI; + _functor4d_streamline3d_oriented(const CImg& pref):ref(pref),pI(0) { pI = new CImg(2,2,2,3); } + ~_functor4d_streamline3d_oriented() { delete pI; } + float operator()(const float x, const float y, const float z, const unsigned int c) const { +#define _cimg_vecalign3d(i,j,k) if (I(i,j,k,0)*I(0,0,0,0) + I(i,j,k,1)*I(0,0,0,1) + I(i,j,k,2)*I(0,0,0,2)<0) { \ + I(i,j,k,0) = -I(i,j,k,0); I(i,j,k,1) = -I(i,j,k,1); I(i,j,k,2) = -I(i,j,k,2); } + int + xi = (int)x - (x>=0?0:1), nxi = xi + 1, + yi = (int)y - (y>=0?0:1), nyi = yi + 1, + zi = (int)z - (z>=0?0:1), nzi = zi + 1; + const float + dx = x - xi, + dy = y - yi, + dz = z - zi; + if (c==0) { + CImg& I = *pI; + if (xi<0) xi = 0; + if (nxi<0) nxi = 0; + if (xi>=ref.width()) xi = ref.width() - 1; + if (nxi>=ref.width()) nxi = ref.width() - 1; + if (yi<0) yi = 0; + if (nyi<0) nyi = 0; + if (yi>=ref.height()) yi = ref.height() - 1; + if (nyi>=ref.height()) nyi = ref.height() - 1; + if (zi<0) zi = 0; + if (nzi<0) nzi = 0; + if (zi>=ref.depth()) zi = ref.depth() - 1; + if (nzi>=ref.depth()) nzi = ref.depth() - 1; + I(0,0,0,0) = (float)ref(xi,yi,zi,0); I(0,0,0,1) = (float)ref(xi,yi,zi,1); + I(0,0,0,2) = (float)ref(xi,yi,zi,2); I(1,0,0,0) = (float)ref(nxi,yi,zi,0); + I(1,0,0,1) = (float)ref(nxi,yi,zi,1); I(1,0,0,2) = (float)ref(nxi,yi,zi,2); + I(1,1,0,0) = (float)ref(nxi,nyi,zi,0); I(1,1,0,1) = (float)ref(nxi,nyi,zi,1); + I(1,1,0,2) = (float)ref(nxi,nyi,zi,2); I(0,1,0,0) = (float)ref(xi,nyi,zi,0); + I(0,1,0,1) = (float)ref(xi,nyi,zi,1); I(0,1,0,2) = (float)ref(xi,nyi,zi,2); + I(0,0,1,0) = (float)ref(xi,yi,nzi,0); I(0,0,1,1) = (float)ref(xi,yi,nzi,1); + I(0,0,1,2) = (float)ref(xi,yi,nzi,2); I(1,0,1,0) = (float)ref(nxi,yi,nzi,0); + I(1,0,1,1) = (float)ref(nxi,yi,nzi,1); I(1,0,1,2) = (float)ref(nxi,yi,nzi,2); + I(1,1,1,0) = (float)ref(nxi,nyi,nzi,0); I(1,1,1,1) = (float)ref(nxi,nyi,nzi,1); + I(1,1,1,2) = (float)ref(nxi,nyi,nzi,2); I(0,1,1,0) = (float)ref(xi,nyi,nzi,0); + I(0,1,1,1) = (float)ref(xi,nyi,nzi,1); I(0,1,1,2) = (float)ref(xi,nyi,nzi,2); + _cimg_vecalign3d(1,0,0); _cimg_vecalign3d(1,1,0); _cimg_vecalign3d(0,1,0); + _cimg_vecalign3d(0,0,1); _cimg_vecalign3d(1,0,1); _cimg_vecalign3d(1,1,1); _cimg_vecalign3d(0,1,1); + } + return (float)pI->_linear_atXYZ(dx,dy,dz,c); + } + }; + + struct _functor4d_streamline_expr { + _cimg_math_parser *mp; + ~_functor4d_streamline_expr() { mp->end(); delete mp; } + _functor4d_streamline_expr(const char *const expr):mp(0) { + mp = new _cimg_math_parser(expr,"streamline",CImg::const_empty(),0); + } + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return (float)(*mp)(x,y,z,c); + } + }; + + //! Return a shared-memory image referencing a range of pixels of the image instance. + /** + \param x0 X-coordinate of the starting pixel. + \param x1 X-coordinate of the ending pixel. + \param y0 Y-coordinate. + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_points(const unsigned int x0, const unsigned int x1, + const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) { + const ulongT + beg = (ulongT)offset(x0,y0,z0,c0), + end = (ulongT)offset(x1,y0,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_points(): Invalid request of a shared-memory subset (%u->%u,%u,%u,%u).", + cimg_instance, + x0,x1,y0,z0,c0); + return CImg(_data + beg,x1 - x0 + 1,1,1,1,true); + } + + //! Return a shared-memory image referencing a range of pixels of the image instance \const. + const CImg get_shared_points(const unsigned int x0, const unsigned int x1, + const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) const { + const ulongT + beg = (ulongT)offset(x0,y0,z0,c0), + end = (ulongT)offset(x1,y0,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_points(): Invalid request of a shared-memory subset (%u->%u,%u,%u,%u).", + cimg_instance, + x0,x1,y0,z0,c0); + return CImg(_data + beg,x1 - x0 + 1,1,1,1,true); + } + + //! Return a shared-memory image referencing a range of rows of the image instance. + /** + \param y0 Y-coordinate of the starting row. + \param y1 Y-coordinate of the ending row. + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_rows(const unsigned int y0, const unsigned int y1, + const unsigned int z0=0, const unsigned int c0=0) { + const ulongT + beg = (ulongT)offset(0,y0,z0,c0), + end = (ulongT)offset(0,y1,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_rows(): Invalid request of a shared-memory subset " + "(0->%u,%u->%u,%u,%u).", + cimg_instance, + _width - 1,y0,y1,z0,c0); + return CImg(_data + beg,_width,y1 - y0 + 1,1,1,true); + } + + //! Return a shared-memory image referencing a range of rows of the image instance \const. + const CImg get_shared_rows(const unsigned int y0, const unsigned int y1, + const unsigned int z0=0, const unsigned int c0=0) const { + const ulongT + beg = (ulongT)offset(0,y0,z0,c0), + end = (ulongT)offset(0,y1,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_rows(): Invalid request of a shared-memory subset " + "(0->%u,%u->%u,%u,%u).", + cimg_instance, + _width - 1,y0,y1,z0,c0); + return CImg(_data + beg,_width,y1 - y0 + 1,1,1,true); + } + + //! Return a shared-memory image referencing one row of the image instance. + /** + \param y0 Y-coordinate. + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_row(const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) { + return get_shared_rows(y0,y0,z0,c0); + } + + //! Return a shared-memory image referencing one row of the image instance \const. + const CImg get_shared_row(const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) const { + return get_shared_rows(y0,y0,z0,c0); + } + + //! Return a shared memory image referencing a range of slices of the image instance. + /** + \param z0 Z-coordinate of the starting slice. + \param z1 Z-coordinate of the ending slice. + \param c0 C-coordinate. + **/ + CImg get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0=0) { + const ulongT + beg = (ulongT)offset(0,0,z0,c0), + end = (ulongT)offset(0,0,z1,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_slices(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,%u->%u,%u).", + cimg_instance, + _width - 1,_height - 1,z0,z1,c0); + return CImg(_data + beg,_width,_height,z1 - z0 + 1,1,true); + } + + //! Return a shared memory image referencing a range of slices of the image instance \const. + const CImg get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0=0) const { + const ulongT + beg = (ulongT)offset(0,0,z0,c0), + end = (ulongT)offset(0,0,z1,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_slices(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,%u->%u,%u).", + cimg_instance, + _width - 1,_height - 1,z0,z1,c0); + return CImg(_data + beg,_width,_height,z1 - z0 + 1,1,true); + } + + //! Return a shared-memory image referencing one slice of the image instance. + /** + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_slice(const unsigned int z0, const unsigned int c0=0) { + return get_shared_slices(z0,z0,c0); + } + + //! Return a shared-memory image referencing one slice of the image instance \const. + const CImg get_shared_slice(const unsigned int z0, const unsigned int c0=0) const { + return get_shared_slices(z0,z0,c0); + } + + //! Return a shared-memory image referencing a range of channels of the image instance. + /** + \param c0 C-coordinate of the starting channel. + \param c1 C-coordinate of the ending channel. + **/ + CImg get_shared_channels(const unsigned int c0, const unsigned int c1) { + const ulongT + beg = (ulongT)offset(0,0,0,c0), + end = (ulongT)offset(0,0,0,c1); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_channels(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,0->%u,%u->%u).", + cimg_instance, + _width - 1,_height - 1,_depth - 1,c0,c1); + return CImg(_data + beg,_width,_height,_depth,c1 - c0 + 1,true); + } + + //! Return a shared-memory image referencing a range of channels of the image instance \const. + const CImg get_shared_channels(const unsigned int c0, const unsigned int c1) const { + const ulongT + beg = (ulongT)offset(0,0,0,c0), + end = (ulongT)offset(0,0,0,c1); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_channels(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,0->%u,%u->%u).", + cimg_instance, + _width - 1,_height - 1,_depth - 1,c0,c1); + return CImg(_data + beg,_width,_height,_depth,c1 - c0 + 1,true); + } + + //! Return a shared-memory image referencing one channel of the image instance. + /** + \param c0 C-coordinate. + **/ + CImg get_shared_channel(const unsigned int c0) { + return get_shared_channels(c0,c0); + } + + //! Return a shared-memory image referencing one channel of the image instance \const. + const CImg get_shared_channel(const unsigned int c0) const { + return get_shared_channels(c0,c0); + } + + //! Return a shared-memory version of the image instance. + CImg get_shared() { + return CImg(_data,_width,_height,_depth,_spectrum,true); + } + + //! Return a shared-memory version of the image instance \const. + const CImg get_shared() const { + return CImg(_data,_width,_height,_depth,_spectrum,true); + } + + //! Split image into a list along specified axis. + /** + \param axis Splitting axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param nb Number of split parts. + \note + - If \c nb==0, instance image is split into blocs of equal values along the specified axis. + - If \c nb<=0, instance image is split into blocs of -\c nb pixel wide. + - If \c nb>0, instance image is split into \c nb blocs. + **/ + CImgList get_split(const char axis, const int nb=-1) const { + CImgList res; + if (is_empty()) return res; + const char _axis = cimg::lowercase(axis); + + if (nb<0) { // Split by block size + const unsigned int dp = (unsigned int)(nb?-nb:1); + switch (_axis) { + case 'x': { + if (_width>dp) { + res.assign(_width/dp + (_width%dp?1:0),1,1); + const unsigned int pe = _width - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && + _height*_depth*_spectrum>=128)) + for (int p = 0; p<(int)pe; p+=dp) + get_crop(p,0,0,0,p + dp - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res[p/dp]); + get_crop((res._width - 1)*dp,0,0,0,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back()); + } else res.assign(*this); + } break; + case 'y': { + if (_height>dp) { + res.assign(_height/dp + (_height%dp?1:0),1,1); + const unsigned int pe = _height - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && + _width*_depth*_spectrum>=128)) + for (int p = 0; p<(int)pe; p+=dp) + get_crop(0,p,0,0,_width - 1,p + dp - 1,_depth - 1,_spectrum - 1).move_to(res[p/dp]); + get_crop(0,(res._width - 1)*dp,0,0,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back()); + } else res.assign(*this); + } break; + case 'z': { + if (_depth>dp) { + res.assign(_depth/dp + (_depth%dp?1:0),1,1); + const unsigned int pe = _depth - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && + _width*_height*_spectrum>=128)) + for (int p = 0; p<(int)pe; p+=dp) + get_crop(0,0,p,0,_width - 1,_height - 1,p + dp - 1,_spectrum - 1).move_to(res[p/dp]); + get_crop(0,0,(res._width - 1)*dp,0,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back()); + } else res.assign(*this); + } break; + case 'c' : { + if (_spectrum>dp) { + res.assign(_spectrum/dp + (_spectrum%dp?1:0),1,1); + const unsigned int pe = _spectrum - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*128 && + _width*_height*_depth>=128)) + for (int p = 0; p<(int)pe; p+=dp) + get_crop(0,0,0,p,_width - 1,_height - 1,_depth - 1,p + dp - 1).move_to(res[p/dp]); + get_crop(0,0,0,(res._width - 1)*dp,_width - 1,_height - 1,_depth - 1,_spectrum - 1).move_to(res.back()); + } else res.assign(*this); + } + } + } else if (nb>0) { // Split by number of (non-homogeneous) blocs + const unsigned int siz = _axis=='x'?_width:_axis=='y'?_height:_axis=='z'?_depth:_axis=='c'?_spectrum:0; + if ((unsigned int)nb>siz) + throw CImgArgumentException(_cimg_instance + "get_split(): Instance cannot be split along %c-axis into %u blocs.", + cimg_instance, + axis,nb); + if (nb==1) res.assign(*this); + else { + int err = (int)siz; + unsigned int _p = 0; + switch (_axis) { + case 'x' : { + cimg_forX(*this,p) if ((err-=nb)<=0) { + get_crop(_p,0,0,0,p,_height - 1,_depth - 1,_spectrum - 1).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } break; + case 'y' : { + cimg_forY(*this,p) if ((err-=nb)<=0) { + get_crop(0,_p,0,0,_width - 1,p,_depth - 1,_spectrum - 1).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } break; + case 'z' : { + cimg_forZ(*this,p) if ((err-=nb)<=0) { + get_crop(0,0,_p,0,_width - 1,_height - 1,p,_spectrum - 1).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } break; + case 'c' : { + cimg_forC(*this,p) if ((err-=nb)<=0) { + get_crop(0,0,0,_p,_width - 1,_height - 1,_depth - 1,p).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } + } + } + } else { // Split by equal values according to specified axis + T current = *_data; + switch (_axis) { + case 'x' : { + int i0 = 0; + cimg_forX(*this,i) + if ((*this)(i)!=current) { get_columns(i0,i - 1).move_to(res); i0 = i; current = (*this)(i); } + get_columns(i0,width() - 1).move_to(res); + } break; + case 'y' : { + int i0 = 0; + cimg_forY(*this,i) + if ((*this)(0,i)!=current) { get_rows(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,i); } + get_rows(i0,height() - 1).move_to(res); + } break; + case 'z' : { + int i0 = 0; + cimg_forZ(*this,i) + if ((*this)(0,0,i)!=current) { get_slices(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,0,i); } + get_slices(i0,depth() - 1).move_to(res); + } break; + case 'c' : { + int i0 = 0; + cimg_forC(*this,i) + if ((*this)(0,0,0,i)!=current) { get_channels(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,0,0,i); } + get_channels(i0,spectrum() - 1).move_to(res); + } break; + default : { + longT i0 = 0; + cimg_foroff(*this,i) + if ((*this)[i]!=current) { + CImg(_data + i0,1,(unsigned int)(i - i0)).move_to(res); + i0 = (longT)i; current = (*this)[i]; + } + CImg(_data + i0,1,(unsigned int)(size() - i0)).move_to(res); + } + } + } + return res; + } + + //! Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis. + /** + \param values Splitting value sequence. + \param axis Axis along which the splitting is performed. Can be '0' to ignore axis. + \param keep_values Tells if the splitting sequence must be kept in the split blocs. + **/ + template + CImgList get_split(const CImg& values, const char axis=0, const bool keep_values=true) const { + typedef _cimg_Tt Tt; + + CImgList res; + if (is_empty()) return res; + const ulongT vsiz = values.size(); + const char _axis = cimg::lowercase(axis); + if (!vsiz) return CImgList(*this); + if (vsiz==1) { // Split according to a single value + const T value = (T)*values; + switch (_axis) { + case 'x' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_width && (*this)(i)==value) ++i; + if (i>i0) { if (keep_values) get_columns(i0,i - 1).move_to(res); i0 = i; } + while (i<_width && (*this)(i)!=value) ++i; + if (i>i0) { get_columns(i0,i - 1).move_to(res); i0 = i; } + } while (i<_width); + } break; + case 'y' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_height && (*this)(0,i)==value) ++i; + if (i>i0) { if (keep_values) get_rows(i0,i - 1).move_to(res); i0 = i; } + while (i<_height && (*this)(0,i)!=value) ++i; + if (i>i0) { get_rows(i0,i - 1).move_to(res); i0 = i; } + } while (i<_height); + } break; + case 'z' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_depth && (*this)(0,0,i)==value) ++i; + if (i>i0) { if (keep_values) get_slices(i0,i - 1).move_to(res); i0 = i; } + while (i<_depth && (*this)(0,0,i)!=value) ++i; + if (i>i0) { get_slices(i0,i - 1).move_to(res); i0 = i; } + } while (i<_depth); + } break; + case 'c' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_spectrum && (*this)(0,0,0,i)==value) ++i; + if (i>i0) { if (keep_values) get_channels(i0,i - 1).move_to(res); i0 = i; } + while (i<_spectrum && (*this)(0,0,0,i)!=value) ++i; + if (i>i0) { get_channels(i0,i - 1).move_to(res); i0 = i; } + } while (i<_spectrum); + } break; + default : { + const ulongT siz = size(); + ulongT i0 = 0, i = 0; + do { + while (ii0) { + if (keep_values) CImg(_data + i0,1,(unsigned int)(i - i0)).move_to(res); + i0 = i; + } + while (ii0) { CImg(_data + i0,1,(unsigned int)(i - i0)).move_to(res); i0 = i; } + } while (i=vsiz) j = 0; } + i-=(unsigned int)j; + if (i>i1) { + if (i1>i0) get_columns(i0,i1 - 1).move_to(res); + if (keep_values) get_columns(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_width); + if (i0<_width) get_columns(i0,width() - 1).move_to(res); + } break; + case 'y' : { + unsigned int i0 = 0, i1 = 0, i = 0; + do { + if ((Tt)(*this)(0,i)==(Tt)*values) { + i1 = i; j = 0; + while (i<_height && (Tt)(*this)(0,i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; } + i-=(unsigned int)j; + if (i>i1) { + if (i1>i0) get_rows(i0,i1 - 1).move_to(res); + if (keep_values) get_rows(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_height); + if (i0<_height) get_rows(i0,height() - 1).move_to(res); + } break; + case 'z' : { + unsigned int i0 = 0, i1 = 0, i = 0; + do { + if ((Tt)(*this)(0,0,i)==(Tt)*values) { + i1 = i; j = 0; + while (i<_depth && (Tt)(*this)(0,0,i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; } + i-=(unsigned int)j; + if (i>i1) { + if (i1>i0) get_slices(i0,i1 - 1).move_to(res); + if (keep_values) get_slices(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_depth); + if (i0<_depth) get_slices(i0,depth() - 1).move_to(res); + } break; + case 'c' : { + unsigned int i0 = 0, i1 = 0, i = 0; + do { + if ((Tt)(*this)(0,0,0,i)==(Tt)*values) { + i1 = i; j = 0; + while (i<_spectrum && (Tt)(*this)(0,0,0,i)==(Tt)values[j]) { ++i; if (++j>=vsiz) j = 0; } + i-=(unsigned int)j; + if (i>i1) { + if (i1>i0) get_channels(i0,i1 - 1).move_to(res); + if (keep_values) get_channels(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_spectrum); + if (i0<_spectrum) get_channels(i0,spectrum() - 1).move_to(res); + } break; + default : { + const ulongT siz = size(); + ulongT i0 = 0, i1 = 0, i = 0; + do { + if ((Tt)(*this)[i]==(Tt)*values) { + i1 = i; j = 0; + while (i=vsiz) j = 0; } + i-=(unsigned int)j; + if (i>i1) { + if (i1>i0) CImg(_data + i0,1,(unsigned int)(i1 - i0)).move_to(res); + if (keep_values) CImg(_data + i1,1,(unsigned int)(i - i1)).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i(_data + i0,1,(unsigned int)(siz - i0)).move_to(res); + } break; + } + } + return res; + } + + //! Append two images along specified axis. + /** + \param img Image to append with instance image. + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Append alignment in \c [0,1]. + **/ + template + CImg& append(const CImg& img, const char axis='x', const float align=0) { + if (is_empty()) return assign(img,false); + if (!img) return *this; + return CImgList(*this,true).insert(img).get_append(axis,align).move_to(*this); + } + + //! Append two images along specified axis \specialization. + CImg& append(const CImg& img, const char axis='x', const float align=0) { + if (is_empty()) return assign(img,false); + if (!img) return *this; + return CImgList(*this,img,true).get_append(axis,align).move_to(*this); + } + + //! Append two images along specified axis \const. + template + CImg<_cimg_Tt> get_append(const CImg& img, const char axis='x', const float align=0) const { + if (is_empty()) return +img; + if (!img) return +*this; + return CImgList<_cimg_Tt>(*this,true).insert(img).get_append(axis,align); + } + + //! Append two images along specified axis \specialization. + CImg get_append(const CImg& img, const char axis='x', const float align=0) const { + if (is_empty()) return +img; + if (!img) return +*this; + return CImgList(*this,img,true).get_append(axis,align); + } + + //@} + //--------------------------------------- + // + //! \name Filtering / Transforms + //@{ + //--------------------------------------- + + //! Correlate image by a kernel. + /** + \param kernel = the correlation kernel. + \param boundary_conditions Boundary condition. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param is_normalized = enable local normalization. + \param channel_mode Channel processing mode. + Can be { 0=all | 1=one for one (default) | 2=partial sum | 3=full sum }. + \param xcenter X-coordinate of the kernel center (~0U>>1 means 'centered'). + \param ycenter Y-coordinate of the kernel center (~0U>>1 means 'centered'). + \param zcenter Z-coordinate of the kernel center (~0U>>1 means 'centered'). + \param xstart Starting X-coordinate of the instance image. + \param ystart Starting Y-coordinate of the instance image. + \param zstart Starting Z-coordinate of the instance image. + \param xend Ending X-coordinate of the instance image. + \param yend Ending Y-coordinate of the instance image. + \param zend Ending Z-coordinate of the instance image. + \param xstride Stride along the X-axis. + \param ystride Stride along the Y-axis. + \param zstride Stride along the Z-axis. + \param xdilation Dilation along the X-axis. + \param ydilation Dilation along the Y-axis. + \param zdilation Dilation along the Z-axis. + \param interpolation_type Can be { false=nearest | true=linear }. + \note + - The correlation of the image instance \p *this by the kernel \p kernel is defined to be: + res(x,y,z) = sum_{i,j,k} (*this)(\alpha_x\;x + \beta_x\;(i - c_x),\alpha_y\;y + \beta_y\;(j - + c_y),\alpha_z\;z + \beta_z\;(k - c_z))*kernel(i,j,k). + **/ + template + CImg& correlate(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_normalized=false, const unsigned int channel_mode=1, + const int xcenter=(int)(~0U>>1), + const int ycenter=(int)(~0U>>1), + const int zcenter=(int)(~0U>>1), + const int xstart=0, + const int ystart=0, + const int zstart=0, + const int xend=(int)(~0U>>1), + const int yend=(int)(~0U>>1), + const int zend=(int)(~0U>>1), + const float xstride=1, const float ystride=1, const float zstride=1, + const float xdilation=1, const float ydilation=1, const float zdilation=1, + const bool interpolation_type=false) { + if (is_empty() || !kernel) return *this; + return get_correlate(kernel,boundary_conditions,is_normalized,channel_mode, + xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend, + xstride,ystride,zstride,xdilation,ydilation,zdilation, + interpolation_type).move_to(*this); + } + + template + CImg<_cimg_Ttfloat> get_correlate(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_normalized=false, const unsigned int channel_mode=1, + const int xcenter=(int)(~0U>>1), + const int ycenter=(int)(~0U>>1), + const int zcenter=(int)(~0U>>1), + const int xstart=0, + const int ystart=0, + const int zstart=0, + const int xend=(int)(~0U>>1), + const int yend=(int)(~0U>>1), + const int zend=(int)(~0U>>1), + const float xstride=1, const float ystride=1, const float zstride=1, + const float xdilation=1, const float ydilation=1, const float zdilation=1, + const bool interpolation_type=false) const { + return _correlate(kernel,boundary_conditions,is_normalized,channel_mode, + xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend, + xstride,ystride,zstride,xdilation,ydilation,zdilation, + interpolation_type,false); + } + + //! Correlate image by a kernel \newinstance. + template + CImg<_cimg_Ttfloat> _correlate(const CImg& kernel, const unsigned int boundary_conditions, + const bool is_normalized, const unsigned int channel_mode, + const int xcenter, const int ycenter, const int zcenter, + const int xstart, const int ystart, const int zstart, + const int xend, const int yend, const int zend, + const float xstride, const float ystride, const float zstride, + const float xdilation, const float ydilation, const float zdilation, + const bool interpolation_type, const bool is_convolve) const { + typedef _cimg_Ttfloat Ttfloat; + CImg res; + _cimg_abort_init_openmp; + cimg_abort_init; + + if (xstart>xend || ystart>yend || zstart>zend) + throw CImgArgumentException(_cimg_instance + "%s(): Invalid xyz-start/end arguments (start = (%d,%d,%d), end = (%d,%d,%d)).", + cimg_instance, + is_convolve?"convolve":"correlate", + xstart,ystart,zstart,xend,yend,zend); + if (xstride<=0 || ystride<=0 || zstride<=0) + throw CImgArgumentException(_cimg_instance + "%s(): Invalid stride arguments (%g,%g,%g).", + cimg_instance, + is_convolve?"convolve":"correlate", + xstride,ystride,zstride); + + if (is_empty() || !kernel) return *this; + int + _xcenter = xcenter==(int)(~0U>>1)?kernel.width()/2 - 1 + (kernel.width()%2):xcenter, + _ycenter = ycenter==(int)(~0U>>1)?kernel.height()/2 - 1 + (kernel.height()%2):ycenter, + _zcenter = zcenter==(int)(~0U>>1)?kernel.depth()/2 - 1 + (kernel.depth()%2):zcenter; + float _xdilation = xdilation, _ydilation = ydilation, _zdilation = zdilation; + + CImg _kernel; + if (is_convolve) { // If convolution, go back to correlation + if (kernel.size()/kernel.spectrum()<=27) { + _kernel = CImg(kernel._data,kernel.size()/kernel._spectrum,1,1,kernel._spectrum,true). + get_mirror('x').resize(kernel,-1); + _xcenter = kernel.width() - 1 - _xcenter; + _ycenter = kernel.height() - 1 - _ycenter; + _zcenter = kernel.depth() - _zcenter - 1; + } else { _kernel = kernel.get_shared(); _xdilation*=-1; _ydilation*=-1; _zdilation*=-1; } + } else _kernel = kernel.get_shared(); + + const int + _xend = xend==(int)(~0U>>1)?width() - 1:xend, + _yend = yend==(int)(~0U>>1)?height() - 1:yend, + _zend = zend==(int)(~0U>>1)?depth() - 1:zend, + i_xstride = (int)cimg::round(xstride), + i_ystride = (int)cimg::round(ystride), + i_zstride = (int)cimg::round(zstride), + i_xdilation = (int)cimg::round(_xdilation), + i_ydilation = (int)cimg::round(_ydilation), + i_zdilation = (int)cimg::round(_zdilation), + res_width = _xend - xstart + 1, + res_height = _yend - ystart + 1, + res_depth = _zend - zstart + 1, + smin = std::min(spectrum(),_kernel.spectrum()), + smax = std::max(spectrum(),_kernel.spectrum()), + cend = !channel_mode?spectrum()*_kernel.spectrum():smax; + const ulongT + res_wh = (ulongT)res_width*res_height, + res_whd = res_wh*res_depth; + + if (!res_whd) return CImg(); + res.assign(res_width,res_height,res_depth, + !channel_mode?_spectrum*_kernel._spectrum: + channel_mode==1?smax: + channel_mode==2?(int)std::ceil((float)smax/smin):1); + if (channel_mode>=2) res.fill(0); + + const ulongT res_siz = res_whd*res._spectrum; + const bool +#if cimg_use_openmp==1 + is_master_thread = !omp_get_thread_num(), +#else + is_master_thread = true, +#endif + is_outer_parallel = is_master_thread && + (res._spectrum>=cimg::nb_cpus() || (res_siz<=(cimg_openmp_sizefactor)*32768 && res._spectrum>1)), + is_inner_parallel = is_master_thread && + (!is_outer_parallel && res_whd>=(cimg_openmp_sizefactor)*32768), + is_int_stride_dilation = xstride==i_xstride && ystride==i_ystride && zstride==i_zstride && + _xdilation==i_xdilation && _ydilation==i_ydilation && _zdilation==i_zdilation; + cimg::unused(is_inner_parallel,is_outer_parallel); + const int + w = width(), h = height(), d = depth(), + w1 = w - 1, h1 = h - 1, d1 = d - 1, + w2 = 2*w, h2 = 2*h, d2 = 2*d; + const ulongT wh = (ulongT)w*h, whd = wh*d; + + // Reshape kernel to enable optimizations for a few cases. + if (boundary_conditions==1 && + _kernel._width>1 && _kernel._height>1 && + ((_kernel._depth==1 && _kernel._width<=5 && _kernel._height<=5) || + (_kernel._depth<=3 && _kernel._width<=3 && _kernel._height<=3)) && + xstart>=0 && ystart>=0 && zstart>=0 && + _xend=0 && i_ydilation>=0 && i_zdilation>=0) { + const unsigned int M = cimg::max(_kernel._width,_kernel._height,_kernel._depth); + _kernel.assign(_kernel.get_resize(M + 1 - (M%2),M + 1 - (M%2),_kernel._depth>1?M + 1 - (M%2):1,-100, + 0,0, + 1,1,1),false); + _xcenter = _ycenter = (int)M/2; + if (_kernel._depth>1) _ycenter = (int)M/2; + } + + // Optimized version for a few particular cases (3x3, 5x5 and 3x3x3 kernels, with a few other conditions). + if (boundary_conditions==1 && + _kernel._width==_kernel._height && + ((_kernel._depth==1 && (_kernel._width==3 || _kernel._width==5)) || + (_kernel._depth==_kernel._width && _kernel._width==3)) && + _xcenter==_kernel.width()/2 && _ycenter==_kernel.height()/2 && _zcenter==_kernel.depth()/2 && + xstart>=0 && ystart>=0 && zstart>=0 && + _xend=0 && i_ydilation>=0 && i_zdilation>=0) { + + switch (_kernel._depth) { + case 3 : { // 3x3x3 centered kernel + cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel)) + for (int c = 0; c I = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum); + CImg _resu = channel_mode<=1?res.get_shared_channel(c): + CImg(res.width(),res.height(),res.depth(),1); + if (is_normalized) { + const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M*M; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) + cimg_forXYZ(res,X,Y,Z) { + const int + x = xstart + X, y = ystart + Y, z = zstart + Z, + px = x - i_xdilation>0?x - i_xdilation:0, nx = x + i_xdilation0?y - i_ydilation:0, ny = y + i_ydilation0?z - i_zdilation:0, nz = z + i_zdilation0?x - i_xdilation:0, nx = x + i_xdilation0?y - i_ydilation:0, ny = y + i_ydilation0?z - i_zdilation:0, nz = z + i_zdilation I = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum); + CImg _resu = channel_mode<=1?res.get_shared_channel(c): + CImg(res.width(),res.height(),res.depth(),1); + if (is_normalized) { + const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M*M; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) + cimg_forXYZ(res,X,Y,z) { + const int + x = xstart + X, y = ystart + Y, + px = x - i_xdilation>0?x - i_xdilation:0, bx = px - i_xdilation>0?px - i_xdilation:0, + nx = x + i_xdilation0?y - i_ydilation:0, by = py - i_ydilation>0?py - i_ydilation:0, + ny = y + i_ydilation0?x - i_xdilation:0, bx = px - i_xdilation>0?px - i_xdilation:0, + nx = x + i_xdilation0?y - i_ydilation:0, by = py - i_ydilation>0?py - i_ydilation:0, + ny = y + i_ydilation I = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum); + CImg _resu = channel_mode<=1?res.get_shared_channel(c): + CImg(res.width(),res.height(),res.depth(),1); + if (is_normalized) { + const Ttfloat M = (Ttfloat)K.magnitude(2), M2 = M*M; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) + cimg_forXYZ(res,X,Y,z) { + const int + x = xstart + X, y = ystart + Y, + px = x - i_xdilation>0?x - i_xdilation:0, nx = x + i_xdilation0?y - i_ydilation:0, ny = y + i_ydilation0?x - i_xdilation:0, nx = x + i_xdilation0?y - i_ydilation:0, ny = y + i_ydilation=0 && ystart>=0 && zstart>=0 && + _xend I = get_crop(xstart,ystart,zstart,c%_spectrum,_xend,_yend,_zend,c%_spectrum); + if (valK!=1) I*=valK; + if (is_normalized) I.sign(); + switch (channel_mode) { + case 0 : // All + case 1 : // One for one + res.get_shared_channel(c) = I; + break; + case 2 : // Partial sum + cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(c/smin)+=I; + break; + case 3 : // Full sum + cimg_pragma_openmp(critical(_correlate)) res.get_shared_channel(0)+=I; + break; + } + } + } else { // Generic version + cimg_pragma_openmp(parallel for cimg_openmp_if(is_outer_parallel)) + for (int c = 0; c I = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(!channel_mode?c/_spectrum:c%_kernel._spectrum); + CImg _resu = channel_mode<=1?res.get_shared_channel(c): + CImg(res.width(),res.height(),res.depth(),1); + Ttfloat M = 0, M2 = 0; + if (is_normalized) { M = (Ttfloat)K.magnitude(2); M2 = cimg::sqr(M); } + +#define _cimg_correlate_x_int const int ix = xstart + i_xstride*x + i_xdilation*(p - _xcenter) +#define _cimg_correlate_y_int const int iy = ystart + i_ystride*y + i_ydilation*(q - _ycenter) +#define _cimg_correlate_z_int const int iz = zstart + i_zstride*z + i_zdilation*(r - _zcenter) +#define _cimg_correlate_x_float const float ix = xstart + xstride*x + _xdilation*(p - _xcenter) +#define _cimg_correlate_y_float const float iy = ystart + ystride*y + _ydilation*(q - _ycenter) +#define _cimg_correlate_z_float const float iz = zstart + zstride*z + _zdilation*(r - _zcenter) + +#define _cimg_correlate_x_int_dirichlet const bool is_in_x = ix>=0 && ix=0 && iy=0 && iz + CImg& convolve(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_normalized=false, const unsigned int channel_mode=1, + const int xcenter=(int)(~0U>>1), + const int ycenter=(int)(~0U>>1), + const int zcenter=(int)(~0U>>1), + const int xstart=0, + const int ystart=0, + const int zstart=0, + const int xend=(int)(~0U>>1), + const int yend=(int)(~0U>>1), + const int zend=(int)(~0U>>1), + const float xstride=1, const float ystride=1, const float zstride=1, + const float xdilation=1, const float ydilation=1, const float zdilation=1, + const bool interpolation_type=false) { + if (is_empty() || !kernel) return *this; + return get_convolve(kernel,boundary_conditions,is_normalized,channel_mode, + xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend, + xstride,ystride,zstride,xdilation,ydilation,zdilation, + interpolation_type).move_to(*this); + } + + //! Convolve image by a kernel \newinstance. + template + CImg<_cimg_Ttfloat> get_convolve(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_normalized=false, const unsigned int channel_mode=1, + const int xcenter=(int)(~0U>>1), + const int ycenter=(int)(~0U>>1), + const int zcenter=(int)(~0U>>1), + const int xstart=0, + const int ystart=0, + const int zstart=0, + const int xend=(int)(~0U>>1), + const int yend=(int)(~0U>>1), + const int zend=(int)(~0U>>1), + const float xstride=1, const float ystride=1, const float zstride=1, + const float xdilation=1, const float ydilation=1, const float zdilation=1, + const bool interpolation_type=false) const { + return _correlate(kernel,boundary_conditions,is_normalized,channel_mode, + xcenter,ycenter,zcenter,xstart,ystart,zstart,xend,yend,zend, + xstride,ystride,zstride,xdilation,ydilation,zdilation, + interpolation_type,true); + } + + //! Cumulate image values, optionally along specified axis. + /** + \param axis Cumulation axis. Set it to 0 to cumulate all values globally without taking axes into account. + **/ + CImg& cumulate(const char axis=0) { + switch (cimg::lowercase(axis)) { + case 'x' : + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) { + T *ptrd = data(0,y,z,c); + Tlong cumul = (Tlong)0; + cimg_forX(*this,x) { cumul+=(Tlong)*ptrd; *(ptrd++) = (T)cumul; } + } + break; + case 'y' : { + const ulongT w = (ulongT)_width; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*512 && + _width*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) { + T *ptrd = data(x,0,z,c); + Tlong cumul = (Tlong)0; + cimg_forY(*this,y) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=w; } + } + } break; + case 'z' : { + const ulongT wh = (ulongT)_width*_height; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_depth>=(cimg_openmp_sizefactor)*512 && + _width*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) { + T *ptrd = data(x,y,0,c); + Tlong cumul = (Tlong)0; + cimg_forZ(*this,z) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=wh; } + } + } break; + case 'c' : { + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(_spectrum>=(cimg_openmp_sizefactor)*512 && _width*_height*_depth>=16)) + cimg_forXYZ(*this,x,y,z) { + T *ptrd = data(x,y,z,0); + Tlong cumul = (Tlong)0; + cimg_forC(*this,c) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=whd; } + } + } break; + default : { // Global cumulation + Tlong cumul = (Tlong)0; + cimg_for(*this,ptrd,T) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; } + } + } + return *this; + } + + //! Cumulate image values, optionally along specified axis \newinstance. + CImg get_cumulate(const char axis=0) const { + return CImg(*this,false).cumulate(axis); + } + + //! Cumulate image values, along specified axes. + /** + \param axes Cumulation axes, as a C-string. + \note \c axes may contains multiple characters, e.g. \c "xyz" + **/ + CImg& cumulate(const char *const axes) { + if (!axes) return cumulate(); + for (const char *s = axes; *s; ++s) cumulate(*s); + return *this; + } + + //! Cumulate image values, along specified axes \newinstance. + CImg get_cumulate(const char *const axes) const { + return CImg(*this,false).cumulate(axes); + } + + //! Erode image by a structuring element. + /** + \param kernel Structuring element. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param is_real Do the erosion in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). + **/ + template + CImg& erode(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) { + if (is_empty() || !kernel) return *this; + return get_erode(kernel,boundary_conditions,is_real).move_to(*this); + } + + //! Erode image by a structuring element \newinstance. + template + CImg<_cimg_Tt> get_erode(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) const { + if (is_empty() || !kernel) return *this; + if (!is_real && kernel==0) return CImg(width(),height(),depth(),spectrum(),0); + typedef _cimg_Tt Tt; + CImg res(_width,_height,_depth,std::max(_spectrum,kernel._spectrum)); + const int + mx2 = kernel.width()/2, my2 = kernel.height()/2, mz2 = kernel.depth()/2, + mx1 = kernel.width() - mx2 - 1, my1 = kernel.height() - my2 - 1, mz1 = kernel.depth() - mz2 - 1, + mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2, + w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(); + const bool + is_inner_parallel = _width*_height*_depth>=(cimg_openmp_sizefactor)*32768, + is_outer_parallel = res.size()>=(cimg_openmp_sizefactor)*32768; + cimg::unused(is_inner_parallel,is_outer_parallel); + _cimg_abort_init_openmp; + cimg_abort_init; + cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel)) + cimg_forC(res,c) _cimg_abort_try_openmp { + cimg_abort_test; + const CImg img = get_shared_channel(c%_spectrum); + const CImg K = kernel.get_shared_channel(c%kernel._spectrum); + if (is_real) { // Real erosion + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) + for (int z = mz1; z::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx1 + xm,my1 + ym,mz1 + zm); + const Tt cval = (Tt)(img(x + xm,y + ym,z + zm) - mval); + if (cval=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt min_val = cimg::type::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx1 + xm,my1 + ym,mz1 + zm); + Tt cval; + switch (boundary_conditions) { + case 0 : cval = (Tt)(img.atXYZ(x + xm,y + ym,z + zm,0,(T)0) - mval); break; + case 1 : cval = (Tt)(img._atXYZ(x + xm,y + ym,z + zm) - mval); break; + case 2 : { + const int + nx = cimg::mod(x + xm,width()), + ny = cimg::mod(y + ym,height()), + nz = cimg::mod(z + zm,depth()); + cval = img(nx,ny,nz) - mval; + } break; + default : { + const int + tx = cimg::mod(x + xm,w2), + ty = cimg::mod(y + ym,h2), + tz = cimg::mod(z + zm,d2), + nx = tx::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx1 + xm,my1 + ym,mz1 + zm)) { + const Tt cval = (Tt)img(x + xm,y + ym,z + zm); + if (cval=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt min_val = cimg::type::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + if (K(mx1 + xm,my1 + ym,mz1 + zm)) { + Tt cval; + switch (boundary_conditions) { + case 0 : cval = (Tt)img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); break; + case 1 : cval = (Tt)img._atXYZ(x + xm,y + ym,z + zm); break; + case 2 : { + const int + nx = cimg::mod(x + xm,width()), + ny = cimg::mod(y + ym,height()), + nz = cimg::mod(z + zm,depth()); + cval = img(nx,ny,nz); + } break; + default : { + const int + tx = cimg::mod(x + xm,w2), + ty = cimg::mod(y + ym,h2), + tz = cimg::mod(z + zm,d2), + nx = tx& erode(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) { + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + if (sx>1 && _width>1) { // Along X-axis + const int L = width(), off = 1, s = (int)sx, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forYZC(*this,y,z,c) { + T *const ptrdb = buf._data, *ptrd = buf._data, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(0,y,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; }} + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(0,y,z,c); cur = std::min(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val1 && _height>1) { // Along Y-axis + const int L = height(), off = width(), s = (int)sy, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXZC(*this,x,z,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,0,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,0,z,c); cur = std::min(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val1 && _depth>1) { // Along Z-axis + const int L = depth(), off = width()*height(), s = (int)sz, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXYC(*this,x,y,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,y,0,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,y,0,c); cur = std::min(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val get_erode(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const { + return (+*this).erode(sx,sy,sz); + } + + //! Erode the image by a square structuring element of specified size. + /** + \param s Size of the structuring element. + **/ + CImg& erode(const unsigned int s) { + return erode(s,s,s); + } + + //! Erode the image by a square structuring element of specified size \newinstance. + CImg get_erode(const unsigned int s) const { + return (+*this).erode(s); + } + + //! Dilate image by a structuring element. + /** + \param kernel Structuring element. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param is_real Do the dilation in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). + **/ + template + CImg& dilate(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) { + if (is_empty() || !kernel) return *this; + return get_dilate(kernel,boundary_conditions,is_real).move_to(*this); + } + + //! Dilate image by a structuring element \newinstance. + template + CImg<_cimg_Tt> get_dilate(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) const { + if (is_empty() || !kernel || (!is_real && kernel==0)) return *this; + typedef _cimg_Tt Tt; + CImg res(_width,_height,_depth,std::max(_spectrum,kernel._spectrum)); + const int + mx1 = kernel.width()/2, my1 = kernel.height()/2, mz1 = kernel.depth()/2, + mx2 = kernel.width() - mx1 - 1, my2 = kernel.height() - my1 - 1, mz2 = kernel.depth() - mz1 - 1, + mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2, + w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(); + const bool + is_inner_parallel = _width*_height*_depth>=(cimg_openmp_sizefactor)*32768, + is_outer_parallel = res.size()>=(cimg_openmp_sizefactor)*32768; + cimg::unused(is_inner_parallel,is_outer_parallel); + _cimg_abort_init_openmp; + cimg_abort_init; + cimg_pragma_openmp(parallel for cimg_openmp_if(!is_inner_parallel && is_outer_parallel)) + cimg_forC(res,c) _cimg_abort_try_openmp { + cimg_abort_test; + const CImg img = get_shared_channel(c%_spectrum); + const CImg K = kernel.get_shared_channel(c%kernel._spectrum); + if (is_real) { // Real dilation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) + for (int z = mz1; z::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx2 - xm,my2 - ym,mz2 - zm); + const Tt cval = (Tt)(img(x + xm,y + ym,z + zm) + mval); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } _cimg_abort_catch_openmp2 + + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) + cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { + cimg_abort_test2; + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt max_val = cimg::type::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx2 - xm,my2 - ym,mz2 - zm); + Tt cval; + switch (boundary_conditions) { + case 0 : cval = (Tt)(img.atXYZ(x + xm,y + ym,z + zm,0,(T)0) + mval); break; + case 1 : cval = (Tt)(img._atXYZ(x + xm,y + ym,z + zm) + mval); break; + case 2 : { + const int + nx = cimg::mod(x + xm,width()), + ny = cimg::mod(y + ym,height()), + nz = cimg::mod(z + zm,depth()); + cval = img(nx,ny,nz) + mval; + } break; + default : { + const int + tx = cimg::mod(x + xm,w2), + ty = cimg::mod(y + ym,h2), + tz = cimg::mod(z + zm,d2), + nx = txmax_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } + } _cimg_abort_catch_openmp2 + + } else { // Binary dilation + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(is_inner_parallel)) + for (int z = mz1; z::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx2 - xm,my2 - ym,mz2 - zm)) { + const Tt cval = (Tt)img(x + xm,y + ym,z + zm); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } _cimg_abort_catch_openmp2 + + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(is_inner_parallel)) + cimg_forYZ(res,y,z) _cimg_abort_try_openmp2 { + cimg_abort_test2; + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt max_val = cimg::type::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + if (K(mx2 - xm,my2 - ym,mz2 - zm)) { + Tt cval; + switch (boundary_conditions) { + case 0 : cval = (Tt)img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); break; + case 1 : cval = (Tt)img._atXYZ(x + xm,y + ym,z + zm); break; + case 2 : { + const int + nx = cimg::mod(x + xm,width()), + ny = cimg::mod(y + ym,height()), + nz = cimg::mod(z + zm,depth()); + cval = img(nx,ny,nz); + } break; + default : { + const int + tx = cimg::mod(x + xm,w2), + ty = cimg::mod(y + ym,h2), + tz = cimg::mod(z + zm,d2), + nx = txmax_val) max_val = cval; + } + } + res(x,y,z,c) = max_val; + } + } _cimg_abort_catch_openmp2 + + } + } _cimg_abort_catch_openmp + cimg_abort_test; + return res; + } + + //! Dilate image by a rectangular structuring element of specified size. + /** + \param sx Width of the structuring element. + \param sy Height of the structuring element. + \param sz Depth of the structuring element. + **/ + CImg& dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) { + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + if (sx>1 && _width>1) { // Along X-axis + const int L = width(), off = 1, s = (int)sx, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forYZC(*this,y,z,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(0,y,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(0,y,z,c); cur = std::max(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs=cur) { cur = val; is_first = false; } + *(ptrd++) = cur; + } + for (int p = L - s - 1; p>0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; } + nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false; + } else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; } + *(ptrd++) = cur; + } + ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off; + for (int p = s1; p>0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val>cur) cur = val; + } + *(ptrd--) = cur; + for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur; + } + T *pd = data(0,y,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; } + } + } + } + + if (sy>1 && _height>1) { // Along Y-axis + const int L = height(), off = width(), s = (int)sy, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXZC(*this,x,z,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,0,z,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,0,z,c); cur = std::max(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs=cur) { cur = val; is_first = false; } + *(ptrd++) = cur; + } + for (int p = L - s - 1; p>0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; } + nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false; + } else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; } + *(ptrd++) = cur; + } + ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off; + for (int p = s1; p>0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val>cur) cur = val; + } + *(ptrd--) = cur; + for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur; + } + T *pd = data(x,0,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; } + } + } + } + + if (sz>1 && _depth>1) { // Along Z-axis + const int L = depth(), off = width()*height(), s = (int)sz, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXYC(*this,x,y,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,y,0,c), *ptrs = ptrsb, *const ptrse = ptrs + (ulongT)L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,y,0,c); cur = std::max(cur,*ptrse); cimg_forX(buf,k) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs=cur) { cur = val; is_first = false; } + *(ptrd++) = cur; + } + for (int p = L - s - 1; p>0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; } + nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false; + } else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; } + *(ptrd++) = cur; + } + ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off; + for (int p = s1; p>0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val>cur) cur = val; + } + *(ptrd--) = cur; + for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur; + } + T *pd = data(x,y,0,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; } + } + } + } + return *this; + } + + //! Dilate image by a rectangular structuring element of specified size \newinstance. + CImg get_dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const { + return (+*this).dilate(sx,sy,sz); + } + + //! Dilate image by a square structuring element of specified size. + /** + \param s Size of the structuring element. + **/ + CImg& dilate(const unsigned int s) { + return dilate(s,s,s); + } + + //! Dilate image by a square structuring element of specified size \newinstance. + CImg get_dilate(const unsigned int s) const { + return (+*this).dilate(s); + } + + //! Apply morphological closing by a structuring element. + /** + \param kernel Structuring element. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param is_real Do the closing in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). + **/ + template + CImg& closing(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) { + const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth(); + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + return get_closing(kernel,boundary_conditions,is_real).move_to(*this); + } + + //! Apply morphological closing by a structuring element \newinstance. + template + CImg get_closing(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) const { + const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth(); + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2; + CImg res; + if (_depth>1) { // 3D + get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,boundary_conditions,0.5,0.5,0.5). + dilate(kernel,1,is_real).erode(kernel,1,is_real). + crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res); + } else if (_height>1) { // 2D + get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,boundary_conditions,0.5,0.5). + dilate(kernel,1,is_real).erode(kernel,1,is_real). + crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res); + } else if (_width>1) { // 1D + get_resize(width() + sx + 1,1,1,spectrum(),0,boundary_conditions,0.5). + dilate(kernel,1,is_real).erode(kernel,1,is_real). + crop(sx1 + 1,sx1 + width()).move_to(res); + } + return res; + } + + //! Apply morphological closing by a rectangular structuring element of specified size. + CImg& closing(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) { + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + return get_closing(sx,sy,sz).move_to(*this); + } + + //! Apply morphological closing by a rectangular structuring element of specified size \newinstance. + CImg get_closing(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const { + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2; + CImg res; + if (_depth>1) { // 3D + get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,1,0.5,0.5,0.5). + dilate(sx,sy,sz).erode(sx,sy,sz). + crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res); + } else if (_height>1) { // 2D + get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,1,0.5,0.5). + dilate(sx,sy).erode(sx,sy). + crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res); + } else if (_width>1) { // 1D + get_resize(width() + sx + 1,1,1,spectrum(),0,1,0.5). + dilate(sx,1).erode(sx,1). + crop(sx1 + 1,sx1 + width()).move_to(res); + } + return res; + } + + //! Apply morphological closing by a square structuring element of specified size. + /** + \param s Size of the structuring element. + **/ + CImg& closing(const unsigned int s) { + return closing(s,s,s); + } + + //! Apply morphological closing by a square structuring element of specified size \newinstance. + CImg get_closing(const unsigned int s) const { + return (+*this).closing(s); + } + + //! Apply morphological opening by a structuring element. + /** + \param kernel Structuring element. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param is_real Do the opening in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). + **/ + template + CImg& opening(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) { + const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth(); + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + return get_opening(kernel,boundary_conditions,is_real).move_to(*this); + } + + //! Apply morphological opening by a structuring element \newinstance. + template + CImg get_opening(const CImg& kernel, const unsigned int boundary_conditions=1, + const bool is_real=false) const { + const int sx = kernel.width(), sy = kernel.height(), sz = kernel.depth(); + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2; + CImg res; + if (_depth>1) { // 3D + get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,boundary_conditions,0.5,0.5,0.5). + erode(kernel,1,is_real).dilate(kernel,1,is_real). + crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res); + } else if (_height>1) { // 2D + get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,boundary_conditions,0.5,0.5). + erode(kernel,1,is_real).dilate(kernel,1,is_real). + crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res); + } else if (_width>1) { // 1D + get_resize(width() + sx + 1,1,1,spectrum(),0,boundary_conditions,0.5). + erode(kernel,1,is_real).dilate(kernel,1,is_real). + crop(sx1 + 1,sx1 + width()).move_to(res); + } + return res; + } + + //! Apply morphological opening by a rectangular structuring element of specified size. + CImg& opening(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) { + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + return get_opening(sx,sy,sz).move_to(*this); + } + + //! Apply morphological opening by a rectangular structuring element of specified size \newinstance. + CImg get_opening(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const { + if (is_empty() || (sx<=1 && sy<=1 && sz<=1)) return *this; + const int sx1 = (int)(sx - 1)/2, sy1 = (int)(sy - 1)/2, sz1 = (int)(sz - 1)/2; + CImg res; + if (_depth>1) { // 3D + get_resize(width() + sx + 1,height() + sy + 1,depth() + sz + 1,spectrum(),0,1,0.5,0.5,0.5). + erode(sx,sy,sz).dilate(sx,sy,sz). + crop(sx1 + 1,sy1 + 1,sz1 + 1,sx1 + width(),sy1 + height(),sz1 + depth()).move_to(res); + } else if (_height>1) { // 2D + get_resize(width() + sx + 1,height() + sy + 1,1,spectrum(),0,1,0.5,0.5). + erode(sx,sy).dilate(sx,sy). + crop(sx1 + 1,sy1 + 1,sx1 + width(),sy1 + height()).move_to(res); + } else if (_width>1) { // 1D + get_resize(width() + sx + 1,1,1,spectrum(),0,1,0.5). + erode(sx,1).dilate(sx,1). + crop(sx1 + 1,sx1 + width()).move_to(res); + } + return res; + } + + //! Apply morphological opening by a square structuring element of specified size. + /** + \param s Size of the structuring element. + **/ + CImg& opening(const unsigned int s) { + return opening(s,s,s); + } + + //! Apply morphological opening by a square structuring element of specified size \newinstance. + CImg get_opening(const unsigned int s) const { + return (+*this).opening(s); + } + + //! Compute watershed transform. + /** + \param priority Priority map. + \param is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity + in 2D case, and between 6(false)- or 26(true)-connectivity in 3D case. + \note Non-zero values of the instance instance are propagated to zero-valued ones according to + specified the priority map. + **/ + template + CImg& watershed(const CImg& priority, const bool is_high_connectivity=false) { +#define _cimg_watershed_init(cond,X,Y,Z) \ + if (cond && !(*this)(X,Y,Z)) Q._priority_queue_insert(labels,sizeQ,priority(X,Y,Z),X,Y,Z,nb_seeds) + +#define _cimg_watershed_propagate(cond,X,Y,Z) \ + if (cond) { \ + if ((*this)(X,Y,Z)) { \ + ns = labels(X,Y,Z) - 1; xs = seeds(ns,0); ys = seeds(ns,1); zs = seeds(ns,2); \ + d = cimg::sqr((float)x - xs) + cimg::sqr((float)y - ys) + cimg::sqr((float)z - zs); \ + if (d labels(_width,_height,_depth,1,0), seeds(64,3); + CImg::type> Q; + unsigned int sizeQ = 0; + int px, nx, py, ny, pz, nz; + bool is_px, is_nx, is_py, is_ny, is_pz, is_nz; + const bool is_3d = _depth>1; + + // Find seed points and insert them in priority queue. + unsigned int nb_seeds = 0; + const T *ptrs = _data; + cimg_forXYZ(*this,x,y,z) if (*(ptrs++)) { // 3D version + if (nb_seeds>=seeds._width) seeds.resize(2*seeds._width,3,1,1,0); + seeds(nb_seeds,0) = x; seeds(nb_seeds,1) = y; seeds(nb_seeds++,2) = z; + px = x - 1; nx = x + 1; + py = y - 1; ny = y + 1; + pz = z - 1; nz = z + 1; + is_px = px>=0; is_nx = nx=0; is_ny = ny=0; is_nz = nz=0; is_nx = nx=0; is_ny = ny=0; is_nz = nz::inf(); + T nlabel = (T)0; + _cimg_watershed_propagate(is_px,px,y,z); + _cimg_watershed_propagate(is_nx,nx,y,z); + _cimg_watershed_propagate(is_py,x,py,z); + _cimg_watershed_propagate(is_ny,x,ny,z); + if (is_3d) { + _cimg_watershed_propagate(is_pz,x,y,pz); + _cimg_watershed_propagate(is_nz,x,y,nz); + } + if (is_high_connectivity) { + _cimg_watershed_propagate(is_px && is_py,px,py,z); + _cimg_watershed_propagate(is_nx && is_py,nx,py,z); + _cimg_watershed_propagate(is_px && is_ny,px,ny,z); + _cimg_watershed_propagate(is_nx && is_ny,nx,ny,z); + if (is_3d) { + _cimg_watershed_propagate(is_px && is_pz,px,y,pz); + _cimg_watershed_propagate(is_nx && is_pz,nx,y,pz); + _cimg_watershed_propagate(is_px && is_nz,px,y,nz); + _cimg_watershed_propagate(is_nx && is_nz,nx,y,nz); + _cimg_watershed_propagate(is_py && is_pz,x,py,pz); + _cimg_watershed_propagate(is_ny && is_pz,x,ny,pz); + _cimg_watershed_propagate(is_py && is_nz,x,py,nz); + _cimg_watershed_propagate(is_ny && is_nz,x,ny,nz); + _cimg_watershed_propagate(is_px && is_py && is_pz,px,py,pz); + _cimg_watershed_propagate(is_nx && is_py && is_pz,nx,py,pz); + _cimg_watershed_propagate(is_px && is_ny && is_pz,px,ny,pz); + _cimg_watershed_propagate(is_nx && is_ny && is_pz,nx,ny,pz); + _cimg_watershed_propagate(is_px && is_py && is_nz,px,py,nz); + _cimg_watershed_propagate(is_nx && is_py && is_nz,nx,py,nz); + _cimg_watershed_propagate(is_px && is_ny && is_nz,px,ny,nz); + _cimg_watershed_propagate(is_nx && is_ny && is_nz,nx,ny,nz); + } + } + (*this)(x,y,z) = nlabel; + labels(x,y,z) = ++nmin; + } + return *this; + } + + //! Compute watershed transform \newinstance. + template + CImg get_watershed(const CImg& priority, const bool is_high_connectivity=false) const { + return (+*this).watershed(priority,is_high_connectivity); + } + + // [internal] Insert/Remove items in priority queue, for watershed/distance transforms. + template + bool _priority_queue_insert(CImg& is_queued, unsigned int& siz, const tv value, + const unsigned int x, const unsigned int y, const unsigned int z, + const unsigned int n=1) { + if (is_queued(x,y,z)) return false; + is_queued(x,y,z) = (tq)n; + if (++siz>=_width) { if (!is_empty()) resize(_width*2,4,1,1,0); else assign(64,4); } + (*this)(siz - 1,0) = (T)value; + (*this)(siz - 1,1) = (T)x; + (*this)(siz - 1,2) = (T)y; + (*this)(siz - 1,3) = (T)z; + for (unsigned int pos = siz - 1, par = 0; pos && value>(tv)(*this)(par=(pos + 1)/2 - 1,0); pos = par) { + cimg::swap((*this)(pos,0),(*this)(par,0)); + cimg::swap((*this)(pos,1),(*this)(par,1)); + cimg::swap((*this)(pos,2),(*this)(par,2)); + cimg::swap((*this)(pos,3),(*this)(par,3)); + } + return true; + } + + CImg& _priority_queue_remove(unsigned int& siz) { + (*this)(0,0) = (*this)(--siz,0); + (*this)(0,1) = (*this)(siz,1); + (*this)(0,2) = (*this)(siz,2); + (*this)(0,3) = (*this)(siz,3); + const float value = (*this)(0,0); + unsigned int pos = 0, swap = 0; + do { + const unsigned int left = 2*pos + 1, right = left + 1; + if (right(*this)(right,0)?left:right; + else if (left{ 0=smooth-filter | 1=1st-derivative | 2=2nd-derivative }. + \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& deriche(const float sigma, const unsigned int order=0, const char axis='x', + const unsigned int boundary_conditions=1) { +#define _cimg_deriche_apply \ + CImg Y(N); \ + double *ptrY = Y._data, yb = 0, yp = 0; \ + T xp = (T)0; \ + if (boundary_conditions) { xp = *ptrX; yb = yp = (double)(coefp*xp); } \ + for (int m = 0; m=0; --n) { \ + const T xc = *(ptrX-=off); \ + const double yc = (double)(a2*xn + a3*xa - b1*yn - b2*ya); \ + xa = xn; xn = xc; ya = yn; yn = yc; \ + *ptrX = (T)(*(--ptrY)+yc); \ + } + + if (order>2) + throw CImgArgumentException(_cimg_instance + "deriche(): Invalid specified order '%d' " + "('order' can be { 0=smoothing | 1=1st-derivative | 2=2nd-derivative }).", + cimg_instance, + order); + + const char naxis = cimg::lowercase(axis); + if (naxis!='x' && naxis!='y' && naxis!='z' && naxis!='c') + throw CImgArgumentException(_cimg_instance + "deriche(): Invalid specified axis '%c'.", + cimg_instance, + axis); + const double + nsigma = sigma>=0?sigma:-sigma*(naxis=='x'?_width: + naxis=='y'?_height: + naxis=='z'?_depth:_spectrum)/100, + nnsigma = nsigma<0.1f?0.1f:nsigma; + + if (is_empty() || (nsigma<0.1f && !order)) return *this; + if (boundary_conditions>1) { + const int w = width(), h = height(), d = depth(), s = spectrum(), border = (int)cimg::round(1 + 3*nnsigma); + switch (naxis) { + case 'x' : + return draw_image(get_resize(w + 2*border,h,d,s,0,boundary_conditions,0.5). + deriche(nnsigma,order,naxis,1).columns(border,w - 1 + border)); + case 'y' : + return draw_image(get_resize(w,h + 2*border,d,s,0,boundary_conditions,0,0.5). + deriche(nnsigma,order,naxis,1).rows(border,h - 1 + border)); + case 'z' : + return draw_image(get_resize(w,h,d + 2*border,s,0,boundary_conditions,0,0,0.5). + deriche(nnsigma,order,naxis,1).slices(border,d - 1 + border)); + default : + return draw_image(get_resize(w,h,d,s + 2*border,0,boundary_conditions,0,0,0,0.5). + deriche(nnsigma,order,naxis,1).channels(border,d - 1 + border)); + } + } + + const double + alpha = 1.695f/nnsigma, + ema = std::exp(-alpha), + ema2 = std::exp(-2*alpha), + b1 = -2*ema, + b2 = ema2; + double a0 = 0, a1 = 0, a2 = 0, a3 = 0, coefp = 0, coefn = 0; + switch (order) { + case 0 : { + const double k = (1-ema)*(1-ema)/(1 + 2*alpha*ema-ema2); + a0 = k; + a1 = k*(alpha - 1)*ema; + a2 = k*(alpha + 1)*ema; + a3 = -k*ema2; + } break; + case 1 : { + const double k = -(1-ema)*(1-ema)*(1-ema)/(2*(ema + 1)*ema); + a0 = a3 = 0; + a1 = k*ema; + a2 = -a1; + } break; + default : { + const double + ea = std::exp(-alpha), + k = -(ema2 - 1)/(2*alpha*ema), + kn = (-2*(-1 + 3*ea - 3*ea*ea + ea*ea*ea)/(3*ea + 1 + 3*ea*ea + ea*ea*ea)); + a0 = kn; + a1 = -kn*(1 + k*alpha)*ema; + a2 = kn*(1 - k*alpha)*ema; + a3 = -kn*ema2; + } break; + } + + coefp = (a0 + a1)/(1 + b1 + b2); + coefn = (a2 + a3)/(1 + b1 + b2); + switch (naxis) { + case 'x' : { + const int N = width(); + const ulongT off = 1U; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) { T *ptrX = data(0,y,z,c); _cimg_deriche_apply; } + } break; + case 'y' : { + const int N = height(); + const ulongT off = (ulongT)_width; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) { T *ptrX = data(x,0,z,c); _cimg_deriche_apply; } + } break; + case 'z' : { + const int N = depth(); + const ulongT off = (ulongT)_width*_height; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) { T *ptrX = data(x,y,0,c); _cimg_deriche_apply; } + } break; + default : { + const int N = spectrum(); + const ulongT off = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXYZ(*this,x,y,z) { T *ptrX = data(x,y,z,0); _cimg_deriche_apply; } + } + } + return *this; + } + + //! Apply recursive Deriche filter \newinstance. + CImg get_deriche(const float sigma, const unsigned int order=0, const char axis='x', + const unsigned int boundary_conditions=1) const { + return CImg(*this,false).deriche(sigma,order,axis,boundary_conditions); + } + + // [internal] Apply a recursive filter (used by CImg::vanvliet()). + /* + \param ptr the pointer of the data + \param filter the coefficient of the filter in the following order [n,n - 1,n - 2,n - 3]. + \param N size of the data + \param off the offset between two data point + \param order the order of the filter 0 (smoothing), 1st derivative, 2nd derivative, 3rd derivative + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann }. + \note Boundary condition using B. Triggs method (IEEE trans on Sig Proc 2005). + */ + static void _cimg_recursive_apply(T *data, const double filter[], const int N, const ulongT off, + const unsigned int order, const bool boundary_conditions) { + double val[4] = {}; // res[n,n - 1,n - 2,n - 3,..] or res[n,n + 1,n + 2,n + 3,..] + const double + sumsq = filter[0], sum = sumsq * sumsq, + a1 = filter[1], a2 = filter[2], a3 = filter[3], + scaleM = 1. / ( (1. + a1 - a2 + a3) * (1. - a1 - a2 - a3) * (1. + a2 + (a1 - a3) * a3) ); + double M[9]; // Triggs matrix + M[0] = scaleM * (-a3 * a1 + 1. - a3 * a3 - a2); + M[1] = scaleM * (a3 + a1) * (a2 + a3 * a1); + M[2] = scaleM * a3 * (a1 + a3 * a2); + M[3] = scaleM * (a1 + a3 * a2); + M[4] = -scaleM * (a2 - 1.) * (a2 + a3 * a1); + M[5] = -scaleM * a3 * (a3 * a1 + a3 * a3 + a2 - 1.); + M[6] = scaleM * (a3 * a1 + a2 + a1 * a1 - a2 * a2); + M[7] = scaleM * (a1 * a2 + a3 * a2 * a2 - a1 * a3 * a3 - a3 * a3 * a3 - a3 * a2 + a3); + M[8] = scaleM * a3 * (a1 + a3 * a2); + switch (order) { + case 0 : { + const double iplus = (boundary_conditions?data[(N - 1)*off]:(T)0); + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 1; k<4; ++k) val[k] = (boundary_conditions?*data/sumsq:0); + } else { + // Apply Triggs boundary conditions + const double + uplus = iplus/(1. - a1 - a2 - a3), vplus = uplus/(1. - a1 - a2 - a3), + unp = val[1] - uplus, unp1 = val[2] - uplus, unp2 = val[3] - uplus; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2 + vplus) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2 + vplus) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2 + vplus) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) val[k] = val[k - 1]; + } + if (!pass) data -= off; + } + } break; + case 1 : { + double x[3]; // [front,center,back] + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0); + for (int k = 0; k<4; ++k) val[k] = 0; + } else { + // Apply Triggs boundary conditions + const double + unp = val[1], unp1 = val[2], unp2 = val[3]; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) x[k] = x[k - 1]; + } else { data-=off;} + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + *data = (T)0; + } + } break; + case 2: { + double x[3]; // [front,center,back] + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0); + for (int k = 0; k<4; ++k) val[k] = 0; + } else { + // Apply Triggs boundary conditions + const double + unp = val[1], unp1 = val[2], unp2 = val[3]; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) x[k] = x[k - 1]; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + *data = (T)0; + } + } break; + case 3: { + double x[3]; // [front,center,back] + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0); + for (int k = 0; k<4; ++k) val[k] = 0; + } else { + // Apply Triggs boundary conditions + const double + unp = val[1], unp1 = val[2], unp2 = val[3]; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) x[k] = x[k - 1]; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + *data = (T)0; + } + } break; + } + } + + //! Van Vliet recursive Gaussian filter. + /** + \param sigma standard deviation of the Gaussian filter + \param order the order of the filter 0,1,2,3 + \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \note dirichlet boundary condition has a strange behavior + + I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering. + IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002. + + (this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995) + + Boundary conditions (only for order 0) using Triggs matrix, from + B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet + recursive filtering. IEEE Trans. Signal Processing, + vol. 54, pp. 2365-2367, 2006. + **/ + CImg& vanvliet(const float sigma, const unsigned int order, const char axis='x', + const unsigned int boundary_conditions=1) { + + if (order>2) + throw CImgArgumentException(_cimg_instance + "deriche(): Invalid specified order '%d' " + "('order' can be { 0=smoothing | 1=1st-derivative | 2=2nd-derivative }).", + cimg_instance, + order); + + const char naxis = cimg::lowercase(axis); + if (naxis!='x' && naxis!='y' && naxis!='z' && naxis!='c') + throw CImgArgumentException(_cimg_instance + "deriche(): Invalid specified axis '%c'.", + cimg_instance, + axis); + const double + nsigma = sigma>=0?sigma:-sigma*(naxis=='x'?_width: + naxis=='y'?_height: + naxis=='z'?_depth:_spectrum)/100, + nnsigma = nsigma<0.5f?0.5f:nsigma; + + if (is_empty() || (nsigma<0.1f && !order)) return *this; + if (nsigma<0.5f) return deriche(nsigma,order,axis,boundary_conditions); + if (!cimg::type::is_float()) + return CImg(*this,false).vanvliet(sigma,order,axis,boundary_conditions).move_to(*this); + + if (boundary_conditions>1) { + const int w = width(), h = height(), d = depth(), s = spectrum(), border = (int)cimg::round(1 + 3*nnsigma); + switch (naxis) { + case 'x' : + return draw_image(get_resize(w + 2*border,h,d,s,0,boundary_conditions,0.5). + vanvliet(nnsigma,order,naxis,1).columns(border,w - 1 + border)); + case 'y' : + return draw_image(get_resize(w,h + 2*border,d,s,0,boundary_conditions,0,0.5). + vanvliet(nnsigma,order,naxis,1).rows(border,h - 1 + border)); + case 'z' : + return draw_image(get_resize(w,h,d + 2*border,s,0,boundary_conditions,0,0,0.5). + vanvliet(nnsigma,order,naxis,1).slices(border,d - 1 + border)); + default : + return draw_image(get_resize(w,h,d,s + 2*border,0,boundary_conditions,0,0,0,0.5). + vanvliet(nnsigma,order,naxis,1).channels(border,d - 1 + border)); + } + } + + const double + m0 = 1.16680, m1 = 1.10783, m2 = 1.40586, + m1sq = m1 * m1, m2sq = m2 * m2, + q = (nnsigma<3.556?-0.2568 + 0.5784*nnsigma + 0.0561*nnsigma*nnsigma:2.5091 + 0.9804*(nnsigma - 3.556)), + qsq = q * q, + scale = (m0 + q) * (m1sq + m2sq + 2 * m1 * q + qsq), + b1 = -q * (2 * m0 * m1 + m1sq + m2sq + (2 * m0 + 4 * m1) * q + 3 * qsq) / scale, + b2 = qsq * (m0 + 2 * m1 + 3 * q) / scale, + b3 = -qsq * q / scale, + B = ( m0 * (m1sq + m2sq) ) / scale; + double filter[4]; + filter[0] = B; filter[1] = -b1; filter[2] = -b2; filter[3] = -b3; + switch (naxis) { + case 'x' : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) + _cimg_recursive_apply(data(0,y,z,c),filter,_width,1U,order,boundary_conditions); + } break; + case 'y' : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) + _cimg_recursive_apply(data(x,0,z,c),filter,_height,(ulongT)_width,order,boundary_conditions); + } break; + case 'z' : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) + _cimg_recursive_apply(data(x,y,0,c),filter,_depth,(ulongT)_width*_height, + order,boundary_conditions); + } break; + default : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXYZ(*this,x,y,z) + _cimg_recursive_apply(data(x,y,z,0),filter,_spectrum,(ulongT)_width*_height*_depth, + order,boundary_conditions); + } + } + return *this; + } + + //! Blur image using Van Vliet recursive Gaussian filter. \newinstance. + CImg get_vanvliet(const float sigma, const unsigned int order, const char axis='x', + const unsigned int boundary_conditions=1) const { + return CImg(*this,false).vanvliet(sigma,order,axis,boundary_conditions); + } + + //! Blur image. + /** + \param sigma_x Standard deviation of the blur, along the X-axis. + \param sigma_y Standard deviation of the blur, along the Y-axis. + \param sigma_z Standard deviation of the blur, along the Z-axis. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param is_gaussian Tells if the blur uses a gaussian (\c true) or quasi-gaussian (\c false) kernel. + \note + - The blur is computed as a 0-order Vanvliet (gaussian) or Deriche filter (quasi-gaussian). + - This is a recursive algorithm, not depending on the values of the standard deviations. + \see deriche(), vanvliet(). + **/ + CImg& blur(const float sigma_x, const float sigma_y, const float sigma_z, + const unsigned int boundary_conditions=1, const bool is_gaussian=true) { + if (is_empty()) return *this; + if (is_gaussian) { + if (_width>1) vanvliet(sigma_x,0,'x',boundary_conditions); + if (_height>1) vanvliet(sigma_y,0,'y',boundary_conditions); + if (_depth>1) vanvliet(sigma_z,0,'z',boundary_conditions); + } else { + if (_width>1) deriche(sigma_x,0,'x',boundary_conditions); + if (_height>1) deriche(sigma_y,0,'y',boundary_conditions); + if (_depth>1) deriche(sigma_z,0,'z',boundary_conditions); + } + return *this; + } + + //! Blur image \newinstance. + CImg get_blur(const float sigma_x, const float sigma_y, const float sigma_z, + const unsigned int boundary_conditions=1, const bool is_gaussian=true) const { + return CImg(*this,false).blur(sigma_x,sigma_y,sigma_z,boundary_conditions,is_gaussian); + } + + //! Blur image isotropically. + /** + \param sigma Standard deviation of the blur. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.a + \param is_gaussian Use a gaussian kernel (VanVliet) is set, a quasi-gaussian (Deriche) otherwise. + \see deriche(), vanvliet(). + **/ + CImg& blur(const float sigma, const unsigned int boundary_conditions=1, const bool is_gaussian=true) { + const float nsigma = sigma>=0?sigma:-sigma*cimg::max(_width,_height,_depth)/100; + return blur(nsigma,nsigma,nsigma,boundary_conditions,is_gaussian); + } + + //! Blur image isotropically \newinstance. + CImg get_blur(const float sigma, const unsigned int boundary_conditions=1, + const bool is_gaussian=true) const { + return CImg(*this,false).blur(sigma,boundary_conditions,is_gaussian); + } + + //! Blur image anisotropically, directed by a field of diffusion tensors. + /** + \param G Field of square roots of diffusion tensors/vectors used to drive the smoothing. + \param amplitude Amplitude of the smoothing. + \param dl Spatial discretization. + \param da Angular discretization. + \param gauss_prec Precision of the diffusion process. + \param interpolation_type Interpolation scheme. + Can be { 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }. + \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. + **/ + template + CImg& blur_anisotropic(const CImg& G, + const float amplitude=60, const float dl=0.8f, const float da=30, + const float gauss_prec=2, const unsigned int interpolation_type=0, + const bool is_fast_approx=1) { + + // Check arguments and init variables + if (!is_sameXYZ(G) || (G._spectrum!=3 && G._spectrum!=6)) + throw CImgArgumentException(_cimg_instance + "blur_anisotropic(): Invalid specified diffusion tensor field (%u,%u,%u,%u,%p).", + cimg_instance, + G._width,G._height,G._depth,G._spectrum,G._data); + if (is_empty() || dl<0) return *this; + const float namplitude = amplitude>=0?amplitude:-amplitude*cimg::max(_width,_height,_depth)/100; + unsigned int iamplitude = cimg::round(namplitude); + const bool is_3d = (G._spectrum==6); + T val_min, val_max = max_min(val_min); + _cimg_abort_init_openmp; + cimg_abort_init; + + if (da<=0) { // Iterated oriented Laplacians + CImg velocity(_width,_height,_depth,_spectrum); + for (unsigned int iteration = 0; iterationveloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + } + else // 2D version + cimg_forZC(*this,z,c) { + cimg_abort_test; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ixx = Inc + Ipc - 2*Icc, + ixy = (Inn + Ipp - Inp - Ipn)/4, + iyy = Icn + Icp - 2*Icc, + veloc = (Tfloat)(G(x,y,0,0)*ixx + 2*G(x,y,0,1)*ixy + G(x,y,0,2)*iyy); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + } + if (veloc_max>0) *this+=(velocity*=dl/veloc_max); + } + } else { // LIC-based smoothing + const ulongT whd = (ulongT)_width*_height*_depth; + const float sqrt2amplitude = (float)std::sqrt(2*namplitude); + const int dx1 = width() - 1, dy1 = height() - 1, dz1 = depth() - 1; + CImg res(_width,_height,_depth,_spectrum,0), W(_width,_height,_depth,is_3d?4:3), val(_spectrum,1,1,1,0); + int N = 0; + if (is_3d) { // 3D version + for (float phi = cimg::mod(180.f,da)/2.f; phi<=180; phi+=da) { + const float phir = (float)(phi*cimg::PI/180), datmp = (float)(da/std::cos(phir)), + da2 = datmp<1?360.f:datmp; + for (float theta = 0; theta<360; (theta+=da2),++N) { + const float + thetar = (float)(theta*cimg::PI/180), + vx = (float)(std::cos(thetar)*std::cos(phir)), + vy = (float)(std::sin(thetar)*std::cos(phir)), + vz = (float)std::sin(phir); + const t + *pa = G.data(0,0,0,0), *pb = G.data(0,0,0,1), *pc = G.data(0,0,0,2), + *pd = G.data(0,0,0,3), *pe = G.data(0,0,0,4), *pf = G.data(0,0,0,5); + Tfloat *pd0 = W.data(0,0,0,0), *pd1 = W.data(0,0,0,1), *pd2 = W.data(0,0,0,2), *pd3 = W.data(0,0,0,3); + cimg_forXYZ(G,xg,yg,zg) { + const t a = *(pa++), b = *(pb++), c = *(pc++), d = *(pd++), e = *(pe++), f = *(pf++); + const float + u = (float)(a*vx + b*vy + c*vz), + v = (float)(b*vx + d*vy + e*vz), + w = (float)(c*vx + e*vy + f*vz), + n = 1e-5f + cimg::hypot(u,v,w), + dln = dl/n; + *(pd0++) = (Tfloat)(u*dln); + *(pd1++) = (Tfloat)(v*dln); + *(pd2++) = (Tfloat)(w*dln); + *(pd3++) = (Tfloat)n; + } + + cimg_abort_test; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height*_depth>=2) + firstprivate(val)) + cimg_forYZ(*this,y,z) _cimg_abort_try_openmp2 { + cimg_abort_test2; + cimg_forX(*this,x) { + val.fill(0); + const float + n = (float)W(x,y,z,3), + fsigma = (float)(n*sqrt2amplitude), + fsigma2 = 2*fsigma*fsigma, + length = gauss_prec*fsigma; + float + S = 0, + X = (float)x, + Y = (float)y, + Z = (float)z; + switch (interpolation_type) { + case 0 : { // Nearest neighbor + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) { + const int + cx = (int)(X + 0.5f), + cy = (int)(Y + 0.5f), + cz = (int)(Z + 0.5f); + const float + u = (float)W(cx,cy,cz,0), + v = (float)W(cx,cy,cz,1), + w = (float)W(cx,cy,cz,2); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)(*this)(cx,cy,cz,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*(*this)(cx,cy,cz,c)); + S+=coef; + } + X+=u; Y+=v; Z+=w; + } + } break; + case 1 : { // Linear interpolation + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) { + const float + u = (float)(W._linear_atXYZ(X,Y,Z,0)), + v = (float)(W._linear_atXYZ(X,Y,Z,1)), + w = (float)(W._linear_atXYZ(X,Y,Z,2)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXYZ(X,Y,Z,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXYZ(X,Y,Z,c)); + S+=coef; + } + X+=u; Y+=v; Z+=w; + } + } break; + default : { // 2nd order Runge Kutta + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) { + const float + u0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,0)), + v0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,1)), + w0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,2)), + u = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,0)), + v = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,1)), + w = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,2)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXYZ(X,Y,Z,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXYZ(X,Y,Z,c)); + S+=coef; + } + X+=u; Y+=v; Z+=w; + } + } break; + } + Tfloat *ptrd = res.data(x,y,z); + if (S>0) cimg_forC(res,c) { *ptrd+=val[c]/S; ptrd+=whd; } + else cimg_forC(res,c) { *ptrd+=(Tfloat)((*this)(x,y,z,c)); ptrd+=whd; } + } + } _cimg_abort_catch_openmp2 + } + } + } else { // 2D LIC algorithm + for (float theta = cimg::mod(360.f,da)/2.f; theta<360; (theta+=da),++N) { + const float thetar = (float)(theta*cimg::PI/180), + vx = (float)(std::cos(thetar)), vy = (float)(std::sin(thetar)); + const t *pa = G.data(0,0,0,0), *pb = G.data(0,0,0,1), *pc = G.data(0,0,0,2); + Tfloat *pd0 = W.data(0,0,0,0), *pd1 = W.data(0,0,0,1), *pd2 = W.data(0,0,0,2); + cimg_forXY(G,xg,yg) { + const t a = *(pa++), b = *(pb++), c = *(pc++); + const float + u = (float)(a*vx + b*vy), + v = (float)(b*vx + c*vy), + n = std::max(1e-5f,cimg::hypot(u,v)), + dln = dl/n; + *(pd0++) = (Tfloat)(u*dln); + *(pd1++) = (Tfloat)(v*dln); + *(pd2++) = (Tfloat)n; + } + + cimg_abort_test; + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && _height>=2) + firstprivate(val)) + cimg_forY(*this,y) _cimg_abort_try_openmp2 { + cimg_abort_test2; + cimg_forX(*this,x) { + val.fill(0); + const float + n = (float)W(x,y,0,2), + fsigma = (float)(n*sqrt2amplitude), + fsigma2 = 2*fsigma*fsigma, + length = gauss_prec*fsigma; + float + S = 0, + X = (float)x, + Y = (float)y; + switch (interpolation_type) { + case 0 : { // Nearest-neighbor + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) { + const int + cx = (int)(X + 0.5f), + cy = (int)(Y + 0.5f); + const float + u = (float)W(cx,cy,0,0), + v = (float)W(cx,cy,0,1); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)(*this)(cx,cy,0,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*(*this)(cx,cy,0,c)); + S+=coef; + } + X+=u; Y+=v; + } + } break; + case 1 : { // Linear interpolation + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) { + const float + u = (float)(W._linear_atXY(X,Y,0,0)), + v = (float)(W._linear_atXY(X,Y,0,1)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXY(X,Y,0,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXY(X,Y,0,c)); + S+=coef; + } + X+=u; Y+=v; + } + } break; + default : { // 2nd-order Runge-kutta interpolation + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) { + const float + u0 = (float)(0.5f*W._linear_atXY(X,Y,0,0)), + v0 = (float)(0.5f*W._linear_atXY(X,Y,0,1)), + u = (float)(W._linear_atXY(X + u0,Y + v0,0,0)), + v = (float)(W._linear_atXY(X + u0,Y + v0,0,1)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXY(X,Y,0,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXY(X,Y,0,c)); + S+=coef; + } + X+=u; Y+=v; + } + } + } + Tfloat *ptrd = res.data(x,y); + if (S>0) cimg_forC(res,c) { *ptrd+=val[c]/S; ptrd+=whd; } + else cimg_forC(res,c) { *ptrd+=(Tfloat)((*this)(x,y,0,c)); ptrd+=whd; } + } + } _cimg_abort_catch_openmp2 + } + } + const Tfloat *ptrs = res._data; + cimg_for(*this,ptrd,T) { + const Tfloat _val = *(ptrs++)/N; + *ptrd = _valval_max?val_max:(T)_val); + } + } + cimg_abort_test; + return *this; + } + + //! Blur image anisotropically, directed by a field of diffusion tensors \newinstance. + template + CImg get_blur_anisotropic(const CImg& G, + const float amplitude=60, const float dl=0.8f, const float da=30, + const float gauss_prec=2, const unsigned int interpolation_type=0, + const bool is_fast_approx=true) const { + return CImg(*this,false).blur_anisotropic(G,amplitude,dl,da,gauss_prec,interpolation_type,is_fast_approx); + } + + //! Blur image anisotropically, in an edge-preserving way. + /** + \param amplitude Amplitude of the smoothing. + \param sharpness Sharpness. + \param anisotropy Anisotropy. + \param alpha Standard deviation of the gradient blur. + \param sigma Standard deviation of the structure tensor blur. + \param dl Spatial discretization. + \param da Angular discretization. + \param gauss_prec Precision of the diffusion process. + \param interpolation_type Interpolation scheme. + Can be { 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }. + \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. + **/ + CImg& blur_anisotropic(const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, + const float gauss_prec=2, const unsigned int interpolation_type=0, + const bool is_fast_approx=true) { + const float nalpha = alpha>=0?alpha:-alpha*cimg::max(_width,_height,_depth)/100; + const float nsigma = sigma>=0?sigma:-sigma*cimg::max(_width,_height,_depth)/100; + return blur_anisotropic(get_diffusion_tensors(sharpness,anisotropy,nalpha,nsigma,interpolation_type!=3), + amplitude,dl,da,gauss_prec,interpolation_type,is_fast_approx); + } + + //! Blur image anisotropically, in an edge-preserving way \newinstance. + CImg get_blur_anisotropic(const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, + const float da=30, const float gauss_prec=2, + const unsigned int interpolation_type=0, + const bool is_fast_approx=true) const { + return CImg(*this,false).blur_anisotropic(amplitude,sharpness,anisotropy,alpha,sigma,dl,da,gauss_prec, + interpolation_type,is_fast_approx); + } + + //! Blur image, with the joint bilateral filter. + /** + \param guide Image used to model the smoothing weights. + \param sigma_x Amount of blur along the X-axis. + \param sigma_y Amount of blur along the Y-axis. + \param sigma_z Amount of blur along the Z-axis. + \param sigma_r Amount of blur along the value axis. + \param sampling_x Amount of downsampling along the X-axis used for the approximation. + Defaults (0) to sigma_x. + \param sampling_y Amount of downsampling along the Y-axis used for the approximation. + Defaults (0) to sigma_y. + \param sampling_z Amount of downsampling along the Z-axis used for the approximation. + Defaults (0) to sigma_z. + \param sampling_r Amount of downsampling along the value axis used for the approximation. + Defaults (0) to sigma_r. + \note This algorithm uses the optimisation technique proposed by S. Paris and F. Durand, in ECCV'2006 + (extended for 3D volumetric images). + It is based on the reference implementation http://people.csail.mit.edu/jiawen/software/bilateralFilter.m + **/ + template + CImg& blur_bilateral(const CImg& guide, + const float sigma_x, const float sigma_y, + const float sigma_z, const float sigma_r, + const float sampling_x, const float sampling_y, + const float sampling_z, const float sampling_r) { + if (!is_sameXYZ(guide)) + throw CImgArgumentException(_cimg_instance + "blur_bilateral(): Invalid size for specified guide image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data); + if (is_empty() || (!sigma_x && !sigma_y && !sigma_z)) return *this; + T edge_min, edge_max = guide.max_min(edge_min); + if (edge_min==edge_max) return blur(sigma_x,sigma_y,sigma_z); + const float + edge_delta = (float)(edge_max - edge_min), + _sigma_x = sigma_x>=0?sigma_x:-sigma_x*_width/100, + _sigma_y = sigma_y>=0?sigma_y:-sigma_y*_height/100, + _sigma_z = sigma_z>=0?sigma_z:-sigma_z*_depth/100, + _sigma_r = sigma_r>=0?sigma_r:-sigma_r*edge_delta/100, + _sampling_x = sampling_x?sampling_x:std::max(_sigma_x,1.f), + _sampling_y = sampling_y?sampling_y:std::max(_sigma_y,1.f), + _sampling_z = sampling_z?sampling_z:std::max(_sigma_z,1.f), + _sampling_r = sampling_r?sampling_r:std::max(_sigma_r,edge_delta/256), + derived_sigma_x = _sigma_x / _sampling_x, + derived_sigma_y = _sigma_y / _sampling_y, + derived_sigma_z = _sigma_z / _sampling_z, + derived_sigma_r = _sigma_r / _sampling_r; + const int + padding_x = (int)(2*derived_sigma_x) + 1, + padding_y = (int)(2*derived_sigma_y) + 1, + padding_z = (int)(2*derived_sigma_z) + 1, + padding_r = (int)(2*derived_sigma_r) + 1; + const unsigned int + bx = (unsigned int)((_width - 1)/_sampling_x + 1 + 2*padding_x), + by = (unsigned int)((_height - 1)/_sampling_y + 1 + 2*padding_y), + bz = (unsigned int)((_depth - 1)/_sampling_z + 1 + 2*padding_z), + br = (unsigned int)(edge_delta/_sampling_r + 1 + 2*padding_r); + if (bx>0 || by>0 || bz>0 || br>0) { + const bool is_3d = (_depth>1); + if (is_3d) { // 3D version of the algorithm + CImg bgrid(bx,by,bz,br), bgridw(bx,by,bz,br); + cimg_forC(*this,c) { + const CImg _guide = guide.get_shared_channel(c%guide._spectrum); + bgrid.fill(0); bgridw.fill(0); + cimg_forXYZ(*this,x,y,z) { + const T val = (*this)(x,y,z,c); + const float edge = (float)_guide(x,y,z); + const int + X = (int)cimg::round(x/_sampling_x) + padding_x, + Y = (int)cimg::round(y/_sampling_y) + padding_y, + Z = (int)cimg::round(z/_sampling_z) + padding_z, + R = (int)cimg::round((edge - edge_min)/_sampling_r) + padding_r; + bgrid(X,Y,Z,R)+=(float)val; + bgridw(X,Y,Z,R)+=1; + } + bgrid.blur(derived_sigma_x,derived_sigma_y,derived_sigma_z,true).deriche(derived_sigma_r,0,'c',false); + bgridw.blur(derived_sigma_x,derived_sigma_y,derived_sigma_z,true).deriche(derived_sigma_r,0,'c',false); + + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),4096)) + cimg_forXYZ(*this,x,y,z) { + const float edge = (float)_guide(x,y,z); + const float + X = x/_sampling_x + padding_x, + Y = y/_sampling_y + padding_y, + Z = z/_sampling_z + padding_z, + R = (edge - edge_min)/_sampling_r + padding_r; + const float bval0 = bgrid._linear_atXYZC(X,Y,Z,R), bval1 = bgridw._linear_atXYZC(X,Y,Z,R); + (*this)(x,y,z,c) = (T)(bval0/bval1); + } + } + } else { // 2D version of the algorithm + CImg bgrid(bx,by,br,2); + cimg_forC(*this,c) { + const CImg _guide = guide.get_shared_channel(c%guide._spectrum); + bgrid.fill(0); + cimg_forXY(*this,x,y) { + const T val = (*this)(x,y,c); + const float edge = (float)_guide(x,y); + const int + X = (int)cimg::round(x/_sampling_x) + padding_x, + Y = (int)cimg::round(y/_sampling_y) + padding_y, + R = (int)cimg::round((edge - edge_min)/_sampling_r) + padding_r; + bgrid(X,Y,R,0)+=(float)val; + bgrid(X,Y,R,1)+=1; + } + bgrid.blur(derived_sigma_x,derived_sigma_y,0,true).blur(0,0,derived_sigma_r,false); + + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(size(),4096)) + cimg_forXY(*this,x,y) { + const float edge = (float)_guide(x,y); + const float + X = x/_sampling_x + padding_x, + Y = y/_sampling_y + padding_y, + R = (edge - edge_min)/_sampling_r + padding_r; + const float bval0 = bgrid._linear_atXYZ(X,Y,R,0), bval1 = bgrid._linear_atXYZ(X,Y,R,1); + (*this)(x,y,c) = (T)(bval0/bval1); + } + } + } + } + return *this; + } + + //! Blur image, with the joint bilateral filter \newinstance. + template + CImg get_blur_bilateral(const CImg& guide, + const float sigma_x, const float sigma_y, + const float sigma_z, const float sigma_r, + const float sampling_x, const float sampling_y, + const float sampling_z, const float sampling_r) const { + return CImg(*this,false).blur_bilateral(guide,sigma_x,sigma_y,sigma_z,sigma_r, + sampling_x,sampling_y,sampling_z,sampling_r); + } + + //! Blur image using the joint bilateral filter. + /** + \param guide Image used to model the smoothing weights. + \param sigma_s Amount of blur along the XYZ-axes. + \param sigma_r Amount of blur along the value axis. + \param sampling_s Amount of downsampling along the XYZ-axes used for the approximation. Defaults to sigma_s. + \param sampling_r Amount of downsampling along the value axis used for the approximation. Defaults to sigma_r. + **/ + template + CImg& blur_bilateral(const CImg& guide, + const float sigma_s, const float sigma_r, + const float sampling_s=0, const float sampling_r=0) { + const float _sigma_s = sigma_s>=0?sigma_s:-sigma_s*cimg::max(_width,_height,_depth)/100; + return blur_bilateral(guide,_sigma_s,_sigma_s,_sigma_s,sigma_r,sampling_s,sampling_s,sampling_s,sampling_r); + } + + //! Blur image using the bilateral filter \newinstance. + template + CImg get_blur_bilateral(const CImg& guide, + const float sigma_s, const float sigma_r, + const float sampling_s=0, const float sampling_r=0) const { + return CImg(*this,false).blur_bilateral(guide,sigma_s,sigma_r,sampling_s,sampling_r); + } + + // [internal] Apply a box filter (used by CImg::boxfilter() and CImg::blur_box()). + /* + \param ptr the pointer of the data + \param N size of the data + \param boxsize Size of the box filter (can be subpixel). + \param off the offset between two data point + \param order the order of the filter 0 (smoothing), 1st derivative and 2nd derivative. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + */ + static void _cimg_blur_box_apply(T *ptr, const float boxsize, const int N, const ulongT off, + const int order, const unsigned int boundary_conditions, + const unsigned int nb_iter) { + const int nboundary_conditions = boundary_conditions>1 && boxsize<=3?1:boundary_conditions; + + // Smooth. + if (boxsize>1 && nb_iter) { + const int w2 = (int)(boxsize - 1)/2; + const unsigned int winsize = 2*w2 + 1U; + const double frac = (boxsize - winsize)/2.; + CImg win(winsize); + for (unsigned int iter = 0; iter=N?(T)0:ptr[x*off]; + case 1 : { // Neumann + const int nx = x<0?0:x>=N?N - 1:x; + return ptr[nx*off]; + } + case 2 : { // Periodic + const int nx = cimg::mod(x,N); + return ptr[nx*off]; + } + default : { // Mirror + const int + N2 = 2*N, + tx = cimg::mod(x,N2), + nx = tx{ 'x' | 'y' | 'z' | 'c' }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \param nb_iter Number of filter iterations. + **/ + CImg& boxfilter(const float boxsize, const int order, const char axis='x', + const unsigned int boundary_conditions=1, + const unsigned int nb_iter=1) { + const char naxis = cimg::lowercase(axis); + const float nboxsize = boxsize>=0?boxsize:-boxsize* + (naxis=='x'?_width:naxis=='y'?_height:naxis=='z'?_depth:_spectrum)/100; + if (is_empty() || !nboxsize || (nboxsize<=1 && !order)) return *this; + switch (naxis) { + case 'x' : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) + _cimg_blur_box_apply(data(0,y,z,c),nboxsize,_width,1U,order,boundary_conditions,nb_iter); + } break; + case 'y' : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) + _cimg_blur_box_apply(data(x,0,z,c),nboxsize,_height,(ulongT)_width,order,boundary_conditions,nb_iter); + } break; + case 'z' : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) + _cimg_blur_box_apply(data(x,y,0,c),nboxsize,_depth,(ulongT)_width*_height,order,boundary_conditions,nb_iter); + } break; + default : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth*_spectrum>=16)) + cimg_forXYZ(*this,x,y,z) + _cimg_blur_box_apply(data(x,y,z,0),nboxsize,_spectrum,(ulongT)_width*_height*_depth, + order,boundary_conditions,nb_iter); + } + } + return *this; + } + + // Apply box filter of order 0,1 or 2 \newinstance. + CImg get_boxfilter(const float boxsize, const int order, const char axis='x', + const unsigned int boundary_conditions=1, + const unsigned int nb_iter=1) const { + return CImg(*this,false).boxfilter(boxsize,order,axis,boundary_conditions,nb_iter); + } + + //! Blur image with a box filter. + /** + \param boxsize_x Size of the box window, along the X-axis (can be subpixel). + \param boxsize_y Size of the box window, along the Y-axis (can be subpixel). + \param boxsize_z Size of the box window, along the Z-axis (can be subpixel). + \param boundary_conditions Boundary conditions. + Can be { false=dirichlet | true=neumann | 2=periodic | 3=mirror }. + \param nb_iter Number of filter iterations. + \note + - This is a recursive algorithm, not depending on the values of the box kernel size. + \see blur(). + **/ + CImg& blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z, + const unsigned int boundary_conditions=1, + const unsigned int nb_iter=1) { + if (is_empty()) return *this; + if (_width>1) boxfilter(boxsize_x,0,'x',boundary_conditions,nb_iter); + if (_height>1) boxfilter(boxsize_y,0,'y',boundary_conditions,nb_iter); + if (_depth>1) boxfilter(boxsize_z,0,'z',boundary_conditions,nb_iter); + return *this; + } + + //! Blur image with a box filter \newinstance. + CImg get_blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z, + const unsigned int boundary_conditions=1) const { + return CImg(*this,false).blur_box(boxsize_x,boxsize_y,boxsize_z,boundary_conditions); + } + + //! Blur image with a box filter. + /** + \param boxsize Size of the box window (can be subpixel). + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }.a + \see deriche(), vanvliet(). + **/ + CImg& blur_box(const float boxsize, const unsigned int boundary_conditions=1) { + const float nboxsize = boxsize>=0?boxsize:-boxsize*cimg::max(_width,_height,_depth)/100; + return blur_box(nboxsize,nboxsize,nboxsize,boundary_conditions); + } + + //! Blur image with a box filter \newinstance. + CImg get_blur_box(const float boxsize, const unsigned int boundary_conditions=1) const { + return CImg(*this,false).blur_box(boxsize,boundary_conditions); + } + + //! Blur image, with the image guided filter. + /** + \param guide Image used to guide the smoothing process. + \param radius Spatial radius. If negative, it is expressed as a percentage of the largest image size. + \param regularization Regularization parameter. + If negative, it is expressed as a percentage of the guide value range. + \note This method implements the filtering algorithm described in: + He, Kaiming; Sun, Jian; Tang, Xiaoou, "Guided Image Filtering," Pattern Analysis and Machine Intelligence, + IEEE Transactions on , vol.35, no.6, pp.1397,1409, June 2013 + **/ + template + CImg& blur_guided(const CImg& guide, const float radius, const float regularization) { + return get_blur_guided(guide,radius,regularization).move_to(*this); + } + + //! Blur image, with the image guided filter \newinstance. + template + CImg get_blur_guided(const CImg& guide, const float radius, const float regularization) const { + if (!is_sameXYZ(guide)) + throw CImgArgumentException(_cimg_instance + "blur_guided(): Invalid size for specified guide image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data); + if (is_empty() || !radius) return *this; + const int _radius = radius>=0?(int)radius:(int)(-radius*cimg::max(_width,_height,_depth)/100); + float _regularization = regularization; + if (regularization<0) { + T edge_min, edge_max = guide.max_min(edge_min); + if (edge_min==edge_max) return *this; + _regularization = -regularization*(edge_max - edge_min)/100; + } + _regularization = std::max(_regularization,0.01f); + const unsigned int psize = (unsigned int)(1 + 2*_radius); + CImg + mean_p = get_blur_box(psize,true), + mean_I = guide.get_blur_box(psize,true).resize(mean_p), + cov_Ip = get_mul(guide).blur_box(psize,true)-=mean_p.get_mul(mean_I), + var_I = guide.get_sqr().blur_box(psize,true)-=mean_I.get_sqr(), + &a = cov_Ip.div(var_I+=_regularization), + &b = mean_p-=a.get_mul(mean_I); + a.blur_box(psize,true); + b.blur_box(psize,true); + return a.mul(guide)+=b; + } + + //! Blur image using patch-based space. + /** + \param guide Image used to model the smoothing weights. + \param sigma_s Amount of blur along the XYZ-axes. + \param sigma_r Amount of blur along the value axis. + \param patch_size Size of the patches. + \param lookup_size Size of the window to search similar patches. + \param smoothness Smoothness for the patch comparison. + \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. + **/ + template + CImg& blur_patch(const CImg& guide, + const float sigma_s, const float sigma_r, const unsigned int patch_size=3, + const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) { + if (is_empty() || !patch_size || !lookup_size) return *this; + return get_blur_patch(guide,sigma_s,sigma_r,patch_size,lookup_size,smoothness,is_fast_approx).move_to(*this); + } + + //! Blur image using patch-based space \newinstance. + template + CImg get_blur_patch(const CImg& guide, + const float sigma_s, const float sigma_r, const unsigned int patch_size=3, + const unsigned int lookup_size=4, const float smoothness=0, + const bool is_fast_approx=true) const { + +#define _cimg_blur_patch3d_fast(N) { \ + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) \ + cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) \ + firstprivate(P,Q)) \ + cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { \ + cimg_abort_test2; \ + cimg_def##N##x##N##x##N(res,x,y,z); \ + tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,x,y,z,c,pP,tfloat); pP+=N3; } \ + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \ + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \ + tfloat sum_weights = 0; \ + cimg_for_in##N##XYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) \ + if (cimg::abs(_guide(x,y,z,0) - _guide(p,q,r,0))3?0:1; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c); \ + } \ + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights; \ + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); \ + } _cimg_abort_catch_openmp2 } + +#define _cimg_blur_patch3d(N) { \ + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) \ + cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) \ + firstprivate(P,Q)) \ + cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { \ + cimg_abort_test2; \ + cimg_def##N##x##N##x##N(res,x,y,z); \ + tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,x,y,z,c,pP,tfloat); pP+=N3; } \ + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \ + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \ + tfloat sum_weights = 0, weight_max = 0; \ + cimg_for_in##N##XYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (p!=x || q!=y || r!=z) { \ + tfloat *pQ = Q._data; cimg_forC(_guide,c) { cimg_get##N##x##N##x##N(_guide,p,q,r,c,pQ,tfloat); pQ+=N3; } \ + tfloat distance2 = 0; \ + pQ = Q._data; cimg_for(P,_pP,tfloat) { const tfloat dI = *_pP - *(pQ++); distance2+=dI*dI; } \ + distance2/=Pnorm; \ + const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, dz = (tfloat)r - z, \ + alldist = distance2 + (dx*dx + dy*dy + dz*dz)/sigma_s2, weight = std::exp(-alldist); \ + if (weight>weight_max) weight_max = weight; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c); \ + } \ + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight_max*(*this)(x,y,z,c); \ + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights; \ + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); \ + } _cimg_abort_catch_openmp2 } + +#define _cimg_blur_patch2d_fast(N) { \ + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) \ + firstprivate(P,Q)) \ + cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { \ + cimg_abort_test2; \ + cimg_def##N##x##N(res,x,y); \ + tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,x,y,0,c,pP,tfloat); pP+=N2; } \ + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; \ + tfloat sum_weights = 0; \ + cimg_for_in##N##XY(res,x0,y0,x1,y1,p,q) \ + if (cimg::abs(_guide(x,y,0,0) - _guide(p,q,0,0))3?0:1; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c); \ + } \ + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights; \ + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); \ + } _cimg_abort_catch_openmp2 } + +#define _cimg_blur_patch2d(N) { \ + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) \ + firstprivate(P,Q)) \ + cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { \ + cimg_abort_test2; \ + cimg_def##N##x##N(res,x,y); \ + tfloat *pP = P._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,x,y,0,c,pP,tfloat); pP+=N2; } \ + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; \ + tfloat sum_weights = 0, weight_max = 0; \ + cimg_for_in##N##XY(res,x0,y0,x1,y1,p,q) if (p!=x || q!=y) { \ + tfloat *pQ = Q._data; cimg_forC(_guide,c) { cimg_get##N##x##N(_guide,p,q,0,c,pQ,tfloat); pQ+=N2; } \ + tfloat distance2 = 0; \ + pQ = Q._data; cimg_for(P,_pP,tfloat) { const tfloat dI = *_pP - *(pQ++); distance2+=dI*dI; } \ + distance2/=Pnorm; \ + const tfloat dx = (tfloat)p - x, dy = (tfloat)q - y, \ + alldist = distance2 + (dx*dx+dy*dy)/sigma_s2, weight = std::exp(-alldist); \ + if (weight>weight_max) weight_max = weight; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c); \ + } \ + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight_max*(*this)(x,y,c); \ + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights; \ + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); \ + } _cimg_abort_catch_openmp2 } + + typedef _cimg_tfloat tfloat; + if (!is_sameXYZ(guide)) + throw CImgArgumentException(_cimg_instance + "blur_patch(): Invalid size for specified guide image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data); + if (is_empty() || !patch_size || !lookup_size) return +*this; + Tfloat val_min, val_max = (Tfloat)max_min(val_min); + _cimg_abort_init_openmp; + cimg_abort_init; + + CImg res(_width,_height,_depth,_spectrum,0); + const CImg + __guide = guide?CImg(guide,guide.pixel_type()==cimg::type::string()): + CImg(*this,pixel_type()==cimg::type::string()), + _guide = smoothness>0?__guide.get_blur(smoothness):__guide.get_shared(); + CImg P(_guide._spectrum*patch_size*patch_size*(_depth>1?patch_size:1)), Q(P); + + t guide_min = (t)0, guide_max = (t)0; + if (sigma_r<0) guide_max = guide.max_min(guide_min); + const float + guide_delta = (float)(guide_max - guide_min), + _sigma_s = sigma_s>=0?sigma_s:-sigma_s*cimg::max(_width,_height,_depth)/100, + _sigma_r = sigma_r>=0?sigma_r:-sigma_r*guide_delta/100, + sigma_s2 = _sigma_s*_sigma_s, + sigma_r2 = _sigma_r*_sigma_r, + sigma_r3 = 3*_sigma_r, + Pnorm = P.size()*sigma_r2; + const int rsize2 = (int)lookup_size/2, rsize1 = (int)lookup_size - rsize2 - 1; + const unsigned int N2 = patch_size*patch_size, N3 = N2*patch_size; + cimg::unused(N2,N3); + if (_depth>1) switch (patch_size) { // 3D + case 2 : if (is_fast_approx) _cimg_blur_patch3d_fast(2) else _cimg_blur_patch3d(2) break; + case 3 : if (is_fast_approx) _cimg_blur_patch3d_fast(3) else _cimg_blur_patch3d(3) break; + default : { + const int psize2 = (int)patch_size/2, psize1 = (int)patch_size - psize2 - 1; + if (is_fast_approx) { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) + firstprivate(P,Q)) + cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { // Fast + cimg_abort_test2; + P = _guide.get_crop(x - psize1,y - psize1,z - psize1,x + psize2,y + psize2,z + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; + tfloat sum_weights = 0; + cimg_for_inXYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) + if (cimg::abs(_guide(x,y,z,0) - _guide(p,q,r,0))3?0:1; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c); + } + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights; + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); + } _cimg_abort_catch_openmp2 + } else { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height*res._depth>=4) + firstprivate(P,Q)) + cimg_forXYZ(res,x,y,z) _cimg_abort_try_openmp2 { // Exact + cimg_abort_test2; + P = _guide.get_crop(x - psize1,y - psize1,z - psize1,x + psize2,y + psize2,z + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; + tfloat sum_weights = 0, weight_max = 0; + cimg_for_inXYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (p!=x || q!=y || r!=z) { + (Q = _guide.get_crop(p - psize1,q - psize1,r - psize1,p + psize2,q + psize2,r + psize2,true))-=P; + const tfloat + dx = (tfloat)x - p, dy = (tfloat)y - q, dz = (tfloat)z - r, + distance2 = (tfloat)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy + dz*dz)/sigma_s2), + weight = std::exp(-distance2); + if (weight>weight_max) weight_max = weight; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight*(*this)(p,q,r,c); + } + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,z,c)+=(Tfloat)weight_max*(*this)(x,y,z,c); + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,z,c)/=(Tfloat)sum_weights; + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); + } _cimg_abort_catch_openmp2 + } + } + } else switch (patch_size) { // 2D + case 2 : if (is_fast_approx) _cimg_blur_patch2d_fast(2) else _cimg_blur_patch2d(2) break; + case 3 : if (is_fast_approx) _cimg_blur_patch2d_fast(3) else _cimg_blur_patch2d(3) break; + case 4 : if (is_fast_approx) _cimg_blur_patch2d_fast(4) else _cimg_blur_patch2d(4) break; + case 5 : if (is_fast_approx) _cimg_blur_patch2d_fast(5) else _cimg_blur_patch2d(5) break; + case 6 : if (is_fast_approx) _cimg_blur_patch2d_fast(6) else _cimg_blur_patch2d(6) break; + case 7 : if (is_fast_approx) _cimg_blur_patch2d_fast(7) else _cimg_blur_patch2d(7) break; + case 8 : if (is_fast_approx) _cimg_blur_patch2d_fast(8) else _cimg_blur_patch2d(8) break; + case 9 : if (is_fast_approx) _cimg_blur_patch2d_fast(9) else _cimg_blur_patch2d(9) break; + default : { // Fast + const int psize2 = (int)patch_size/2, psize1 = (int)patch_size - psize2 - 1; + if (is_fast_approx) { + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) + firstprivate(P,Q)) + cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { // Fast + cimg_abort_test2; + P = _guide.get_crop(x - psize1,y - psize1,x + psize2,y + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; + tfloat sum_weights = 0; + cimg_for_inXY(res,x0,y0,x1,y1,p,q) + if (cimg::abs(_guide(x,y,0) - _guide(p,q,0))3?0:1; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c); + } + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights; + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); + } _cimg_abort_catch_openmp2 + } else { + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=(cimg_openmp_sizefactor)*32 && res._height>=4) + firstprivate(P,Q)) + cimg_forXY(res,x,y) _cimg_abort_try_openmp2 { // Exact + cimg_abort_test2; + P = _guide.get_crop(x - psize1,y - psize1,x + psize2,y + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; + tfloat sum_weights = 0, weight_max = 0; + cimg_for_inXY(res,x0,y0,x1,y1,p,q) if (p!=x || q!=y) { + (Q = _guide.get_crop(p - psize1,q - psize1,p + psize2,q + psize2,true))-=P; + const tfloat + dx = (tfloat)x - p, dy = (tfloat)y - q, + distance2 = (tfloat)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy)/sigma_s2), + weight = std::exp(-distance2); + if (weight>weight_max) weight_max = weight; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight*(*this)(p,q,c); + } + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,c)+=(Tfloat)weight_max*(*this)(x,y,c); + if (sum_weights>1e-10) cimg_forC(res,c) res(x,y,c)/=(Tfloat)sum_weights; + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); + } _cimg_abort_catch_openmp2 + } + } + } + cimg_abort_test; + return res.cut(val_min,val_max); + } + + //! Blur image using patch-based space \simplification. + CImg& blur_patch(const float sigma_s, const float sigma_r, const unsigned int patch_size=3, + const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) { + return blur_patch(*this,sigma_s,sigma_r,patch_size,lookup_size,smoothness,is_fast_approx); + } + + //! Blur image using patch-based space \simplification \newinstance. + CImg get_blur_patch(const float sigma_s, const float sigma_r, const unsigned int patch_size=3, + const unsigned int lookup_size=4, const float smoothness=0, + const bool is_fast_approx=true) const { + return get_blur_patch(*this,sigma_s,sigma_r,patch_size,lookup_size,smoothness,is_fast_approx); + } + + //! Blur image with the median filter. + /** + \param n Size of the median filter. + \param threshold Threshold used to discard pixels too far from the current pixel value in the median computation. + **/ + CImg& blur_median(const unsigned int n, const float threshold=0) { + if (!n) return *this; + return get_blur_median(n,threshold).move_to(*this); + } + + //! Blur image with the median filter \newinstance. + CImg get_blur_median(const unsigned int n, const float threshold=0) const { + if (is_empty() || n<=1) return +*this; + CImg res(_width,_height,_depth,_spectrum); + T *ptrd = res._data; + cimg::unused(ptrd); + const int hr = (int)n/2, hl = n - hr - 1; + if (res._depth!=1) { // 3D + if (threshold>0) + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && + _height*_depth*_spectrum>=4)) + cimg_forXYZC(*this,x,y,z,c) { // With threshold + const int + x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, nz0 = z0<0?0:z0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1, nz1 = z1>=depth()?depth() - 1:z1; + const Tfloat val0 = (Tfloat)(*this)(x,y,z,c); + CImg values(n*n*n); + unsigned int nb_values = 0; + T *_ptrd = values.data(); + cimg_for_inXYZ(*this,nx0,ny0,nz0,nx1,ny1,nz1,p,q,r) + if (cimg::abs((*this)(p,q,r,c) - val0)<=threshold) { *(_ptrd++) = (*this)(p,q,r,c); ++nb_values; } + res(x,y,z,c) = nb_values?values.get_shared_points(0,nb_values - 1).median():(*this)(x,y,z,c); + } + else + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && + _height*_depth*_spectrum>=4)) + cimg_forXYZC(*this,x,y,z,c) { // Without threshold + const int + x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, nz0 = z0<0?0:z0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1, nz1 = z1>=depth()?depth() - 1:z1; + res(x,y,z,c) = get_crop(nx0,ny0,nz0,c,nx1,ny1,nz1,c).median(); + } + } else { + if (threshold>0) + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && + _height*_spectrum>=4)) + cimg_forXYC(*this,x,y,c) { // With threshold + const int + x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1; + const Tfloat val0 = (Tfloat)(*this)(x,y,c); + CImg values(n*n); + unsigned int nb_values = 0; + T *_ptrd = values.data(); + cimg_for_inXY(*this,nx0,ny0,nx1,ny1,p,q) + if (cimg::abs((*this)(p,q,c) - val0)<=threshold) { *(_ptrd++) = (*this)(p,q,c); ++nb_values; } + res(x,y,c) = nb_values?values.get_shared_points(0,nb_values - 1).median():(*this)(x,y,c); + } + else { + const int + w1 = width() - 1, h1 = height() - 1, + w2 = width() - 2, h2 = height() - 2, + w3 = width() - 3, h3 = height() - 3, + w4 = width() - 4, h4 = height() - 4; + switch (n) { // Without threshold + case 3 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + CImg I(9); + cimg_for_in3x3(*this,1,1,w2,h2,x,y,0,c,I,T) + res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],I[5],I[6],I[7],I[8]); + cimg_for_borderXY(*this,x,y,1) + res(x,y,c) = get_crop(std::max(0,x - 1),std::max(0,y - 1),0,c, + std::min(w1,x + 1),std::min(h1,y + 1),0,c).median(); + } + } break; + case 5 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + CImg I(25); + cimg_for_in5x5(*this,2,2,w3,h3,x,y,0,c,I,T) + res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4], + I[5],I[6],I[7],I[8],I[9], + I[10],I[11],I[12],I[13],I[14], + I[15],I[16],I[17],I[18],I[19], + I[20],I[21],I[22],I[23],I[24]); + cimg_for_borderXY(*this,x,y,2) + res(x,y,c) = get_crop(std::max(0,x - 2),std::max(0,y - 2),0,c, + std::min(w1,x + 2),std::min(h1,y + 2),0,c).median(); + } + } break; + case 7 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + CImg I(49); + cimg_for_in7x7(*this,3,3,w4,h4,x,y,0,c,I,T) + res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],I[5],I[6], + I[7],I[8],I[9],I[10],I[11],I[12],I[13], + I[14],I[15],I[16],I[17],I[18],I[19],I[20], + I[21],I[22],I[23],I[24],I[25],I[26],I[27], + I[28],I[29],I[30],I[31],I[32],I[33],I[34], + I[35],I[36],I[37],I[38],I[39],I[40],I[41], + I[42],I[43],I[44],I[45],I[46],I[47],I[48]); + cimg_for_borderXY(*this,x,y,3) + res(x,y,c) = get_crop(std::max(0,x - 3),std::max(0,y - 3),0,c, + std::min(w1,x + 3),std::min(h1,y + 3),0,c).median(); + } + } break; + default : { + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*16 && _height*_spectrum>=4)) + cimg_forXYC(*this,x,y,c) { + const int + x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1; + res(x,y,c) = get_crop(nx0,ny0,0,c,nx1,ny1,0,c).median(); + } + } + } + } + } + return res; + } + + //! Sharpen image. + /** + \param amplitude Sharpening amplitude + \param sharpen_type Select sharpening method. Can be { false=inverse diffusion | true=shock filters }. + \param edge Edge threshold (shock filters only). + \param alpha Gradient smoothness (shock filters only). + \param sigma Tensor smoothness (shock filters only). + **/ + CImg& sharpen(const float amplitude, const bool sharpen_type=false, const float edge=1, + const float alpha=0, const float sigma=0) { + if (is_empty()) return *this; + T val_min, val_max = max_min(val_min); + const float nedge = edge/2; + CImg velocity(_width,_height,_depth,_spectrum), _veloc_max(_spectrum); + + if (_depth>1) { // 3D + if (sharpen_type) { // Shock filters + CImg G = (alpha>0?get_blur(alpha).get_structure_tensors():get_structure_tensors()); + if (sigma>0) G.blur(sigma); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*32 && + _height*_depth>=16)) + cimg_forYZ(G,y,z) { + Tfloat *ptrG0 = G.data(0,y,z,0), *ptrG1 = G.data(0,y,z,1), + *ptrG2 = G.data(0,y,z,2), *ptrG3 = G.data(0,y,z,3); + CImg val, vec; + cimg_forX(G,x) { + G.get_tensor_at(x,y,z).symmetric_eigen(val,vec); + if (val[0]<0) val[0] = 0; + if (val[1]<0) val[1] = 0; + if (val[2]<0) val[2] = 0; + *(ptrG0++) = vec(0,0); + *(ptrG1++) = vec(0,1); + *(ptrG2++) = vec(0,2); + *(ptrG3++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1] + val[2],-(Tfloat)nedge); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*512 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + u = G(x,y,z,0), + v = G(x,y,z,1), + w = G(x,y,z,2), + amp = G(x,y,z,3), + ixx = Incc + Ipcc - 2*Iccc, + ixy = (Innc + Ippc - Inpc - Ipnc)/4, + ixz = (Incn + Ipcp - Incp - Ipcn)/4, + iyy = Icnc + Icpc - 2*Iccc, + iyz = (Icnn + Icpp - Icnp - Icpn)/4, + izz = Iccn + Iccp - 2*Iccc, + ixf = Incc - Iccc, + ixb = Iccc - Ipcc, + iyf = Icnc - Iccc, + iyb = Iccc - Icpc, + izf = Iccn - Iccc, + izb = Iccc - Iccp, + itt = u*u*ixx + v*v*iyy + w*w*izz + 2*u*v*ixy + 2*u*w*ixz + 2*v*w*iyz, + it = u*cimg::minmod(ixf,ixb) + v*cimg::minmod(iyf,iyb) + w*cimg::minmod(izf,izb), + veloc = -amp*cimg::sign(itt)*cimg::abs(it); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } else // Inverse diffusion + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*512 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat veloc = -Ipcc - Incc - Icpc - Icnc - Iccp - Iccn + 6*Iccc; + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } else { // 2D + if (sharpen_type) { // Shock filters + CImg G = (alpha>0?get_blur(alpha).get_structure_tensors():get_structure_tensors()); + if (sigma>0) G.blur(sigma); + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*32 && + _height>=(cimg_openmp_sizefactor)*16)) + cimg_forY(G,y) { + CImg val, vec; + Tfloat *ptrG0 = G.data(0,y,0,0), *ptrG1 = G.data(0,y,0,1), *ptrG2 = G.data(0,y,0,2); + cimg_forX(G,x) { + G.get_tensor_at(x,y).symmetric_eigen(val,vec); + if (val[0]<0) val[0] = 0; + if (val[1]<0) val[1] = 0; + *(ptrG0++) = vec(0,0); + *(ptrG1++) = vec(0,1); + *(ptrG2++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1],-(Tfloat)nedge); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*512 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat + u = G(x,y,0), + v = G(x,y,1), + amp = G(x,y,2), + ixx = Inc + Ipc - 2*Icc, + ixy = (Inn + Ipp - Inp - Ipn)/4, + iyy = Icn + Icp - 2*Icc, + ixf = Inc - Icc, + ixb = Icc - Ipc, + iyf = Icn - Icc, + iyb = Icc - Icp, + itt = u*u*ixx + v*v*iyy + 2*u*v*ixy, + it = u*cimg::minmod(ixf,ixb) + v*cimg::minmod(iyf,iyb), + veloc = -amp*cimg::sign(itt)*cimg::abs(it); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } else // Inverse diffusion + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*512 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat veloc = -Ipc - Inc - Icp - Icn + 4*Icc; + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } + const Tfloat veloc_max = _veloc_max.max(); + if (veloc_max<=0) return *this; + return ((velocity*=amplitude/veloc_max)+=*this).cut(val_min,val_max).move_to(*this); + } + + //! Sharpen image \newinstance. + CImg get_sharpen(const float amplitude, const bool sharpen_type=false, const float edge=1, + const float alpha=0, const float sigma=0) const { + return (+*this).sharpen(amplitude,sharpen_type,edge,alpha,sigma); + } + + //! Return image gradient. + /** + \param axes Axes considered for the gradient computation, as a C-string (e.g "xy"). + \param scheme = Numerical scheme used for the gradient computation: + - -1 = Backward finite differences + - 0 = Centered finite differences (default) + - 1 = Forward finite differences + - 2 = Using Sobel kernels + - 3 = Using rotation invariant kernels + - 4 = Using Deriche recursive filter. + - 5 = Using Van Vliet recursive filter. + **/ + CImgList get_gradient(const char *const axes=0, const int scheme=0) const { + CImgList res; + char __axes[4] = {}; + const char *_axes = axes?axes:__axes; + if (!axes) { + unsigned int k = 0; + if (_width>1) __axes[k++] = 'x'; + if (_height>1) __axes[k++] = 'y'; + if (_depth>1) __axes[k++] = 'z'; + } + + CImg grad; + while (*_axes) { + const char axis = cimg::lowercase(*(_axes++)); + if (axis!='x' && axis!='y' && axis!='z') + throw CImgArgumentException(_cimg_instance + "get_gradient(): Invalid specified axes '%s'.", + cimg_instance, + axes); + const longT off = axis=='x'?1:axis=='y'?_width:_width*_height; + if ((axis=='x' && _width==1) || (axis=='y' && _height==1) || (axis=='z' && _depth==1)) { + grad.assign(_width,_height,_depth,_spectrum,0).move_to(res); + continue; + } + + const int _scheme = axis=='z' && (scheme==2 || scheme==3)?0:scheme; + switch (_scheme) { + case -1 : { // Backward finite differences + grad.assign(_width,_height,_depth,_spectrum); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384)) + cimg_forXYZC(*this,x,y,z,c) { + const ulongT pos = offset(x,y,z,c); + if ((axis=='x' && !x) || (axis=='y' && !y) || (axis=='z' && !z)) + grad[pos] = 0; + else + grad[pos] = (Tfloat)_data[pos] - _data[pos - off]; + } + grad.move_to(res); + } break; + case 1 : { // Forward finite differences + grad.assign(_width,_height,_depth,_spectrum); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384)) + cimg_forXYZC(*this,x,y,z,c) { + const ulongT pos = offset(x,y,z,c); + if ((axis=='x' && x==width() - 1) || (axis=='y' && y==height() - 1) || (axis=='z' && z==depth() - 1)) + grad[pos] = 0; + else + grad[pos] = (Tfloat)_data[pos + off] - _data[pos]; + } + grad.move_to(res); + } break; + case 2 : { // Sobel scheme + grad.assign(_width,_height,_depth,_spectrum); + if (axis=='x') // X-axis + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 && + _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = - Ipp + Inp - 2*Ipc + 2*Inc - Ipn + Inn; + } + else // Y-axis + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 && + _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = - Ipp - 2*Icp - Inp + Ipn + 2*Icn + Inn; + } + grad.move_to(res); + } break; + case 3 : { // Rotation invariant scheme + const Tfloat a = (Tfloat)(0.25f*(2 - std::sqrt(2.f))), b = (Tfloat)(0.5f*(std::sqrt(2.f) - 1)); + grad.assign(_width,_height,_depth,_spectrum); + if (axis=='x') // X-axis + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 && + _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = -a*Ipp - b*Ipc - a*Ipn + a*Inp + b*Inc + a*Inn; + } + else // Y-axis + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*16384 && + _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) grad(x,y,z,c) = -a*Ipp - b*Icp - a*Inp + a*Ipn + b*Icn + a*Inn; + } + grad.move_to(res); + } break; + case 4 : // Deriche filter + get_deriche(0,1,axis).move_to(res); + break; + case 5 : // Van Vliet filter + get_vanvliet(0,1,axis).move_to(res); + break; + default : { // Central finite differences + grad.assign(_width,_height,_depth,_spectrum); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) cimg_openmp_if_size(size(),16384)) + cimg_forXYZC(*this,x,y,z,c) { + const ulongT pos = offset(x,y,z,c); + if ((axis=='x' && !x) || (axis=='y' && !y) || (axis=='z' && !z)) + grad[pos] = ((Tfloat)_data[pos + off] - _data[pos])/2; + else if ((axis=='x' && x==width() - 1) || (axis=='y' && y==height() - 1) || (axis=='z' && z==depth() - 1)) + grad[pos] = ((Tfloat)_data[pos] - _data[pos - off])/2; + else + grad[pos] = ((Tfloat)_data[pos + off] - _data[pos - off])/2; + } + grad.move_to(res); + } break; + } + } + return res; + } + + //! Return image hessian. + /** + \param axes Axes considered for the hessian computation, as a C-string (e.g "xy"). + **/ + CImgList get_hessian(const char *const axes=0) const { + CImgList res; + char __axes[12] = {}; + const char *_axes = axes?axes:__axes; + if (!axes) { + unsigned int k = 0; + if (_width>1) { __axes[k++] = 'x'; __axes[k++] = 'x'; } + if (_width>1 && _height>1) { __axes[k++] = 'x'; __axes[k++] = 'y'; } + if (_width>1 && _depth>1) { __axes[k++] = 'x'; __axes[k++] = 'z'; } + if (_height>1) { __axes[k++] = 'y'; __axes[k++] = 'y'; } + if (_height>1 && _depth>1) { __axes[k++] = 'y'; __axes[k++] = 'z'; } + if (_depth>1) { __axes[k++] = 'z'; __axes[k++] = 'z'; } + } + const unsigned int len = (unsigned int)std::strlen(_axes); + if (len%2) + throw CImgArgumentException(_cimg_instance + "get_hessian(): Invalid specified axes '%s'.", + cimg_instance, + axes); + CImg hess; + for (unsigned int k = 0; k=(cimg_openmp_sizefactor)*16384 && + _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) hess(x,y,z,c) = (Inn + Ipp - Inp - Ipn)/4; + } + else if (axis1=='x' && axis2=='z') // Ixz + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*16384 && + _spectrum>=2)) + cimg_forC(*this,c) { + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) hess(x,y,z,c) = (Incn + Ipcp - Incp - Ipcn)/4; + } + else // Iyz + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*16384 && + _spectrum>=2)) + cimg_forC(*this,c) { + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) hess(x,y,z,c) = (Icnn + Icpp - Icnp - Icpn)/4; + } + hess.move_to(res); + } + return res; + } + + //! Compute image Laplacian. + CImg& laplacian() { + return get_laplacian().move_to(*this); + } + + //! Compute image Laplacian \newinstance. + CImg get_laplacian() const { + if (is_empty()) return CImg(); + CImg res(_width,_height,_depth,_spectrum); + if (_depth>1) { // 3D + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res.data(0,0,0,c); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = Incc + Ipcc + Icnc + Icpc + Iccn + Iccp - 6*Iccc; + } + } else if (_height>1) { // 2D + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && + _depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res.data(0,0,0,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) *(ptrd++) = Inc + Ipc + Icn + Icp - 4*Icc; + } + } else { // 1D + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*1048576 && + _height*_depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res.data(0,0,0,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) *(ptrd++) = Inc + Ipc - 2*Icc; + } + } + return res; + } + + //! Compute the structure tensor field of an image. + /** + \param is_fwbw_scheme scheme. Can be { false=centered | true=forward-backward } + **/ + CImg& structure_tensors(const bool is_fwbw_scheme=false) { + return get_structure_tensors(is_fwbw_scheme).move_to(*this); + } + + //! Compute the structure tensor field of an image \newinstance. + CImg get_structure_tensors(const bool is_fwbw_scheme=false) const { + if (is_empty()) return *this; + CImg res; + if (_depth>1) { // 3D + res.assign(_width,_height,_depth,6,0); + if (!is_fwbw_scheme) { // Classical central finite differences + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat + *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2), + *ptrd3 = res.data(0,0,0,3), *ptrd4 = res.data(0,0,0,4), *ptrd5 = res.data(0,0,0,5); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ix = (Incc - Ipcc)/2, + iy = (Icnc - Icpc)/2, + iz = (Iccn - Iccp)/2; + cimg_pragma_openmp(atomic) *(ptrd0++)+=ix*ix; + cimg_pragma_openmp(atomic) *(ptrd1++)+=ix*iy; + cimg_pragma_openmp(atomic) *(ptrd2++)+=ix*iz; + cimg_pragma_openmp(atomic) *(ptrd3++)+=iy*iy; + cimg_pragma_openmp(atomic) *(ptrd4++)+=iy*iz; + cimg_pragma_openmp(atomic) *(ptrd5++)+=iz*iz; + } + } + } else { // Forward/backward finite differences + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1048576 && + _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat + *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2), + *ptrd3 = res.data(0,0,0,3), *ptrd4 = res.data(0,0,0,4), *ptrd5 = res.data(0,0,0,5); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ixf = Incc - Iccc, ixb = Iccc - Ipcc, ixc = (Incc - Ipcc)/2, + iyf = Icnc - Iccc, iyb = Iccc - Icpc, iyc = (Icnc - Icpc)/2, + izf = Iccn - Iccc, izb = Iccc - Iccp, izc = (Iccn - Iccp)/2; + cimg_pragma_openmp(atomic) *(ptrd0++)+=(ixf*ixf + ixb*ixb)/2; + cimg_pragma_openmp(atomic) *(ptrd1++)+=ixc*iyc; + cimg_pragma_openmp(atomic) *(ptrd2++)+=ixc*izc; + cimg_pragma_openmp(atomic) *(ptrd3++)+=(iyf*iyf + iyb*iyb)/2; + cimg_pragma_openmp(atomic) *(ptrd4++)+=iyc*izc; + cimg_pragma_openmp(atomic) *(ptrd5++)+=(izf*izf + izb*izb)/2; + } + } + } + } else { // 2D + res.assign(_width,_height,_depth,3,0); + if (!is_fwbw_scheme) { // Classical central finite differences + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && + _depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat + ix = (Inc - Ipc)/2, + iy = (Icn - Icp)/2; + cimg_pragma_openmp(atomic) *(ptrd0++)+=ix*ix; + cimg_pragma_openmp(atomic) *(ptrd1++)+=ix*iy; + cimg_pragma_openmp(atomic) *(ptrd2++)+=iy*iy; + } + } + } else { // Forward/backward finite differences (version 2) + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=(cimg_openmp_sizefactor)*1048576 && + _depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat + ixf = Inc - Icc, ixb = Icc - Ipc, ixc = (Inc - Ipc)/2, + iyf = Icn - Icc, iyb = Icc - Icp, iyc = (Icn - Icp)/2; + cimg_pragma_openmp(atomic) *(ptrd0++)+=(ixf*ixf + ixb*ixb)/2; + cimg_pragma_openmp(atomic) *(ptrd1++)+=ixc*iyc; + cimg_pragma_openmp(atomic) *(ptrd2++)+=(iyf*iyf + iyb*iyb)/2; + } + } + } + } + return res; + } + + //! Compute field of diffusion tensors for edge-preserving smoothing. + /** + \param sharpness Sharpness + \param anisotropy Anisotropy + \param alpha Standard deviation of the gradient blur. + \param sigma Standard deviation of the structure tensor blur. + \param is_sqrt Tells if the square root of the tensor field is computed instead. + **/ + CImg& diffusion_tensors(const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) { + CImg res; + const float + nsharpness = std::max(sharpness,1e-5f), + power1 = (is_sqrt?0.5f:1)*nsharpness, + power2 = power1/(1e-7f + 1 - anisotropy); + blur(alpha).normalize(0,(T)255); + + if (_depth>1) { // 3D + get_structure_tensors().move_to(res).blur(sigma); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height*_depth>=(cimg_openmp_sizefactor)*256)) + cimg_forYZ(*this,y,z) { + Tfloat + *ptrd0 = res.data(0,y,z,0), *ptrd1 = res.data(0,y,z,1), *ptrd2 = res.data(0,y,z,2), + *ptrd3 = res.data(0,y,z,3), *ptrd4 = res.data(0,y,z,4), *ptrd5 = res.data(0,y,z,5); + CImg val(3), vec(3,3); + cimg_forX(*this,x) { + res.get_tensor_at(x,y,z).symmetric_eigen(val,vec); + const float + _l1 = val[2], _l2 = val[1], _l3 = val[0], + l1 = _l1>0?_l1:0, l2 = _l2>0?_l2:0, l3 = _l3>0?_l3:0, + ux = vec(0,0), uy = vec(0,1), uz = vec(0,2), + vx = vec(1,0), vy = vec(1,1), vz = vec(1,2), + wx = vec(2,0), wy = vec(2,1), wz = vec(2,2), + n1 = (float)std::pow(1 + l1 + l2 + l3,-power1), + n2 = (float)std::pow(1 + l1 + l2 + l3,-power2); + *(ptrd0++) = n1*(ux*ux + vx*vx) + n2*wx*wx; + *(ptrd1++) = n1*(ux*uy + vx*vy) + n2*wx*wy; + *(ptrd2++) = n1*(ux*uz + vx*vz) + n2*wx*wz; + *(ptrd3++) = n1*(uy*uy + vy*vy) + n2*wy*wy; + *(ptrd4++) = n1*(uy*uz + vy*vz) + n2*wy*wz; + *(ptrd5++) = n1*(uz*uz + vz*vz) + n2*wz*wz; + } + } + } else { // for 2D images + get_structure_tensors().move_to(res).blur(sigma); + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*256 && + _height>=(cimg_openmp_sizefactor)*256)) + cimg_forY(*this,y) { + Tfloat *ptrd0 = res.data(0,y,0,0), *ptrd1 = res.data(0,y,0,1), *ptrd2 = res.data(0,y,0,2); + CImg val(2), vec(2,2); + cimg_forX(*this,x) { + res.get_tensor_at(x,y).symmetric_eigen(val,vec); + const float + _l1 = val[1], _l2 = val[0], + l1 = _l1>0?_l1:0, l2 = _l2>0?_l2:0, + ux = vec(1,0), uy = vec(1,1), + vx = vec(0,0), vy = vec(0,1), + n1 = (float)std::pow(1 + l1 + l2,-power1), + n2 = (float)std::pow(1 + l1 + l2,-power2); + *(ptrd0++) = n1*ux*ux + n2*vx*vx; + *(ptrd1++) = n1*ux*uy + n2*vx*vy; + *(ptrd2++) = n1*uy*uy + n2*vy*vy; + } + } + } + return res.move_to(*this); + } + + //! Compute field of diffusion tensors for edge-preserving smoothing \newinstance. + CImg get_diffusion_tensors(const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) const { + return CImg(*this,false).diffusion_tensors(sharpness,anisotropy,alpha,sigma,is_sqrt); + } + + //! Estimate displacement field between two images. + /** + \param source Reference image. + \param smoothness Smoothness of estimated displacement field. + \param precision Precision required for algorithm convergence. + \param nb_scales Number of scales used to estimate the displacement field. + \param iteration_max Maximum number of iterations allowed for one scale. + \param is_backward If false, match I2(X + U(X)) = I1(X), else match I2(X) = I1(X - U(X)). + \param guide Image used as the initial correspondence estimate for the algorithm. + 'guide' may have a last channel with boolean values (0=false | other=true) that + tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask). + **/ + CImg& displacement(const CImg& source, const float smoothness=0.1f, const float precision=5.f, + const unsigned int nb_scales=0, const unsigned int iteration_max=10000, + const bool is_backward=false, + const CImg& guide=CImg::const_empty()) { + return get_displacement(source,smoothness,precision,nb_scales,iteration_max,is_backward,guide). + move_to(*this); + } + + //! Estimate displacement field between two images \newinstance. + CImg get_displacement(const CImg& source, + const float smoothness=0.1f, const float precision=5.f, + const unsigned int nb_scales=0, const unsigned int iteration_max=10000, + const bool is_backward=false, + const CImg& guide=CImg::const_empty()) const { + if (is_empty() || !source) return +*this; + if (!is_sameXYZC(source)) + throw CImgArgumentException(_cimg_instance + "displacement(): Instance and source image (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + source._width,source._height,source._depth,source._spectrum,source._data); + if (precision<0) + throw CImgArgumentException(_cimg_instance + "displacement(): Invalid specified precision %g " + "(should be >=0)", + cimg_instance, + precision); + + const bool is_3d = source._depth>1; + const unsigned int constraint = is_3d?3:2; + + if (guide && + (guide._width!=_width || guide._height!=_height || guide._depth!=_depth || guide._spectrum0?nb_scales: + (unsigned int)cimg::round(std::log(mins/8.)/std::log(1.5),1,1); + + const float _precision = (float)std::pow(10.,-(double)precision); + float sm, sM = source.max_min(sm), tm, tM = max_min(tm); + const float sdelta = sm==sM?1:(sM - sm), tdelta = tm==tM?1:(tM - tm); + + CImg U, V; + floatT bound = 0; + for (int scale = (int)_nb_scales - 1; scale>=0; --scale) { + const float factor = (float)std::pow(1.5,(double)scale); + const unsigned int + _sw = (unsigned int)(_width/factor), sw = _sw?_sw:1, + _sh = (unsigned int)(_height/factor), sh = _sh?_sh:1, + _sd = (unsigned int)(_depth/factor), sd = _sd?_sd:1; + if (sw<5 && sh<5 && (!is_3d || sd<5)) continue; // Skip too small scales + const CImg + I1 = (source.get_resize(sw,sh,sd,-100,2)-=sm)/=sdelta, + I2 = (get_resize(I1,2)-=tm)/=tdelta; + if (guide._spectrum>constraint) guide.get_resize(I2._width,I2._height,I2._depth,-100,1).move_to(V); + if (U) (U*=1.5f).resize(I2._width,I2._height,I2._depth,-100,3); + else { + if (guide) + guide.get_shared_channels(0,is_3d?2:1).get_resize(I2._width,I2._height,I2._depth,-100,2).move_to(U); + else U.assign(I2._width,I2._height,I2._depth,is_3d?3:2,0); + } + + float dt = 2, energy = cimg::type::max(); + const CImgList dI = is_backward?I1.get_gradient():I2.get_gradient(); + cimg_abort_init; + + for (unsigned int iteration = 0; iteration=0) // Isotropic regularization + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_height*_depth>=(cimg_openmp_sizefactor)*8 && + _width>=(cimg_openmp_sizefactor)*16) + reduction(+:_energy)) + cimg_forYZ(U,y,z) { + const int + _p1y = y?y - 1:0, _n1y = yx) U(x,y,z,0) = (float)x; + if (U(x,y,z,1)>y) U(x,y,z,1) = (float)y; + if (U(x,y,z,2)>z) U(x,y,z,2) = (float)z; + bound = (float)x - _width; if (U(x,y,z,0)<=bound) U(x,y,z,0) = bound; + bound = (float)y - _height; if (U(x,y,z,1)<=bound) U(x,y,z,1) = bound; + bound = (float)z - _depth; if (U(x,y,z,2)<=bound) U(x,y,z,2) = bound; + } else { + if (U(x,y,z,0)<-x) U(x,y,z,0) = -(float)x; + if (U(x,y,z,1)<-y) U(x,y,z,1) = -(float)y; + if (U(x,y,z,2)<-z) U(x,y,z,2) = -(float)z; + bound = (float)_width - x; if (U(x,y,z,0)>=bound) U(x,y,z,0) = bound; + bound = (float)_height - y; if (U(x,y,z,1)>=bound) U(x,y,z,1) = bound; + bound = (float)_depth - z; if (U(x,y,z,2)>=bound) U(x,y,z,2) = bound; + } + _energy+=delta_I*delta_I + smoothness*_energy_regul; + } + if (V) cimg_forXYZ(V,_x,_y,_z) if (V(_x,_y,_z,3)) { // Apply constraints + U(_x,_y,_z,0) = V(_x,_y,_z,0)/factor; + U(_x,_y,_z,1) = V(_x,_y,_z,1)/factor; + U(_x,_y,_z,2) = V(_x,_y,_z,2)/factor; + } + } else { // Anisotropic regularization + const float nsmoothness = -smoothness; + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_height*_depth>=(cimg_openmp_sizefactor)*8 && + _width>=(cimg_openmp_sizefactor)*16) + reduction(+:_energy)) + cimg_forYZ(U,y,z) { + const int + _p1y = y?y - 1:0, _n1y = yx) U(x,y,z,0) = (float)x; + if (U(x,y,z,1)>y) U(x,y,z,1) = (float)y; + if (U(x,y,z,2)>z) U(x,y,z,2) = (float)z; + bound = (float)x - _width; if (U(x,y,z,0)<=bound) U(x,y,z,0) = bound; + bound = (float)y - _height; if (U(x,y,z,1)<=bound) U(x,y,z,1) = bound; + bound = (float)z - _depth; if (U(x,y,z,2)<=bound) U(x,y,z,2) = bound; + } else { + if (U(x,y,z,0)<-x) U(x,y,z,0) = -(float)x; + if (U(x,y,z,1)<-y) U(x,y,z,1) = -(float)y; + if (U(x,y,z,2)<-z) U(x,y,z,2) = -(float)z; + bound = (float)_width - x; if (U(x,y,z,0)>=bound) U(x,y,z,0) = bound; + bound = (float)_height - y; if (U(x,y,z,1)>=bound) U(x,y,z,1) = bound; + bound = (float)_depth - z; if (U(x,y,z,2)>=bound) U(x,y,z,2) = bound; + } + _energy+=delta_I*delta_I + nsmoothness*_energy_regul; + } + if (V) cimg_forXYZ(V,_x,_y,_z) if (V(_x,_y,_z,3)) { // Apply constraints + U(_x,_y,_z,0) = V(_x,_y,_z,0)/factor; + U(_x,_y,_z,1) = V(_x,_y,_z,1)/factor; + U(_x,_y,_z,2) = V(_x,_y,_z,2)/factor; + } + } + } + } else { // 2D version + if (smoothness>=0) // Isotropic regularization + cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*8 && + _width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy)) + cimg_forY(U,y) { + const int _p1y = y?y - 1:0, _n1y = yx) U(x,y,0) = (float)x; + if (U(x,y,1)>y) U(x,y,1) = (float)y; + bound = (float)x - _width; if (U(x,y,0)<=bound) U(x,y,0) = bound; + bound = (float)y - _height; if (U(x,y,1)<=bound) U(x,y,1) = bound; + } else { + if (U(x,y,0)<-x) U(x,y,0) = -(float)x; + if (U(x,y,1)<-y) U(x,y,1) = -(float)y; + bound = (float)_width - x; if (U(x,y,0)>=bound) U(x,y,0) = bound; + bound = (float)_height - y; if (U(x,y,1)>=bound) U(x,y,1) = bound; + } + _energy+=delta_I*delta_I + smoothness*_energy_regul; + } + if (V) cimg_forXY(V,_x,_y) if (V(_x,_y,2)) { // Apply constraints + U(_x,_y,0) = V(_x,_y,0)/factor; + U(_x,_y,1) = V(_x,_y,1)/factor; + } + } else { // Anisotropic regularization + const float nsmoothness = -smoothness; + cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*8 && + _width>=(cimg_openmp_sizefactor)*16) reduction(+:_energy)) + cimg_forY(U,y) { + const int _p1y = y?y - 1:0, _n1y = yx) U(x,y,0) = (float)x; + if (U(x,y,1)>y) U(x,y,1) = (float)y; + bound = (float)x - _width; if (U(x,y,0)<=bound) U(x,y,0) = bound; + bound = (float)y - _height; if (U(x,y,1)<=bound) U(x,y,1) = bound; + } else { + if (U(x,y,0)<-x) U(x,y,0) = -(float)x; + if (U(x,y,1)<-y) U(x,y,1) = -(float)y; + bound = (float)_width - x; if (U(x,y,0)>=bound) U(x,y,0) = bound; + bound = (float)_height - y; if (U(x,y,1)>=bound) U(x,y,1) = bound; + } + _energy+=delta_I*delta_I + nsmoothness*_energy_regul; + } + if (V) cimg_forXY(V,_x,_y) if (V(_x,_y,2)) { // Apply constraints + U(_x,_y,0) = V(_x,_y,0)/factor; + U(_x,_y,1) = V(_x,_y,1)/factor; + } + } + } + } + const float d_energy = (_energy - energy)/(sw*sh*sd); + if (d_energy<=0 && -d_energy<_precision) break; + if (d_energy>0) dt*=0.5f; + energy = _energy; + } + } + return U; + } + + //! Compute correspondence map between two images, using a patch-matching algorithm. + /** + \param patch_image The image containing the reference patches to match with the instance image. + \param patch_width Width of the patch used for matching. + \param patch_height Height of the patch used for matching. + \param patch_depth Depth of the patch used for matching. + \param nb_iterations Number of patch-match iterations. + \param nb_randoms Number of randomization attempts (per pixel). + \param patch_penalization Penalization factor in score related patch occurrences. + if negative, also tells that identity result is not avoided. + \param guide Image used as the initial correspondence estimate for the algorithm. + 'guide' may have a last channel with boolean values (0=false | other=true) that + tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask). + \param[out] matching_score Returned as the image of matching scores. + **/ + template + CImg& matchpatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const float patch_penalization, + const CImg &guide, + CImg &matching_score) { + return get_matchpatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms,patch_penalization,guide,matching_score).move_to(*this); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \newinstance. + template + CImg get_matchpatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const float patch_penalization, + const CImg &guide, + CImg &matching_score) const { + return _matchpatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms,patch_penalization, + guide,true,matching_score); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \overloading. + template + CImg& matchpatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations=5, + const unsigned int nb_randoms=5, + const float patch_penalization=0, + const CImg &guide=CImg::const_empty()) { + return get_matchpatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms,patch_penalization,guide).move_to(*this); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \overloading. + template + CImg get_matchpatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations=5, + const unsigned int nb_randoms=5, + const float patch_penalization=0, + const CImg &guide=CImg::const_empty()) const { + CImg matching_score; + return _matchpatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms,patch_penalization,guide,false,matching_score); + } + + template + CImg _matchpatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const float patch_penalization, + const CImg &guide, + const bool is_matching_score, + CImg &matching_score) const { + if (is_empty()) return CImg::const_empty(); + if (patch_image._spectrum!=_spectrum) + throw CImgArgumentException(_cimg_instance + "matchpatch(): Instance image and specified patch image (%u,%u,%u,%u,%p) " + "have different spectrums.", + cimg_instance, + patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum, + patch_image._data); + if (patch_width>_width || patch_height>_height || patch_depth>_depth) + throw CImgArgumentException(_cimg_instance + "matchpatch(): Specified patch size %ux%ux%u is bigger than the dimensions " + "of the instance image.", + cimg_instance,patch_width,patch_height,patch_depth); + if (patch_width>patch_image._width || patch_height>patch_image._height || patch_depth>patch_image._depth) + throw CImgArgumentException(_cimg_instance + "matchpatch(): Specified patch size %ux%ux%u is bigger than the dimensions " + "of the patch image image (%u,%u,%u,%u,%p).", + cimg_instance,patch_width,patch_height,patch_depth, + patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum, + patch_image._data); + const unsigned int + _constraint = patch_image._depth>1?3:2, + constraint = guide._spectrum>_constraint?_constraint:0; + + if (guide && + (guide._width!=_width || guide._height!=_height || guide._depth!=_depth || guide._spectrum<_constraint)) + throw CImgArgumentException(_cimg_instance + "matchpatch(): Specified guide (%u,%u,%u,%u,%p) has invalid dimensions " + "considering instance and patch image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data, + patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum, + patch_image._data); + + CImg a_map(_width,_height,_depth,patch_image._depth>1?3:2); + CImg is_updated(_width,_height,_depth,1,3); + CImg score(_width,_height,_depth), penalty; + const float _patch_penalization = cimg::abs(patch_penalization); + const bool allow_identity = patch_penalization>=0; + if (_patch_penalization!=0) + penalty.assign(patch_image._width,patch_image._height,patch_image._depth,1,0); + + const int + psizew = (int)patch_width, psizew1 = psizew/2, psizew2 = psizew - psizew1 - 1, + psizeh = (int)patch_height, psizeh1 = psizeh/2, psizeh2 = psizeh - psizeh1 - 1, + psized = (int)patch_depth, psized1 = psized/2, psized2 = psized - psized1 - 1; + + // Interleave image buffers to speed up patch comparison (more cache-friendly). + CImg in_this = get_permute_axes("cxyz"); + in_this._width = _width*_spectrum; + in_this._height = _height; + in_this._depth = _depth; + in_this._spectrum = 1; + CImg in_patch = patch_image.get_permute_axes("cxyz"); + in_patch._width = patch_image._width*patch_image._spectrum; + in_patch._height = patch_image._height; + in_patch._depth = patch_image._depth; + in_patch._spectrum = 1; + + if (_depth>1 || patch_image._depth>1) { // 3D version + + // Initialize correspondence map. + if (guide) + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if_size(_width,64)) + cimg_forXYZ(*this,x,y,z) { // User-defined initialization + const int + cx1 = x<=psizew1?x:(x::inf()); + } else cimg_pragma_openmp(parallel cimg_openmp_if_size(_width,64)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for cimg_openmp_collapse(2)) + cimg_forXYZ(*this,x,y,z) { // Random initialization + const int + cx1 = x<=psizew1?x:(x::inf()); + } + cimg::srand(rng); + } + + // Start iteration loop. + cimg_abort_init; + for (unsigned int iter = 0; iter=(cimg_openmp_sizefactor)*64)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for cimg_openmp_collapse(2)) + cimg_forXYZ(*this,X,Y,Z) { + const int + x = is_backward?width() - 1 - X:X, + y = is_backward?height() - 1 - Y:Y, + z = is_backward?depth() - 1 - Z:Z; + if (score(x,y,z)<=1e-5 || (constraint && guide(x,y,z,constraint)!=0)) continue; + const int + cx1 = x<=psizew1?x:(x0 && (is_updated(x - 1,y,z)&cmask)) { // Compare with left neighbor + u = a_map(x - 1,y,z,0); + v = a_map(x - 1,y,z,1); + w = a_map(x - 1,y,z,2); + if (u>=cx1 - 1 && u=cy1 && v=cz1 && w0 && (is_updated(x,y - 1,z)&cmask)) { // Compare with up neighbor + u = a_map(x,y - 1,z,0); + v = a_map(x,y - 1,z,1); + w = a_map(x,y - 1,z,2); + if (u>=cx1 && u=cy1 - 1 && v=cz1 && w0 && (is_updated(x,y,z - 1)&cmask)) { // Compare with backward neighbor + u = a_map(x,y,z - 1,0); + v = a_map(x,y,z - 1,1); + w = a_map(x,y,z - 1,2); + if (u>=cx1 && u=cy1 && v=cz1 - 1 && w=cx1 + 1 && u=cy1 && v=cz1 && w=cx1 && u=cy1 + 1 && v=cz1 && w=cx1 && u=cy1 && v=cz1 + 1 && w=(cimg_openmp_sizefactor)*64)) + cimg_forXYZ(score,x,y,z) { + const float p_score = score(x,y,z); + const int + cx1 = x<=psizew1?x:(x::inf()); + if (n_score!=p_score) { score(x,y,z) = n_score; is_updated(x,y) = 3; } + } + } + + } else { // 2D version + + // Initialize correspondence map. + if (guide) + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,64)) + cimg_forXY(*this,x,y) { // User-defined initialization + const int + cx1 = x<=psizew1?x:(x::inf()); + } else cimg_pragma_openmp(parallel cimg_openmp_if_size(_width,64)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for) + cimg_forXY(*this,x,y) { // Random initialization + const int + cx1 = x<=psizew1?x:(x::inf()); + } + cimg::srand(rng); + } + + // Start iteration loop. + cimg_abort_init; + for (unsigned int iter = 0; iter=(cimg_openmp_sizefactor)*64)) { + cimg_uint64 rng = (cimg::_rand(),cimg::rng()); + +#if cimg_use_openmp!=0 + rng+=omp_get_thread_num(); +#endif + cimg_pragma_openmp(for) + cimg_forXY(*this,X,Y) { + const int + x = is_backward?width() - 1 - X:X, + y = is_backward?height() - 1 - Y:Y; + if (score(x,y)<=1e-5 || (constraint && guide(x,y,constraint)!=0)) continue; + const int + cx1 = x<=psizew1?x:(x0 && (is_updated(x - 1,y)&cmask)) { // Compare with left neighbor + u = a_map(x - 1,y,0); + v = a_map(x - 1,y,1); + if (u>=cx1 - 1 && u=cy1 && v0 && (is_updated(x,y - 1)&cmask)) { // Compare with up neighbor + u = a_map(x,y - 1,0); + v = a_map(x,y - 1,1); + if (u>=cx1 && u=cy1 - 1 && v=cx1 + 1 && u=cy1 && v=cx1 && u=cy1 + 1 && v=(cimg_openmp_sizefactor)*64)) + cimg_forXY(score,x,y) { + const float p_score = score(x,y); + const int + cx1 = x<=psizew1?x:(x::inf()); + if (n_score!=p_score) { score(x,y) = n_score; is_updated(x,y) = 3; } + } + } + } + + if (is_matching_score) score.move_to(matching_score); + return a_map; + } + + // Compute SSD between two patches in different images. + static float _matchpatch(const CImg& img1, const CImg& img2, const CImg& penalty, + const unsigned int psizew, const unsigned int psizeh, + const unsigned int psized, const unsigned int psizec, + const int x1, const int y1, const int z1, + const int x2, const int y2, const int z2, + const int xc, const int yc, const int zc, + const float patch_penalization, + const bool allow_identity, + const float max_score) { // 3D version + if (!allow_identity && cimg::hypot((float)x1 - x2,(float)y1 - y2,(float)z1 - z2)::inf(); + const T *p1 = img1.data(x1*psizec,y1,z1), *p2 = img2.data(x2*psizec,y2,z2); + const unsigned int psizewc = psizew*psizec; + const ulongT + offx1 = (ulongT)img1._width - psizewc, + offx2 = (ulongT)img2._width - psizewc, + offy1 = (ulongT)img1._width*img1._height - (ulongT)psizeh*img1._width, + offy2 = (ulongT)img2._width*img2._height - (ulongT)psizeh*img2._width; + float ssd = 0; + for (unsigned int k = 0; kmax_score) return max_score; + p1+=offx1; p2+=offx2; + } + p1+=offy1; p2+=offy2; + } + return patch_penalization==0?ssd:cimg::sqr(std::sqrt(ssd) + + patch_penalization*psizewc*psizeh*psized*penalty(xc,yc,zc)/100); + } + + static float _matchpatch(const CImg& img1, const CImg& img2, const CImg& penalty, + const unsigned int psizew, const unsigned int psizeh, const unsigned int psizec, + const int x1, const int y1, + const int x2, const int y2, + const int xc, const int yc, + const float patch_penalization, + const bool allow_identity, + const float max_score) { // 2D version + if (!allow_identity && cimg::hypot((float)x1 - x2,(float)y1 - y2)::inf(); + const T *p1 = img1.data(x1*psizec,y1), *p2 = img2.data(x2*psizec,y2); + const unsigned int psizewc = psizew*psizec; + const ulongT + offx1 = (ulongT)img1._width - psizewc, + offx2 = (ulongT)img2._width - psizewc; + float ssd = 0; + for (unsigned int j = 0; jmax_score) return max_score; + p1+=offx1; p2+=offx2; + } + return patch_penalization==0?ssd:cimg::sqr(std::sqrt(ssd) + + patch_penalization*psizewc*psizeh*penalty(xc,yc)/100); + } + + //! Compute Euclidean distance function to a specified value. + /** + \param value Reference value. + \param metric Type of metric. Can be { 0=Chebyshev | 1=Manhattan | 2=Euclidean | 3=Squared-euclidean }. + \note + The distance transform implementation has been submitted by A. Meijster, and implements + the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, + "A general algorithm for computing distance transforms in linear time.", + In: Mathematical Morphology and its Applications to Image and Signal Processing, + J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' + The submitted code has then been modified to fit CImg coding style and constraints. + **/ + CImg& distance(const T& value, const unsigned int metric=2) { + if (is_empty()) return *this; + if (cimg::type::string()!=pixel_type()) // For datatype < int + return CImg(*this,false).distance((Tint)value,metric). + cut((Tint)cimg::type::min(),(Tint)cimg::type::max()).move_to(*this); + bool is_value = false; + cimg_for(*this,ptr,T) *ptr = *ptr==value?is_value=true,(T)0:(T)std::max(0,99999999); // (avoid VC++ warning) + if (!is_value) return fill(cimg::type::max()); + switch (metric) { + case 0 : return _distance_core(_distance_sep_cdt,_distance_dist_cdt); // Chebyshev + case 1 : return _distance_core(_distance_sep_mdt,_distance_dist_mdt); // Manhattan + case 3 : return _distance_core(_distance_sep_edt,_distance_dist_edt); // Squared Euclidean + default : return _distance_core(_distance_sep_edt,_distance_dist_edt).sqrt(); // Euclidean + } + return *this; + } + + //! Compute distance to a specified value \newinstance. + CImg get_distance(const T& value, const unsigned int metric=2) const { + return CImg(*this,false).distance((Tfloat)value,metric); + } + + static longT _distance_sep_edt(const longT i, const longT u, const longT *const g) { + return (u*u - i*i + g[u] - g[i])/(2*(u - i)); + } + + static longT _distance_dist_edt(const longT x, const longT i, const longT *const g) { + return (x - i)*(x - i) + g[i]; + } + + static longT _distance_sep_mdt(const longT i, const longT u, const longT *const g) { + return (u - i<=g[u] - g[i]?999999999:(g[u] - g[i] + u + i)/2); + } + + static longT _distance_dist_mdt(const longT x, const longT i, const longT *const g) { + return (x=0) && f(t[q],s[q],g)>f(t[q],u,g)) { --q; } + if (q<0) { q = 0; s[0] = u; } + else { const longT w = 1 + sep(s[q], u, g); if (w<(longT)len) { ++q; s[q] = u; t[q] = w; }} + } + for (int u = (int)len - 1; u>=0; --u) { dt[u] = f(u,s[q],g); if (u==t[q]) --q; } // Backward scan + } + + CImg& _distance_core(longT (*const sep)(const longT, const longT, const longT *const), + longT (*const f)(const longT, const longT, const longT *const)) { + // Check for g++ 4.9.X, as OpenMP seems to crash for this particular function. I have no clues why. +#define cimg_is_gcc49x (__GNUC__==4 && __GNUC_MINOR__==9) + + const ulongT wh = (ulongT)_width*_height; +#if cimg_use_openmp!=0 && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) +#endif + cimg_forC(*this,c) { + CImg g(_width), dt(_width), s(_width), t(_width); + CImg img = get_shared_channel(c); +#if cimg_use_openmp!=0 && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) cimg_openmp_if(_width>=(cimg_openmp_sizefactor)*512 && + _height*_depth>=16) + firstprivate(g,dt,s,t)) +#endif + cimg_forYZ(*this,y,z) { // Over X-direction + cimg_forX(*this,x) g[x] = (longT)img(x,y,z,0,wh); + _distance_scan(_width,g,sep,f,s,t,dt); + cimg_forX(*this,x) img(x,y,z,0,wh) = (T)dt[x]; + } + if (_height>1) { + g.assign(_height); dt.assign(_height); s.assign(_height); t.assign(_height); +#if cimg_use_openmp!=0 && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_height>=(cimg_openmp_sizefactor)*512 && _width*_depth>=16) + firstprivate(g,dt,s,t)) +#endif + cimg_forXZ(*this,x,z) { // Over Y-direction + cimg_forY(*this,y) g[y] = (longT)img(x,y,z,0,wh); + _distance_scan(_height,g,sep,f,s,t,dt); + cimg_forY(*this,y) img(x,y,z,0,wh) = (T)dt[y]; + } + } + if (_depth>1) { + g.assign(_depth); dt.assign(_depth); s.assign(_depth); t.assign(_depth); +#if cimg_use_openmp!=0 && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if(_depth>=(cimg_openmp_sizefactor)*512 && _width*_height>=16) + firstprivate(g,dt,s,t)) +#endif + cimg_forXY(*this,x,y) { // Over Z-direction + cimg_forZ(*this,z) g[z] = (longT)img(x,y,z,0,wh); + _distance_scan(_depth,g,sep,f,s,t,dt); + cimg_forZ(*this,z) img(x,y,z,0,wh) = (T)dt[z]; + } + } + } + return *this; + } + + //! Compute chamfer distance to a specified value, with a custom metric. + /** + \param value Reference value. + \param metric_mask Metric mask. + \note The algorithm code has been initially proposed by A. Meijster, and modified by D. TschumperlĂ©. + **/ + template + CImg& distance(const T& value, const CImg& metric_mask) { + if (is_empty()) return *this; + bool is_value = false; + cimg_for(*this,ptr,T) *ptr = *ptr==value?is_value=true,0:(T)999999999; + if (!is_value) return fill(cimg::type::max()); + const ulongT wh = (ulongT)_width*_height; + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + CImg img = get_shared_channel(c); + cimg_pragma_openmp(parallel for cimg_openmp_collapse(3) + cimg_openmp_if(_width*_height*_depth>=(cimg_openmp_sizefactor)*1024)) + cimg_forXYZ(metric_mask,dx,dy,dz) { + const t weight = metric_mask(dx,dy,dz); + if (weight) { + for (int z = dz, nz = 0; z=0; --z,--nz) { // Backward scan + for (int y = height() - 1 - dy, ny = height() - 1; y>=0; --y,--ny) { + for (int x = width() - 1 - dx, nx = width() - 1; x>=0; --x,--nx) { + const T dd = img(nx,ny,nz,0,wh) + weight; + if (dd + CImg get_distance(const T& value, const CImg& metric_mask) const { + return CImg(*this,false).distance(value,metric_mask); + } + + //! Compute distance to a specified value, according to a custom metric (use dijkstra algorithm). + /** + \param value Reference value. + \param metric Field of distance potentials. + \param is_high_connectivity Tells if the algorithm uses low or high connectivity. + \param[out] return_path An image containing the nodes of the minimal path. + **/ + template + CImg& distance_dijkstra(const T& value, const CImg& metric, const bool is_high_connectivity, + CImg& return_path) { + return get_distance_dijkstra(value,metric,is_high_connectivity,return_path).move_to(*this); + } + + //! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm) \newinstance. + template + CImg::type> + get_distance_dijkstra(const T& value, const CImg& metric, const bool is_high_connectivity, + CImg& return_path) const { + if (is_empty()) return return_path.assign(); + if (!is_sameXYZ(metric)) + throw CImgArgumentException(_cimg_instance + "distance_dijkstra(): image instance and metric map (%u,%u,%u,%u) " + "have incompatible dimensions.", + cimg_instance, + metric._width,metric._height,metric._depth,metric._spectrum); + typedef typename cimg::superset::type td; // Type used for computing cumulative distances + CImg result(_width,_height,_depth,_spectrum), Q; + CImg is_queued(_width,_height,_depth,1); + if (return_path) return_path.assign(_width,_height,_depth,_spectrum); + + cimg_forC(*this,c) { + const CImg img = get_shared_channel(c); + const CImg met = metric.get_shared_channel(c%metric._spectrum); + CImg res = result.get_shared_channel(c); + CImg path = return_path?return_path.get_shared_channel(c):CImg(); + unsigned int sizeQ = 0; + + // Detect initial seeds. + is_queued.fill(0); + cimg_forXYZ(img,x,y,z) if (img(x,y,z)==value) { + Q._priority_queue_insert(is_queued,sizeQ,0,x,y,z); + res(x,y,z) = 0; + if (path) path(x,y,z) = (to)0; + } + + // Start distance propagation. + while (sizeQ) { + + // Get and remove point with minimal potential from the queue. + const int x = (int)Q(0,1), y = (int)Q(0,2), z = (int)Q(0,3); + const td P = (td)-Q(0,0); + Q._priority_queue_remove(sizeQ); + + // Update neighbors. + td npot = 0; + if (x - 1>=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x - 1,y,z) + P),x - 1,y,z)) { + res(x - 1,y,z) = npot; if (path) path(x - 1,y,z) = (to)2; + } + if (x + 1=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y - 1,z) + P),x,y - 1,z)) { + res(x,y - 1,z) = npot; if (path) path(x,y - 1,z) = (to)8; + } + if (y + 1=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y,z - 1) + P),x,y,z - 1)) { + res(x,y,z - 1) = npot; if (path) path(x,y,z - 1) = (to)32; + } + if (z + 1=0 && y - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y - 1,z) + P)),x - 1,y - 1,z)) { + res(x - 1,y - 1,z) = npot; if (path) path(x - 1,y - 1,z) = (to)10; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x + 1,y - 1,z) + P)),x + 1,y - 1,z)) { + res(x + 1,y - 1,z) = npot; if (path) path(x + 1,y - 1,z) = (to)9; + } + if (x - 1>=0 && y + 1=0) { // Diagonal neighbors on slice z - 1 + if (x - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y,z - 1) + P)),x - 1,y,z - 1)) { + res(x - 1,y,z - 1) = npot; if (path) path(x - 1,y,z - 1) = (to)34; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y - 1,z - 1) + P)),x,y - 1,z - 1)) { + res(x,y - 1,z - 1) = npot; if (path) path(x,y - 1,z - 1) = (to)40; + } + if (y + 1=0 && y - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y - 1,z - 1) + P)), + x - 1,y - 1,z - 1)) { + res(x - 1,y - 1,z - 1) = npot; if (path) path(x - 1,y - 1,z - 1) = (to)42; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y - 1,z - 1) + P)), + x + 1,y - 1,z - 1)) { + res(x + 1,y - 1,z - 1) = npot; if (path) path(x + 1,y - 1,z - 1) = (to)41; + } + if (x - 1>=0 && y + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y,z + 1) + P)),x - 1,y,z + 1)) { + res(x - 1,y,z + 1) = npot; if (path) path(x - 1,y,z + 1) = (to)18; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y - 1,z + 1) + P)),x,y - 1,z + 1)) { + res(x,y - 1,z + 1) = npot; if (path) path(x,y - 1,z + 1) = (to)24; + } + if (y + 1=0 && y - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y - 1,z + 1) + P)), + x - 1,y - 1,z + 1)) { + res(x - 1,y - 1,z + 1) = npot; if (path) path(x - 1,y - 1,z + 1) = (to)26; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y - 1,z + 1) + P)), + x + 1,y - 1,z + 1)) { + res(x + 1,y - 1,z + 1) = npot; if (path) path(x + 1,y - 1,z + 1) = (to)25; + } + if (x - 1>=0 && y + 1 + CImg& distance_dijkstra(const T& value, const CImg& metric, + const bool is_high_connectivity=false) { + return get_distance_dijkstra(value,metric,is_high_connectivity).move_to(*this); + } + + //! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). \newinstance. + template + CImg get_distance_dijkstra(const T& value, const CImg& metric, + const bool is_high_connectivity=false) const { + CImg return_path; + return get_distance_dijkstra(value,metric,is_high_connectivity,return_path); + } + + //! Compute distance map to one source point, according to a custom metric (use fast marching algorithm). + /** + \param value Reference value. + \param metric Field of distance potentials. + **/ + template + CImg& distance_eikonal(const T& value, const CImg& metric) { + return get_distance_eikonal(value,metric).move_to(*this); + } + + //! Compute distance map to one source point, according to a custom metric (use fast marching algorithm). + template + CImg get_distance_eikonal(const T& value, const CImg& metric) const { + if (is_empty()) return *this; + if (!is_sameXYZ(metric)) + throw CImgArgumentException(_cimg_instance + "distance_eikonal(): image instance and metric map (%u,%u,%u,%u) have " + "incompatible dimensions.", + cimg_instance, + metric._width,metric._height,metric._depth,metric._spectrum); + CImg result(_width,_height,_depth,_spectrum,cimg::type::max()), Q; + CImg state(_width,_height,_depth); // -1=far away, 0=narrow, 1=frozen + + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2) firstprivate(Q,state)) + cimg_forC(*this,c) { + const CImg img = get_shared_channel(c); + const CImg met = metric.get_shared_channel(c%metric._spectrum); + CImg res = result.get_shared_channel(c); + unsigned int sizeQ = 0; + state.fill(-1); + + // Detect initial seeds. + Tfloat *ptr1 = res._data; char *ptr2 = state._data; + cimg_for(img,ptr0,T) { if (*ptr0==value) { *ptr1 = 0; *ptr2 = 1; } ++ptr1; ++ptr2; } + + // Initialize seeds neighbors. + ptr2 = state._data; + cimg_forXYZ(img,x,y,z) if (*(ptr2++)==1) { + if (x - 1>=0 && state(x - 1,y,z)==-1) { + const Tfloat dist = res(x - 1,y,z) = __distance_eikonal(res,met(x - 1,y,z),x - 1,y,z); + Q._eik_priority_queue_insert(state,sizeQ,-dist,x - 1,y,z); + } + if (x + 1=0 && state(x,y - 1,z)==-1) { + const Tfloat dist = res(x,y - 1,z) = __distance_eikonal(res,met(x,y - 1,z),x,y - 1,z); + Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y - 1,z); + } + if (y + 1=0 && state(x,y,z - 1)==-1) { + const Tfloat dist = res(x,y,z - 1) = __distance_eikonal(res,met(x,y,z - 1),x,y,z - 1); + Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y,z - 1); + } + if (z + 1=0) { + if (x - 1>=0 && state(x - 1,y,z)!=1) { + const Tfloat dist = __distance_eikonal(res,met(x - 1,y,z),x - 1,y,z); + if (dist=0 && state(x,y - 1,z)!=1) { + const Tfloat dist = __distance_eikonal(res,met(x,y - 1,z),x,y - 1,z); + if (dist=0 && state(x,y,z - 1)!=1) { + const Tfloat dist = __distance_eikonal(res,met(x,y,z - 1),x,y,z - 1); + if (dist& res, const Tfloat P, + const int x=0, const int y=0, const int z=0) const { + const Tfloat M = (Tfloat)cimg::type::max(); + T T1 = (T)std::min(x - 1>=0?res(x - 1,y,z):M,x + 11) { // 3D + T + T2 = (T)std::min(y - 1>=0?res(x,y - 1,z):M,y + 1=0?res(x,y,z - 1):M,z + 1T2) cimg::swap(T1,T2); + if (T2>T3) cimg::swap(T2,T3); + if (T1>T2) cimg::swap(T1,T2); + if (P<=0) return (Tfloat)T1; + if (T31) { // 2D + T T2 = (T)std::min(y - 1>=0?res(x,y - 1,z):M,y + 1T2) cimg::swap(T1,T2); + if (P<=0) return (Tfloat)T1; + if (T2 + void _eik_priority_queue_insert(CImg& state, unsigned int& siz, const t value, + const unsigned int x, const unsigned int y, const unsigned int z) { + if (state(x,y,z)>0) return; + state(x,y,z) = 0; + if (++siz>=_width) { if (!is_empty()) resize(_width*2,4,1,1,0); else assign(64,4); } + (*this)(siz - 1,0) = (T)value; (*this)(siz - 1,1) = (T)x; (*this)(siz - 1,2) = (T)y; (*this)(siz - 1,3) = (T)z; + for (unsigned int pos = siz - 1, par = 0; pos && value>(t)(*this)(par=(pos + 1)/2 - 1,0); pos = par) { + cimg::swap((*this)(pos,0),(*this)(par,0)); cimg::swap((*this)(pos,1),(*this)(par,1)); + cimg::swap((*this)(pos,2),(*this)(par,2)); cimg::swap((*this)(pos,3),(*this)(par,3)); + } + } + + //! Compute distance function to 0-valued isophotes, using the Eikonal PDE. + /** + \param nb_iterations Number of PDE iterations. + \param band_size Size of the narrow band. + \param time_step Time step of the PDE iterations. + **/ + CImg& distance_eikonal(const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f) { + if (is_empty()) return *this; + CImg velocity(*this,false); + for (unsigned int iteration = 0; iteration1) { // 3D + CImg_3x3x3(I,Tfloat); + cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) if (band_size<=0 || cimg::abs(Iccc)0?(Incc - Iccc):(Iccc - Ipcc), + iy = gy*sgn>0?(Icnc - Iccc):(Iccc - Icpc), + iz = gz*sgn>0?(Iccn - Iccc):(Iccc - Iccp), + ng = 1e-5f + cimg::hypot(gx,gy,gz), + ngx = gx/ng, + ngy = gy/ng, + ngz = gz/ng, + veloc = sgn*(ngx*ix + ngy*iy + ngz*iz - 1); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } else *(ptrd++) = 0; + } else { // 2D version + CImg_3x3(I,Tfloat); + cimg_forC(*this,c) cimg_for3x3(*this,x,y,0,c,I,Tfloat) if (band_size<=0 || cimg::abs(Icc)0?(Inc - Icc):(Icc - Ipc), + iy = gy*sgn>0?(Icn - Icc):(Icc - Icp), + ng = std::max((Tfloat)1e-5,cimg::hypot(gx,gy)), + ngx = gx/ng, + ngy = gy/ng, + veloc = sgn*(ngx*ix + ngy*iy - 1); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } else *(ptrd++) = 0; + } + if (veloc_max>0) *this+=(velocity*=time_step/veloc_max); + } + return *this; + } + + //! Compute distance function to 0-valued isophotes, using the Eikonal PDE \newinstance. + CImg get_distance_eikonal(const unsigned int nb_iterations, const float band_size=0, + const float time_step=0.5f) const { + return CImg(*this,false).distance_eikonal(nb_iterations,band_size,time_step); + } + + //! Compute Haar multiscale wavelet transform. + /** + \param axis Axis considered for the transform. + \param invert Set inverse of direct transform. + \param nb_scales Number of scales used for the transform. + **/ + CImg& haar(const char axis, const bool invert=false, const unsigned int nb_scales=1) { + return get_haar(axis,invert,nb_scales).move_to(*this); + } + + //! Compute Haar multiscale wavelet transform \newinstance. + CImg get_haar(const char axis, const bool invert=false, const unsigned int nb_scales=1) const { + if (is_empty() || !nb_scales) return +*this; + CImg res; + const Tfloat sqrt2 = std::sqrt(2.f); + if (nb_scales==1) { + switch (cimg::lowercase(axis)) { // Single scale transform + case 'x' : { + const unsigned int w = _width/2; + if (w) { + if ((w%2) && w!=1) + throw CImgInstanceException(_cimg_instance + "haar(): Sub-image width %u is not even.", + cimg_instance, + w); + + res.assign(_width,_height,_depth,_spectrum); + if (invert) cimg_forYZC(*this,y,z,c) { // Inverse transform along X + for (unsigned int x = 0, xw = w, x2 = 0; x& haar(const bool invert=false, const unsigned int nb_scales=1) { + return get_haar(invert,nb_scales).move_to(*this); + } + + //! Compute Haar multiscale wavelet transform \newinstance. + CImg get_haar(const bool invert=false, const unsigned int nb_scales=1) const { + CImg res; + if (nb_scales==1) { // Single scale transform + if (_width>1) get_haar('x',invert,1).move_to(res); + if (_height>1) { if (res) res.haar('y',invert,1); else get_haar('y',invert,1).move_to(res); } + if (_depth>1) { if (res) res.haar('z',invert,1); else get_haar('z',invert,1).move_to(res); } + if (res) return res; + } else { // Multi-scale transform + if (invert) { // Inverse transform + res.assign(*this,false); + if (_width>1) { + if (_height>1) { + if (_depth>1) { + unsigned int w = _width, h = _height, d = _depth; + for (unsigned int s = 1; w && h && d && s1) { + unsigned int w = _width, d = _depth; + for (unsigned int s = 1; w && d && s1) { + if (_depth>1) { + unsigned int h = _height, d = _depth; + for (unsigned int s = 1; h && d && s1) { + unsigned int d = _depth; + for (unsigned int s = 1; d && s1) { + if (_height>1) { + if (_depth>1) + for (unsigned int s = 1, w = _width/2, h = _height/2, d = _depth/2; w && h && d && s1) for (unsigned int s = 1, w = _width/2, d = _depth/2; w && d && s1) { + if (_depth>1) + for (unsigned int s = 1, h = _height/2, d = _depth/2; h && d && s1) for (unsigned int s = 1, d = _depth/2; d && s get_FFT(const char axis, const bool is_inverse=false) const { + CImgList res(*this,CImg()); + CImg::FFT(res[0],res[1],axis,is_inverse); + return res; + } + + //! Compute n-D Fast Fourier Transform. + /* + \param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed. + **/ + CImgList get_FFT(const bool is_inverse=false) const { + CImgList res(*this,CImg()); + CImg::FFT(res[0],res[1],is_inverse); + return res; + } + + //! Compute 1D Fast Fourier Transform, along a specified axis. + /** + \param[in,out] real Real part of the pixel values. + \param[in,out] imag Imaginary part of the pixel values. + \param axis Axis along which the FFT is computed. + \param is_inverse Tells if the forward (\c false) or inverse (\c true) FFT is computed. + **/ + static void FFT(CImg& real, CImg& imag, const char axis, const bool is_inverse=false, + const unsigned int nb_threads=0) { + if (!real) + throw CImgInstanceException("CImg<%s>::FFT(): Specified real part is empty.", + pixel_type()); + if (!imag) imag.assign(real._width,real._height,real._depth,real._spectrum,(T)0); + if (!real.is_sameXYZC(imag)) + throw CImgInstanceException("CImg<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and " + "imaginary part (%u,%u,%u,%u,%p) have different dimensions.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum,real._data, + imag._width,imag._height,imag._depth,imag._spectrum,imag._data); + const char _axis = cimg::lowercase(axis); + if (_axis!='x' && _axis!='y' && _axis!='z') + throw CImgArgumentException("CImgList<%s>::FFT(): Invalid specified axis '%c' for real and imaginary parts " + "(%u,%u,%u,%u) " + "(should be { x | y | z }).", + pixel_type(),axis, + real._width,real._height,real._depth,real._spectrum); + cimg::unused(nb_threads); +#ifdef cimg_use_fftw3 + cimg::mutex(12); +#ifndef cimg_use_fftw3_singlethread + fftw_plan_with_nthreads(nb_threads?nb_threads:cimg::nb_cpus()); +#endif + fftw_complex *data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*real._width*real._height*real._depth); + if (!data_in) + throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) " + "for computing FFT of image (%u,%u,%u,%u) along the X-axis.", + pixel_type(), + cimg::strbuffersize(sizeof(fftw_complex)*real._width*real._height*real._depth), + real._width,real._height,real._depth,real._spectrum); + double *const ptrf = (double*)data_in; + fftw_plan data_plan = + _axis=='x'?fftw_plan_many_dft(1,(int*)&real._width,real.height()*real.depth(), + data_in,0,1,real.width(), + data_in,0,1,real.width(), + is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE): + _axis=='y'?fftw_plan_many_dft(1,(int*)&real._height,real.width()*real.depth(), + data_in,0,1,real.height(), + data_in,0,1,real.height(), + is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE): + fftw_plan_many_dft(1,(int*)&real._depth,real.width()*real.height(), + data_in,0,1,real.depth(), + data_in,0,1,real.depth(), + is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE); + cimg_forC(real,c) { + CImg realc = real.get_shared_channel(c), imagc = imag.get_shared_channel(c); + switch (_axis) { + case 'x' : + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_forXYZ(realc,x,y,z) { + const ulongT + i = realc.offset(x,y,z), + j = 2*(x + (ulongT)y*realc._width + (ulongT)z*realc._width*realc._height); + ptrf[j] = (double)realc[i]; + ptrf[j + 1] = (double)imagc[i]; + } + break; + case 'y' : + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_forXYZ(realc,x,y,z) { + const ulongT + i = realc.offset(x,y,z), + j = 2*(y + (ulongT)x*realc._height + (ulongT)z*realc._width*realc._height); + ptrf[j] = (double)realc[i]; + ptrf[j + 1] = (double)imagc[i]; + } + break; + default : + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_forXYZ(realc,x,y,z) { + const ulongT + i = realc.offset(x,y,z), + j = 2*(z + (ulongT)x*realc._depth + (ulongT)y*realc._width*realc._depth); + ptrf[j] = (double)realc[i]; + ptrf[j + 1] = (double)imagc[i]; + } + } + + fftw_execute(data_plan); + + const double a = is_inverse?1.0/(_axis=='x'?real.width():_axis=='y'?real.height():real.depth()):1.0; + switch (_axis) { + case 'x' : + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_forXYZ(realc,x,y,z) { + const ulongT + i = 2*(x + (ulongT)y*realc._width + (ulongT)z*realc._width*realc._height), + j = realc.offset(x,y,z); + realc[j] = (T)(a*ptrf[i]); + imagc[j] = (T)(a*ptrf[i + 1]); + } + break; + case 'y' : + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_forXYZ(realc,x,y,z) { + const ulongT + i = 2*(y + (ulongT)x*realc._height + (ulongT)z*realc._width*realc._height), + j = realc.offset(x,y,z); + realc[j] = (T)(a*ptrf[i]); + imagc[j] = (T)(a*ptrf[i + 1]); + } + break; + default : + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_forXYZ(realc,x,y,z) { + const ulongT + i = 2*(z + (ulongT)x*realc._depth + (ulongT)y*realc._width*realc._depth), + j = realc.offset(x,y,z); + realc[j] = (T)(a*ptrf[i]); + imagc[j] = (T)(a*ptrf[i + 1]); + } + } + } + + fftw_destroy_plan(data_plan); + fftw_free(data_in); +#ifndef cimg_use_fftw3_singlethread + fftw_cleanup_threads(); +#endif + cimg::mutex(12,0); +#else + switch (_axis) { + case 'x' : { // Fourier along X, using built-in functions + const unsigned int N = real._width, N2 = N>>1; + if (((N - 1)&N) && N!=1) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) " + "have non 2^N dimension along the X-axis.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum); + + for (unsigned int i = 0, j = 0; ii) cimg_forYZC(real,y,z,c) { + cimg::swap(real(i,y,z,c),real(j,y,z,c)); + cimg::swap(imag(i,y,z,c),imag(j,y,z,c)); + if (j=m; j-=m, m = n, n>>=1) {} + } + for (unsigned int delta = 2; delta<=N; delta<<=1) { + const unsigned int delta2 = delta>>1; + for (unsigned int i = 0; i>1; + if (((N - 1)&N) && N!=1) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) " + "have non 2^N dimension along the Y-axis.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum); + + for (unsigned int i = 0, j = 0; ii) cimg_forXZC(real,x,z,c) { + cimg::swap(real(x,i,z,c),real(x,j,z,c)); + cimg::swap(imag(x,i,z,c),imag(x,j,z,c)); + if (j=m; j-=m, m = n, n>>=1) {} + } + for (unsigned int delta = 2; delta<=N; delta<<=1) { + const unsigned int delta2 = (delta>>1); + for (unsigned int i = 0; i>1; + if (((N - 1)&N) && N!=1) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) " + "have non 2^N dimension along the Z-axis.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum); + + for (unsigned int i = 0, j = 0; ii) cimg_forXYC(real,x,y,c) { + cimg::swap(real(x,y,i,c),real(x,y,j,c)); + cimg::swap(imag(x,y,i,c),imag(x,y,j,c)); + if (j=m; j-=m, m = n, n>>=1) {} + } + for (unsigned int delta = 2; delta<=N; delta<<=1) { + const unsigned int delta2 = (delta>>1); + for (unsigned int i = 0; i& real, CImg& imag, const bool is_inverse=false, + const unsigned int nb_threads=0) { + if (!real) + throw CImgInstanceException("CImgList<%s>::FFT(): Empty specified real part.", + pixel_type()); + if (!imag) imag.assign(real._width,real._height,real._depth,real._spectrum,(T)0); + if (!real.is_sameXYZC(imag)) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and " + "imaginary part (%u,%u,%u,%u,%p) have different dimensions.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum,real._data, + imag._width,imag._height,imag._depth,imag._spectrum,imag._data); + cimg::unused(nb_threads); +#ifdef cimg_use_fftw3 + cimg::mutex(12); +#ifndef cimg_use_fftw3_singlethread + fftw_plan_with_nthreads(nb_threads?nb_threads:cimg::nb_cpus()); +#endif + fftw_complex *data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*real._width*real._height*real._depth); + if (!data_in) + throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) " + "for computing FFT of image (%u,%u,%u,%u).", + pixel_type(), + cimg::strbuffersize(sizeof(fftw_complex)*real._width* + real._height*real._depth*real._spectrum), + real._width,real._height,real._depth,real._spectrum); + double *const ptrf = (double*)data_in; + fftw_plan data_plan = + real._depth>1?fftw_plan_dft_3d(real._depth,real._height,real._width,data_in,data_in, + is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE): + real._height>1?fftw_plan_dft_2d(real._height,real._width,data_in,data_in, + is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE): + fftw_plan_dft_1d(real._width,data_in,data_in, + is_inverse?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE); + cimg_forC(real,c) { + CImg realc = real.get_shared_channel(c), imagc = imag.get_shared_channel(c); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_rofoff(realc,i) { const ulongT i2 = 2*i; ptrf[i2] = (double)realc[i]; ptrf[i2 + 1] = (double)imagc[i]; } + fftw_execute(data_plan); + if (is_inverse) { + const double a = 1.0/(real.width()*real.height()*real.depth()); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_rofoff(realc,i) { const ulongT i2 = 2*i; realc[i] = (T)(a*ptrf[i2]); imagc[i] = (T)(a*ptrf[i2 + 1]); } + } else + cimg_pragma_openmp(parallel for cimg_openmp_if_size(real.width()*real.height()*real.depth(),125000)) + cimg_rofoff(realc,i) { const ulongT i2 = 2*i; realc[i] = (T)ptrf[i2]; imagc[i] = (T)ptrf[i2 + 1]; } + } + fftw_destroy_plan(data_plan); + fftw_free(data_in); +#ifndef cimg_use_fftw3_singlethread + fftw_cleanup_threads(); +#endif + cimg::mutex(12,0); +#else + if (real._depth>1) FFT(real,imag,'z',is_inverse); + if (real._height>1) FFT(real,imag,'y',is_inverse); + if (real._width>1) FFT(real,imag,'x',is_inverse); +#endif + } + + //@} + //------------------------------------- + // + //! \name 3D Objects Management + //@{ + //------------------------------------- + + //! Rotate 3D object's vertices. + /** + \param x X-coordinate of the rotation axis, or first quaternion coordinate. + \param y Y-coordinate of the rotation axis, or second quaternion coordinate. + \param z Z-coordinate of the rotation axis, or second quaternion coordinate. + \param w Angle of the rotation axis (in degree), or fourth quaternion coordinate. + \param is_quaternion Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w). + **/ + CImg& rotate_object3d(const float x, const float y, const float z, const float w, + const bool is_quaternion=false) { + return get_rotate_object3d(x,y,z,w,is_quaternion).move_to(*this); + } + + CImg get_rotate_object3d(const float x, const float y, const float z, const float w, + const bool is_quaternion=false) const { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "rotate_object3d(): Instance is not a set of 3D vertices.", + cimg_instance); + return CImg::rotation_matrix(x,y,z,w,is_quaternion)**this; + } + + //! Shift 3D object's vertices. + /** + \param tx X-coordinate of the 3D displacement vector. + \param ty Y-coordinate of the 3D displacement vector. + \param tz Z-coordinate of the 3D displacement vector. + **/ + CImg& shift_object3d(const float tx, const float ty=0, const float tz=0) { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "shift_object3d(): Instance is not a set of 3D vertices.", + cimg_instance); + + get_shared_row(0)+=tx; get_shared_row(1)+=ty; get_shared_row(2)+=tz; + return *this; + } + + //! Shift 3D object's vertices \newinstance. + CImg get_shift_object3d(const float tx, const float ty=0, const float tz=0) const { + return CImg(*this,false).shift_object3d(tx,ty,tz); + } + + //! Shift 3D object's vertices, so that it becomes centered. + /** + \note The object center is computed as its barycenter. + **/ + CImg& shift_object3d() { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "shift_object3d(): Instance is not a set of 3D vertices.", + cimg_instance); + + CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); + float + xm, xM = (float)xcoords.max_min(xm), + ym, yM = (float)ycoords.max_min(ym), + zm, zM = (float)zcoords.max_min(zm); + xcoords-=(xm + xM)/2; ycoords-=(ym + yM)/2; zcoords-=(zm + zM)/2; + return *this; + } + + //! Shift 3D object's vertices, so that it becomes centered \newinstance. + CImg get_shift_object3d() const { + return CImg(*this,false).shift_object3d(); + } + + //! Resize 3D object. + /** + \param sx Width of the 3D object's bounding box. + \param sy Height of the 3D object's bounding box. + \param sz Depth of the 3D object's bounding box. + **/ + CImg& resize_object3d(const float sx, const float sy=-100, const float sz=-100) { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "resize_object3d(): Instance is not a set of 3D vertices.", + cimg_instance); + + CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); + float + xm, xM = (float)xcoords.max_min(xm), + ym, yM = (float)ycoords.max_min(ym), + zm, zM = (float)zcoords.max_min(zm); + if (xm0) xcoords*=sx/(xM-xm); else xcoords*=-sx/100; } + if (ym0) ycoords*=sy/(yM-ym); else ycoords*=-sy/100; } + if (zm0) zcoords*=sz/(zM-zm); else zcoords*=-sz/100; } + return *this; + } + + //! Resize 3D object \newinstance. + CImg get_resize_object3d(const float sx, const float sy=-100, const float sz=-100) const { + return CImg(*this,false).resize_object3d(sx,sy,sz); + } + + //! Resize 3D object to unit size. + CImg resize_object3d() { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "resize_object3d(): Instance is not a set of 3D vertices.", + cimg_instance); + + CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); + float + xm, xM = (float)xcoords.max_min(xm), + ym, yM = (float)ycoords.max_min(ym), + zm, zM = (float)zcoords.max_min(zm); + const float dx = xM - xm, dy = yM - ym, dz = zM - zm, dmax = cimg::max(dx,dy,dz); + if (dmax>0) { xcoords/=dmax; ycoords/=dmax; zcoords/=dmax; } + return *this; + } + + //! Resize 3D object to unit size \newinstance. + CImg get_resize_object3d() const { + return CImg(*this,false).resize_object3d(); + } + + //! Merge two 3D objects together. + /** + \param[in,out] primitives Primitives data of the current 3D object. + \param obj_vertices Vertices data of the additional 3D object. + \param obj_primitives Primitives data of the additional 3D object. + **/ + template + CImg& append_object3d(CImgList& primitives, const CImg& obj_vertices, + const CImgList& obj_primitives) { + if (!obj_vertices || !obj_primitives) return *this; + if (obj_vertices._height!=3 || obj_vertices._depth>1 || obj_vertices._spectrum>1) + throw CImgInstanceException(_cimg_instance + "append_object3d(): Specified vertice image (%u,%u,%u,%u,%p) is not a " + "set of 3D vertices.", + cimg_instance, + obj_vertices._width,obj_vertices._height, + obj_vertices._depth,obj_vertices._spectrum,obj_vertices._data); + + if (is_empty()) { primitives.assign(obj_primitives); return assign(obj_vertices); } + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "append_object3d(): Instance is not a set of 3D vertices.", + cimg_instance); + + const unsigned int P = _width; + append(obj_vertices,'x'); + const unsigned int N = primitives._width; + primitives.insert(obj_primitives); + for (unsigned int i = N; i &p = primitives[i]; + switch (p.size()) { + case 1 : p[0]+=P; break; // Point + case 5 : p[0]+=P; p[1]+=P; break; // Sphere + case 2 : case 6 : p[0]+=P; p[1]+=P; break; // Segment + case 3 : case 9 : p[0]+=P; p[1]+=P; p[2]+=P; break; // Triangle + case 4 : case 12 : p[0]+=P; p[1]+=P; p[2]+=P; p[3]+=P; break; // Rectangle + } + } + return *this; + } + + //! Texturize primitives of a 3D object. + /** + \param[in,out] primitives Primitives data of the 3D object. + \param[in,out] colors Colors data of the 3D object. + \param texture Texture image to map to 3D object. + \param coords Texture-mapping coordinates. + **/ + template + const CImg& texturize_object3d(CImgList& primitives, CImgList& colors, + const CImg& texture, const CImg& coords=CImg::const_empty()) const { + if (is_empty()) return *this; + if (_height!=3) + throw CImgInstanceException(_cimg_instance + "texturize_object3d(): image instance is not a set of 3D points.", + cimg_instance); + if (coords && (coords._width!=_width || coords._height!=2)) + throw CImgArgumentException(_cimg_instance + "texturize_object3d(): Invalid specified texture coordinates (%u,%u,%u,%u,%p).", + cimg_instance, + coords._width,coords._height,coords._depth,coords._spectrum,coords._data); + CImg _coords; + if (!coords) { // If no texture coordinates specified, do a default XY-projection + _coords.assign(_width,2); + float + xmin, xmax = (float)get_shared_row(0).max_min(xmin), + ymin, ymax = (float)get_shared_row(1).max_min(ymin), + dx = xmax>xmin?xmax-xmin:1, + dy = ymax>ymin?ymax-ymin:1; + cimg_forX(*this,p) { + _coords(p,0) = (int)(((*this)(p,0) - xmin)*texture._width/dx); + _coords(p,1) = (int)(((*this)(p,1) - ymin)*texture._height/dy); + } + } else _coords = coords; + + int texture_ind = -1; + cimglist_for(primitives,l) { + CImg &p = primitives[l]; + const unsigned int siz = p.size(); + switch (siz) { + case 1 : { // Point + const unsigned int i0 = (unsigned int)p[0]; + const int x0 = _coords(i0,0), y0 = _coords(i0,1); + texture.get_vector_at(x0<=0?0:x0>=texture.width()?texture.width() - 1:x0, + y0<=0?0:y0>=texture.height()?texture.height() - 1:y0).move_to(colors[l]); + } break; + case 2 : case 6 : { // Line + const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1]; + const int + x0 = _coords(i0,0), y0 = _coords(i0,1), + x1 = _coords(i1,0), y1 = _coords(i1,1); + if (texture_ind<0) colors[texture_ind=l].assign(texture,false); + else colors[l].assign(colors[texture_ind],true); + CImg::vector(i0,i1,x0,y0,x1,y1).move_to(p); + } break; + case 3 : case 9 : { // Triangle + const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2]; + const int + x0 = _coords(i0,0), y0 = _coords(i0,1), + x1 = _coords(i1,0), y1 = _coords(i1,1), + x2 = _coords(i2,0), y2 = _coords(i2,1); + if (texture_ind<0) colors[texture_ind=l].assign(texture,false); + else colors[l].assign(colors[texture_ind],true); + CImg::vector(i0,i1,i2,x0,y0,x1,y1,x2,y2).move_to(p); + } break; + case 4 : case 12 : { // Quadrangle + const unsigned int + i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2], i3 = (unsigned int)p[3]; + const int + x0 = _coords(i0,0), y0 = _coords(i0,1), + x1 = _coords(i1,0), y1 = _coords(i1,1), + x2 = _coords(i2,0), y2 = _coords(i2,1), + x3 = _coords(i3,0), y3 = _coords(i3,1); + if (texture_ind<0) colors[texture_ind=l].assign(texture,false); + else colors[l].assign(colors[texture_ind],true); + CImg::vector(i0,i1,i2,i3,x0,y0,x1,y1,x2,y2,x3,y3).move_to(p); + } break; + } + } + return *this; + } + + //! Generate a 3D elevation of the image instance. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param[out] colors The returned list of the 3D object colors. + \param elevation The input elevation map. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + const CImg img("reference.jpg"); + CImgList faces3d; + CImgList colors3d; + const CImg points3d = img.get_elevation3d(faces3d,colors3d,img.get_norm()*0.2); + CImg().display_object3d("Elevation3d",points3d,faces3d,colors3d); + \endcode + \image html ref_elevation3d.jpg + **/ + template + CImg get_elevation3d(CImgList& primitives, CImgList& colors, const CImg& elevation) const { + if (!is_sameXY(elevation) || elevation._depth>1 || elevation._spectrum>1) + throw CImgArgumentException(_cimg_instance + "get_elevation3d(): Instance and specified elevation (%u,%u,%u,%u,%p) " + "have incompatible dimensions.", + cimg_instance, + elevation._width,elevation._height,elevation._depth, + elevation._spectrum,elevation._data); + if (is_empty()) return *this; + float m, M = (float)max_min(m); + if (M==m) ++M; + colors.assign(); + const unsigned int size_x1 = _width - 1, size_y1 = _height - 1; + for (unsigned int y = 0; y1?((*this)(x,y,1) - m)*255/(M-m):r), + b = (unsigned char)(_spectrum>2?((*this)(x,y,2) - m)*255/(M-m):_spectrum>1?0:r); + CImg::vector((tc)r,(tc)g,(tc)b).move_to(colors); + } + const typename CImg::_functor2d_int func(elevation); + return elevation3d(primitives,func,0,0,_width - 1.f,_height - 1.f,_width,_height); + } + + //! Generate the 3D projection planes of the image instance. + /** + \param[out] primitives Primitives data of the returned 3D object. + \param[out] colors Colors data of the returned 3D object. + \param x0 X-coordinate of the projection point. + \param y0 Y-coordinate of the projection point. + \param z0 Z-coordinate of the projection point. + \param normalize_colors Tells if the created textures have normalized colors. + **/ + template + CImg get_projections3d(CImgList& primitives, CImgList& colors, + const unsigned int x0, const unsigned int y0, const unsigned int z0, + const bool normalize_colors=false) const { + float m = 0, M = 0, delta = 1; + if (normalize_colors) { m = (float)min_max(M); delta = 255/(m==M?1:M-m); } + const unsigned int + _x0 = (x0>=_width)?_width - 1:x0, + _y0 = (y0>=_height)?_height - 1:y0, + _z0 = (z0>=_depth)?_depth - 1:z0; + CImg img_xy, img_xz, img_yz; + if (normalize_colors) { + ((get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1)-=m)*=delta).move_to(img_xy); + ((get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1)-=m)*=delta).resize(_width,_depth,1,-100,-1). + move_to(img_xz); + ((get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1)-=m)*=delta).resize(_height,_depth,1,-100,-1). + move_to(img_yz); + } else { + get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1).move_to(img_xy); + get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1).resize(_width,_depth,1,-100,-1).move_to(img_xz); + get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1).resize(_height,_depth,1,-100,-1).move_to(img_yz); + } + CImg points(12,3,1,1, + 0,_width - 1,_width - 1,0, 0,_width - 1,_width - 1,0, _x0,_x0,_x0,_x0, + 0,0,_height - 1,_height - 1, _y0,_y0,_y0,_y0, 0,_height - 1,_height - 1,0, + _z0,_z0,_z0,_z0, 0,0,_depth - 1,_depth - 1, 0,0,_depth - 1,_depth - 1); + primitives.assign(); + CImg::vector(0,1,2,3,0,0,img_xy._width - 1,0,img_xy._width - 1,img_xy._height - 1,0,img_xy._height - 1). + move_to(primitives); + CImg::vector(4,5,6,7,0,0,img_xz._width - 1,0,img_xz._width - 1,img_xz._height - 1,0,img_xz._height - 1). + move_to(primitives); + CImg::vector(8,9,10,11,0,0,img_yz._width - 1,0,img_yz._width - 1,img_yz._height - 1,0,img_yz._height - 1). + move_to(primitives); + colors.assign(); + img_xy.move_to(colors); + img_xz.move_to(colors); + img_yz.move_to(colors); + return points; + } + + //! Generate a isoline of the image instance as a 3D object. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param isovalue The returned list of the 3D object colors. + \param size_x The number of subdivisions along the X-axis. + \param size_y The number of subdisivions along the Y-axis. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + const CImg img("reference.jpg"); + CImgList faces3d; + const CImg points3d = img.get_isoline3d(faces3d,100); + CImg().display_object3d("Isoline3d",points3d,faces3d,colors3d); + \endcode + \image html ref_isoline3d.jpg + **/ + template + CImg get_isoline3d(CImgList& primitives, const float isovalue, + const int size_x=-100, const int size_y=-100) const { + if (_spectrum>1) + throw CImgInstanceException(_cimg_instance + "get_isoline3d(): Instance is not a scalar image.", + cimg_instance); + if (_depth>1) + throw CImgInstanceException(_cimg_instance + "get_isoline3d(): Instance is not a 2D image.", + cimg_instance); + primitives.assign(); + if (is_empty()) return *this; + CImg vertices; + if ((size_x==-100 && size_y==-100) || (size_x==width() && size_y==height())) { + const _functor2d_int func(*this); + vertices = isoline3d(primitives,func,isovalue,0,0,width() - 1.f,height() - 1.f,width(),height()); + } else { + const _functor2d_float func(*this); + vertices = isoline3d(primitives,func,isovalue,0,0,width() - 1.f,height() - 1.f,size_x,size_y); + } + return vertices; + } + + //! Compute isolines of a function, as a 3D object. + /** + \param[out] primitives Primitives data of the resulting 3D object. + \param func Elevation functor. Must have operator()(x,y) defined. + \param isovalue Isovalue to extract from function. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param size_x Resolution of the function along the X-axis. + \param size_y Resolution of the function along the Y-axis. + \note Use the marching squares algorithm for extracting the isolines. + **/ + template + static CImg isoline3d(CImgList& primitives, const tfunc& func, const float isovalue, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + CImgList vertices; + primitives.assign(); + typename CImg::_functor_isoline3d add_vertex(vertices); + typename CImg::_functor_isoline3d add_segment(primitives); + isoline3d(add_vertex,add_segment,func,isovalue,x0,y0,x1,y1,size_x,size_y); + return vertices>'x'; + } + + //! Compute isolines of a function, as a 3D object. + /** + \param[out] add_vertex : Functor with operator()(x,y,z) defined for adding new vertex. + \param[out] add_segment : Functor with operator()(i,j) defined for adding new segment. + \param func Elevation function. Is of type float (*func)(const float x,const float y). + \param isovalue Isovalue to extract from function. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param size_x Resolution of the function along the X-axis. + \param size_y Resolution of the function along the Y-axis. + \note Use the marching squares algorithm for extracting the isolines. + **/ + template + static void isoline3d(tv& add_vertex, tf& add_segment, const tfunc& func, const float isovalue, + const float x0, const float y0, const float x1, const float y1, + const int size_x, const int size_y) { + static const unsigned int edges[16] = { 0x0, 0x9, 0x3, 0xa, 0x6, 0xf, 0x5, 0xc, 0xc, + 0x5, 0xf, 0x6, 0xa, 0x3, 0x9, 0x0 }; + static const int segments[16][4] = { { -1,-1,-1,-1 }, { 0,3,-1,-1 }, { 0,1,-1,-1 }, { 1,3,-1,-1 }, + { 1,2,-1,-1 }, { 0,1,2,3 }, { 0,2,-1,-1 }, { 2,3,-1,-1 }, + { 2,3,-1,-1 }, { 0,2,-1,-1}, { 0,3,1,2 }, { 1,2,-1,-1 }, + { 1,3,-1,-1 }, { 0,1,-1,-1}, { 0,3,-1,-1}, { -1,-1,-1,-1 } }; + const unsigned int + _nx = (unsigned int)(size_x>=0?size_x:cimg::round((x1-x0)*-size_x/100 + 1)), + _ny = (unsigned int)(size_y>=0?size_y:cimg::round((y1-y0)*-size_y/100 + 1)), + nx = _nx?_nx:1, + ny = _ny?_ny:1, + nxm1 = nx - 1, + nym1 = ny - 1; + + if (!nxm1 || !nym1) return; + const float dx = (x1 - x0)/nxm1, dy = (y1 - y0)/nym1; + CImg indices1(nx,1,1,2,-1), indices2(nx,1,1,2); + CImg values1(nx), values2(nx); + float X = x0, Y = y0, nX = X + dx, nY = Y + dy; + int nb_vertices = 0; + + // Fill first line with values + cimg_forX(values1,x) { values1(x) = (float)func(X,Y); X+=dx; } + + // Run the marching squares algorithm + for (unsigned int yi = 0, nyi = 1; yi + static CImg isoline3d(CImgList& primitives, const char *const expression, const float isovalue, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + const _functor2d_expr func(expression); + return isoline3d(primitives,func,isovalue,x0,y0,x1,y1,size_x,size_y); + } + + template + static int _isoline3d_index(const unsigned int edge, const CImg& indices1, const CImg& indices2, + const unsigned int x, const unsigned int nx) { + switch (edge) { + case 0 : return (int)indices1(x,0); + case 1 : return (int)indices1(nx,1); + case 2 : return (int)indices2(x,0); + case 3 : return (int)indices1(x,1); + } + return 0; + } + + //! Generate an isosurface of the image instance as a 3D object. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param isovalue The returned list of the 3D object colors. + \param size_x Number of subdivisions along the X-axis. + \param size_y Number of subdisivions along the Y-axis. + \param size_z Number of subdisivions along the Z-axis. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + const CImg img = CImg("reference.jpg").resize(-100,-100,20); + CImgList faces3d; + const CImg points3d = img.get_isosurface3d(faces3d,100); + CImg().display_object3d("Isosurface3d",points3d,faces3d,colors3d); + \endcode + \image html ref_isosurface3d.jpg + **/ + template + CImg get_isosurface3d(CImgList& primitives, const float isovalue, + const int size_x=-100, const int size_y=-100, const int size_z=-100) const { + if (_spectrum>1) + throw CImgInstanceException(_cimg_instance + "get_isosurface3d(): Instance is not a scalar image.", + cimg_instance); + primitives.assign(); + if (is_empty()) return *this; + CImg vertices; + if ((size_x==-100 && size_y==-100 && size_z==-100) || (size_x==width() && size_y==height() && size_z==depth())) { + const _functor3d_int func(*this); + vertices = isosurface3d(primitives,func,isovalue,0,0,0,width() - 1.f,height() - 1.f,depth() - 1.f, + width(),height(),depth()); + } else { + const _functor3d_float func(*this); + vertices = isosurface3d(primitives,func,isovalue,0,0,0,width() - 1.f,height() - 1.f,depth() - 1.f, + size_x,size_y,size_z); + } + return vertices; + } + + //! Compute isosurface of a function, as a 3D object. + /** + \param[out] primitives Primitives data of the resulting 3D object. + \param func Implicit function. Is of type float (*func)(const float x, const float y, const float z). + \param isovalue Isovalue to extract. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param size_x Resolution of the elevation function along the X-axis. + \param size_y Resolution of the elevation function along the Y-axis. + \param size_z Resolution of the elevation function along the Z-axis. + \note Use the marching cubes algorithm for extracting the isosurface. + **/ + template + static CImg isosurface3d(CImgList& primitives, const tfunc& func, const float isovalue, + const float x0, const float y0, const float z0, + const float x1, const float y1, const float z1, + const int size_x=32, const int size_y=32, const int size_z=32) { + CImgList vertices; + primitives.assign(); + typename CImg::_functor_isosurface3d add_vertex(vertices); + typename CImg::_functor_isosurface3d add_triangle(primitives); + isosurface3d(add_vertex,add_triangle,func,isovalue,x0,y0,z0,x1,y1,z1,size_x,size_y,size_z); + return vertices>'x'; + } + + //! Compute isosurface of a function, as a 3D object. + /** + \param[out] add_vertex : Functor with operator()(x,y,z) defined for adding new vertex. + \param[out] add_triangle : Functor with operator()(i,j) defined for adding new segment. + \param func Implicit function. Is of type float (*func)(const float x, const float y, const float z). + \param isovalue Isovalue to extract. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param size_x Resolution of the elevation function along the X-axis. + \param size_y Resolution of the elevation function along the Y-axis. + \param size_z Resolution of the elevation function along the Z-axis. + \note Use the marching cubes algorithm for extracting the isosurface. + **/ + template + static void isosurface3d(tv& add_vertex, tf& add_triangle, const tfunc& func, const float isovalue, + const float x0, const float y0, const float z0, + const float x1, const float y1, const float z1, + const int size_x, const int size_y, const int size_z) { + static const unsigned int edges[256] = { + 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, + 0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, + 0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, + 0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, + 0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, + 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, + 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, + 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc , 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, + 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, + 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, + 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, + 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460, + 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0, + 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230, + 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190, + 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000 + }; + + static const int triangles[256][16] = { + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 }, + { 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 }, + { 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 }, + { 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 }, + { 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 }, + { 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 }, + { 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 }, + { 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 }, + { 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 }, + { 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 }, + { 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 }, + { 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 }, + { 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 }, + { 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 }, + { 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 }, + { 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 }, + { 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 }, + { 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 }, + { 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 }, + { 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 }, + { 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 }, + { 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 }, + { 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 }, + { 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 }, + { 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 }, + { 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 }, + { 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 }, + { 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 }, + { 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 }, + { 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 }, + { 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 }, + { 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 }, + { 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 }, + { 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 }, + { 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 }, + { 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 }, + { 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 }, + { 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 }, + { 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 }, + { 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 }, + { 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 }, + { 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 }, + { 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 }, + { 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 }, + { 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 }, + { 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 }, + { 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 }, + { 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 }, + { 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 }, + { 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 }, + { 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 }, + { 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 }, + { 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 }, + { 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 }, + { 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 }, + { 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 }, + { 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 }, + { 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 }, + { 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 }, + { 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 }, + { 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 }, + { 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 }, + { 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 }, + { 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 }, + { 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 }, + { 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 }, + { 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 }, + { 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 }, + { 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 }, + { 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 }, + { 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 }, + { 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 }, + { 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 }, + { 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 }, + { 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 }, + { 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 }, + { 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 }, + { 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 }, + { 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 }, + { 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 }, + { 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 }, + { 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 }, + { 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 }, + { 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 }, + { 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 }, + { 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 }, + { 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 }, + { 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 }, + { 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 }, + { 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 }, + { 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 }, + { 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 }, + { 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 }, + { 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 }, + { 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 }, + { 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 }, + { 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 }, + { 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 }, + { 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 }, + { 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 }, + { 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 }, + { 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 }, + { 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 }, + { 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 }, + { 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 }, + { 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 }, + { 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 }, + { 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 }, + { 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } + }; + + const unsigned int + _nx = (unsigned int)(size_x>=0?size_x:cimg::round((x1-x0)*-size_x/100 + 1)), + _ny = (unsigned int)(size_y>=0?size_y:cimg::round((y1-y0)*-size_y/100 + 1)), + _nz = (unsigned int)(size_z>=0?size_z:cimg::round((z1-z0)*-size_z/100 + 1)), + nx = _nx?_nx:1, + ny = _ny?_ny:1, + nz = _nz?_nz:1, + nxm1 = nx - 1, + nym1 = ny - 1, + nzm1 = nz - 1; + if (!nxm1 || !nym1 || !nzm1) return; + const float dx = (x1 - x0)/nxm1, dy = (y1 - y0)/nym1, dz = (z1 - z0)/nzm1; + CImg indices1(nx,ny,1,3,-1), indices2(indices1); + CImg values1(nx,ny), values2(nx,ny); + float X = 0, Y = 0, Z = 0, nX = 0, nY = 0, nZ = 0; + int nb_vertices = 0; + + // Fill the first plane with function values + Y = y0; + cimg_forY(values1,y) { + X = x0; + cimg_forX(values1,x) { values1(x,y) = (float)func(X,Y,z0); X+=dx; } + Y+=dy; + } + + // Run Marching Cubes algorithm + Z = z0; nZ = Z + dz; + for (unsigned int zi = 0; zi + static CImg isosurface3d(CImgList& primitives, const char *const expression, const float isovalue, + const float x0, const float y0, const float z0, + const float x1, const float y1, const float z1, + const int dx=32, const int dy=32, const int dz=32) { + const _functor3d_expr func(expression); + return isosurface3d(primitives,func,isovalue,x0,y0,z0,x1,y1,z1,dx,dy,dz); + } + + template + static int _isosurface3d_index(const unsigned int edge, const CImg& indices1, const CImg& indices2, + const unsigned int x, const unsigned int y, + const unsigned int nx, const unsigned int ny) { + switch (edge) { + case 0 : return indices1(x,y,0); + case 1 : return indices1(nx,y,1); + case 2 : return indices1(x,ny,0); + case 3 : return indices1(x,y,1); + case 4 : return indices2(x,y,0); + case 5 : return indices2(nx,y,1); + case 6 : return indices2(x,ny,0); + case 7 : return indices2(x,y,1); + case 8 : return indices1(x,y,2); + case 9 : return indices1(nx,y,2); + case 10 : return indices1(nx,ny,2); + case 11 : return indices1(x,ny,2); + } + return 0; + } + + // Define functors for accessing image values (used in previous functions). + struct _functor2d_int { + const CImg& ref; + _functor2d_int(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y) const { + return (float)ref((int)x,(int)y); + } + }; + + struct _functor2d_float { + const CImg& ref; + _functor2d_float(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y) const { + return (float)ref._linear_atXY(x,y); + } + }; + + struct _functor2d_expr { + _cimg_math_parser *mp; + ~_functor2d_expr() { mp->end(); delete mp; } + _functor2d_expr(const char *const expr):mp(0) { + mp = new _cimg_math_parser(expr,0,CImg::const_empty(),0); + } + float operator()(const float x, const float y) const { + return (float)(*mp)(x,y,0,0); + } + }; + + struct _functor3d_int { + const CImg& ref; + _functor3d_int(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z) const { + return (float)ref((int)x,(int)y,(int)z); + } + }; + + struct _functor3d_float { + const CImg& ref; + _functor3d_float(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z) const { + return (float)ref._linear_atXYZ(x,y,z); + } + }; + + struct _functor3d_expr { + _cimg_math_parser *mp; + ~_functor3d_expr() { mp->end(); delete mp; } + _functor3d_expr(const char *const expr):mp(0) { + mp = new _cimg_math_parser(expr,0,CImg::const_empty(),0); + } + float operator()(const float x, const float y, const float z) const { + return (float)(*mp)(x,y,z,0); + } + }; + + struct _functor4d_int { + const CImg& ref; + _functor4d_int(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return (float)ref((int)x,(int)y,(int)z,c); + } + }; + + struct _functor_isoline3d { + CImgList& list; + _functor_isoline3d(CImgList& _list):list(_list) {} + template + void operator()(const t x, const t y, const t z) { CImg::vector((T)x,(T)y,(T)z).move_to(list); } + template + void operator()(const t i, const t j) { CImg::vector((T)i,(T)j).move_to(list); } + }; + + struct _functor_isosurface3d { + CImgList& list; + _functor_isosurface3d(CImgList& _list):list(_list) {} + template + void operator()(const t x, const t y, const t z) { CImg::vector((T)x,(T)y,(T)z).move_to(list); } + }; + + //! Compute 3D elevation of a function as a 3D object. + /** + \param[out] primitives Primitives data of the resulting 3D object. + \param func Elevation function. Is of type float (*func)(const float x,const float y). + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param size_x Resolution of the function along the X-axis. + \param size_y Resolution of the function along the Y-axis. + **/ + template + static CImg elevation3d(CImgList& primitives, const tfunc& func, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + const float + nx0 = x0=0?size_x:(nx1-nx0)*-size_x/100), + nsize_x = _nsize_x?_nsize_x:1, nsize_x1 = nsize_x - 1, + _nsize_y = (unsigned int)(size_y>=0?size_y:(ny1-ny0)*-size_y/100), + nsize_y = _nsize_y?_nsize_y:1, nsize_y1 = nsize_y - 1; + if (nsize_x<2 || nsize_y<2) + throw CImgArgumentException("CImg<%s>::elevation3d(): Invalid specified size (%d,%d).", + pixel_type(), + nsize_x,nsize_y); + + CImg vertices(nsize_x*nsize_y,3); + floatT *ptr_x = vertices.data(0,0), *ptr_y = vertices.data(0,1), *ptr_z = vertices.data(0,2); + for (unsigned int y = 0; y + static CImg elevation3d(CImgList& primitives, const char *const expression, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + const _functor2d_expr func(expression); + return elevation3d(primitives,func,x0,y0,x1,y1,size_x,size_y); + } + + //! Generate a 3D box object. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param size_x The width of the box (dimension along the X-axis). + \param size_y The height of the box (dimension along the Y-axis). + \param size_z The depth of the box (dimension along the Z-axis). + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::box3d(faces3d,10,20,30); + CImg().display_object3d("Box3d",points3d,faces3d); + \endcode + \image html ref_box3d.jpg + **/ + template + static CImg box3d(CImgList& primitives, + const float size_x=200, const float size_y=100, const float size_z=100) { + primitives.assign(6,1,4,1,1, 0,3,2,1, 4,5,6,7, 0,1,5,4, 3,7,6,2, 0,4,7,3, 1,2,6,5); + return CImg(8,3,1,1, + 0.,size_x,size_x, 0., 0.,size_x,size_x, 0., + 0., 0.,size_y,size_y, 0., 0.,size_y,size_y, + 0., 0., 0., 0.,size_z,size_z,size_z,size_z); + } + + //! Generate a 3D cone. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius The radius of the cone basis. + \param size_z The cone's height. + \param subdivisions The number of basis angular subdivisions. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::cone3d(faces3d,50); + CImg().display_object3d("Cone3d",points3d,faces3d); + \endcode + \image html ref_cone3d.jpg + **/ + template + static CImg cone3d(CImgList& primitives, + const float radius=50, const float size_z=100, const unsigned int subdivisions=24) { + primitives.assign(); + if (!subdivisions) return CImg(); + CImgList vertices(2,1,3,1,1, + 0.,0.,size_z, + 0.,0.,0.); + for (float delta = 360.f/subdivisions, angle = 0; angle<360; angle+=delta) { + const float a = (float)(angle*cimg::PI/180); + CImg::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),0).move_to(vertices); + } + const unsigned int nbr = vertices._width - 2; + for (unsigned int p = 0; p::vector(1,next,curr).move_to(primitives); + CImg::vector(0,curr,next).move_to(primitives); + } + return vertices>'x'; + } + + //! Generate a 3D cylinder. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius The radius of the cylinder basis. + \param size_z The cylinder's height. + \param subdivisions The number of basis angular subdivisions. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::cylinder3d(faces3d,50); + CImg().display_object3d("Cylinder3d",points3d,faces3d); + \endcode + \image html ref_cylinder3d.jpg + **/ + template + static CImg cylinder3d(CImgList& primitives, + const float radius=50, const float size_z=100, const unsigned int subdivisions=24) { + primitives.assign(); + if (!subdivisions) return CImg(); + CImgList vertices(2,1,3,1,1, + 0.,0.,0., + 0.,0.,size_z); + for (float delta = 360.f/subdivisions, angle = 0; angle<360; angle+=delta) { + const float a = (float)(angle*cimg::PI/180); + CImg::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),0.f).move_to(vertices); + CImg::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),size_z).move_to(vertices); + } + const unsigned int nbr = (vertices._width - 2)/2; + for (unsigned int p = 0; p::vector(0,next,curr).move_to(primitives); + CImg::vector(1,curr + 1,next + 1).move_to(primitives); + CImg::vector(curr,next,next + 1,curr + 1).move_to(primitives); + } + return vertices>'x'; + } + + //! Generate a 3D torus. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius1 The large radius. + \param radius2 The small radius. + \param subdivisions1 The number of angular subdivisions for the large radius. + \param subdivisions2 The number of angular subdivisions for the small radius. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::torus3d(faces3d,20,4); + CImg().display_object3d("Torus3d",points3d,faces3d); + \endcode + \image html ref_torus3d.jpg + **/ + template + static CImg torus3d(CImgList& primitives, + const float radius1=100, const float radius2=30, + const unsigned int subdivisions1=24, const unsigned int subdivisions2=12) { + primitives.assign(); + if (!subdivisions1 || !subdivisions2) return CImg(); + CImgList vertices; + for (unsigned int v = 0; v::vector(x,y,z).move_to(vertices); + } + } + for (unsigned int vv = 0; vv::vector(svv + nu,svv + uu,snv + uu,snv + nu).move_to(primitives); + } + } + return vertices>'x'; + } + + //! Generate a 3D XY-plane. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param size_x The width of the plane (dimension along the X-axis). + \param size_y The height of the plane (dimensions along the Y-axis). + \param subdivisions_x The number of planar subdivisions along the X-axis. + \param subdivisions_y The number of planar subdivisions along the Y-axis. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::plane3d(faces3d,100,50); + CImg().display_object3d("Plane3d",points3d,faces3d); + \endcode + \image html ref_plane3d.jpg + **/ + template + static CImg plane3d(CImgList& primitives, + const float size_x=100, const float size_y=100, + const unsigned int subdivisions_x=10, const unsigned int subdivisions_y=10) { + primitives.assign(); + if (!subdivisions_x || !subdivisions_y) return CImg(); + CImgList vertices; + const unsigned int w = subdivisions_x + 1, h = subdivisions_y + 1; + const float fx = (float)size_x/w, fy = (float)size_y/h; + for (unsigned int y = 0; y::vector(fx*x,fy*y,0).move_to(vertices); + for (unsigned int y = 0; y::vector(off1,off4,off3,off2).move_to(primitives); + } + return vertices>'x'; + } + + //! Generate a 3D sphere. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius The radius of the sphere (dimension along the X-axis). + \param subdivisions The number of recursive subdivisions from an initial icosahedron. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::sphere3d(faces3d,100,4); + CImg().display_object3d("Sphere3d",points3d,faces3d); + \endcode + \image html ref_sphere3d.jpg + **/ + template + static CImg sphere3d(CImgList& primitives, + const float radius=50, const unsigned int subdivisions=3) { + + // Create initial icosahedron + primitives.assign(); + const double tmp = (1 + std::sqrt(5.f))/2, a = 1./std::sqrt(1 + tmp*tmp), b = tmp*a; + CImgList vertices(12,1,3,1,1, b,a,0., -b,a,0., -b,-a,0., b,-a,0., a,0.,b, a,0.,-b, + -a,0.,-b, -a,0.,b, 0.,b,a, 0.,-b,a, 0.,-b,-a, 0.,b,-a); + primitives.assign(20,1,3,1,1, 4,8,7, 4,7,9, 5,6,11, 5,10,6, 0,4,3, 0,3,5, 2,7,1, 2,1,6, + 8,0,11, 8,11,1, 9,10,3, 9,2,10, 8,4,0, 11,0,5, 4,9,3, + 5,3,10, 7,8,1, 6,1,11, 7,2,9, 6,10,2); + // edge - length/2 + float he = (float)a; + + // Recurse subdivisions + for (unsigned int i = 0; i::vector(nx0,ny0,nz0).move_to(vertices); i0 = vertices.width() - 1; } + if (i1<0) { CImg::vector(nx1,ny1,nz1).move_to(vertices); i1 = vertices.width() - 1; } + if (i2<0) { CImg::vector(nx2,ny2,nz2).move_to(vertices); i2 = vertices.width() - 1; } + primitives.remove(0); + CImg::vector(p0,i0,i1).move_to(primitives); + CImg::vector((tf)i0,(tf)p1,(tf)i2).move_to(primitives); + CImg::vector((tf)i1,(tf)i2,(tf)p2).move_to(primitives); + CImg::vector((tf)i1,(tf)i0,(tf)i2).move_to(primitives); + } + } + return (vertices>'x')*=radius; + } + + //! Generate a 3D ellipsoid. + /** + \param[out] primitives The returned list of the 3D object primitives + (template type \e tf should be at least \e unsigned \e int). + \param tensor The tensor which gives the shape and size of the ellipsoid. + \param subdivisions The number of recursive subdivisions from an initial stretched icosahedron. + \return The N vertices (xi,yi,zi) of the 3D object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg tensor = CImg::diagonal(10,7,3), + points3d = CImg::ellipsoid3d(faces3d,tensor,4); + CImg().display_object3d("Ellipsoid3d",points3d,faces3d); + \endcode + \image html ref_ellipsoid3d.jpg + **/ + template + static CImg ellipsoid3d(CImgList& primitives, + const CImg& tensor, const unsigned int subdivisions=3) { + primitives.assign(); + if (!subdivisions) return CImg(); + CImg S, V; + tensor.symmetric_eigen(S,V); + const float orient = + (V(0,1)*V(1,2) - V(0,2)*V(1,1))*V(2,0) + + (V(0,2)*V(1,0) - V(0,0)*V(1,2))*V(2,1) + + (V(0,0)*V(1,1) - V(0,1)*V(1,0))*V(2,2); + if (orient<0) { V(2,0) = -V(2,0); V(2,1) = -V(2,1); V(2,2) = -V(2,2); } + const float l0 = S[0], l1 = S[1], l2 = S[2]; + CImg vertices = sphere3d(primitives,1.,subdivisions); + vertices.get_shared_row(0)*=l0; + vertices.get_shared_row(1)*=l1; + vertices.get_shared_row(2)*=l2; + return V*vertices; + } + + //! Convert 3D object into a CImg3d representation. + /** + \param primitives Primitives data of the 3D object. + \param colors Colors data of the 3D object. + \param opacities Opacities data of the 3D object. + \param full_check Tells if full checking of the 3D object must be performed. + **/ + template + CImg& object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool full_check=true) { + return get_object3dtoCImg3d(primitives,colors,opacities,full_check).move_to(*this); + } + + //! Convert 3D object into a CImg3d representation \overloading. + template + CImg& object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const bool full_check=true) { + return get_object3dtoCImg3d(primitives,colors,full_check).move_to(*this); + } + + //! Convert 3D object into a CImg3d representation \overloading. + template + CImg& object3dtoCImg3d(const CImgList& primitives, + const bool full_check=true) { + return get_object3dtoCImg3d(primitives,full_check).move_to(*this); + } + + //! Convert 3D object into a CImg3d representation \overloading. + CImg& object3dtoCImg3d(const bool full_check=true) { + return get_object3dtoCImg3d(full_check).move_to(*this); + } + + //! Convert 3D object into a CImg3d representation \newinstance. + template + CImg get_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool full_check=true) const { + CImg error_message(1024); + if (!is_object3d(primitives,colors,opacities,full_check,error_message)) + throw CImgInstanceException(_cimg_instance + "object3dtoCImg3d(): Invalid specified 3D object (%u,%u) (%s).", + cimg_instance,_width,primitives._width,error_message.data()); + CImg res(1,_size_object3dtoCImg3d(primitives,colors,opacities)); + float *ptrd = res._data; + + // Put magick number. + *(ptrd++) = 'C' + 0.5f; *(ptrd++) = 'I' + 0.5f; *(ptrd++) = 'm' + 0.5f; + *(ptrd++) = 'g' + 0.5f; *(ptrd++) = '3' + 0.5f; *(ptrd++) = 'd' + 0.5f; + + // Put number of vertices and primitives. + *(ptrd++) = cimg::uint2float(_width); + *(ptrd++) = cimg::uint2float(primitives._width); + + // Put vertex data. + if (is_empty() || !primitives) return res; + const T *ptrx = data(0,0), *ptry = data(0,1), *ptrz = data(0,2); + cimg_forX(*this,p) { + *(ptrd++) = (float)*(ptrx++); + *(ptrd++) = (float)*(ptry++); + *(ptrd++) = (float)*(ptrz++); + } + + // Put primitive data. + cimglist_for(primitives,p) { + *(ptrd++) = (float)primitives[p].size(); + const tp *ptrp = primitives[p]._data; + cimg_foroff(primitives[p],i) *(ptrd++) = cimg::uint2float((unsigned int)*(ptrp++)); + } + + // Put color/texture data. + const unsigned int csiz = std::min(colors._width,primitives._width); + for (int c = 0; c<(int)csiz; ++c) { + const CImg& color = colors[c]; + const tc *ptrc = color._data; + if (color.size()==3) { *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*ptrc; } + else { + *(ptrd++) = -128.f; + int shared_ind = -1; + if (color.is_shared()) for (int i = 0; i + float* _object3dtoCImg3d(const CImgList& opacities, float *ptrd) const { + cimglist_for(opacities,o) { + const CImg& opacity = opacities[o]; + const to *ptro = opacity._data; + if (opacity.size()==1) *(ptrd++) = (float)*ptro; + else { + *(ptrd++) = -128.f; + int shared_ind = -1; + if (opacity.is_shared()) for (int i = 0; i + float* _object3dtoCImg3d(const CImg& opacities, float *ptrd) const { + const to *ptro = opacities._data; + cimg_foroff(opacities,o) *(ptrd++) = (float)*(ptro++); + return ptrd; + } + + template + unsigned int _size_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const CImgList& opacities) const { + unsigned int siz = 8U + 3*_width; + cimglist_for(primitives,p) siz+=primitives[p].size() + 1; + for (int c = std::min(primitives.width(),colors.width()) - 1; c>=0; --c) { + if (colors[c].is_shared()) siz+=4; + else { const unsigned int csiz = colors[c].size(); siz+=(csiz!=3)?4 + csiz:3; } + } + if (colors._width + unsigned int _size_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const CImg& opacities) const { + unsigned int siz = 8U + 3*_width; + cimglist_for(primitives,p) siz+=primitives[p].size() + 1; + for (int c = std::min(primitives.width(),colors.width()) - 1; c>=0; --c) { + const unsigned int csiz = colors[c].size(); siz+=(csiz!=3)?4 + csiz:3; + } + if (colors._width + CImg get_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const bool full_check=true) const { + CImgList opacities; + return get_object3dtoCImg3d(primitives,colors,opacities,full_check); + } + + //! Convert 3D object into a CImg3d representation \overloading. + template + CImg get_object3dtoCImg3d(const CImgList& primitives, + const bool full_check=true) const { + CImgList colors, opacities; + return get_object3dtoCImg3d(primitives,colors,opacities,full_check); + } + + //! Convert 3D object into a CImg3d representation \overloading. + CImg get_object3dtoCImg3d(const bool full_check=true) const { + CImgList opacities, colors; + CImgList primitives(width(),1,1,1,1); + cimglist_for(primitives,p) primitives(p,0) = p; + return get_object3dtoCImg3d(primitives,colors,opacities,full_check); + } + + //! Convert CImg3d representation into a 3D object. + /** + \param[out] primitives Primitives data of the 3D object. + \param[out] colors Colors data of the 3D object. + \param[out] opacities Opacities data of the 3D object. + \param full_check Tells if full checking of the 3D object must be performed. + **/ + template + CImg& CImg3dtoobject3d(CImgList& primitives, + CImgList& colors, + CImgList& opacities, + const bool full_check=true) { + return get_CImg3dtoobject3d(primitives,colors,opacities,full_check).move_to(*this); + } + + //! Convert CImg3d representation into a 3D object \newinstance. + template + CImg get_CImg3dtoobject3d(CImgList& primitives, + CImgList& colors, + CImgList& opacities, + const bool full_check=true) const { + CImg error_message(1024); + if (!is_CImg3d(full_check,error_message)) + throw CImgInstanceException(_cimg_instance + "CImg3dtoobject3d(): image instance is not a CImg3d (%s).", + cimg_instance,error_message.data()); + const T *ptrs = _data + 6; + const unsigned int + nb_points = cimg::float2uint((float)*(ptrs++)), + nb_primitives = cimg::float2uint((float)*(ptrs++)); + const CImg points = CImg(ptrs,3,nb_points,1,1,true).get_transpose(); + ptrs+=3*nb_points; + primitives.assign(nb_primitives); + cimglist_for(primitives,p) { + const unsigned int nb_inds = (unsigned int)*(ptrs++); + primitives[p].assign(1,nb_inds); + tp *ptrp = primitives[p]._data; + for (unsigned int i = 0; i::max(),(T)cimg::type::max()); \ + const float _sc_nopacity = cimg::abs((float)opacity), _sc_copacity = 1 - std::max((float)opacity,0.f); \ + const ulongT _sc_whd = (ulongT)_width*_height*_depth; \ + cimg::unused(_sc_maxval); + +#define cimg_draw_scanline(x0,x1,y,color,opacity,brightness) \ + _draw_scanline(x0,x1,y,color,opacity,brightness,_sc_nopacity,_sc_copacity,_sc_whd,_sc_maxval) + + // [internal] The following _draw_scanline() routines are *non user-friendly functions*, + // used only for internal purpose. + // Pre-requisites: x0<=x1, y-coordinate is valid, col is valid. + template + CImg& _draw_scanline(const int x0, const int x1, const int y, + const tc *const color, const float opacity, + const float brightness, + const float nopacity, const float copacity, const ulongT whd, const T _sc_maxval) { + const int nx0 = x0>0?x0:0, nx1 = x1=0) { + const tc *col = color; + const ulongT off = whd - dx - 1; + T *ptrd = data(nx0,y); + if (opacity>=1) { // ** Opaque drawing ** + if (brightness==1) { // Brightness==1 + if (sizeof(T)!=1) cimg_forC(*this,c) { + const T val = (T)*(col++); + for (int x = dx; x>=0; --x) *(ptrd++) = val; + ptrd+=off; + } else cimg_forC(*this,c) { + const T val = (T)*(col++); + std::memset(ptrd,(int)val,dx + 1); + ptrd+=whd; + } + } else if (brightness<1) { // Brightness<1 + if (sizeof(T)!=1) cimg_forC(*this,c) { + const T val = (T)(*(col++)*brightness); + for (int x = dx; x>=0; --x) *(ptrd++) = val; + ptrd+=off; + } else cimg_forC(*this,c) { + const T val = (T)(*(col++)*brightness); + std::memset(ptrd,(int)val,dx + 1); + ptrd+=whd; + } + } else { // Brightness>1 + if (sizeof(T)!=1) cimg_forC(*this,c) { + const T val = (T)((2-brightness)**(col++) + (brightness - 1)*_sc_maxval); + for (int x = dx; x>=0; --x) *(ptrd++) = val; + ptrd+=off; + } else cimg_forC(*this,c) { + const T val = (T)((2-brightness)**(col++) + (brightness - 1)*_sc_maxval); + std::memset(ptrd,(int)val,dx + 1); + ptrd+=whd; + } + } + } else { // ** Transparent drawing ** + if (brightness==1) { // Brightness==1 + cimg_forC(*this,c) { + const Tfloat val = *(col++)*nopacity; + for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; } + ptrd+=off; + } + } else if (brightness<=1) { // Brightness<1 + cimg_forC(*this,c) { + const Tfloat val = *(col++)*brightness*nopacity; + for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; } + ptrd+=off; + } + } else { // Brightness>1 + cimg_forC(*this,c) { + const Tfloat val = ((2-brightness)**(col++) + (brightness - 1)*_sc_maxval)*nopacity; + for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; } + ptrd+=off; + } + } + } + } + return *this; + } + + //! Draw a 3D point. + /** + \param x0 X-coordinate of the point. + \param y0 Y-coordinate of the point. + \param z0 Z-coordinate of the point. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \note + - To set pixel values without clipping needs, you should use the faster CImg::operator()() function. + \par Example: + \code + CImg img(100,100,1,3,0); + const unsigned char color[] = { 255,128,64 }; + img.draw_point(50,50,color); + \endcode + **/ + template + CImg& draw_point(const int x0, const int y0, const int z0, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_point(): Specified color is (null).", + cimg_instance); + if (x0>=0 && y0>=0 && z0>=0 && x0=1) cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=whd; } + else cimg_forC(*this,c) { *ptrd = (T)(*(col++)*nopacity + *ptrd*copacity); ptrd+=whd; } + } + return *this; + } + + //! Draw a 2D point \simplification. + template + CImg& draw_point(const int x0, const int y0, + const tc *const color, const float opacity=1) { + return draw_point(x0,y0,0,color,opacity); + } + + // Draw a points cloud. + /** + \param points Image of vertices coordinates. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_point(const CImg& points, + const tc *const color, const float opacity=1) { + if (is_empty() || !points) return *this; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_point(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + case 2 : { + cimg_forX(points,i) draw_point((int)points(i,0),(int)points(i,1),color,opacity); + } break; + default : { + cimg_forX(points,i) draw_point((int)points(i,0),(int)points(i,1),(int)points(i,2),color,opacity); + } + } + return *this; + } + + //! Draw a 2D line. + /** + \param x0 X-coordinate of the starting line point. + \param y0 Y-coordinate of the starting line point. + \param x1 X-coordinate of the ending line point. + \param y1 Y-coordinate of the ending line point. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if a reinitialization of the hash state must be done. + \note + - Line routine uses Bresenham's algorithm. + - Set \p init_hatch = false to draw consecutive hatched segments without breaking the line pattern. + \par Example: + \code + CImg img(100,100,1,3,0); + const unsigned char color[] = { 255,128,64 }; + img.draw_line(40,40,80,70,color); + \endcode + **/ + template + CImg& draw_line(int x0, int y0, + int x1, int y1, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !opacity || !pattern || + std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) + return *this; + int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dy01 = y1 - y0; + const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01); + if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01); + if (pattern==~0U && y0>y1) { + cimg::swap(x0,x1,y0,y1); + dx01*=-1; dy01*=-1; + } + const float slope_x = dy01?(float)dx01/dy01:0; + + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + cimg_init_scanline(opacity); + const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step; + dy01+=dy01?0:1; + + for (int y = cy0; y!=cy1; y+=step) { + const int yy0 = y - y0; + const float fx = x0 + yy0*slope_x; + if (fx>=0 && fx<=w1 && pattern&hatch) { + const int x = (int)(fx + 0.5f); + T *const ptrd = is_horizontal?data(y,x):data(x,y); + cimg_forC(*this,c) { + const T val = color[c]; + ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + if (!(hatch>>=1)) hatch = ~0U - (~0U>>1); + } + return *this; + } + + //! Draw a 2D line, with z-buffering. + /** + \param zbuffer Zbuffer image. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if a reinitialization of the hash state must be done. + **/ + template + CImg& draw_line(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || z0<=0 || z1<=0 || !opacity || !pattern) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_line(): Specified color is (null).", + cimg_instance); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_line(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) + return *this; + int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dy01 = y1 - y0; + float iz0 = 1/z0, iz1 = 1/z1, diz01 = iz1 - iz0; + + const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01); + if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01); + if (pattern==~0U && y0>y1) { + cimg::swap(x0,x1,y0,y1,iz0,iz1); + dx01*=-1; dy01*=-1; diz01*=-1; + } + const float + slope_x = dy01?(float)dx01/dy01:0, + slope_iz = dy01?(float)diz01/dy01:0; + + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + cimg_init_scanline(opacity); + + const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step; + dy01+=dy01?0:1; + + for (int y = cy0; y!=cy1; y+=step) { + const int yy0 = y - y0; + const float + fx = x0 + yy0*slope_x, + iz = iz0 + yy0*slope_iz; + if (fx>=0 && fx<=w1 && pattern&hatch) { + const int x = (int)(fx + 0.5f); + tz *const ptrz = is_horizontal?zbuffer.data(y,x):zbuffer.data(x,y); + if (iz>=*ptrz) { + *ptrz = (tz)iz; + T *const ptrd = is_horizontal?data(y,x):data(x,y); + cimg_forC(*this,c) { + const T val = color[c]; + ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + } + if (!(hatch>>=1)) hatch = ~0U - (~0U>>1); + } + return *this; + } + + //! Draw a textured 2D line. + /** + \param x0 X-coordinate of the starting line point. + \param y0 Y-coordinate of the starting line point. + \param x1 X-coordinate of the ending line point. + \param y1 Y-coordinate of the ending line point. + \param texture Texture image defining the pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if the hash variable must be reinitialized. + \note + - Line routine uses the well known Bresenham's algorithm. + \par Example: + \code + CImg img(100,100,1,3,0), texture("texture256x256.ppm"); + const unsigned char color[] = { 255,128,64 }; + img.draw_line(40,40,80,70,texture,0,0,255,255); + \endcode + **/ + template + CImg& draw_line(int x0, int y0, + int x1, int y1, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + + if (is_empty() || !opacity || !pattern) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) return draw_line(x0,y0,x1,y1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch); + if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) + return *this; + int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dy01 = y1 - y0, + dtx01 = tx1 - tx0, dty01 = ty1 - ty0; + + const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01); + if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01); + if (pattern==~0U && y0>y1) { + cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1); + dx01*=-1; dy01*=-1; dtx01*=-1; dty01*=-1; + } + const float + slope_x = dy01?(float)dx01/dy01:0, + slope_tx = dy01?(float)dtx01/dy01:0, + slope_ty = dy01?(float)dty01/dy01:0; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + cimg_init_scanline(opacity); + + const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step; + dy01+=dy01?0:1; + + for (int y = cy0; y!=cy1; y+=step) { + const int yy0 = y - y0; + const float + fx = x0 + yy0*slope_x, + ftx = tx0 + yy0*slope_tx, + fty = ty0 + yy0*slope_ty; + if (fx>=0 && fx<=w1 && pattern&hatch) { + const int + x = (int)(fx + 0.5f), + tx = (int)ftx, + ty = (int)fty; + T *const ptrd = is_horizontal?data(y,x):data(x,y); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const T val = color[c*twhd]; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + if (!(hatch>>=1)) hatch = ~0U - (~0U>>1); + } + return *this; + } + + //! Draw a textured 2D line, with perspective correction. + /** + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param texture Texture image defining the pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if the hash variable must be reinitialized. + **/ + template + CImg& draw_line(int x0, int y0, const float z0, + int x1, int y1, const float z1, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || z0<=0 || z1<=0 || !opacity || !pattern) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_line(x0,y0,z0,x1,y1,z1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch); + if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) + return *this; + int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dy01 = y1 - y0; + float + iz0 = 1/z0, iz1 = 1/z1, + diz01 = iz1 - iz0, + txz0 = tx0*iz0, txz1 = tx1*iz1, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, + dtxz01 = txz1 - txz0, dtyz01 = tyz1 - tyz0; + + const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01); + if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01); + if (pattern==~0U && y0>y1) { + cimg::swap(x0,x1,y0,y1,iz0,iz1,txz0,txz1,tyz0,tyz1); + dx01*=-1; dy01*=-1; diz01*=-1; dtxz01*=-1; dtyz01*=-1; + } + const float + slope_x = dy01?(float)dx01/dy01:0, + slope_iz = dy01?(float)diz01/dy01:0, + slope_txz = dy01?(float)dtxz01/dy01:0, + slope_tyz = dy01?(float)dtyz01/dy01:0; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + cimg_init_scanline(opacity); + + const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step; + dy01+=dy01?0:1; + + for (int y = cy0; y!=cy1; y+=step) { + const int yy0 = y - y0; + const float + fx = x0 + yy0*slope_x, + iz = iz0 + yy0*slope_iz, + ftxz = txz0 + yy0*slope_txz, + ftyz = tyz0 + yy0*slope_tyz; + if (fx>=0 && fx<=w1 && pattern&hatch) { + const int + x = (int)(fx + 0.5f), + tx = (int)(ftxz/iz), + ty = (int)(ftyz/iz); + T *const ptrd = is_horizontal?data(y,x):data(x,y); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const T val = color[c*twhd]; + ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + if (!(hatch>>=1)) hatch = ~0U - (~0U>>1); + } + return *this; + } + + //! Draw a textured 2D line, with perspective correction and z-buffering. + /** + \param zbuffer Z-buffer image. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param texture Texture image defining the pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if the hash variable must be reinitialized. + **/ + template + CImg& draw_line(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || z0<=0 || z1<=0 || !opacity || !pattern) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_line(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_line(zbuffer,x0,y0,z0,x1,y1,z1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch); + if (std::min(y0,y1)>=height() || std::max(y0,y1)<0 || std::min(x0,x1)>=width() || std::max(x0,x1)<0) + return *this; + + int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dy01 = y1 - y0; + float + iz0 = 1/z0, iz1 = 1/z1, + diz01 = iz1 - iz0, + txz0 = tx0*iz0, txz1 = tx1*iz1, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, + dtxz01 = txz1 - txz0, dtyz01 = tyz1 - tyz0; + + const bool is_horizontal = cimg::abs(dx01)>cimg::abs(dy01); + if (is_horizontal) cimg::swap(x0,y0,x1,y1,w1,h1,dx01,dy01); + if (pattern==~0U && y0>y1) { + cimg::swap(x0,x1,y0,y1,iz0,iz1,txz0,txz1,tyz0,tyz1); + dx01*=-1; dy01*=-1; diz01*=-1; dtxz01*=-1; dtyz01*=-1; + } + const float + slope_x = dy01?(float)dx01/dy01:0, + slope_iz = dy01?(float)diz01/dy01:0, + slope_txz = dy01?(float)dtxz01/dy01:0, + slope_tyz = dy01?(float)dtyz01/dy01:0; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + cimg_init_scanline(opacity); + + const int step = y0<=y1?1:-1, cy0 = cimg::cut(y0,0,h1), cy1 = cimg::cut(y1,0,h1) + step; + dy01+=dy01?0:1; + + for (int y = cy0; y!=cy1; y+=step) { + const int yy0 = y - y0; + const float + fx = x0 + yy0*slope_x, + iz = iz0 + yy0*slope_iz, + ftxz = txz0 + yy0*slope_txz, + ftyz = tyz0 + yy0*slope_tyz; + if (fx>=0 && fx<=w1 && pattern&hatch) { + const int x = (int)(fx + 0.5f); + tz *const ptrz = is_horizontal?zbuffer.data(y,x):zbuffer.data(x,y); + if (iz>=*ptrz) { + *ptrz = (tz)iz; + const int + tx = (int)(ftxz/iz), + ty = (int)(ftyz/iz); + T *const ptrd = is_horizontal?data(y,x):data(x,y); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const T val = color[c*twhd]; + ptrd[c*_sc_whd] = opacity>=1?val:(T)(val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + } + if (!(hatch>>=1)) hatch = ~0U - (~0U>>1); + } + return *this; + } + + //! Draw a set of consecutive lines. + /** + \param points Coordinates of vertices, stored as a list of vectors. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch If set to true, init hatch motif. + \note + - This function uses several call to the single CImg::draw_line() procedure, + depending on the vectors size in \p points. + **/ + template + CImg& draw_line(const CImg& points, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !points) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_line(): Specified color is (null).", + cimg_instance); + if (points.height()!=2) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified point set (%u,%u,%u,%u).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum); + CImg ipoints; + if (cimg::type::is_float()) ipoints = points.get_round(); + else ipoints.assign(points,cimg::type::string()==cimg::type::string()); + + bool ninit_hatch = init_hatch; + const int x0 = ipoints(0,0), y0 = ipoints(0,1); + int ox = x0, oy = y0; + for (unsigned int i = 1; i + CImg& draw_arrow(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity=1, + const float angle=30, const float length=-10, + const unsigned int pattern=~0U) { + if (is_empty()) return *this; + const float u = (float)(x0 - x1), v = (float)(y0 - y1), sq = u*u + v*v, + deg = (float)(angle*cimg::PI/180), ang = (sq>0)?(float)std::atan2(v,u):0.f, + l = (length>=0)?length:-length*(float)std::sqrt(sq)/100; + if (sq>0) { + const float + cl = (float)std::cos(ang - deg), sl = (float)std::sin(ang - deg), + cr = (float)std::cos(ang + deg), sr = (float)std::sin(ang + deg); + const int + xl = x1 + (int)(l*cl), yl = y1 + (int)(l*sl), + xr = x1 + (int)(l*cr), yr = y1 + (int)(l*sr), + xc = x1 + (int)((l + 1)*(cl + cr))/2, yc = y1 + (int)((l + 1)*(sl + sr))/2; + draw_line(x0,y0,xc,yc,color,opacity,pattern).draw_triangle(x1,y1,xl,yl,xr,yr,color,opacity); + } else draw_point(x0,y0,color,opacity); + return *this; + } + + //! Draw a 2D spline. + /** + \param x0 X-coordinate of the starting curve point + \param y0 Y-coordinate of the starting curve point + \param u0 X-coordinate of the starting velocity + \param v0 Y-coordinate of the starting velocity + \param x1 X-coordinate of the ending curve point + \param y1 Y-coordinate of the ending curve point + \param u1 X-coordinate of the ending velocity + \param v1 Y-coordinate of the ending velocity + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param precision Curve drawing precision. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch If \c true, init hatch motif. + \note + - The curve is a 2D cubic Bezier spline, from the set of specified starting/ending points + and corresponding velocity vectors. + - The spline is drawn as a sequence of connected segments. The \p precision parameter sets the + average number of pixels in each drawn segment. + - A cubic Bezier curve is sometimes defined by a set of 4 points { (\p x0,\p y0), (\p xa,\p ya), + (\p xb,\p yb), (\p x1,\p y1) } where (\p x0,\p y0) is the starting point, (\p x1,\p y1) is the ending point + and (\p xa,\p ya), (\p xb,\p yb) are two + \e control points. + The starting and ending velocities (\p u0,\p v0) and (\p u1,\p v1) can be deduced easily from + the control points as + \p u0 = (\p xa - \p x0), \p v0 = (\p ya - \p y0), \p u1 = (\p x1 - \p xb) and \p v1 = (\p y1 - \p yb). + \par Example: + \code + CImg img(100,100,1,3,0); + const unsigned char color[] = { 255,255,255 }; + img.draw_spline(30,30,0,100,90,40,0,-100,color); + \endcode + **/ + template + CImg& draw_spline(const int x0, const int y0, const float u0, const float v0, + const int x1, const int y1, const float u1, const float v1, + const tc *const color, const float opacity=1, + const float precision=0.25, const unsigned int pattern=~0U, + const bool init_hatch=true) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_spline(): Specified color is (null).", + cimg_instance); + if (x0==x1 && y0==y1) return draw_point(x0,y0,color,opacity); + bool ninit_hatch = init_hatch; + const float + ax = u0 + u1 + 2*(x0 - x1), + bx = 3*(x1 - x0) - 2*u0 - u1, + ay = v0 + v1 + 2*(y0 - y1), + by = 3*(y1 - y0) - 2*v0 - v1, + _precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1)); + int ox = x0, oy = y0; + for (float t = 0; t<1; t+=_precision) { + const float t2 = t*t, t3 = t2*t; + const int + nx = (int)(ax*t3 + bx*t2 + u0*t + x0), + ny = (int)(ay*t3 + by*t2 + v0*t + y0); + draw_line(ox,oy,nx,ny,color,opacity,pattern,ninit_hatch); + ninit_hatch = false; + ox = nx; oy = ny; + } + return draw_line(ox,oy,x1,y1,color,opacity,pattern,false); + } + + //! Draw a textured 2D spline. + /** + \param x0 X-coordinate of the starting curve point + \param y0 Y-coordinate of the starting curve point + \param u0 X-coordinate of the starting velocity + \param v0 Y-coordinate of the starting velocity + \param x1 X-coordinate of the ending curve point + \param y1 Y-coordinate of the ending curve point + \param u1 X-coordinate of the ending velocity + \param v1 Y-coordinate of the ending velocity + \param texture Texture image defining line pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param precision Curve drawing precision. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch if \c true, reinit hatch motif. + **/ + template + CImg& draw_spline(const int x0, const int y0, const float u0, const float v0, + const int x1, const int y1, const float u1, const float v1, + const CImg& texture, + const int tx0, const int ty0, const int tx1, const int ty1, + const float opacity=1, + const float precision=4, const unsigned int pattern=~0U, + const bool init_hatch=true) { + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_spline(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_empty()) return *this; + if (is_overlapped(texture)) + return draw_spline(x0,y0,u0,v0,x1,y1,u1,v1,+texture,tx0,ty0,tx1,ty1,precision,opacity,pattern,init_hatch); + if (x0==x1 && y0==y1) + return draw_point(x0,y0,texture.get_vector_at(x0<=0?0:x0>=texture.width()?texture.width() - 1:x0, + y0<=0?0:y0>=texture.height()?texture.height() - 1:y0).data(), + opacity); + bool ninit_hatch = init_hatch; + const float + ax = u0 + u1 + 2*(x0 - x1), + bx = 3*(x1 - x0) - 2*u0 - u1, + ay = v0 + v1 + 2*(y0 - y1), + by = 3*(y1 - y0) - 2*v0 - v1, + _precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1)); + int ox = x0, oy = y0, otx = tx0, oty = ty0; + for (float t1 = 0; t1<1; t1+=_precision) { + const float t2 = t1*t1, t3 = t2*t1; + const int + nx = (int)(ax*t3 + bx*t2 + u0*t1 + x0), + ny = (int)(ay*t3 + by*t2 + v0*t1 + y0), + ntx = tx0 + (int)((tx1 - tx0)*t1), + nty = ty0 + (int)((ty1 - ty0)*t1); + draw_line(ox,oy,nx,ny,texture,otx,oty,ntx,nty,opacity,pattern,ninit_hatch); + ninit_hatch = false; + ox = nx; oy = ny; otx = ntx; oty = nty; + } + return draw_line(ox,oy,x1,y1,texture,otx,oty,tx1,ty1,opacity,pattern,false); + } + + //! Draw a set of consecutive splines. + /** + \param points Vertices data. + \param tangents Tangents data. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param is_closed_set Tells if the drawn spline set is closed. + \param precision Precision of the drawing. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch If \c true, init hatch motif. + **/ + template + CImg& draw_spline(const CImg& points, const CImg& tangents, + const tc *const color, const float opacity=1, + const bool is_closed_set=false, const float precision=4, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !points || !tangents || points._width<2 || tangents._width<2) return *this; + bool ninit_hatch = init_hatch; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_spline(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + + default : { + const int x0 = (int)points(0,0), y0 = (int)points(0,1); + const float u0 = (float)tangents(0,0), v0 = (float)tangents(0,1); + int ox = x0, oy = y0; + float ou = u0, ov = v0; + for (unsigned int i = 1; i + CImg& draw_spline(const CImg& points, + const tc *const color, const float opacity=1, + const bool is_closed_set=false, const float precision=4, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !points || points._width<2) return *this; + CImg tangents; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_spline(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + case 2 : { + tangents.assign(points._width,points._height); + cimg_forX(points,p) { + const unsigned int + p0 = is_closed_set?(p + points.width() - 1)%points.width():(p?p - 1:0), + p1 = is_closed_set?(p + 1)%points.width():(p + 1 + CImg& _draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const tc *const color, const float opacity, + const float brightness) { + if (y0>y1) cimg::swap(x0,x1,y0,y1); + if (y0>y2) cimg::swap(x0,x2,y0,y2); + if (y1>y2) cimg::swap(x1,x2,y1,y2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + h1 = height() - 1, + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1); + const longT + dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1, + dy01 = std::max((longT)1,(longT)y1 - y0), + dy02 = std::max((longT)1,(longT)y2 - y0), + dy12 = std::max((longT)1,(longT)y2 - y1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float cbs = cimg::cut(brightness,0,2); + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1; + longT + xm = yxM) cimg::swap(xm,xM); + cimg_draw_scanline(xm,xM,y,color,opacity,cbs); + } + return *this; + } + + //! Draw a filled 2D triangle. + /** + \param x0 X-coordinate of the first vertex. + \param y0 Y-coordinate of the first vertex. + \param x1 X-coordinate of the second vertex. + \param y1 Y-coordinate of the second vertex. + \param x2 X-coordinate of the third vertex. + \param y2 Y-coordinate of the third vertex. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + _draw_triangle(x0,y0,x1,y1,x2,y2,color,opacity,1); + return *this; + } + + //! Draw a outlined 2D triangle. + /** + \param x0 X-coordinate of the first vertex. + \param y0 Y-coordinate of the first vertex. + \param x1 X-coordinate of the second vertex. + \param y1 Y-coordinate of the second vertex. + \param x2 X-coordinate of the third vertex. + \param y2 Y-coordinate of the third vertex. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the outline pattern. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, const float opacity, + const unsigned int pattern) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + CImg points(3,2,1,1,x0,x1,x2,y0,y1,y2); + return draw_polygon(points,color,opacity,pattern); + } + + //! Draw a filled 2D triangle, with z-buffering. + /** + \param zbuffer Z-buffer image. + \param x0 X-coordinate of the first vertex. + \param y0 Y-coordinate of the first vertex. + \param z0 Z-coordinate of the first vertex. + \param x1 X-coordinate of the second vertex. + \param y1 Y-coordinate of the second vertex. + \param z1 Z-coordinate of the second vertex. + \param x2 X-coordinate of the third vertex. + \param y2 Y-coordinate of the third vertex. + \param z2 Z-coordinate of the third vertex. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param brightness Brightness factor. + **/ + template + CImg& draw_triangle(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const tc *const color, const float opacity=1, + const float brightness=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int w1 = width() - 1, h1 = height() - 1, cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1); + const longT + dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1, + dy01 = std::max((longT)1,(longT)y1 - y0), + dy02 = std::max((longT)1,(longT)y2 - y0), + dy12 = std::max((longT)1,(longT)y2 - y1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1; + + const float cbs = cimg::cut(brightness,0,2); + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1; + longT + xm = yxM) cimg::swap(xm,xM,izm,izM); + if (xM>=0 && xm<=w1) { + const int + cxm = (int)cimg::cut(xm,(longT)0,(longT)w1), + cxM = (int)cimg::cut(xM,(longT)0,(longT)w1); + T *ptrd = data(cxm,y); + tz *ptrz = zbuffer.data(cxm,y); + const longT dxmM = std::max((longT)1,xM - xm); + const float dizmM = izM - izm; + + for (int x = cxm; x<=cxM; ++x) { + const longT xxm = x - xm; + const float iz = izm + dizmM*xxm/dxmM; + if (iz>=*ptrz) { + *ptrz = (tz)iz; + cimg_forC(*this,c) { + const Tfloat val = cbs<=1?color[c]*cbs:(2 - cbs)*color[c] + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + ++ptrd; ++ptrz; + } + } + } + return *this; + } + + //! Draw a Gouraud-shaded 2D triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param bs0 Brightness factor of the first vertex (in [0,2]). + \param bs1 brightness factor of the second vertex (in [0,2]). + \param bs2 brightness factor of the third vertex (in [0,2]). + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const tc *const color, + float bs0, + float bs1, + float bs2, + const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + + if (y0>y1) cimg::swap(x0,x1,y0,y1,bs0,bs1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,bs0,bs2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,bs1,bs2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int w1 = width() - 1, h1 = height() - 1, cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1); + const longT + dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1, + dy01 = std::max((longT)1,(longT)y1 - y0), + dy02 = std::max((longT)1,(longT)y2 - y0), + dy12 = std::max((longT)1,(longT)y2 - y1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; + + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1; + longT + xm = yxM) cimg::swap(xm,xM,bsm,bsM); + if (xM>=0 && xm<=w1) { + const int + cxm = (int)cimg::cut(xm,(longT)0,(longT)w1), + cxM = (int)cimg::cut(xM,(longT)0,(longT)w1); + T *ptrd = data(cxm,y); + const longT dxmM = std::max((longT)1,xM - xm); + const float dbsmM = bsM - bsm; + + for (int x = cxm; x<=cxM; ++x) { + const longT xxm = (longT)x - xm; + const float cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2); + cimg_forC(*this,c) { + const Tfloat val = cbs<=1?color[c]*cbs:(2 - cbs)*color[c] + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a Gouraud-shaded 2D triangle, with z-buffering \overloading. + template + CImg& draw_triangle(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const tc *const color, + float bs0, + float bs1, + float bs2, + float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,bs0,bs1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,bs0,bs2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,bs1,bs2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; + + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,izm,izM,bsm,bsM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + tz *ptrz = zbuffer.data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float dizmM = izM - izm, dbsmM = bsM - bsm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float iz = izm + dizmM*xxm/dxmM; + if (iz>=*ptrz) { + *ptrz = (tz)iz; + const float cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2); + cimg_forC(*this,c) { + const Tfloat val = cbs<=1?color[c]*cbs:(2 - cbs)*color[c] + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + ++ptrd; ++ptrz; + } + } + } + return *this; + } + + //! Draw a color-interpolated 2D triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param color1 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the first vertex. + \param color2 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the second vertex. + \param color3 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the third vertex. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const tc *color0, + const tc *color1, + const tc *color2, + const float opacity=1) { + typedef typename cimg::superset::type stc; + if (is_empty()) return *this; + if (!color0 || !color1 || !color2) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): One of the specified color is (null).", + cimg_instance); + + if (y0>y1) cimg::swap(x0,x1,y0,y1,color0,color1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,color0,color2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,color1,color2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int w1 = width() - 1, h1 = height() - 1, cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1); + const longT + dx01 = (longT)x1 - x0, dx02 = (longT)x2 - x0, dx12 = (longT)x2 - x1, + dy01 = std::max((longT)1,(longT)y1 - y0), + dy02 = std::max((longT)1,(longT)y2 - y0), + dy12 = std::max((longT)1,(longT)y2 - y1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + cimg_init_scanline(opacity); + + cimg_forC(*this,c) { + const stc dcolor01 = color1[c] - color0[c], dcolor02 = color2[c] - color0[c], dcolor12 = color2[c] - color1[c]; + + for (int y = cy0; y<=cy2; ++y) { + const longT yy0 = (longT)y - y0, yy1 = (longT)y - y1; + longT + xm = yxM) cimg::swap(xm,xM,colorm,colorM); + if (xM>=0 && xm<=w1) { + const int + cxm = (int)cimg::cut(xm,(longT)0,(longT)w1), + cxM = (int)cimg::cut(xM,(longT)0,(longT)w1); + T *ptrd = data(cxm,y); + const longT dxmM = std::max((longT)1,xM - xm); + const stc dcolormM = colorM - colorm; + + for (int x = cxm; x<=cxM; ++x) { + const longT xxm = (longT)x - xm; + const stc col = colorm + dcolormM*xxm/dxmM; + ptrd[c*_sc_whd] = (T)(opacity>=1?col:col*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + ++ptrd; + } + } + } + } + return *this; + } + + //! Draw a textured 2D triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param texture Texture image used to fill the triangle. + \param tx0 X-coordinate of the first vertex in the texture image. + \param ty0 Y-coordinate of the first vertex in the texture image. + \param tx1 X-coordinate of the second vertex in the texture image. + \param ty1 Y-coordinate of the second vertex in the texture image. + \param tx2 X-coordinate of the third vertex in the texture image. + \param ty2 Y-coordinate of the third vertex in the texture image. + \param opacity Drawing opacity. + \param brightness Brightness factor of the drawing (in [0,2]). + **/ + template + CImg& draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + const float opacity=1, + const float brightness=1) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness); + + if (y0>y1) cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,tx0,tx2,ty0,ty2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,tx1,ty1,tx2,ty2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2, + dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1, + dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1, + hdy01tx = dy01*cimg::sign(dtx01)/2, hdy02tx = dy02*cimg::sign(dtx02)/2, hdy12tx = dy12*cimg::sign(dtx12)/2, + hdy01ty = dy01*cimg::sign(dty01)/2, hdy02ty = dy02*cimg::sign(dty02)/2, hdy12ty = dy12*cimg::sign(dty12)/2; + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + const float cbs = cimg::cut(brightness,0,2); + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txm,txM,tym,tyM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int + dxmM = std::max(1,xM - xm), hdxmM = dxmM/2, + dtxmM = txM - txm, dtymM = tyM - tym; + + for (int x = cxm; x<=cxM; ++x) { + const int + xxm = x - xm, + tx = (txm*dxmM + dtxmM*xxm + hdxmM)/dxmM, + ty = (tym*dxmM + dtymM*xxm + hdxmM)/dxmM; + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const Tfloat val = cbs<=1?color[c*twhd]*cbs:(2 - cbs)*color[c*twhd] + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a 2D textured triangle, with perspective correction. + template + CImg& draw_triangle(int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + const float opacity=1, + const float brightness=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2, + dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, + dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + const float cbs = cimg::cut(brightness,0,2); + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float + iz = izm + dizmM*xxm/dxmM, + txz = txzm + dtxzmM*xxm/dxmM, + tyz = tyzm + dtyzmM*xxm/dxmM; + const int + tx = (int)(txz/iz), + ty = (int)(tyz/iz); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const Tfloat val = cbs<=1?color[c*twhd]*cbs:(2 - cbs)*color[c*twhd] + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a textured 2D triangle, with perspective correction and z-buffering. + template + CImg& draw_triangle(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + const float opacity=1, + const float brightness=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2, + dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, + dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + const float cbs = cimg::cut(brightness,0,2); + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + tz *ptrz = zbuffer.data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float iz = izm + dizmM*xxm/dxmM; + if (iz>=*ptrz) { + *ptrz = (tz)iz; + const float + txz = txzm + dtxzmM*xxm/dxmM, + tyz = tyzm + dtyzmM*xxm/dxmM; + const int + tx = (int)(txz/iz), + ty = (int)(tyz/iz); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const Tfloat val = cbs<=1?color[c*twhd]*cbs:(2 - cbs)*color[c*twhd] + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + ++ptrd; ++ptrz; + } + } + } + return *this; + } + + //! Draw a Phong-shaded 2D triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param light Light image. + \param lx0 X-coordinate of the first vertex in the light image. + \param ly0 Y-coordinate of the first vertex in the light image. + \param lx1 X-coordinate of the second vertex in the light image. + \param ly1 Y-coordinate of the second vertex in the light image. + \param lx2 X-coordinate of the third vertex in the light image. + \param ly2 Y-coordinate of the third vertex in the light image. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const tc *const color, + const CImg& light, + int lx0, int ly0, + int lx1, int ly1, + int lx2, int ly2, + const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + + if (y0>y1) cimg::swap(x0,x1,y0,y1,lx0,lx1,ly0,ly1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,lx0,lx2,ly0,ly2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,lx1,lx2,ly1,ly2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2, + dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1, + dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1, + hdy01lx = dy01*cimg::sign(dlx01)/2, hdy02lx = dy02*cimg::sign(dlx02)/2, hdy12lx = dy12*cimg::sign(dlx12)/2, + hdy01ly = dy01*cimg::sign(dly01)/2, hdy02ly = dy02*cimg::sign(dly02)/2, hdy12ly = dy12*cimg::sign(dly12)/2; + + const ulongT lwhd = (ulongT)light._width*light._height*light._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,lxm,lxM,lym,lyM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int + dxmM = std::max(1,xM - xm), hdxmM = dxmM/2, + dlxmM = lxM - lxm, dlymM = lyM - lym; + + for (int x = cxm; x<=cxM; ++x) { + const int + xxm = x - xm, + lx = (lxm*dxmM + dlxmM*xxm + hdxmM)/dxmM, + ly = (lym*dxmM + dlymM*xxm + hdxmM)/dxmM; + const tl *const lig = &light._atXY(lx,ly); + cimg_forC(*this,c) { + const tc col = color[c]; + const float cbs = cimg::cut((float)lig[c*lwhd],0,2); + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a Phong-shaded 2D triangle, with z-buffering. + template + CImg& draw_triangle(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const tc *const color, + const CImg& light, + int lx0, int ly0, + int lx1, int ly1, + int lx2, int ly2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (is_overlapped(light)) return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color, + +light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,lx0,lx1,ly0,ly1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,lx0,lx2,ly0,ly2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,lx1,lx2,ly1,ly2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2, + dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1, + dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1, + hdy01lx = dy01*cimg::sign(dlx01)/2, hdy02lx = dy02*cimg::sign(dlx02)/2, hdy12lx = dy12*cimg::sign(dlx12)/2, + hdy01ly = dy01*cimg::sign(dly01)/2, hdy02ly = dy02*cimg::sign(dly02)/2, hdy12ly = dy12*cimg::sign(dly12)/2; + const float diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1; + + const ulongT lwhd = (ulongT)light._width*light._height*light._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,lxm,lxM,lym,lyM,izm,izM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + tz *ptrz = zbuffer.data(cxm,y); + const int + dxmM = std::max(1,xM - xm), hdxmM = dxmM/2, + dlxmM = lxM - lxm, dlymM = lyM - lym; + const float dizmM = izM - izm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float iz = izm + dizmM*xxm/dxmM; + if (iz>=*ptrz) { + *ptrz = (tz)iz; + const int + lx = (lxm*dxmM + dlxmM*xxm + hdxmM)/dxmM, + ly = (lym*dxmM + dlymM*xxm + hdxmM)/dxmM; + const tl *const lig = &light._atXY(lx,ly); + cimg_forC(*this,c) { + const float cbs = cimg::cut((float)lig[c*lwhd],0,2); + const tc col = color[c]; + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + ++ptrd; ++ptrz; + } + } + } + return *this; + } + + //! Draw a textured Gouraud-shaded 2D triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param texture Texture image used to fill the triangle. + \param tx0 X-coordinate of the first vertex in the texture image. + \param ty0 Y-coordinate of the first vertex in the texture image. + \param tx1 X-coordinate of the second vertex in the texture image. + \param ty1 Y-coordinate of the second vertex in the texture image. + \param tx2 X-coordinate of the third vertex in the texture image. + \param ty2 Y-coordinate of the third vertex in the texture image. + \param bs0 Brightness factor of the first vertex. + \param bs1 Brightness factor of the second vertex. + \param bs2 Brightness factor of the third vertex. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + float bs0, + float bs1, + float bs2, + const float opacity=1) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + bs0,bs1,bs2,opacity); + + if (y0>y1) cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1,bs0,bs1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,tx0,tx2,ty0,ty2,bs0,bs2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,tx1,tx2,ty1,ty2,bs1,bs2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2, + dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1, + dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1, + hdy01tx = dy01*cimg::sign(dtx01)/2, hdy02tx = dy02*cimg::sign(dtx02)/2, hdy12tx = dy12*cimg::sign(dtx12)/2, + hdy01ty = dy01*cimg::sign(dty01)/2, hdy02ty = dy02*cimg::sign(dty02)/2, hdy12ty = dy12*cimg::sign(dty12)/2; + const float dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txm,txM,tym,tyM,bsm,bsM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int + dxmM = std::max(1,xM - xm), hdxmM = dxmM/2, + dtxmM = txM - txm, dtymM = tyM - tym; + const float dbsmM = bsM - bsm; + + for (int x = cxm; x<=cxM; ++x) { + const int + xxm = x - xm, + tx = (txm*dxmM + dtxmM*xxm + hdxmM)/dxmM, + ty = (tym*dxmM + dtymM*xxm + hdxmM)/dxmM; + const float cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const tc col = color[c*twhd]; + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a textured Gouraud-shaded 2D triangle, with perspective correction \overloading. + template + CImg& draw_triangle(int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + float bs0, + float bs1, + float bs2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + bs0,bs1,bs2,opacity); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,bs0,bs1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,bs0,bs2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,bs1,bs2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2, + dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, + dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, + dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM,bsm,bsM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dbsmM = bsM - bsm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float + iz = izm + dizmM*xxm/dxmM, + txz = txzm + dtxzmM*xxm/dxmM, + tyz = tyzm + dtyzmM*xxm/dxmM, + cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2); + const int + tx = (int)(txz/iz), + ty = (int)(tyz/iz); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const tc col = color[c*twhd]; + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a textured Gouraud-shaded 2D triangle, with perspective correction and z-buffering \overloading. + template + CImg& draw_triangle(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + float bs0, + float bs1, + float bs2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,bs0,bs1,bs2,opacity); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,bs0,bs1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,bs0,bs2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,bs1,bs2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2, + dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, + dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, + dbs01 = bs1 - bs0, dbs02 = bs2 - bs0, dbs12 = bs2 - bs1; + + const ulongT twhd = (ulongT)texture._width*texture._height*texture._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txzm,txzM,tyzm,tyzM,izm,izM,bsm,bsM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + tz *ptrz = zbuffer.data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float dizmM = izM - izm, dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, dbsmM = bsM - bsm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float iz = izm + dizmM*xxm/dxmM; + if (iz>=*ptrz) { + *ptrz = (tz)iz; + const float + txz = txzm + dtxzmM*xxm/dxmM, + tyz = tyzm + dtyzmM*xxm/dxmM, + cbs = cimg::cut(bsm + dbsmM*xxm/dxmM,0,2); + const int + tx = (int)(txz/iz), + ty = (int)(tyz/iz); + const tc *const color = &texture._atXY(tx,ty); + cimg_forC(*this,c) { + const tc col = color[c*twhd]; + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + ++ptrd; ++ptrz; + } + } + } + return *this; + } + + //! Draw a textured Phong-shaded 2D triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param texture Texture image used to fill the triangle. + \param tx0 X-coordinate of the first vertex in the texture image. + \param ty0 Y-coordinate of the first vertex in the texture image. + \param tx1 X-coordinate of the second vertex in the texture image. + \param ty1 Y-coordinate of the second vertex in the texture image. + \param tx2 X-coordinate of the third vertex in the texture image. + \param ty2 Y-coordinate of the third vertex in the texture image. + \param light Light image. + \param lx0 X-coordinate of the first vertex in the light image. + \param ly0 Y-coordinate of the first vertex in the light image. + \param lx1 X-coordinate of the second vertex in the light image. + \param ly1 Y-coordinate of the second vertex in the light image. + \param lx2 X-coordinate of the third vertex in the light image. + \param ly2 Y-coordinate of the third vertex in the light image. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(int x0, int y0, + int x1, int y1, + int x2, int y2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + const CImg& light, + int lx0, int ly0, + int lx1, int ly1, + int lx2, int ly2, + const float opacity=1) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + if (is_overlapped(light)) + return draw_triangle(x0,y0,x1,y1,x2,y2,texture,tx0,ty0,tx1,ty1,tx2,ty2,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + + if (y0>y1) cimg::swap(x0,x1,y0,y1,tx0,tx1,ty0,ty1,lx0,lx1,ly0,ly1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,tx0,tx2,ty0,ty2,lx0,lx2,ly0,ly2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,tx1,tx2,ty1,ty2,lx1,lx2,ly1,ly2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2, + dtx01 = tx1 - tx0, dtx02 = tx2 - tx0, dtx12 = tx2 - tx1, + dty01 = ty1 - ty0, dty02 = ty2 - ty0, dty12 = ty2 - ty1, + hdy01tx = dy01*cimg::sign(dtx01)/2, hdy02tx = dy02*cimg::sign(dtx02)/2, hdy12tx = dy12*cimg::sign(dtx12)/2, + hdy01ty = dy01*cimg::sign(dty01)/2, hdy02ty = dy02*cimg::sign(dty02)/2, hdy12ty = dy12*cimg::sign(dty12)/2, + dlx01 = lx1 - lx0, dlx02 = lx2 - lx0, dlx12 = lx2 - lx1, + dly01 = ly1 - ly0, dly02 = ly2 - ly0, dly12 = ly2 - ly1, + hdy01lx = dy01*cimg::sign(dlx01)/2, hdy02lx = dy02*cimg::sign(dlx02)/2, hdy12lx = dy12*cimg::sign(dlx12)/2, + hdy01ly = dy01*cimg::sign(dly01)/2, hdy02ly = dy02*cimg::sign(dly02)/2, hdy12ly = dy12*cimg::sign(dly12)/2; + + const ulongT + twhd = (ulongT)texture._width*texture._height*texture._depth, + lwhd = (ulongT)light._width*light._height*light._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,txm,txM,tym,tyM,lxm,lxM,lym,lyM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int + dxmM = std::max(1,xM - xm), hdxmM = dxmM/2, + dtxmM = txM - txm, dtymM = tyM - tym, + dlxmM = lxM - lxm, dlymM = lyM - lym; + + for (int x = cxm; x<=cxM; ++x) { + const int + xxm = x - xm, + tx = (txm*dxmM + dtxmM*xxm + hdxmM)/dxmM, + ty = (tym*dxmM + dtymM*xxm + hdxmM)/dxmM, + lx = (lxm*dxmM + dlxmM*xxm + hdxmM)/dxmM, + ly = (lym*dxmM + dlymM*xxm + hdxmM)/dxmM; + const tc *const color = &texture._atXY(tx,ty); + const tl *const lig = &light._atXY(lx,ly); + cimg_forC(*this,c) { + const tc col = color[c*twhd]; + const float cbs = cimg::cut((float)lig[c*lwhd],0,2); + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a textured Phong-shaded 2D triangle, with perspective correction. + template + CImg& draw_triangle(int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + const CImg& light, + int lx0, int ly0, + int lx1, int ly1, + int lx2, int ly2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + if (is_overlapped(light)) + return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,texture,tx0,ty0,tx1,ty1,tx2,ty2, + +light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,lx0,lx1,ly0,ly1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,lx0,lx2,ly0,ly2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,lx1,lx2,ly1,ly2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2, + dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, + dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, + lxz0 = lx0*iz0, lxz1 = lx1*iz1, lxz2 = lx2*iz2, + lyz0 = ly0*iz0, lyz1 = ly1*iz1, lyz2 = ly2*iz2, + dlxz01 = lxz1 - lxz0, dlxz02 = lxz2 - lxz0, dlxz12 = lxz2 - lxz1, + dlyz01 = lyz1 - lyz0, dlyz02 = lyz2 - lyz0, dlyz12 = lyz2 - lyz1; + + const ulongT + twhd = (ulongT)texture._width*texture._height*texture._depth, + lwhd = (ulongT)light._width*light._height*light._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,izm,izM,txzm,txzM,tyzm,tyzM,lxzm,lxzM,lyzm,lyzM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float + dizmM = izM - izm, + dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, + dlxzmM = lxzM - lxzm, dlyzmM = lyzM - lyzm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float + iz = izm + dizmM*xxm/dxmM, + txz = txzm + dtxzmM*xxm/dxmM, + tyz = tyzm + dtyzmM*xxm/dxmM, + lxz = lxzm + dlxzmM*xxm/dxmM, + lyz = lyzm + dlyzmM*xxm/dxmM; + const int + tx = (int)(txz/iz), + ty = (int)(tyz/iz), + lx = (int)(lxz/iz), + ly = (int)(lyz/iz); + const tc *const color = &texture._atXY(tx,ty); + const tl *const lig = &light._atXY(lx,ly); + cimg_forC(*this,c) { + const tc col = color[c*twhd]; + const float cbs = cimg::cut((float)lig[c*lwhd],0,2); + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + ++ptrd; + } + } + } + return *this; + } + + //! Draw a textured Phong-shaded 2D triangle, with perspective correction and z-buffering. + template + CImg& draw_triangle(CImg& zbuffer, + int x0, int y0, const float z0, + int x1, int y1, const float z1, + int x2, int y2, const float z2, + const CImg& texture, + int tx0, int ty0, + int tx1, int ty1, + int tx2, int ty2, + const CImg& light, + int lx0, int ly0, + int lx1, int ly1, + int lx2, int ly2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(texture)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2, + +texture,tx0,ty0,tx1,ty1,tx2,ty2,light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + if (is_overlapped(light)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2, + texture,tx0,ty0,tx1,ty1,tx2,ty2,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + + float iz0 = 1/z0, iz1 = 1/z1, iz2 = 1/z2; + if (y0>y1) cimg::swap(x0,x1,y0,y1,iz0,iz1,tx0,tx1,ty0,ty1,lx0,lx1,ly0,ly1); + if (y0>y2) cimg::swap(x0,x2,y0,y2,iz0,iz2,tx0,tx2,ty0,ty2,lx0,lx2,ly0,ly2); + if (y1>y2) cimg::swap(x1,x2,y1,y2,iz1,iz2,tx1,tx2,ty1,ty2,lx1,lx2,ly1,ly2); + if (y2<0 || y0>=height() || cimg::min(x0,x1,x2)>=width() || cimg::max(x0,x1,x2)<0 || !opacity) return *this; + + const int + w1 = width() - 1, h1 = height() - 1, + dx01 = x1 - x0, dx02 = x2 - x0, dx12 = x2 - x1, + dy01 = std::max(1,y1 - y0), dy02 = std::max(1,y2 - y0), dy12 = std::max(1,y2 - y1), + cy0 = cimg::cut(y0,0,h1), cy2 = cimg::cut(y2,0,h1), + hdy01 = dy01*cimg::sign(dx01)/2, hdy02 = dy02*cimg::sign(dx02)/2, hdy12 = dy12*cimg::sign(dx12)/2; + const float + diz01 = iz1 - iz0, diz02 = iz2 - iz0, diz12 = iz2 - iz1, + txz0 = tx0*iz0, txz1 = tx1*iz1, txz2 = tx2*iz2, + tyz0 = ty0*iz0, tyz1 = ty1*iz1, tyz2 = ty2*iz2, + dtxz01 = txz1 - txz0, dtxz02 = txz2 - txz0, dtxz12 = txz2 - txz1, + dtyz01 = tyz1 - tyz0, dtyz02 = tyz2 - tyz0, dtyz12 = tyz2 - tyz1, + lxz0 = lx0*iz0, lxz1 = lx1*iz1, lxz2 = lx2*iz2, + lyz0 = ly0*iz0, lyz1 = ly1*iz1, lyz2 = ly2*iz2, + dlxz01 = lxz1 - lxz0, dlxz02 = lxz2 - lxz0, dlxz12 = lxz2 - lxz1, + dlyz01 = lyz1 - lyz0, dlyz02 = lyz2 - lyz0, dlyz12 = lyz2 - lyz1; + + const ulongT + twhd = (ulongT)texture._width*texture._height*texture._depth, + lwhd = (ulongT)light._width*light._height*light._depth; + cimg_init_scanline(opacity); + + for (int y = cy0; y<=cy2; ++y) { + const int yy0 = y - y0, yy1 = y - y1; + int + xm = yxM) cimg::swap(xm,xM,izm,izM,txzm,txzM,tyzm,tyzM,lxzm,lxzM,lyzm,lyzM); + if (xM>=0 && xm<=w1) { + const int + cxm = cimg::cut(xm,0,w1), + cxM = cimg::cut(xM,0,w1); + T *ptrd = data(cxm,y); + tz *ptrz = zbuffer.data(cxm,y); + const int dxmM = std::max(1,xM - xm); + const float + dizmM = izM - izm, + dtxzmM = txzM - txzm, dtyzmM = tyzM - tyzm, + dlxzmM = lxzM - lxzm, dlyzmM = lyzM - lyzm; + + for (int x = cxm; x<=cxM; ++x) { + const int xxm = x - xm; + const float iz = izm + dizmM*xxm/dxmM; + if (iz>=*ptrz) { + *ptrz = (tz)iz; + const float + txz = txzm + dtxzmM*xxm/dxmM, + tyz = tyzm + dtyzmM*xxm/dxmM, + lxz = lxzm + dlxzmM*xxm/dxmM, + lyz = lyzm + dlyzmM*xxm/dxmM; + const int + tx = (int)(txz/iz), + ty = (int)(tyz/iz), + lx = (int)(lxz/iz), + ly = (int)(lyz/iz); + const tc *const color = &texture._atXY(tx,ty); + const tl *const lig = &light._atXY(lx,ly); + cimg_forC(*this,c) { + const tc col = color[c*twhd]; + const float cbs = cimg::cut((float)lig[c*lwhd],0,2); + const Tfloat val = cbs<=1?cbs*col:(2 - cbs)*col + (cbs - 1)*_sc_maxval; + ptrd[c*_sc_whd] = (T)(opacity>=1?val:val*_sc_nopacity + ptrd[c*_sc_whd]*_sc_copacity); + } + } + ++ptrd; ++ptrz; + } + } + } + return *this; + } + + //! Draw a filled 4D rectangle. + /** + \param x0 X-coordinate of the upper-left rectangle corner. + \param y0 Y-coordinate of the upper-left rectangle corner. + \param z0 Z-coordinate of the upper-left rectangle corner. + \param c0 C-coordinate of the upper-left rectangle corner. + \param x1 X-coordinate of the lower-right rectangle corner. + \param y1 Y-coordinate of the lower-right rectangle corner. + \param z1 Z-coordinate of the lower-right rectangle corner. + \param c1 C-coordinate of the lower-right rectangle corner. + \param val Scalar value used to fill the rectangle area. + \param opacity Drawing opacity. + **/ + CImg& draw_rectangle(const int x0, const int y0, const int z0, const int c0, + const int x1, const int y1, const int z1, const int c1, + const T val, const float opacity=1) { + if (is_empty()) return *this; + const int + nx0 = x0=width()?width() - 1 - nx1:0) + (nx0<0?nx0:0), + ly = (1 + ny1 - ny0) + (ny1>=height()?height() - 1 - ny1:0) + (ny0<0?ny0:0), + lz = (1 + nz1 - nz0) + (nz1>=depth()?depth() - 1 - nz1:0) + (nz0<0?nz0:0), + lc = (1 + nc1 - nc0) + (nc1>=spectrum()?spectrum() - 1 - nc1:0) + (nc0<0?nc0:0); + const ulongT + offX = (ulongT)_width - lx, + offY = (ulongT)_width*(_height - ly), + offZ = (ulongT)_width*_height*(_depth - lz); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f); + T *ptrd = data(nx0<0?0:nx0,ny0<0?0:ny0,nz0<0?0:nz0,nc0<0?0:nc0); + if (lx>0 && ly>0 && lz>0 && lc>0) + for (int v = 0; v=1) { + if (sizeof(T)!=1) { for (int x = 0; x + CImg& draw_rectangle(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_rectangle(): Specified color is (null).", + cimg_instance); + cimg_forC(*this,c) draw_rectangle(x0,y0,z0,c,x1,y1,z1,c,(T)color[c],opacity); + return *this; + } + + //! Draw a filled 2D rectangle. + /** + \param x0 X-coordinate of the upper-left rectangle corner. + \param y0 Y-coordinate of the upper-left rectangle corner. + \param x1 X-coordinate of the lower-right rectangle corner. + \param y1 Y-coordinate of the lower-right rectangle corner. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_rectangle(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity=1) { + return draw_rectangle(x0,y0,0,x1,y1,_depth - 1,color,opacity); + } + + //! Draw a outlined 2D rectangle \overloading. + template + CImg& draw_rectangle(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity, + const unsigned int pattern) { + if (is_empty()) return *this; + if (y0==y1) return draw_line(x0,y0,x1,y0,color,opacity,pattern,true); + if (x0==x1) return draw_line(x0,y0,x0,y1,color,opacity,pattern,true); + const int + nx0 = x0 + CImg& draw_polygon(const CImg& points, + const tc *const color, const float opacity=1) { + if (is_empty() || !points) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_polygon(): Specified color is (null).", + cimg_instance); + if (points.height()!=2) + throw CImgArgumentException(_cimg_instance + "draw_polygon(): Invalid specified point set (%u,%u,%u,%u).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum); + CImg ipoints; + if (cimg::type::is_float()) ipoints = points.get_round(); + else ipoints.assign(points,cimg::type::string()==cimg::type::string()); + + if (ipoints._width==1) return draw_point(ipoints(0,0),ipoints(0,1),color,opacity); + if (ipoints._width==2) return draw_line(ipoints(0,0),ipoints(0,1),ipoints(1,0),ipoints(1,1),color,opacity); + if (ipoints._width==3) return draw_triangle(ipoints(0,0),ipoints(0,1),ipoints(1,0),ipoints(1,1), + ipoints(2,0),ipoints(2,1),color,opacity); + cimg_init_scanline(opacity); + int + xmin = 0, ymin = 0, + xmax = ipoints.get_shared_row(0).max_min(xmin), + ymax = ipoints.get_shared_row(1).max_min(ymin); + if (xmax<0 || xmin>=width() || ymax<0 || ymin>=height()) return *this; + if (ymin==ymax) return draw_line(xmin,ymin,xmax,ymax,color,opacity); + ymin = std::max(0,ymin); + ymax = std::min(height() - 1,ymax); + + CImg Xs(ipoints._width,ymax - ymin + 1); + CImg count(Xs._height,1,1,1,0); + unsigned int n = 0, nn = 1; + bool go_on = true; + + while (go_on) { + unsigned int an = (nn + 1)%ipoints._width; + const int x0 = ipoints(n,0), y0 = ipoints(n,1); + if (ipoints(nn,1)==y0) while (ipoints(an,1)==y0) { nn = an; (an+=1)%=ipoints._width; } + const int x1 = ipoints(nn,0), y1 = ipoints(nn,1); + unsigned int tn = an; + while (ipoints(tn,1)==y1) (tn+=1)%=ipoints._width; + if (y0!=y1) { + const int + y2 = ipoints(tn,1), + x01 = x1 - x0, y01 = y1 - y0, y12 = y2 - y1, + step = cimg::sign(y01), + tmax = std::max(1,cimg::abs(y01)), + htmax = tmax*cimg::sign(x01)/2, + tend = tmax - (step==cimg::sign(y12)); + unsigned int y = (unsigned int)y0 - ymin; + for (int t = 0; t<=tend; ++t, y+=step) + if (yn; + n = nn; + nn = an; + } + + cimg_pragma_openmp(parallel for cimg_openmp_if(Xs._height>=(cimg_openmp_sizefactor)*512)) + cimg_forY(Xs,y) if (count[y]) { + const CImg Xsy = Xs.get_shared_points(0,count[y] - 1,y).sort(); + int px = width(); + for (unsigned int k = 0; k + CImg& draw_polygon(const CImg& points, + const tc *const color, const float opacity, const unsigned int pattern, + const bool is_closed=true) { + if (is_empty() || !points) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_polygon(): Specified color is (null).", + cimg_instance); + if (points.height()!=2) + throw CImgArgumentException(_cimg_instance + "draw_polygon(): Invalid specified point set (%u,%u,%u,%u).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum); + CImg ipoints; + if (cimg::type::is_float()) ipoints = points.get_round(); + else ipoints.assign(points,cimg::type::string()==cimg::type::string()); + + if (ipoints._width==1) return draw_point(ipoints(0,0),ipoints(0,1),color,opacity); + if (ipoints._width==2) return draw_line(ipoints(0,0),ipoints(0,1),ipoints(1,0),ipoints(1,1), + color,opacity,pattern); + bool ninit_hatch = true, is_drawn = false; + int x = ipoints(0,0), y = ipoints(0,1); + const unsigned int N = ipoints._width - (is_closed?0:1); + for (unsigned int i = 0; i + CImg& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, + const tc *const color, const float opacity=1) { + return _draw_ellipse(x0,y0,r1,r2,angle,color,opacity,0U,true); + } + + //! Draw a filled 2D ellipse \overloading. + /** + \param x0 X-coordinate of the ellipse center. + \param y0 Y-coordinate of the ellipse center. + \param tensor Diffusion tensor describing the ellipse. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_ellipse(const int x0, const int y0, const CImg &tensor, + const tc *const color, const float opacity=1) { + CImgList eig = tensor.get_symmetric_eigen(); + const CImg &val = eig[0], &vec = eig[1]; + return draw_ellipse(x0,y0,std::sqrt(val(0)),std::sqrt(val(1)), + std::atan2(vec(0,1),vec(0,0))*180/cimg::PI, + color,opacity); + } + + //! Draw an outlined 2D ellipse. + /** + \param x0 X-coordinate of the ellipse center. + \param y0 Y-coordinate of the ellipse center. + \param r1 First radius of the ellipse. + \param r2 Second radius of the ellipse. + \param angle Angle of the first radius. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the outline pattern. + **/ + template + CImg& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, + const tc *const color, const float opacity, const unsigned int pattern) { + if (pattern) _draw_ellipse(x0,y0,r1,r2,angle,color,opacity,pattern,false); + return *this; + } + + //! Draw an outlined 2D ellipse \overloading. + /** + \param x0 X-coordinate of the ellipse center. + \param y0 Y-coordinate of the ellipse center. + \param tensor Diffusion tensor describing the ellipse. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the outline pattern. + **/ + template + CImg& draw_ellipse(const int x0, const int y0, const CImg &tensor, + const tc *const color, const float opacity, + const unsigned int pattern) { + CImgList eig = tensor.get_symmetric_eigen(); + const CImg &val = eig[0], &vec = eig[1]; + return draw_ellipse(x0,y0,std::sqrt(val(0)),std::sqrt(val(1)), + std::atan2(vec(0,1),vec(0,0))*180/cimg::PI, + color,opacity,pattern); + } + + template + CImg& _draw_ellipse(const int x0, const int y0, const float radius1, const float radius2, const float angle, + const tc *const color, const float opacity, + const unsigned int pattern, const bool is_filled) { + if (is_empty() || (!is_filled && !pattern)) return *this; + const float radiusM = std::max(radius1,radius2); + if (radius1<0 || radius2<0 || x0 - radiusM>=width() || y0 + radiusM<0 || y0 - radiusM>=height()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_ellipse(): Specified color is (null).", + cimg_instance); + const int iradius1 = (int)cimg::round(radius1), iradius2 = (int)cimg::round(radius2); + if (!iradius1 && !iradius2) return draw_point(x0,y0,color,opacity); + if (iradius1==iradius2) { + if (is_filled) return draw_circle(x0,y0,iradius1,color,opacity); + else if (pattern==~0U) return draw_circle(x0,y0,iradius1,color,opacity,pattern); + } + const float ang = (float)(angle*cimg::PI/180); + + if (!is_filled) { // Outlined + const float ca = std::cos(ang), sa = std::sin(ang); + CImg points((unsigned int)cimg::round(6*radiusM),2); + cimg_forX(points,k) { + const float + _ang = (float)(2*cimg::PI*k/points._width), + X = (float)(radius1*std::cos(_ang)), + Y = (float)(radius2*std::sin(_ang)); + points(k,0) = (int)cimg::round(x0 + (X*ca - Y*sa)); + points(k,1) = (int)cimg::round(y0 + (X*sa + Y*ca)); + } + draw_polygon(points,color,opacity,pattern); + } else { // Filled + cimg_init_scanline(opacity); + const float + ca = std::cos(ang), + sa = -std::sin(ang), + ca2 = ca*ca, + sa2 = sa*sa, + casa = ca*sa, + i1 = 1/cimg::sqr(radius1), + i2 = 1/cimg::sqr(radius2), + t1 = i1*ca2 + i2*sa2, + t2 = (i2 - i1)*casa, + t3 = i2*ca2 + i1*sa2, + t12 = t1*2; + const int + _ymin = (int)std::floor(y0 - radiusM), + _ymax = (int)std::ceil(y0 + radiusM), + ymin = _ymin<0?0:_ymin, + ymax = _ymax>=height()?height() - 1:_ymax; + for (int y = ymin; y<=ymax; ++y) { + const float + Y = y - y0 + 0.5f, + B = 2*t2*Y, + C = t3*Y*Y - 1, + D = B*B - 4*t1*C; + if (D>=0) { + const float sD = std::sqrt(D); + const int + xmin = (int)(x0 + cimg::round((-B - sD)/t12)), + xmax = (int)(x0 + cimg::round((-B + sD)/t12)); + cimg_draw_scanline(xmin,xmax,y,color,opacity,1); + } + } + } + return *this; + } + + //! Draw a filled 2D circle. + /** + \param x0 X-coordinate of the circle center. + \param y0 Y-coordinate of the circle center. + \param radius Circle radius. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \note + - Circle version of the Bresenham's algorithm is used. + **/ + template + CImg& draw_circle(const int x0, const int y0, int radius, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (radius<0 || x0 - radius>=width() || y0 + radius<0 || y0 - radius>=height()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_circle(): Specified color is (null).", + cimg_instance); + if (!radius) return draw_point(x0,y0,color,opacity); + cimg_init_scanline(opacity); + if (y0>=0 && y0=0) { + const int x1 = x0 - x, x2 = x0 + x, y1 = y0 - y, y2 = y0 + y; + if (y1>=0 && y1=0 && y2=0 && y1=0 && y2 + CImg& draw_circle(const int x0, const int y0, int radius, + const tc *const color, const float opacity, + const unsigned int pattern) { + if (pattern!=~0U) return draw_ellipse(x0,y0,radius,radius,0,color,opacity,pattern); + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_circle(): Specified color is (null).", + cimg_instance); + if (radius<0 || x0 - radius>=width() || y0 + radius<0 || y0 - radius>=height()) return *this; + if (!radius) return draw_point(x0,y0,color,opacity); + + draw_point(x0 - radius,y0,color,opacity).draw_point(x0 + radius,y0,color,opacity). + draw_point(x0,y0 - radius,color,opacity).draw_point(x0,y0 + radius,color,opacity); + if (radius==1) return *this; + for (int f = 1 - radius, ddFx = 0, ddFy = -(radius<<1), x = 0, y = radius; x=0) { f+=(ddFy+=2); --y; } + ++x; ++(f+=(ddFx+=2)); + if (x!=y + 1) { + const int x1 = x0 - y, x2 = x0 + y, y1 = y0 - x, y2 = y0 + x, + x3 = x0 - x, x4 = x0 + x, y3 = y0 - y, y4 = y0 + y; + draw_point(x1,y1,color,opacity).draw_point(x1,y2,color,opacity). + draw_point(x2,y1,color,opacity).draw_point(x2,y2,color,opacity); + if (x!=y) + draw_point(x3,y3,color,opacity).draw_point(x4,y4,color,opacity). + draw_point(x4,y3,color,opacity).draw_point(x3,y4,color,opacity); + } + } + return *this; + } + + //! Draw an image. + /** + \param sprite Sprite image. + \param x0 X-coordinate of the sprite position. + \param y0 Y-coordinate of the sprite position. + \param z0 Z-coordinate of the sprite position. + \param c0 C-coordinate of the sprite position. + \param opacity Drawing opacity. + **/ + template + CImg& draw_image(const int x0, const int y0, const int z0, const int c0, + const CImg& sprite, const float opacity=1) { + if (is_empty() || !sprite) return *this; + if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,opacity); + if (x0==0 && y0==0 && z0==0 && c0==0 && is_sameXYZC(sprite) && opacity>=1 && !is_shared()) + return assign(sprite,false); + const bool bx = x0<0, by = y0<0, bz = z0<0, bc = c0<0; + const int + dx0 = bx?0:x0, dy0 = by?0:y0, dz0 = bz?0:z0, dc0 = bc?0:c0, + sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0, + lx = sprite.width() - sx0 - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0), + ly = sprite.height() - sy0 - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0), + lz = sprite.depth() - sz0 - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0), + lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0); + + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f); + if (lx>0 && ly>0 && lz>0 && lc>0) { + for (int c = 0; c=1) for (int x = 0; x& draw_image(const int x0, const int y0, const int z0, const int c0, + const CImg& sprite, const float opacity=1) { + if (is_empty() || !sprite) return *this; + if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,opacity); + if (x0==0 && y0==0 && z0==0 && c0==0 && is_sameXYZC(sprite) && opacity>=1 && !is_shared()) + return assign(sprite,false); + const bool bx = x0<0, by = y0<0, bz = z0<0, bc = c0<0; + const int + dx0 = bx?0:x0, dy0 = by?0:y0, dz0 = bz?0:z0, dc0 = bc?0:c0, + sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0, + lx = sprite.width() - sx0 - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0), + ly = sprite.height() - sy0 - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0), + lz = sprite.depth() - sz0 - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0), + lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0); + const ulongT slx = lx*sizeof(T); + + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f); + if (lx>0 && ly>0 && lz>0 && lc>0) { + for (int c = 0; c=1) std::memcpy(ptrd,ptrs,slx); + else for (int x = 0; x + CImg& draw_image(const int x0, const int y0, const int z0, + const CImg& sprite, const float opacity=1) { + return draw_image(x0,y0,z0,0,sprite,opacity); + } + + //! Draw an image \overloading. + template + CImg& draw_image(const int x0, const int y0, + const CImg& sprite, const float opacity=1) { + return draw_image(x0,y0,0,sprite,opacity); + } + + //! Draw an image \overloading. + template + CImg& draw_image(const int x0, + const CImg& sprite, const float opacity=1) { + return draw_image(x0,0,sprite,opacity); + } + + //! Draw an image \overloading. + template + CImg& draw_image(const CImg& sprite, const float opacity=1) { + return draw_image(0,sprite,opacity); + } + + //! Draw a masked image. + /** + \param sprite Sprite image. + \param mask Mask image. + \param x0 X-coordinate of the sprite position in the image instance. + \param y0 Y-coordinate of the sprite position in the image instance. + \param z0 Z-coordinate of the sprite position in the image instance. + \param c0 C-coordinate of the sprite position in the image instance. + \param mask_max_value Maximum pixel value of the mask image \c mask. + \param opacity Drawing opacity. + \note + - Pixel values of \c mask set the opacity of the corresponding pixels in \c sprite. + - Dimensions along x,y and z of \p sprite and \p mask must be the same. + **/ + template + CImg& draw_image(const int x0, const int y0, const int z0, const int c0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + if (is_empty() || !sprite || !mask) return *this; + if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,mask,opacity,mask_max_value); + if (is_overlapped(mask)) return draw_image(x0,y0,z0,c0,sprite,+mask,opacity,mask_max_value); + if (mask._width!=sprite._width || mask._height!=sprite._height || mask._depth!=sprite._depth) + throw CImgArgumentException(_cimg_instance + "draw_image(): Sprite (%u,%u,%u,%u,%p) and mask (%u,%u,%u,%u,%p) have " + "incompatible dimensions.", + cimg_instance, + sprite._width,sprite._height,sprite._depth,sprite._spectrum,sprite._data, + mask._width,mask._height,mask._depth,mask._spectrum,mask._data); + + const bool bx = x0<0, by = y0<0, bz = z0<0, bc = c0<0; + const int + dx0 = bx?0:x0, dy0 = by?0:y0, dz0 = bz?0:z0, dc0 = bc?0:c0, + sx0 = dx0 - x0, sy0 = dy0 - y0, sz0 = dz0 - z0, sc0 = dc0 - c0, + lx = sprite.width() - sx0 - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0), + ly = sprite.height() - sy0 - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0), + lz = sprite.depth() - sz0 - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0), + lc = sprite.spectrum() - sc0 - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0); + const ulongT msize = mask.size(); + + if (lx>0 && ly>0 && lz>0 && lc>0) { + for (int c = 0; c + CImg& draw_image(const int x0, const int y0, const int z0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(x0,y0,z0,0,sprite,mask,opacity,mask_max_value); + } + + //! Draw a image \overloading. + template + CImg& draw_image(const int x0, const int y0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(x0,y0,0,sprite,mask,opacity,mask_max_value); + } + + //! Draw a image \overloading. + template + CImg& draw_image(const int x0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(x0,0,sprite,mask,opacity,mask_max_value); + } + + //! Draw an image. + template + CImg& draw_image(const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(0,sprite,mask,opacity,mask_max_value); + } + + //! Draw a text string. + /** + \param x0 X-coordinate of the text in the image instance. + \param y0 Y-coordinate of the text in the image instance. + \param text Format of the text ('printf'-style format string). + \param foreground_color Pointer to \c spectrum() consecutive values, defining the foreground drawing color. + \param background_color Pointer to \c spectrum() consecutive values, defining the background drawing color. + \param opacity Drawing opacity. + \param font Font used for drawing text. + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc1 *const foreground_color, const tc2 *const background_color, + const float opacity, const CImgList* const font, ...) { + if (!font || !*font) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return _draw_text(x0,y0,tmp,foreground_color,background_color,opacity,*font,false); + } + + //! Draw a text string \overloading. + /** + \note A transparent background is used for the text. + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc *const foreground_color, const int, + const float opacity, const CImgList* const font, ...) { + if (!font || !*font) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return _draw_text(x0,y0,tmp,foreground_color,(tc*)0,opacity,*font,false); + } + + //! Draw a text string \overloading. + /** + \note A transparent foreground is used for the text. + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const int, const tc *const background_color, + const float opacity, const CImgList* const font, ...) { + if (!font || !*font) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return _draw_text(x0,y0,tmp,(tc*)0,background_color,opacity,*font,false); + } + + //! Draw a text string \overloading. + /** + \param x0 X-coordinate of the text in the image instance. + \param y0 Y-coordinate of the text in the image instance. + \param text Format of the text ('printf'-style format string). + \param foreground_color Array of spectrum() values of type \c T, + defining the foreground color (0 means 'transparent'). + \param background_color Array of spectrum() values of type \c T, + defining the background color (0 means 'transparent'). + \param opacity Drawing opacity. + \param font_height Height of the text font (exact match for 13,32,64,128, interpolated otherwise). + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc1 *const foreground_color, const tc2 *const background_color, + const float opacity=1, const unsigned int font_height=13, ...) { + if (!font_height) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font_height); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + const CImgList& font = CImgList::font(font_height,true); + _draw_text(x0,y0,tmp,foreground_color,background_color,opacity,font,true); + return *this; + } + + //! Draw a text string \overloading. + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc *const foreground_color, const int background_color=0, + const float opacity=1, const unsigned int font_height=13, ...) { + if (!font_height) return *this; + cimg::unused(background_color); + CImg tmp(2048); + std::va_list ap; va_start(ap,font_height); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return draw_text(x0,y0,"%s",foreground_color,(const tc*)0,opacity,font_height,tmp._data); + } + + //! Draw a text string \overloading. + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const int, const tc *const background_color, + const float opacity=1, const unsigned int font_height=13, ...) { + if (!font_height) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font_height); cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return draw_text(x0,y0,"%s",(tc*)0,background_color,opacity,font_height,tmp._data); + } + + template + CImg& _draw_text(const int x0, const int y0, + const char *const text, + const tc1 *const foreground_color, const tc2 *const background_color, + const float opacity, const CImgList& font, + const bool is_native_font) { + if (!text || !font) return *this; + const unsigned int text_length = (unsigned int)std::strlen(text); + const int padding_x = font[0]._height<48?1:font[0]._height<128?(int)std::ceil(font[0]._height/51.0f + 0.745f):4; + unsigned char o_ch, ch = 0; + int x, y, w; + CImg left_paddings(text_length,1,1,1,0); + const CImg empty = CImg::empty(); + + if (is_empty() || is_native_font) { + // Pre-compute necessary size of the image as well as left paddings of each character. + x = y = w = 0; + o_ch = 0; + for (unsigned int i = 0; i10) y+=font[10]._height; else y+=font[0]._height; + if (x>w) w = x; + x = 0; + break; + case '\t' : + if (font._width>32) x+=4*font[32]._width; else x+=4*font[0]._width; + break; + case ' ' : + if (font._width>32) x+=font[32]._width; else x+=font[0]._width; + break; + default : if (ch'9')) || o_ch==';' || o_ch==':' || o_ch=='!') + left_padding = 4*padding_x; + else if (((o_ch=='i' || o_ch=='l' || o_ch=='I' || o_ch=='J' || o_ch=='M' || o_ch=='N') && + ((ch>='0' && ch<='9') || + (ch>='a' && ch<='z' && ch!='v' && ch!='x' && ch!='y') || + (ch>='B' && ch<='Z' && ch!='J' && ch!='T' && ch!='V' && ch!='X' && ch!='Y'))) || + o_ch=='.' || o_ch=='\'' || ch=='\'') + left_padding = padding_x; + else if ((o_ch<'0' || o_ch>'9') && ch!='-') { + const CImg &mask = ch + 256U' ' && o_ch>' ' && mask._height>13) { + const CImg &o_mask = o_ch + 256U13) { + const int w1 = mask.width()>0?o_mask.width() - 1:0, w2 = w1>1?w1 - 1:0, w3 = w2>1?w2 - 1:0; + left_padding = -10; + cimg_forY(mask,k) { + const int + lpad = o_mask(w1,k)>=8?0: + o_mask._width<=2 || o_mask(w2,k)>=8?-1: + o_mask._width<=3 || o_mask(w3,k)>=8?-2:-3, + rpad = mask(0,k)>=8?0: + mask._width<=2 || mask(1,k)>=8?-1: + mask._width<=3 || mask(2,k)>=8?-2:-3; + left_padding = std::max(left_padding,lpad + rpad); + } + } + } + } + left_paddings[i] = left_padding; + } + x+=left_padding + font[ch]._width + padding_x; + o_ch = ch; + } + } + } + if (x!=0 || ch=='\n') { if (x>w) w = x; y+=font[0]._height; } + if (is_empty()) assign(x0 + w,y0 + y,1,is_native_font?1:font[0]._spectrum,(T)0); + } + + // Draw font characters on image. + x = x0; y = y0; + for (unsigned int i = 0; i10) y+=font[10]._height; else y+=font[0]._height; + x = x0; + break; + case '\t' : + case ' ' : { + const unsigned int + lw = (ch=='\t'?4:1)*font[font._width>32?32:0]._width, + lh = font[font._width>32?32:0]._height; + if (background_color) draw_rectangle(x,y,x + lw - 1,y + lh - 1,background_color,opacity); + x+=lw; + } break; + default : if (ch letter = font[ch]; + const CImg &mask = ch + 256U& __draw_text(const char *const text, unsigned int &font_size, const int is_down, ...) { + CImg tmp(2048); + std::va_list ap; + va_start(ap,is_down); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + CImg a_label, a_labelmask; + const unsigned char a_labelcolor = 255; + unsigned int ofs = font_size, fs = ofs; + do { // Determine best font size + a_label.assign().draw_text(0,0,"%s",&a_labelcolor,0,1,fs,tmp._data); + if (a_label._width<7*_width/10 && a_label._height>_height/20 && a_label._height<_height/5) { + font_size = fs; break; + } else if ((a_label._width>7*_width/10 || a_label._height>_height/5) && fs>13 && ofs>=fs) { + ofs = fs; fs = std::max(13U,(unsigned int)cimg::round(fs/1.25f)); + } else if (a_label._width<3*_width/10 && a_label._height<_height/20 && fs<64 && ofs<=fs) { + ofs = fs; fs = std::min(64U,(unsigned int)cimg::round(fs*1.25f)); + } else { font_size = fs; break; } + } while (true); + a_label.normalize(0,255); + a_label+=(255 - a_label.get_dilate(3)).normalize(0,80); + a_label.resize(-100,-100,1,3,1); + return draw_image(0,is_down?height() - a_label.height():0,a_label,0.85f); + } + + //! Draw a 2D vector field. + /** + \param flow Image of 2D vectors used as input data. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param sampling Length (in pixels) between each arrow. + \param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length). + \param is_arrow Tells if arrows must be drawn, instead of oriented segments. + \param pattern Used pattern to draw lines. + \note Clipping is supported. + **/ + template + CImg& draw_quiver(const CImg& flow, + const t2 *const color, const float opacity=1, + const unsigned int sampling=25, const float factor=-20, + const bool is_arrow=true, const unsigned int pattern=~0U) { + return draw_quiver(flow,CImg(color,_spectrum,1,1,1,true),opacity,sampling,factor,is_arrow,pattern); + } + + //! Draw a 2D vector field, using a field of colors. + /** + \param flow Image of 2D vectors used as input data. + \param color Image of spectrum()-D vectors corresponding to the color of each arrow. + \param opacity Opacity of the drawing. + \param sampling Length (in pixels) between each arrow. + \param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length). + \param is_arrow Tells if arrows must be drawn, instead of oriented segments. + \param pattern Used pattern to draw lines. + \note Clipping is supported. + **/ + template + CImg& draw_quiver(const CImg& flow, + const CImg& color, const float opacity=1, + const unsigned int sampling=25, const float factor=-20, + const bool is_arrow=true, const unsigned int pattern=~0U) { + if (is_empty()) return *this; + if (!flow || flow._spectrum!=2) + throw CImgArgumentException(_cimg_instance + "draw_quiver(): Invalid dimensions of specified flow (%u,%u,%u,%u,%p).", + cimg_instance, + flow._width,flow._height,flow._depth,flow._spectrum,flow._data); + if (sampling<=0) + throw CImgArgumentException(_cimg_instance + "draw_quiver(): Invalid sampling value %g " + "(should be >0)", + cimg_instance, + sampling); + const bool colorfield = (color._width==flow._width && color._height==flow._height && + color._depth==1 && color._spectrum==_spectrum); + if (is_overlapped(flow)) return draw_quiver(+flow,color,opacity,sampling,factor,is_arrow,pattern); + float vmax,fact; + if (factor<=0) { + float m, M = (float)flow.get_norm(2).max_min(m); + vmax = (float)std::max(cimg::abs(m),cimg::abs(M)); + if (!vmax) vmax = 1; + fact = -factor; + } else { fact = factor; vmax = 1; } + + for (unsigned int y = sampling/2; y<_height; y+=sampling) + for (unsigned int x = sampling/2; x<_width; x+=sampling) { + const unsigned int X = x*flow._width/_width, Y = y*flow._height/_height; + float u = (float)flow(X,Y,0,0)*fact/vmax, v = (float)flow(X,Y,0,1)*fact/vmax; + if (is_arrow) { + const int xx = (int)(x + u), yy = (int)(y + v); + if (colorfield) draw_arrow(x,y,xx,yy,color.get_vector_at(X,Y)._data,opacity,45,sampling/5.f,pattern); + else draw_arrow(x,y,xx,yy,color._data,opacity,45,sampling/5.f,pattern); + } else { + if (colorfield) + draw_line((int)(x - 0.5*u),(int)(y - 0.5*v),(int)(x + 0.5*u),(int)(y + 0.5*v), + color.get_vector_at(X,Y)._data,opacity,pattern); + else draw_line((int)(x - 0.5*u),(int)(y - 0.5*v),(int)(x + 0.5*u),(int)(y + 0.5*v), + color._data,opacity,pattern); + } + } + return *this; + } + + //! Draw a labeled horizontal axis. + /** + \param values_x Values along the horizontal axis. + \param y Y-coordinate of the horizontal axis in the image instance. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern Drawing pattern. + \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). + \param allow_zero Enable/disable the drawing of label '0' if found. + **/ + template + CImg& draw_axis(const CImg& values_x, const int y, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const unsigned int font_height=13, + const bool allow_zero=true, const float round_x=0) { + if (is_empty()) return *this; + const int yt = (y + 3 + font_height)<_height?y + 3:y - 2 - (int)font_height; + const int siz = (int)values_x.size() - 1; + CImg txt(32); + CImg a_label; + if (siz<=0) { // Degenerated case + draw_line(0,y,_width - 1,y,color,opacity,pattern); + if (!siz) { + cimg_snprintf(txt,txt._width,"%g",round_x?cimg::round((double)*values_x,round_x):(double)*values_x); + a_label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height); + const int + _xt = (width() - a_label.width())/2, + xt = _xt<3?3:_xt + a_label.width()>=width() - 2?width() - 3 - a_label.width():_xt; + draw_point(width()/2,y - 1,color,opacity).draw_point(width()/2,y + 1,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } else { // Regular case + if (values_x[0]=width() - 2?width() - 3 - a_label.width():_xt; + draw_point(xi,y - 1,color,opacity).draw_point(xi,y + 1,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } + return *this; + } + + //! Draw a labeled vertical axis. + /** + \param x X-coordinate of the vertical axis in the image instance. + \param values_y Values along the Y-axis. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern Drawing pattern. + \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). + \param allow_zero Enable/disable the drawing of label '0' if found. + **/ + template + CImg& draw_axis(const int x, const CImg& values_y, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const unsigned int font_height=13, + const bool allow_zero=true, const float round_y=0) { + if (is_empty()) return *this; + int siz = (int)values_y.size() - 1; + CImg txt(32); + CImg a_label; + if (siz<=0) { // Degenerated case + draw_line(x,0,x,_height - 1,color,opacity,pattern); + if (!siz) { + cimg_snprintf(txt,txt._width,"%g",round_y?cimg::round((double)*values_y,round_y):(double)*values_y); + a_label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height); + const int + _yt = (height() - a_label.height())/2, + yt = _yt<0?0:_yt + a_label.height()>=height()?height() - 1 - a_label.height():_yt, + _xt = x - 2 - a_label.width(), + xt = _xt>=0?_xt:x + 3; + draw_point(x - 1,height()/2,color,opacity).draw_point(x + 1,height()/2,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } else { // Regular case + if (values_y[0]=height()?height() - 1 - a_label.height():_yt, + _xt = x - 2 - a_label.width(), + xt = _xt>=0?_xt:x + 3; + draw_point(x - 1,yi,color,opacity).draw_point(x + 1,yi,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } + return *this; + } + + //! Draw labeled horizontal and vertical axes. + /** + \param values_x Values along the X-axis. + \param values_y Values along the Y-axis. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern_x Drawing pattern for the X-axis. + \param pattern_y Drawing pattern for the Y-axis. + \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). + \param allow_zero Enable/disable the drawing of label '0' if found. + **/ + template + CImg& draw_axes(const CImg& values_x, const CImg& values_y, + const tc *const color, const float opacity=1, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U, + const unsigned int font_height=13, const bool allow_zero=true, + const float round_x=0, const float round_y=0) { + if (is_empty()) return *this; + const CImg nvalues_x(values_x._data,values_x.size(),1,1,1,true); + const int sizx = (int)values_x.size() - 1, wm1 = width() - 1; + if (sizx>=0) { + float ox = (float)*nvalues_x; + for (unsigned int x = sizx?1U:0U; x<_width; ++x) { + const float nx = (float)nvalues_x._linear_atX((float)x*sizx/wm1); + if (nx*ox<=0) { + draw_axis(nx==0?x:x - 1,values_y,color,opacity,pattern_y,font_height,allow_zero,round_y); + break; + } + ox = nx; + } + } + const CImg nvalues_y(values_y._data,values_y.size(),1,1,1,true); + const int sizy = (int)values_y.size() - 1, hm1 = height() - 1; + if (sizy>0) { + float oy = (float)nvalues_y[0]; + for (unsigned int y = sizy?1U:0U; y<_height; ++y) { + const float ny = (float)nvalues_y._linear_atX((float)y*sizy/hm1); + if (ny*oy<=0) { + draw_axis(values_x,ny==0?y:y - 1,color,opacity,pattern_x,font_height,allow_zero,round_x); + break; + } + oy = ny; + } + } + return *this; + } + + //! Draw labeled horizontal and vertical axes \overloading. + template + CImg& draw_axes(const float x0, const float x1, const float y0, const float y1, + const tc *const color, const float opacity=1, + const int subdivisionx=-60, const int subdivisiony=-60, + const float precisionx=0, const float precisiony=0, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U, + const unsigned int font_height=13) { + if (is_empty()) return *this; + const bool allow_zero = (x0*x1>0) || (y0*y1>0); + const float + dx = cimg::abs(x1 - x0), dy = cimg::abs(y1 - y0), + px = dx<=0?1:precisionx==0?(float)std::pow(10.,(int)std::log10(dx) - 2.):precisionx, + py = dy<=0?1:precisiony==0?(float)std::pow(10.,(int)std::log10(dy) - 2.):precisiony; + if (x0!=x1 && y0!=y1) + draw_axes(CImg::sequence(subdivisionx>0?subdivisionx:1-width()/subdivisionx,x0,x1), + CImg::sequence(subdivisiony>0?subdivisiony:1-height()/subdivisiony,y0,y1), + color,opacity,pattern_x,pattern_y,font_height,allow_zero,px,py); + else if (x0==x1 && y0!=y1) + draw_axis((int)x0,CImg::sequence(subdivisiony>0?subdivisiony:1-height()/subdivisiony,y0,y1), + color,opacity,pattern_y,font_height,py); + else if (x0!=x1 && y0==y1) + draw_axis(CImg::sequence(subdivisionx>0?subdivisionx:1-width()/subdivisionx,x0,x1),(int)y0, + color,opacity,pattern_x,font_height,px); + return *this; + } + + //! Draw 2D grid. + /** + \param values_x X-coordinates of the vertical lines. + \param values_y Y-coordinates of the horizontal lines. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern_x Drawing pattern for vertical lines. + \param pattern_y Drawing pattern for horizontal lines. + **/ + template + CImg& draw_grid(const CImg& values_x, const CImg& values_y, + const tc *const color, const float opacity=1, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U) { + if (is_empty()) return *this; + if (values_x) cimg_foroff(values_x,x) { + const int xi = (int)values_x[x]; + if (xi>=0 && xi=0 && yi + CImg& draw_grid(const float delta_x, const float delta_y, + const float offsetx, const float offsety, + const bool invertx, const bool inverty, + const tc *const color, const float opacity=1, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U) { + if (is_empty()) return *this; + CImg seqx, seqy; + if (delta_x!=0) { + const float dx = delta_x>0?delta_x:_width*-delta_x/100; + const unsigned int nx = (unsigned int)(_width/dx); + seqx = CImg::sequence(1 + nx,0,(unsigned int)(dx*nx)); + if (offsetx) cimg_foroff(seqx,x) seqx(x) = (unsigned int)cimg::mod(seqx(x) + offsetx,(float)_width); + if (invertx) cimg_foroff(seqx,x) seqx(x) = _width - 1 - seqx(x); + } + if (delta_y!=0) { + const float dy = delta_y>0?delta_y:_height*-delta_y/100; + const unsigned int ny = (unsigned int)(_height/dy); + seqy = CImg::sequence(1 + ny,0,(unsigned int)(dy*ny)); + if (offsety) cimg_foroff(seqy,y) seqy(y) = (unsigned int)cimg::mod(seqy(y) + offsety,(float)_height); + if (inverty) cimg_foroff(seqy,y) seqy(y) = _height - 1 - seqy(y); + } + return draw_grid(seqx,seqy,color,opacity,pattern_x,pattern_y); + } + + //! Draw 1D graph. + /** + \param data Image containing the graph values I = f(x). + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + + \param plot_type Define the type of the plot: + - 0 = No plot. + - 1 = Plot using segments. + - 2 = Plot using cubic splines. + - 3 = Plot with bars. + \param vertex_type Define the type of points: + - 0 = No points. + - 1 = Point. + - 2 = Straight cross. + - 3 = Diagonal cross. + - 4 = Filled circle. + - 5 = Outlined circle. + - 6 = Square. + - 7 = Diamond. + \param ymin Lower bound of the y-range. + \param ymax Upper bound of the y-range. + \param pattern Drawing pattern. + \note + - if \c ymin==ymax==0, the y-range is computed automatically from the input samples. + **/ + template + CImg& draw_graph(const CImg& data, + const tc *const color, const float opacity=1, + const unsigned int plot_type=1, const int vertex_type=1, + const double ymin=0, const double ymax=0, const unsigned int pattern=~0U) { + if (is_empty() || _height<=1) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_graph(): Specified color is (null).", + cimg_instance); + + // Create shaded colors for displaying bar plots. + CImg color1, color2; + if (plot_type==3) { + color1.assign(_spectrum); color2.assign(_spectrum); + cimg_forC(*this,c) { + color1[c] = (tc)std::min((float)cimg::type::max(),(float)color[c]*1.2f); + color2[c] = (tc)(color[c]*0.4f); + } + } + + // Compute min/max and normalization factors. + const ulongT + siz = data.size(), + _siz1 = siz - (plot_type!=3), + siz1 = _siz1?_siz1:1; + const unsigned int + _width1 = _width - (plot_type!=3), + width1 = _width1?_width1:1; + double m = ymin, M = ymax; + if (ymin==ymax) m = (double)data.max_min(M); + if (m==M) { --m; ++M; } + const float ca = (float)(M-m)/(_height - 1); + bool init_hatch = true; + + // Draw graph edges + switch (plot_type%4) { + case 1 : { // Segments + int oX = 0, oY = (int)cimg::round((data[0] - m)/ca); + if (siz==1) { + const int Y = (int)cimg::round((*data - m)/ca); + draw_line(0,Y,width() - 1,Y,color,opacity,pattern); + } else { + const float fx = (float)_width/siz1; + for (ulongT off = 1; off ndata(data._data,siz,1,1,1,true); + int oY = (int)cimg::round((data[0] - m)/ca); + cimg_forX(*this,x) { + const int Y = (int)cimg::round((ndata._cubic_atX((float)x*siz1/width1)-m)/ca); + if (x>0) draw_line(x,oY,x + 1,Y,color,opacity,pattern,init_hatch); + init_hatch = false; + oY = Y; + } + } break; + case 3 : { // Bars + const int Y0 = (int)cimg::round(-m/ca); + const float fx = (float)_width/siz1; + int oX = 0; + cimg_foroff(data,off) { + const int + X = (int)cimg::round((off + 1)*fx) - 1, + Y = (int)cimg::round((data[off] - m)/ca); + draw_rectangle(oX,Y0,X,Y,color,opacity). + draw_line(oX,Y,oX,Y0,color2.data(),opacity). + draw_line(oX,Y0,X,Y0,Y<=Y0?color2.data():color1.data(),opacity). + draw_line(X,Y,X,Y0,color1.data(),opacity). + draw_line(oX,Y,X,Y,Y<=Y0?color1.data():color2.data(),opacity); + oX = X + 1; + } + } break; + default : break; // No edges + } + + // Draw graph points + const unsigned int wb2 = plot_type==3?_width1/(2*siz):0; + const float fx = (float)_width1/siz1; + switch (vertex_type%8) { + case 1 : { // Point + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_point(X,Y,color,opacity); + } + } break; + case 2 : { // Straight Cross + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_line(X - 3,Y,X + 3,Y,color,opacity).draw_line(X,Y - 3,X,Y + 3,color,opacity); + } + } break; + case 3 : { // Diagonal Cross + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_line(X - 3,Y - 3,X + 3,Y + 3,color,opacity).draw_line(X - 3,Y + 3,X + 3,Y - 3,color,opacity); + } + } break; + case 4 : { // Filled Circle + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_circle(X,Y,3,color,opacity); + } + } break; + case 5 : { // Outlined circle + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_circle(X,Y,3,color,opacity,~0U); + } + } break; + case 6 : { // Square + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_rectangle(X - 3,Y - 3,X + 3,Y + 3,color,opacity,~0U); + } + } break; + case 7 : { // Diamond + cimg_foroff(data,off) { + const int + X = (int)cimg::round(off*fx + wb2), + Y = (int)cimg::round((data[off]-m)/ca); + draw_line(X,Y - 4,X + 4,Y,color,opacity). + draw_line(X + 4,Y,X,Y + 4,color,opacity). + draw_line(X,Y + 4,X - 4,Y,color,opacity). + draw_line(X - 4,Y,X,Y - 4,color,opacity); + } + } break; + default : break; // No points + } + return *this; + } + + bool _draw_fill(const int x, const int y, const int z, + const CImg& ref, const float tolerance2) const { + const T *ptr1 = data(x,y,z), *ptr2 = ref._data; + const ulongT off = _width*_height*_depth; + float diff = 0; + cimg_forC(*this,c) { diff += cimg::sqr(*ptr1 - *(ptr2++)); ptr1+=off; } + return diff<=tolerance2; + } + + //! Draw filled 3D region with the flood fill algorithm. + /** + \param x0 X-coordinate of the starting point of the region to fill. + \param y0 Y-coordinate of the starting point of the region to fill. + \param z0 Z-coordinate of the starting point of the region to fill. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param[out] region Image that will contain the mask of the filled region mask, as an output. + \param tolerance Tolerance concerning neighborhood values. + \param opacity Opacity of the drawing. + \param is_high_connectivity Tells if 8-connexity must be used. + \return \c region is initialized with the binary mask of the filled region. + **/ + template + CImg& draw_fill(const int x0, const int y0, const int z0, + const tc *const color, const float opacity, + CImg ®ion, + const float tolerance = 0, + const bool is_high_connectivity = false) { +#define _draw_fill_push(x,y,z) if (N>=stack._width) stack.resize(2*N + 1,1,1,3,0); \ + stack[N] = x; stack(N,1) = y; stack(N++,2) = z +#define _draw_fill_pop(x,y,z) x = stack[--N]; y = stack(N,1); z = stack(N,2) +#define _draw_fill_is_inside(x,y,z) !_region(x,y,z) && _draw_fill(x,y,z,ref,tolerance2) + + if (!containsXYZC(x0,y0,z0,0)) return *this; + const float nopacity = cimg::abs((float)opacity), copacity = 1 - std::max((float)opacity,0.f); + const float tolerance2 = cimg::sqr(tolerance); + const CImg ref = get_vector_at(x0,y0,z0); + CImg stack(256,1,1,3); + CImg _region(_width,_height,_depth,1,0); + unsigned int N = 0; + int x, y, z; + + _draw_fill_push(x0,y0,z0); + while (N>0) { + _draw_fill_pop(x,y,z); + if (!_region(x,y,z)) { + const int yp = y - 1, yn = y + 1, zp = z - 1, zn = z + 1; + int xl = x, xr = x; + + // Using these booleans reduces the number of pushes drastically. + bool is_yp = false, is_yn = false, is_zp = false, is_zn = false; + for (int step = -1; step<2; step+=2) { + while (x>=0 && x=0 && _draw_fill_is_inside(x,yp,z)) { + if (!is_yp) { _draw_fill_push(x,yp,z); is_yp = true; } + } else is_yp = false; + if (yn1) { + if (zp>=0 && _draw_fill_is_inside(x,y,zp)) { + if (!is_zp) { _draw_fill_push(x,y,zp); is_zp = true; } + } else is_zp = false; + if (zn=0 && !is_yp) { + if (xp>=0 && _draw_fill_is_inside(xp,yp,z)) { + _draw_fill_push(xp,yp,z); if (step<0) is_yp = true; + } + if (xn0) is_yp = true; + } + } + if (yn=0 && _draw_fill_is_inside(xp,yn,z)) { + _draw_fill_push(xp,yn,z); if (step<0) is_yn = true; + } + if (xn0) is_yn = true; + } + } + if (depth()>1) { + if (zp>=0 && !is_zp) { + if (xp>=0 && _draw_fill_is_inside(xp,y,zp)) { + _draw_fill_push(xp,y,zp); if (step<0) is_zp = true; + } + if (xn0) is_zp = true; + } + + if (yp>=0 && !is_yp) { + if (_draw_fill_is_inside(x,yp,zp)) { _draw_fill_push(x,yp,zp); } + if (xp>=0 && _draw_fill_is_inside(xp,yp,zp)) { _draw_fill_push(xp,yp,zp); } + if (xn=0 && _draw_fill_is_inside(xp,yn,zp)) { _draw_fill_push(xp,yn,zp); } + if (xn=0 && _draw_fill_is_inside(xp,y,zn)) { + _draw_fill_push(xp,y,zn); if (step<0) is_zn = true; + } + if (xn0) is_zn = true; + } + + if (yp>=0 && !is_yp) { + if (_draw_fill_is_inside(x,yp,zn)) { _draw_fill_push(x,yp,zn); } + if (xp>=0 && _draw_fill_is_inside(xp,yp,zn)) { _draw_fill_push(xp,yp,zn); } + if (xn=0 && _draw_fill_is_inside(xp,yn,zn)) { _draw_fill_push(xp,yn,zn); } + if (xn + CImg& draw_fill(const int x0, const int y0, const int z0, + const tc *const color, const float opacity=1, + const float tolerance=0, const bool is_high_connexity=false) { + CImg tmp; + return draw_fill(x0,y0,z0,color,opacity,tmp,tolerance,is_high_connexity); + } + + //! Draw filled 2D region with the flood fill algorithm \simplification. + template + CImg& draw_fill(const int x0, const int y0, + const tc *const color, const float opacity=1, + const float tolerance=0, const bool is_high_connexity=false) { + CImg tmp; + return draw_fill(x0,y0,0,color,opacity,tmp,tolerance,is_high_connexity); + } + + //! Draw a random plasma texture. + /** + \param alpha Alpha-parameter. + \param beta Beta-parameter. + \param scale Scale-parameter. + \note Use the mid-point algorithm to render. + **/ + CImg& draw_plasma(const float alpha=1, const float beta=0, const unsigned int scale=8) { + if (is_empty()) return *this; + const int + w0 = width(), h0 = height(), + delta = 1< canvas(w,h,depth(),spectrum()); + + cimg_forZC(*this,z,c) { + CImg ref = canvas.get_shared_slice(z,c); + + // Init step. + float r = alpha*delta + beta; + for (int yt = 0; yt::cut(val); + } + + for (int _delta = delta; _delta>1; _delta>>=1) { + const int _delta2 = _delta>>1; + r = alpha*_delta + beta; + + // Square step. + for (int yt = _delta2; yt::cut(val); + } + + // Diamond steps. + bool is_odd_y = false; + for (int yt = 0; yt::cut(val); + } + is_odd_y = !is_odd_y; + } + } + } + cimg::srand(rng); + return draw_image((w0 - w)/2,(h0 - h)/2,0,0,canvas); + } + + //! Draw a quadratic Mandelbrot or Julia 2D fractal. + /** + \param x0 X-coordinate of the upper-left pixel. + \param y0 Y-coordinate of the upper-left pixel. + \param x1 X-coordinate of the lower-right pixel. + \param y1 Y-coordinate of the lower-right pixel. + \param palette Colormap. + \param opacity Drawing opacity. + \param z0r Real part of the upper-left fractal vertex. + \param z0i Imaginary part of the upper-left fractal vertex. + \param z1r Real part of the lower-right fractal vertex. + \param z1i Imaginary part of the lower-right fractal vertex. + \param iteration_max Maximum number of iterations for each estimated point. + \param is_normalized_iteration Tells if iterations are normalized. + \param is_julia_set Tells if the Mandelbrot or Julia set is rendered. + \param param_r Real part of the Julia set parameter. + \param param_i Imaginary part of the Julia set parameter. + \note Fractal rendering is done by the Escape Time Algorithm. + **/ + template + CImg& draw_mandelbrot(const int x0, const int y0, const int x1, const int y1, + const CImg& colormap, const float opacity=1, + const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, + const unsigned int iteration_max=255, + const bool is_normalized_iteration=false, + const bool is_julia_set=false, + const double param_r=0, const double param_i=0) { + if (is_empty()) return *this; + CImg palette; + if (colormap) palette.assign(colormap._data,colormap.size()/colormap._spectrum,1,1,colormap._spectrum,true); + if (palette && palette._spectrum!=_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_mandelbrot(): Instance and specified colormap (%u,%u,%u,%u,%p) have " + "incompatible dimensions.", + cimg_instance, + colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data); + + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f), ln2 = (float)std::log(2.); + const int + _x0 = cimg::cut(x0,0,width() - 1), + _y0 = cimg::cut(y0,0,height() - 1), + _x1 = cimg::cut(x1,0,width() - 1), + _y1 = cimg::cut(y1,0,height() - 1); + + cimg_pragma_openmp(parallel for cimg_openmp_collapse(2) + cimg_openmp_if((1 + _x1 - _x0)*(1 + _y1 - _y0)>=(cimg_openmp_sizefactor)*2048)) + for (int q = _y0; q<=_y1; ++q) + for (int p = _x0; p<=_x1; ++p) { + unsigned int iteration = 0; + const double x = z0r + p*(z1r-z0r)/_width, y = z0i + q*(z1i-z0i)/_height; + double zr, zi, cr, ci; + if (is_julia_set) { zr = x; zi = y; cr = param_r; ci = param_i; } + else { zr = param_r; zi = param_i; cr = x; ci = y; } + for (iteration=1; zr*zr + zi*zi<=4 && iteration<=iteration_max; ++iteration) { + const double temp = zr*zr - zi*zi + cr; + zi = 2*zr*zi + ci; + zr = temp; + } + if (iteration>iteration_max) { + if (palette) { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette(0,c); + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(palette(0,c)*nopacity + (*this)(p,q,0,c)*copacity); + } else { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)0; + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)((*this)(p,q,0,c)*copacity); + } + } else if (is_normalized_iteration) { + const float + normz = (float)cimg::abs(zr*zr + zi*zi), + niteration = (float)(iteration + 1 - std::log(std::log(normz))/ln2); + if (palette) { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette._linear_atX(niteration,c); + else cimg_forC(*this,c) + (*this)(p,q,0,c) = (T)(palette._linear_atX(niteration,c)*nopacity + (*this)(p,q,0,c)*copacity); + } else { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)niteration; + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(niteration*nopacity + (*this)(p,q,0,c)*copacity); + } + } else { + if (palette) { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette._atX(iteration,c); + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(palette(iteration,c)*nopacity + (*this)(p,q,0,c)*copacity); + } else { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)iteration; + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(iteration*nopacity + (*this)(p,q,0,c)*copacity); + } + } + } + return *this; + } + + //! Draw a quadratic Mandelbrot or Julia 2D fractal \overloading. + template + CImg& draw_mandelbrot(const CImg& colormap, const float opacity=1, + const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, + const unsigned int iteration_max=255, + const bool is_normalized_iteration=false, + const bool is_julia_set=false, + const double param_r=0, const double param_i=0) { + return draw_mandelbrot(0,0,_width - 1,_height - 1,colormap,opacity, + z0r,z0i,z1r,z1i,iteration_max,is_normalized_iteration,is_julia_set,param_r,param_i); + } + + //! Draw a 1D gaussian function. + /** + \param xc X-coordinate of the gaussian center. + \param sigma Standard variation of the gaussian distribution. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_gaussian(const float xc, const float sigma, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified color is (null).", + cimg_instance); + const float sigma2 = 2*sigma*sigma, nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f); + const ulongT whd = (ulongT)_width*_height*_depth; + const tc *col = color; + cimg_forX(*this,x) { + const float dx = (x - xc), val = (float)std::exp(-dx*dx/sigma2); + T *ptrd = data(x,0,0,0); + if (opacity>=1) cimg_forC(*this,c) { *ptrd = (T)(val*(*col++)); ptrd+=whd; } + else cimg_forC(*this,c) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; } + col-=_spectrum; + } + return *this; + } + + //! Draw a 2D gaussian function. + /** + \param xc X-coordinate of the gaussian center. + \param yc Y-coordinate of the gaussian center. + \param tensor Covariance matrix (must be 2x2). + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_gaussian(const float xc, const float yc, const CImg& tensor, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (tensor._width!=2 || tensor._height!=2 || tensor._depth!=1 || tensor._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified tensor (%u,%u,%u,%u,%p) is not a 2x2 matrix.", + cimg_instance, + tensor._width,tensor._height,tensor._depth,tensor._spectrum,tensor._data); + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified color is (null).", + cimg_instance); + typedef typename CImg::Tfloat tfloat; + const CImg invT = tensor.get_invert(), invT2 = (invT*invT)/=-2.; + const tfloat a = invT2(0,0), b = 2*invT2(1,0), c = invT2(1,1); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f); + const ulongT whd = (ulongT)_width*_height*_depth; + const tc *col = color; + float dy = -yc; + cimg_forY(*this,y) { + float dx = -xc; + cimg_forX(*this,x) { + const float val = (float)std::exp(a*dx*dx + b*dx*dy + c*dy*dy); + T *ptrd = data(x,y,0,0); + if (opacity>=1) cimg_forC(*this,k) { *ptrd = (T)(val*(*col++)); ptrd+=whd; } + else cimg_forC(*this,k) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; } + col-=_spectrum; + ++dx; + } + ++dy; + } + return *this; + } + + //! Draw a 2D gaussian function \overloading. + template + CImg& draw_gaussian(const int xc, const int yc, const float r1, const float r2, const float ru, const float rv, + const tc *const color, const float opacity=1) { + const double + a = r1*ru*ru + r2*rv*rv, + b = (r1-r2)*ru*rv, + c = r1*rv*rv + r2*ru*ru; + const CImg tensor(2,2,1,1, a,b,b,c); + return draw_gaussian(xc,yc,tensor,color,opacity); + } + + //! Draw a 2D gaussian function \overloading. + template + CImg& draw_gaussian(const float xc, const float yc, const float sigma, + const tc *const color, const float opacity=1) { + return draw_gaussian(xc,yc,CImg::diagonal(sigma,sigma),color,opacity); + } + + //! Draw a 3D gaussian function \overloading. + template + CImg& draw_gaussian(const float xc, const float yc, const float zc, const CImg& tensor, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + typedef typename CImg::Tfloat tfloat; + if (tensor._width!=3 || tensor._height!=3 || tensor._depth!=1 || tensor._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified tensor (%u,%u,%u,%u,%p) is not a 3x3 matrix.", + cimg_instance, + tensor._width,tensor._height,tensor._depth,tensor._spectrum,tensor._data); + + const CImg invT = tensor.get_invert(), invT2 = (invT*invT)/=-2.; + const tfloat a = invT2(0,0), b = 2*invT2(1,0), c = 2*invT2(2,0), d = invT2(1,1), e = 2*invT2(2,1), f = invT2(2,2); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.f); + const ulongT whd = (ulongT)_width*_height*_depth; + const tc *col = color; + cimg_forXYZ(*this,x,y,z) { + const float + dx = (x - xc), dy = (y - yc), dz = (z - zc), + val = (float)std::exp(a*dx*dx + b*dx*dy + c*dx*dz + d*dy*dy + e*dy*dz + f*dz*dz); + T *ptrd = data(x,y,z,0); + if (opacity>=1) cimg_forC(*this,k) { *ptrd = (T)(val*(*col++)); ptrd+=whd; } + else cimg_forC(*this,k) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; } + col-=_spectrum; + } + return *this; + } + + //! Draw a 3D gaussian function \overloading. + template + CImg& draw_gaussian(const float xc, const float yc, const float zc, const float sigma, + const tc *const color, const float opacity=1) { + return draw_gaussian(xc,yc,zc,CImg::diagonal(sigma,sigma,sigma),color,opacity); + } + + //! Draw a 3D object. + /** + \param x0 X-coordinate of the 3D object position + \param y0 Y-coordinate of the 3D object position + \param z0 Z-coordinate of the 3D object position + \param vertices Image Nx3 describing 3D point coordinates + \param primitives List of P primitives + \param colors List of P color (or textures) + \param opacities Image or list of P opacities + \param render_type d Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud) + \param is_double_sided Tells if object faces have two sides or are oriented. + \param focale length of the focale (0 for parallel projection) + \param lightx X-coordinate of the light + \param lighty Y-coordinate of the light + \param lightz Z-coordinate of the light + \param specular_lightness Amount of specular light. + \param specular_shininess Shininess of the object + \param g_opacity Global opacity of the object. + **/ + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const float g_opacity=1) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,CImg::empty()); + } + + //! Draw a 3D object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, CImg& zbuffer) { + return _draw_object3d(0,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,1); + } + +#ifdef cimg_use_board + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const float g_opacity=1) { + return draw_object3d(board,x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,CImg::empty()); + } + + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, CImg& zbuffer) { + return _draw_object3d((void*)&board,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,1); + } +#endif + + //! Draw a 3D object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const float g_opacity=1) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,CImg::empty()); + } + + //! Draw a 3D object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, CImg& zbuffer) { + return _draw_object3d(0,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,1); + } + +#ifdef cimg_use_board + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const float g_opacity=1) { + return draw_object3d(board,x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,CImg::empty()); + } + + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, CImg& zbuffer) { + return _draw_object3d((void*)&board,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,1); + } +#endif + + //! Draw a 3D object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const float g_opacity=1) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,CImg::empty()); + } + + //! Draw a 3D object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, CImg& zbuffer) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,zbuffer); + } + +#ifdef cimg_use_board + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const float g_opacity=1) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,CImg::empty()); + } + + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, CImg& zbuffer) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,g_opacity,zbuffer); + } +#endif + + template + static float __draw_object3d(const CImgList& opacities, const unsigned int n_primitive, CImg& opacity) { + if (n_primitive>=opacities._width || opacities[n_primitive].is_empty()) { opacity.assign(); return 1; } + if (opacities[n_primitive].size()==1) { opacity.assign(); return opacities(n_primitive,0); } + opacity.assign(opacities[n_primitive],true); + return 1.f; + } + + template + static float __draw_object3d(const CImg& opacities, const unsigned int n_primitive, CImg& opacity) { + opacity.assign(); + return n_primitive>=opacities._width?1.f:(float)opacities[n_primitive]; + } + + template + static float ___draw_object3d(const CImgList& opacities, const unsigned int n_primitive) { + return n_primitive + static float ___draw_object3d(const CImg& opacities, const unsigned int n_primitive) { + return n_primitive + CImg& _draw_object3d(void *const pboard, CImg& zbuffer, + const float X, const float Y, const float Z, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float g_opacity, const float sprite_scale) { + typedef typename cimg::superset2::type tpfloat; + typedef typename to::value_type _to; + if (is_empty() || !vertices || !primitives) return *this; + CImg error_message(1024); + if (!vertices.is_object3d(primitives,colors,opacities,false,error_message)) + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Invalid specified 3D object (%u,%u) (%s).", + cimg_instance,vertices._width,primitives._width,error_message.data()); +#ifndef cimg_use_board + if (pboard) return *this; +#endif + if (render_type==5) cimg::mutex(10); // Static variable used in this case, breaks thread-safety + + const float + nspec = 1 - (specular_lightness<0.f?0.f:(specular_lightness>1.f?1.f:specular_lightness)), + nspec2 = 1 + (specular_shininess<0.f?0.f:specular_shininess), + nsl1 = (nspec2 - 1)/cimg::sqr(nspec - 1), + nsl2 = 1 - 2*nsl1*nspec, + nsl3 = nspec2 - nsl1 - nsl2; + + // Create light texture for phong-like rendering. + CImg light_texture; + if (render_type==5) { + if (colors._width>primitives._width) { + static CImg default_light_texture; + static const tc *lptr = 0; + static tc ref_values[64] = {}; + const CImg& img = colors.back(); + bool is_same_texture = (lptr==img._data); + if (is_same_texture) + for (unsigned int r = 0, j = 0; j<8; ++j) + for (unsigned int i = 0; i<8; ++i) + if (ref_values[r++]!=img(i*img._width/9,j*img._height/9,0,(i + j)%img._spectrum)) { + is_same_texture = false; break; + } + if (!is_same_texture || default_light_texture._spectrum<_spectrum) { + (default_light_texture.assign(img,false)/=255).resize(-100,-100,1,_spectrum); + lptr = colors.back().data(); + for (unsigned int r = 0, j = 0; j<8; ++j) + for (unsigned int i = 0; i<8; ++i) + ref_values[r++] = img(i*img._width/9,j*img._height/9,0,(i + j)%img._spectrum); + } + light_texture.assign(default_light_texture,true); + } else { + static CImg default_light_texture; + static float olightx = 0, olighty = 0, olightz = 0, ospecular_shininess = 0; + if (!default_light_texture || + lightx!=olightx || lighty!=olighty || lightz!=olightz || + specular_shininess!=ospecular_shininess || default_light_texture._spectrum<_spectrum) { + default_light_texture.assign(512,512); + const float + dlx = lightx - X, + dly = lighty - Y, + dlz = lightz - Z, + nl = cimg::hypot(dlx,dly,dlz), + nlx = (default_light_texture._width - 1)/2*(1 + dlx/nl), + nly = (default_light_texture._height - 1)/2*(1 + dly/nl), + white[] = { 1 }; + default_light_texture.draw_gaussian(nlx,nly,default_light_texture._width/3.f,white); + cimg_forXY(default_light_texture,x,y) { + const float factor = default_light_texture(x,y); + if (factor>nspec) default_light_texture(x,y) = std::min(2.f,nsl1*factor*factor + nsl2*factor + nsl3); + } + default_light_texture.resize(-100,-100,1,_spectrum); + olightx = lightx; olighty = lighty; olightz = lightz; ospecular_shininess = specular_shininess; + } + light_texture.assign(default_light_texture,true); + } + } + + // Compute 3D to 2D projection. + CImg projections(vertices._width,2); + tpfloat parallzmin = cimg::type::max(); + const float absfocale = focale?cimg::abs(focale):0; + if (absfocale) { + cimg_pragma_openmp(parallel for cimg_openmp_if_size(projections.size(),4096)) + cimg_forX(projections,l) { // Perspective projection + const tpfloat + x = (tpfloat)vertices(l,0), + y = (tpfloat)vertices(l,1), + z = (tpfloat)vertices(l,2); + const tpfloat projectedz = z + Z + absfocale; + projections(l,1) = Y + absfocale*y/projectedz; + projections(l,0) = X + absfocale*x/projectedz; + } + } else { + cimg_pragma_openmp(parallel for cimg_openmp_if_size(projections.size(),4096)) + cimg_forX(projections,l) { // Parallel projection + const tpfloat + x = (tpfloat)vertices(l,0), + y = (tpfloat)vertices(l,1), + z = (tpfloat)vertices(l,2); + if (z visibles(primitives._width,1,1,1,~0U); + CImg zrange(primitives._width); + const tpfloat zmin = absfocale?(tpfloat)(1.5f - absfocale):cimg::type::min(); + bool is_forward = zbuffer?true:false; + + cimg_pragma_openmp(parallel for cimg_openmp_if_size(primitives.size(),4096)) + cimglist_for(primitives,l) { + const CImg& primitive = primitives[l]; + switch (primitive.size()) { + case 1 : { // Point + CImg<_to> _opacity; + __draw_object3d(opacities,l,_opacity); + if (l<=colors.width() && (colors[l].size()!=_spectrum || _opacity)) is_forward = false; + const unsigned int i0 = (unsigned int)primitive(0); + const tpfloat z0 = Z + vertices(i0,2); + if (z0>zmin) { + visibles(l) = (unsigned int)l; + zrange(l) = z0; + } + } break; + case 5 : { // Sphere + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + const tpfloat + Xc = 0.5f*((float)vertices(i0,0) + (float)vertices(i1,0)), + Yc = 0.5f*((float)vertices(i0,1) + (float)vertices(i1,1)), + Zc = 0.5f*((float)vertices(i0,2) + (float)vertices(i1,2)), + _zc = Z + Zc, + zc = _zc + _focale, + xc = X + Xc*(absfocale?absfocale/zc:1), + yc = Y + Yc*(absfocale?absfocale/zc:1), + radius = 0.5f*cimg::hypot(vertices(i1,0) - vertices(i0,0), + vertices(i1,1) - vertices(i0,1), + vertices(i1,2) - vertices(i0,2))*(absfocale?absfocale/zc:1), + xm = xc - radius, + ym = yc - radius, + xM = xc + radius, + yM = yc + radius; + if (xM>=0 && xm<_width && yM>=0 && ym<_height && _zc>zmin) { + visibles(l) = (unsigned int)l; + zrange(l) = _zc; + } + is_forward = false; + } break; + case 2 : case 6 : { // Segment + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + const tpfloat + x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2), + x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2); + tpfloat xm, xM, ym, yM; + if (x0=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin) { + visibles(l) = (unsigned int)l; + zrange(l) = (z0 + z1)/2; + } + } break; + case 3 : case 9 : { // Triangle + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2); + const tpfloat + x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2), + x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2), + x2 = projections(i2,0), y2 = projections(i2,1), z2 = Z + vertices(i2,2); + tpfloat xm, xM, ym, yM; + if (x0xM) xM = x2; + if (y0yM) yM = y2; + if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin && z2>zmin) { + const tpfloat d = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0); + if (is_double_sided || d<0) { + visibles(l) = (unsigned int)l; + zrange(l) = (z0 + z1 + z2)/3; + } + } + } break; + case 4 : case 12 : { // Quadrangle + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2), + i3 = (unsigned int)primitive(3); + const tpfloat + x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2), + x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2), + x2 = projections(i2,0), y2 = projections(i2,1), z2 = Z + vertices(i2,2), + x3 = projections(i3,0), y3 = projections(i3,1), z3 = Z + vertices(i3,2); + tpfloat xm, xM, ym, yM; + if (x0xM) xM = x2; + if (x3xM) xM = x3; + if (y0yM) yM = y2; + if (y3yM) yM = y3; + if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin && z2>zmin && z3>zmin) { + const float d = (x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0); + if (is_double_sided || d<0) { + visibles(l) = (unsigned int)l; + zrange(l) = (z0 + z1 + z2 + z3)/4; + } + } + } break; + default : + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Invalid primitive[%u] with size %u " + "(should have size 1,2,3,4,5,6,9 or 12).", + cimg_instance, + l,primitive.size()); + } + } + + // Force transparent primitives to be drawn last when zbuffer is activated + // (and if object contains no spheres or sprites). + if (is_forward) + cimglist_for(primitives,l) + if (___draw_object3d(opacities,l)!=1) zrange(l) = 2*zmax - zrange(l); + + // Sort only visibles primitives. + unsigned int *p_visibles = visibles._data; + tpfloat *p_zrange = zrange._data; + const tpfloat *ptrz = p_zrange; + cimg_for(visibles,ptr,unsigned int) { + if (*ptr!=~0U) { *(p_visibles++) = *ptr; *(p_zrange++) = *ptrz; } + ++ptrz; + } + const unsigned int nb_visibles = (unsigned int)(p_zrange - zrange._data); + if (!nb_visibles) { + if (render_type==5) cimg::mutex(10,0); + return *this; + } + CImg permutations; + CImg(zrange._data,nb_visibles,1,1,1,true).sort(permutations,is_forward); + + // Compute light properties + CImg lightprops; + switch (render_type) { + case 3 : { // Flat Shading + lightprops.assign(nb_visibles); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) + cimg_forX(lightprops,l) { + const CImg& primitive = primitives(visibles(permutations(l))); + const unsigned int psize = (unsigned int)primitive.size(); + if (psize==3 || psize==4 || psize==9 || psize==12) { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2); + const tpfloat + x0 = (tpfloat)vertices(i0,0), y0 = (tpfloat)vertices(i0,1), z0 = (tpfloat)vertices(i0,2), + x1 = (tpfloat)vertices(i1,0), y1 = (tpfloat)vertices(i1,1), z1 = (tpfloat)vertices(i1,2), + x2 = (tpfloat)vertices(i2,0), y2 = (tpfloat)vertices(i2,1), z2 = (tpfloat)vertices(i2,2), + dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0, + dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0, + nx = dy1*dz2 - dz1*dy2, + ny = dz1*dx2 - dx1*dz2, + nz = dx1*dy2 - dy1*dx2, + norm = 1e-5f + cimg::hypot(nx,ny,nz), + lx = X + (x0 + x1 + x2)/3 - lightx, + ly = Y + (y0 + y1 + y2)/3 - lighty, + lz = Z + (z0 + z1 + z2)/3 - lightz, + nl = 1e-5f + cimg::hypot(lx,ly,lz), + factor = std::max(cimg::abs(-lx*nx - ly*ny - lz*nz)/(norm*nl),(tpfloat)0); + lightprops[l] = factor<=nspec?factor:(nsl1*factor*factor + nsl2*factor + nsl3); + } else lightprops[l] = 1; + } + } break; + + case 4 : // Gouraud Shading + case 5 : { // Phong-Shading + CImg vertices_normals(vertices._width,6,1,1,0); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) + for (int l = 0; l<(int)nb_visibles; ++l) { + const CImg& primitive = primitives[visibles(l)]; + const unsigned int psize = (unsigned int)primitive.size(); + const bool + triangle_flag = (psize==3) || (psize==9), + quadrangle_flag = (psize==4) || (psize==12); + if (triangle_flag || quadrangle_flag) { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2), + i3 = quadrangle_flag?(unsigned int)primitive(3):0; + const tpfloat + x0 = (tpfloat)vertices(i0,0), y0 = (tpfloat)vertices(i0,1), z0 = (tpfloat)vertices(i0,2), + x1 = (tpfloat)vertices(i1,0), y1 = (tpfloat)vertices(i1,1), z1 = (tpfloat)vertices(i1,2), + x2 = (tpfloat)vertices(i2,0), y2 = (tpfloat)vertices(i2,1), z2 = (tpfloat)vertices(i2,2), + dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0, + dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0, + nnx = dy1*dz2 - dz1*dy2, + nny = dz1*dx2 - dx1*dz2, + nnz = dx1*dy2 - dy1*dx2, + norm = 1e-5f + cimg::hypot(nnx,nny,nnz), + nx = nnx/norm, + ny = nny/norm, + nz = nnz/norm; + unsigned int ix = 0, iy = 1, iz = 2; + if (is_double_sided && nz>0) { ix = 3; iy = 4; iz = 5; } + vertices_normals(i0,ix)+=nx; vertices_normals(i0,iy)+=ny; vertices_normals(i0,iz)+=nz; + vertices_normals(i1,ix)+=nx; vertices_normals(i1,iy)+=ny; vertices_normals(i1,iz)+=nz; + vertices_normals(i2,ix)+=nx; vertices_normals(i2,iy)+=ny; vertices_normals(i2,iz)+=nz; + if (quadrangle_flag) { + vertices_normals(i3,ix)+=nx; vertices_normals(i3,iy)+=ny; vertices_normals(i3,iz)+=nz; + } + } + } + + if (is_double_sided) cimg_forX(vertices_normals,p) { + const float + nx0 = vertices_normals(p,0), ny0 = vertices_normals(p,1), nz0 = vertices_normals(p,2), + nx1 = vertices_normals(p,3), ny1 = vertices_normals(p,4), nz1 = vertices_normals(p,5), + n0 = nx0*nx0 + ny0*ny0 + nz0*nz0, n1 = nx1*nx1 + ny1*ny1 + nz1*nz1; + if (n1>n0) { + vertices_normals(p,0) = -nx1; + vertices_normals(p,1) = -ny1; + vertices_normals(p,2) = -nz1; + } + } + + if (render_type==4) { + lightprops.assign(vertices._width); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) + cimg_forX(lightprops,l) { + const tpfloat + nx = vertices_normals(l,0), + ny = vertices_normals(l,1), + nz = vertices_normals(l,2), + norm = 1e-5f + cimg::hypot(nx,ny,nz), + lx = X + vertices(l,0) - lightx, + ly = Y + vertices(l,1) - lighty, + lz = Z + vertices(l,2) - lightz, + nl = 1e-5f + cimg::hypot(lx,ly,lz), + factor = std::max((-lx*nx - ly*ny - lz*nz)/(norm*nl),(tpfloat)0); + lightprops[l] = factor<=nspec?factor:(nsl1*factor*factor + nsl2*factor + nsl3); + } + } else { + const unsigned int + lw2 = light_texture._width/2 - 1, + lh2 = light_texture._height/2 - 1; + lightprops.assign(vertices._width,2); + cimg_pragma_openmp(parallel for cimg_openmp_if_size(nb_visibles,4096)) + cimg_forX(lightprops,l) { + const tpfloat + nx = vertices_normals(l,0), + ny = vertices_normals(l,1), + nz = vertices_normals(l,2), + norm = 1e-5f + cimg::hypot(nx,ny,nz), + nnx = nx/norm, + nny = ny/norm; + lightprops(l,0) = lw2*(1 + nnx); + lightprops(l,1) = lh2*(1 + nny); + } + } + } break; + } + + // Draw visible primitives + const CImg default_color(1,_spectrum,1,1,(tc)200); + CImg<_to> _opacity; + + for (unsigned int l = 0; l& primitive = primitives[n_primitive]; + const CImg + &__color = n_primitive(), + _color = (__color && __color.size()!=_spectrum && __color._spectrum<_spectrum)? + __color.get_resize(-100,-100,-100,_spectrum,0):CImg(), + &color = _color?_color:(__color?__color:default_color); + const tc *const pcolor = color._data; + float opacity = __draw_object3d(opacities,n_primitive,_opacity); + if (_opacity.is_empty()) opacity*=g_opacity; + +#ifdef cimg_use_board + LibBoard::Board &board = *(LibBoard::Board*)pboard; +#endif + + switch (primitive.size()) { + case 1 : { // Colored point or sprite + const unsigned int n0 = (unsigned int)primitive[0]; + const int x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)); + + if (_opacity.is_empty()) { // Scalar opacity + + if (color.size()==_spectrum) { // Colored point + draw_point(x0,y0,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height()-(float)y0); + } +#endif + } else { // Sprite + const tpfloat z = Z + vertices(n0,2); + const float factor = focale<0?1:sprite_scale*(absfocale?absfocale/(z + absfocale):1); + const unsigned int + _sw = (unsigned int)(color._width*factor), + _sh = (unsigned int)(color._height*factor), + sw = _sw?_sw:1, sh = _sh?_sh:1; + const int nx0 = x0 - (int)sw/2, ny0 = y0 - (int)sh/2; + if (sw<=3*_width/2 && sh<=3*_height/2 && + (nx0 + (int)sw/2>=0 || nx0 - (int)sw/2=0 || ny0 - (int)sh/2 + _sprite = (sw!=color._width || sh!=color._height)? + color.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg(), + &sprite = _sprite?_sprite:color; + draw_image(nx0,ny0,sprite,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128); + board.setFillColor(LibBoard::Color::Null); + board.drawRectangle((float)nx0,height() - (float)ny0,sw,sh); + } +#endif + } + } + } else { // Opacity mask + const tpfloat z = Z + vertices(n0,2); + const float factor = focale<0?1:sprite_scale*(absfocale?absfocale/(z + absfocale):1); + const unsigned int + _sw = (unsigned int)(std::max(color._width,_opacity._width)*factor), + _sh = (unsigned int)(std::max(color._height,_opacity._height)*factor), + sw = _sw?_sw:1, sh = _sh?_sh:1; + const int nx0 = x0 - (int)sw/2, ny0 = y0 - (int)sh/2; + if (sw<=3*_width/2 && sh<=3*_height/2 && + (nx0 + (int)sw/2>=0 || nx0 - (int)sw/2=0 || ny0 - (int)sh/2 + _sprite = (sw!=color._width || sh!=color._height)? + color.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg(), + &sprite = _sprite?_sprite:color; + const CImg<_to> + _nopacity = (sw!=_opacity._width || sh!=_opacity._height)? + _opacity.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg<_to>(), + &nopacity = _nopacity?_nopacity:_opacity; + draw_image(nx0,ny0,sprite,nopacity,g_opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128); + board.setFillColor(LibBoard::Color::Null); + board.drawRectangle((float)nx0,height() - (float)ny0,sw,sh); + } +#endif + } + } + } break; + case 2 : { // Colored line + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1]; + const int + x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)), + x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale; + if (render_type) { + if (zbuffer) draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity); + else draw_line(x0,y0,x1,y1,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,x1,height() - (float)y1); + } +#endif + } else { + draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + } +#endif + } + } break; + case 5 : { // Colored sphere + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + is_wireframe = (unsigned int)primitive[2], + is_radius = (unsigned int)primitive[3]; + float Xc,Yc,Zc,radius; + if (is_radius) { + Xc = (float)vertices(n0,0); + Yc = (float)vertices(n0,1); + Zc = (float)vertices(n0,2); + radius = cimg::hypot(vertices(n1,0) - vertices(n0,0), + vertices(n1,1) - vertices(n0,1), + vertices(n1,2) - vertices(n0,2)); + } else { + Xc = 0.5f*((float)vertices(n0,0) + (float)vertices(n1,0)); + Yc = 0.5f*((float)vertices(n0,1) + (float)vertices(n1,1)); + Zc = 0.5f*((float)vertices(n0,2) + (float)vertices(n1,2)); + radius = 0.5f*cimg::hypot(vertices(n1,0) - vertices(n0,0), + vertices(n1,1) - vertices(n0,1), + vertices(n1,2) - vertices(n0,2)); + } + const float + zc = Z + Zc + _focale, + af = absfocale?absfocale/zc:1, + xc = X + Xc*af, + yc = Y + Yc*af; + radius*=af; + + switch (render_type) { + case 0 : + draw_point((int)xc,(int)yc,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot(xc,height() - yc); + } +#endif + break; + case 1 : + draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity,~0U); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.setFillColor(LibBoard::Color::Null); + board.drawCircle(xc,height() - yc,radius); + } +#endif + break; + default : + if (is_wireframe) draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity,~0U); + else draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + if (!is_wireframe) board.fillCircle(xc,height() - yc,radius); + else { + board.setFillColor(LibBoard::Color::Null); + board.drawCircle(xc,height() - yc,radius); + } + } +#endif + break; + } + } break; + case 6 : { // Textured line + if (!__color) { + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Undefined texture for line primitive [%u].", + cimg_instance,n_primitive); + } + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1]; + const int + tx0 = (int)primitive[2], ty0 = (int)primitive[3], + tx1 = (int)primitive[4], ty1 = (int)primitive[5], + x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)), + x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale; + if (render_type) { + if (zbuffer) draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity); + else draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + } +#endif + } else { + draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0, + ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity). + draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1, + ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + } +#endif + } + } break; + case 3 : { // Colored triangle + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2]; + const int + x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)), + x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)), + x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1)); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale; + switch (render_type) { + case 0 : + draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity).draw_point(x2,y2,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity).draw_line(zbuffer,x0,y0,z0,x2,y2,z2,pcolor,opacity). + draw_line(zbuffer,x1,y1,z1,x2,y2,z2,pcolor,opacity); + else + draw_line(x0,y0,x1,y1,pcolor,opacity).draw_line(x0,y0,x2,y2,pcolor,opacity). + draw_line(x1,y1,x2,y2,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x0,height() - (float)y0,(float)x2,height() - (float)y2); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + } +#endif + break; + case 2 : + if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity); + else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 3 : + if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity,lightprops(l)); + else _draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity,lightprops(l)); + +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1.f); + board.setPenColorRGBi((unsigned char)(color[0]*lp), + (unsigned char)(color[1]*lp), + (unsigned char)(color[2]*lp), + (unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 4 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor, + lightprops(n0),lightprops(n1),lightprops(n2),opacity); + else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,lightprops(n0),lightprops(n1),lightprops(n2),opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprops(n0), + (float)x1,height() - (float)y1,lightprops(n1), + (float)x2,height() - (float)y2,lightprops(n2)); + } +#endif + break; + case 5 : { + const unsigned int + lx0 = (unsigned int)cimg::uiround(lightprops(n0,0)), ly0 = (unsigned int)cimg::uiround(lightprops(n0,1)), + lx1 = (unsigned int)cimg::uiround(lightprops(n1,0)), ly1 = (unsigned int)cimg::uiround(lightprops(n1,1)), + lx2 = (unsigned int)cimg::uiround(lightprops(n2,0)), ly2 = (unsigned int)cimg::uiround(lightprops(n2,1)); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n0,0))), + (int)(light_texture.height()/2*(1 + lightprops(n0,1)))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n1,0))), + (int)(light_texture.height()/2*(1 + lightprops(n1,1)))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n2,0))), + (int)(light_texture.height()/2*(1 + lightprops(n2,1)))); + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + } +#endif + } break; + } + } break; + case 4 : { // Colored quadrangle + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2], + n3 = (unsigned int)primitive[3]; + const int + x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)), + x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)), + x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1)), + x3 = cimg::uiround(projections(n3,0)), y3 = cimg::uiround(projections(n3,1)), + xc = (x0 + x1 + x2 + x3)/4, yc = (y0 + y1 + y2 + y3)/4; + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale, + z3 = vertices(n3,2) + Z + _focale, + zc = (z0 + z1 + z2 + z3)/4; + + switch (render_type) { + case 0 : + draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity). + draw_point(x2,y2,pcolor,opacity).draw_point(x3,y3,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + board.drawDot((float)x3,height() - (float)y3); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity).draw_line(zbuffer,x1,y1,z1,x2,y2,z2,pcolor,opacity). + draw_line(zbuffer,x2,y2,z2,x3,y3,z3,pcolor,opacity).draw_line(zbuffer,x3,y3,z3,x0,y0,z0,pcolor,opacity); + else + draw_line(x0,y0,x1,y1,pcolor,opacity).draw_line(x1,y1,x2,y2,pcolor,opacity). + draw_line(x2,y2,x3,y3,pcolor,opacity).draw_line(x3,y3,x0,y0,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + board.drawLine((float)x2,height() - (float)y2,(float)x3,height() - (float)y3); + board.drawLine((float)x3,height() - (float)y3,(float)x0,height() - (float)y0); + } +#endif + break; + case 2 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,opacity); + else + draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity).draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 3 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity,lightprops(l)). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,opacity,lightprops(l)); + else + _draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity,lightprops(l)). + _draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,opacity,lightprops(l)); + +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1.f); + board.setPenColorRGBi((unsigned char)(color[0]*lp), + (unsigned char)(color[1]*lp), + (unsigned char)(color[2]*lp),(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 4 : { + const float + lightprop0 = lightprops(n0), lightprop1 = lightprops(n1), + lightprop2 = lightprops(n2), lightprop3 = lightprops(n3), + lightpropc = (lightprop0 + lightprop1 + lightprop2 + lightprop2)/4; + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,xc,yc,zc,pcolor,lightprop0,lightprop1,lightpropc,opacity). + draw_triangle(zbuffer,x1,y1,z1,x2,y2,z2,xc,yc,zc,pcolor,lightprop1,lightprop2,lightpropc,opacity). + draw_triangle(zbuffer,x2,y2,z2,x3,y3,z3,xc,yc,zc,pcolor,lightprop2,lightprop3,lightpropc,opacity). + draw_triangle(zbuffer,x3,y3,z3,x0,y0,z0,xc,yc,zc,pcolor,lightprop3,lightprop0,lightpropc,opacity); + else + draw_triangle(x0,y0,x1,y1,xc,yc,pcolor,lightprop0,lightprop1,lightpropc,opacity). + draw_triangle(x1,y1,x2,y2,xc,yc,pcolor,lightprop1,lightprop2,lightpropc,opacity). + draw_triangle(x2,y2,x3,y3,xc,yc,pcolor,lightprop2,lightprop3,lightpropc,opacity). + draw_triangle(x3,y3,x0,y0,xc,yc,pcolor,lightprop3,lightprop0,lightpropc,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0, + (float)x1,height() - (float)y1,lightprop1, + (float)x2,height() - (float)y2,lightprop2); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0, + (float)x2,height() - (float)y2,lightprop2, + (float)x3,height() - (float)y3,lightprop3); + } +#endif + } break; + case 5 : { + const unsigned int + lx0 = (unsigned int)cimg::uiround(lightprops(n0,0)), ly0 = (unsigned int)cimg::uiround(lightprops(n0,1)), + lx1 = (unsigned int)cimg::uiround(lightprops(n1,0)), ly1 = (unsigned int)cimg::uiround(lightprops(n1,1)), + lx2 = (unsigned int)cimg::uiround(lightprops(n2,0)), ly2 = (unsigned int)cimg::uiround(lightprops(n2,1)), + lx3 = (unsigned int)cimg::uiround(lightprops(n3,0)), ly3 = (unsigned int)cimg::uiround(lightprops(n3,1)), + lxc = (lx0 + lx1 + lx2 + lx3)/4, lyc = (ly0 + ly1 + ly2 + ly3)/4; + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,xc,yc,zc,pcolor,light_texture,lx0,ly0,lx1,ly1,lxc,lyc,opacity). + draw_triangle(zbuffer,x1,y1,z1,x2,y2,z2,xc,yc,zc,pcolor,light_texture,lx1,ly1,lx2,ly2,lxc,lyc,opacity). + draw_triangle(zbuffer,x2,y2,z2,x3,y3,z3,xc,yc,zc,pcolor,light_texture,lx2,ly2,lx3,ly3,lxc,lyc,opacity). + draw_triangle(zbuffer,x3,y3,z3,x0,y0,z0,xc,yc,zc,pcolor,light_texture,lx3,ly3,lx0,ly0,lxc,lyc,opacity); + else + draw_triangle(x0,y0,x1,y1,xc,yc,pcolor,light_texture,lx0,ly0,lx1,ly1,lxc,lyc,opacity). + draw_triangle(x1,y1,x2,y2,xc,yc,pcolor,light_texture,lx1,ly1,lx2,ly2,lxc,lyc,opacity). + draw_triangle(x2,y2,x3,y3,xc,yc,pcolor,light_texture,lx2,ly2,lx3,ly3,lxc,lyc,opacity). + draw_triangle(x3,y3,x0,y0,xc,yc,pcolor,light_texture,lx3,ly3,lx0,ly0,lxc,lyc,opacity); + +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lx0)), (int)(light_texture.height()/2*(1 + ly0))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lx1)), (int)(light_texture.height()/2*(1 + ly1))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lx2)), (int)(light_texture.height()/2*(1 + ly2))), + l3 = light_texture((int)(light_texture.width()/2*(1 + lx3)), (int)(light_texture.height()/2*(1 + ly3))); + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x2,height() - (float)y2,l2, + (float)x3,height() - (float)y3,l3); + } +#endif + } break; + } + } break; + case 9 : { // Textured triangle + if (!__color) { + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Undefined texture for triangle primitive [%u].", + cimg_instance,n_primitive); + } + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2]; + const int + tx0 = (int)primitive[3], ty0 = (int)primitive[4], + tx1 = (int)primitive[5], ty1 = (int)primitive[6], + tx2 = (int)primitive[7], ty2 = (int)primitive[8], + x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)), + x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)), + x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1)); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale; + switch (render_type) { + case 0 : + draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0, + ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity). + draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1, + ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity). + draw_point(x2,y2,color.get_vector_at(tx2<=0?0:tx2>=color.width()?color.width() - 1:tx2, + ty2<=0?0:ty2>=color.height()?color.height() - 1:ty2)._data,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(zbuffer,x0,y0,z0,x2,y2,z2,color,tx0,ty0,tx2,ty2,opacity). + draw_line(zbuffer,x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity); + else + draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(x0,y0,z0,x2,y2,z2,color,tx0,ty0,tx2,ty2,opacity). + draw_line(x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x0,height() - (float)y0,(float)x2,height() - (float)y2); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + } +#endif + break; + case 2 : + if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity); + else draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 3 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)); + else draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)); + +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1.f); + board.setPenColorRGBi((unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 4 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprops(n0),lightprops(n1),lightprops(n2),opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprops(n0),lightprops(n1),lightprops(n2),opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprops(n0), + (float)x1,height() - (float)y1,lightprops(n1), + (float)x2,height() - (float)y2,lightprops(n2)); + } +#endif + break; + case 5 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,light_texture, + (unsigned int)lightprops(n0,0),(unsigned int)lightprops(n0,1), + (unsigned int)lightprops(n1,0),(unsigned int)lightprops(n1,1), + (unsigned int)lightprops(n2,0),(unsigned int)lightprops(n2,1), + opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,light_texture, + (unsigned int)lightprops(n0,0),(unsigned int)lightprops(n0,1), + (unsigned int)lightprops(n1,0),(unsigned int)lightprops(n1,1), + (unsigned int)lightprops(n2,0),(unsigned int)lightprops(n2,1), + opacity); + +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n0,0))), + (int)(light_texture.height()/2*(1 + lightprops(n0,1)))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n1,0))), + (int)(light_texture.height()/2*(1 + lightprops(n1,1)))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n2,0))), + (int)(light_texture.height()/2*(1 + lightprops(n2,1)))); + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + } +#endif + break; + } + } break; + case 12 : { // Textured quadrangle + if (!__color) { + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Undefined texture for quadrangle primitive [%u].", + cimg_instance,n_primitive); + } + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2], + n3 = (unsigned int)primitive[3]; + const int + tx0 = (int)primitive[4], ty0 = (int)primitive[5], + tx1 = (int)primitive[6], ty1 = (int)primitive[7], + tx2 = (int)primitive[8], ty2 = (int)primitive[9], + tx3 = (int)primitive[10], ty3 = (int)primitive[11], + x0 = cimg::uiround(projections(n0,0)), y0 = cimg::uiround(projections(n0,1)), + x1 = cimg::uiround(projections(n1,0)), y1 = cimg::uiround(projections(n1,1)), + x2 = cimg::uiround(projections(n2,0)), y2 = cimg::uiround(projections(n2,1)), + x3 = cimg::uiround(projections(n3,0)), y3 = cimg::uiround(projections(n3,1)); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale, + z3 = vertices(n3,2) + Z + _focale; + + switch (render_type) { + case 0 : + draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0, + ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity). + draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1, + ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity). + draw_point(x2,y2,color.get_vector_at(tx2<=0?0:tx2>=color.width()?color.width() - 1:tx2, + ty2<=0?0:ty2>=color.height()?color.height() - 1:ty2)._data,opacity). + draw_point(x3,y3,color.get_vector_at(tx3<=0?0:tx3>=color.width()?color.width() - 1:tx3, + ty3<=0?0:ty3>=color.height()?color.height() - 1:ty3)._data,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + board.drawDot((float)x3,height() - (float)y3); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(zbuffer,x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity). + draw_line(zbuffer,x2,y2,z2,x3,y3,z3,color,tx2,ty2,tx3,ty3,opacity). + draw_line(zbuffer,x3,y3,z3,x0,y0,z0,color,tx3,ty3,tx0,ty0,opacity); + else + draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity). + draw_line(x2,y2,z2,x3,y3,z3,color,tx2,ty2,tx3,ty3,opacity). + draw_line(x3,y3,z3,x0,y0,z0,color,tx3,ty3,tx0,ty0,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + board.drawLine((float)x2,height() - (float)y2,(float)x3,height() - (float)y3); + board.drawLine((float)x3,height() - (float)y3,(float)x0,height() - (float)y0); + } +#endif + break; + case 2 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 3 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity,lightprops(l)); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity,lightprops(l)); + +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1.f); + board.setPenColorRGBi((unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 4 : { + const float + lightprop0 = lightprops(n0), lightprop1 = lightprops(n1), + lightprop2 = lightprops(n2), lightprop3 = lightprops(n3); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprop0,lightprop1,lightprop2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + lightprop0,lightprop2,lightprop3,opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprop0,lightprop1,lightprop2,opacity). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + lightprop0,lightprop2,lightprop3,opacity); + +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0, + (float)x1,height() - (float)y1,lightprop1, + (float)x2,height() - (float)y2,lightprop2); + board.fillGouraudTriangle((float)x0,height() -(float)y0,lightprop0, + (float)x2,height() - (float)y2,lightprop2, + (float)x3,height() - (float)y3,lightprop3); + } +#endif + } break; + case 5 : { + const unsigned int + lx0 = (unsigned int)cimg::uiround(lightprops(n0,0)), ly0 = (unsigned int)cimg::uiround(lightprops(n0,1)), + lx1 = (unsigned int)cimg::uiround(lightprops(n1,0)), ly1 = (unsigned int)cimg::uiround(lightprops(n1,1)), + lx2 = (unsigned int)cimg::uiround(lightprops(n2,0)), ly2 = (unsigned int)cimg::uiround(lightprops(n2,1)), + lx3 = (unsigned int)cimg::uiround(lightprops(n3,0)), ly3 = (unsigned int)cimg::uiround(lightprops(n3,1)); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity); +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lx0)), (int)(light_texture.height()/2*(1 + ly0))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lx1)), (int)(light_texture.height()/2*(1 + ly1))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lx2)), (int)(light_texture.height()/2*(1 + ly2))), + l3 = light_texture((int)(light_texture.width()/2*(1 + lx3)), (int)(light_texture.height()/2*(1 + ly3))); + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + board.fillGouraudTriangle((float)x0,height() -(float)y0,l0, + (float)x2,height() - (float)y2,l2, + (float)x3,height() - (float)y3,l3); + } +#endif + } break; + } + } break; + } + } + if (render_type==5) cimg::mutex(10,0); + return *this; + } + + //@} + //--------------------------- + // + //! \name Data Input + //@{ + //--------------------------- + + //! Launch simple interface to select a shape from an image. + /** + \param disp Display window to use. + \param feature_type Type of feature to select. Can be { 0=point | 1=line | 2=rectangle | 3=ellipse }. + \param XYZ Pointer to 3 values X,Y,Z which tells about the projection point coordinates, for volumetric images. + \param exit_on_anykey Exit function when any key is pressed. + **/ + CImg& select(CImgDisplay &disp, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false, + const bool is_deep_selection_default=false) { + return get_select(disp,feature_type,XYZ,exit_on_anykey,is_deep_selection_default).move_to(*this); + } + + //! Simple interface to select a shape from an image \overloading. + CImg& select(const char *const title, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false, + const bool is_deep_selection_default=false) { + return get_select(title,feature_type,XYZ,exit_on_anykey,is_deep_selection_default).move_to(*this); + } + + //! Simple interface to select a shape from an image \newinstance. + CImg get_select(CImgDisplay &disp, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false, + const bool is_deep_selection_default=false) const { + return _select(disp,0,feature_type,XYZ,0,0,0,exit_on_anykey,true,false,is_deep_selection_default); + } + + //! Simple interface to select a shape from an image \newinstance. + CImg get_select(const char *const title, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false, + const bool is_deep_selection_default=false) const { + CImgDisplay disp; + return _select(disp,title,feature_type,XYZ,0,0,0,exit_on_anykey,true,false,is_deep_selection_default); + } + + CImg _select(CImgDisplay &disp, const char *const title, + const unsigned int feature_type, unsigned int *const XYZ, + const int origX, const int origY, const int origZ, + const bool exit_on_anykey, + const bool reset_view3d, + const bool force_display_z_coord, + const bool is_deep_selection_default) const { + if (is_empty()) return CImg(1,feature_type==0?3:6,1,1,-1); + if (!disp) { + disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,1); + if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)",pixel_type(),_width,_height,_depth,_spectrum); + } else { + if (title) disp.set_title("%s",title); + disp.move_inside_screen(); + } + + CImg thumb; + if (width()>disp.screen_width() || height()>disp.screen_height()) + get_resize(cimg_fitscreen(width(),height(),depth()),depth(),-100).move_to(thumb); + + const unsigned int old_normalization = disp.normalization(); + bool old_is_resized = disp.is_resized(); + disp._normalization = 0; + disp.show().set_key(0).set_wheel().show_mouse(); + + static const unsigned char foreground_color[] = { 255,255,255 }, background_color[] = { 0,0,0 }; + int area = 0, area_started = 0, area_clicked = 0, phase = 0, + X0 = (int)((XYZ?XYZ[0]:_width/2)%_width), + Y0 = (int)((XYZ?XYZ[1]:_height/2)%_height), + Z0 = (int)((XYZ?XYZ[2]:_depth/2)%_depth), + X1 =-1, Y1 = -1, Z1 = -1, + X3d = -1, Y3d = -1, + oX3d = X3d, oY3d = -1, + omx = -1, omy = -1; + float X = -1, Y = -1, Z = -1; + unsigned int key = 0, font_size = 32; + + bool is_deep_selection = is_deep_selection_default, + shape_selected = false, text_down = false, visible_cursor = true; + static CImg pose3d; + static bool is_view3d = false, is_axes = true; + if (reset_view3d) { pose3d.assign(); is_view3d = false; } + CImg points3d, opacities3d, sel_opacities3d; + CImgList primitives3d, sel_primitives3d; + CImgList colors3d, sel_colors3d; + CImg visu, visu0, view3d; + CImg text(1024); *text = 0; + + while (!key && !disp.is_closed() && !shape_selected) { + + // Handle mouse motion and selection + int + mx = disp.mouse_x(), + my = disp.mouse_y(); + + const float + mX = mx<0?-1.f:(float)mx*(width() + (depth()>1?depth():0))/disp.width(), + mY = my<0?-1.f:(float)my*(height() + (depth()>1?depth():0))/disp.height(); + + area = 0; + if (mX>=0 && mY>=0 && mX=0 && mX=height()) { area = 2; X = mX; Z = mY - _height; Y = (float)(phase?Y1:Y0); } + if (mY>=0 && mX>=width() && mY=width() && mY>=height()) area = 4; + if (disp.button()) { if (!area_clicked) area_clicked = area; } else area_clicked = 0; + + CImg filename(32); + + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyPAGEUP : + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(1); key = 0; } break; + case cimg::keyPAGEDOWN : + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(-1); key = 0; } break; + case cimg::keyX : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + is_axes = !is_axes; disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false).resize(cimg_fitscreen(_width,_height,_depth),false)._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyV : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + is_view3d = !is_view3d; disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u." +#ifdef cimg_use_png + "png", +#else + "bmp", +#endif + snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + if (visu0) { + (+visu0).__draw_text(" Saving snapshot...",font_size,(int)text_down).display(disp); + visu0.save(filename); + (+visu0).__draw_text(" Snapshot '%s' saved. ",font_size,(int)text_down,filename._data).display(disp); + } + disp.set_key(key,false); key = 0; + } break; + case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { + +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimg",snap_number++); +#endif + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu0).__draw_text(" Saving instance... ",font_size,(int)text_down).display(disp); + save(filename); + (+visu0).__draw_text(" Instance '%s' saved. ",font_size,(int)text_down,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + } + + switch (area) { + + case 0 : // When mouse is out of image range + mx = my = -1; X = Y = Z = -1; + break; + + case 1 : case 2 : case 3 : { // When mouse is over the XY,XZ or YZ projections + const unsigned int but = disp.button(); + const bool b1 = (bool)(but&1), b2 = (bool)(but&2), b3 = (bool)(but&4); + + if (b1 && phase==1 && area_clicked==area) { // When selection has been started (1st step) + if (_depth>1 && (X1!=(int)X || Y1!=(int)Y || Z1!=(int)Z)) visu0.assign(); + X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; + } + if (!b1 && phase==2 && area_clicked!=area) { // When selection is at 2nd step (for volumes) + switch (area_started) { + case 1 : if (Z1!=(int)Z) visu0.assign(); Z1 = (int)Z; break; + case 2 : if (Y1!=(int)Y) visu0.assign(); Y1 = (int)Y; break; + case 3 : if (X1!=(int)X) visu0.assign(); X1 = (int)X; break; + } + } + if (b2 && area_clicked==area) { // When moving through the image/volume + if (phase) { + if (_depth>1 && (X1!=(int)X || Y1!=(int)Y || Z1!=(int)Z)) visu0.assign(); + X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; + } else { + if (_depth>1 && (X0!=(int)X || Y0!=(int)Y || Z0!=(int)Z)) visu0.assign(); + X0 = (int)X; Y0 = (int)Y; Z0 = (int)Z; + } + } + if (b3) { // Reset selection + X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = area = area_clicked = area_started = 0; + visu0.assign(); + } + if (disp.wheel()) { // When moving through the slices of the volume (with mouse wheel) + if (_depth>1 && !disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT() && + !disp.is_keySHIFTLEFT() && !disp.is_keySHIFTRIGHT()) { + switch (area) { + case 1 : + if (phase) Z = (float)(Z1+=disp.wheel()); else Z = (float)(Z0+=disp.wheel()); + visu0.assign(); break; + case 2 : + if (phase) Y = (float)(Y1+=disp.wheel()); else Y = (float)(Y0+=disp.wheel()); + visu0.assign(); break; + case 3 : + if (phase) X = (float)(X1+=disp.wheel()); else X = (float)(X0+=disp.wheel()); + visu0.assign(); break; + } + disp.set_wheel(); + } else key = ~0U; + } + + if ((phase==0 && b1) || + (phase==1 && !b1) || + (phase==2 && b1)) switch (phase) { // Detect change of phase + case 0 : + if (area==area_clicked) { + X0 = X1 = (int)X; Y0 = Y1 = (int)Y; Z0 = Z1 = (int)Z; area_started = area; ++phase; + } break; + case 1 : + if (area==area_started) { + X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; ++phase; + if (_depth>1) { + if (disp.is_keyCTRLLEFT()) is_deep_selection = !is_deep_selection_default; + if (is_deep_selection) ++phase; + } + } else if (!b1) { X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = 0; visu0.assign(); } + break; + case 2 : ++phase; break; + } + } break; + + case 4 : // When mouse is over the 3D view + if (is_view3d && points3d) { + X3d = mx - width()*disp.width()/(width() + (depth()>1?depth():0)); + Y3d = my - height()*disp.height()/(height() + (depth()>1?depth():0)); + if (oX3d<0) { oX3d = X3d; oY3d = Y3d; } + // Left + right buttons: reset. + if ((disp.button()&3)==3) { pose3d.assign(); view3d.assign(); oX3d = oY3d = X3d = Y3d = -1; } + else if (disp.button()&1 && pose3d && (oX3d!=X3d || oY3d!=Y3d)) { // Left button: rotate + const float + R = 0.45f*std::min(view3d._width,view3d._height), + R2 = R*R, + u0 = (float)(oX3d - view3d.width()/2), + v0 = (float)(oY3d - view3d.height()/2), + u1 = (float)(X3d - view3d.width()/2), + v1 = (float)(Y3d - view3d.height()/2), + n0 = cimg::hypot(u0,v0), + n1 = cimg::hypot(u1,v1), + nu0 = n0>R?(u0*R/n0):u0, + nv0 = n0>R?(v0*R/n0):v0, + nw0 = (float)std::sqrt(std::max(0.f,R2 - nu0*nu0 - nv0*nv0)), + nu1 = n1>R?(u1*R/n1):u1, + nv1 = n1>R?(v1*R/n1):v1, + nw1 = (float)std::sqrt(std::max(0.f,R2 - nu1*nu1 - nv1*nv1)), + u = nv0*nw1 - nw0*nv1, + v = nw0*nu1 - nu0*nw1, + w = nv0*nu1 - nu0*nv1, + n = cimg::hypot(u,v,w), + alpha = (float)std::asin(n/R2)*180/cimg::PI; + pose3d.draw_image(CImg::rotation_matrix(u,v,w,-alpha)*pose3d.get_crop(0,0,2,2)); + view3d.assign(); + } else if (disp.button()&2 && pose3d && oY3d!=Y3d) { // Right button: zoom + pose3d(3,2)+=(Y3d - oY3d)*1.5f; view3d.assign(); + } + if (disp.wheel()) { // Wheel: zoom + pose3d(3,2)-=disp.wheel()*15; view3d.assign(); disp.set_wheel(); + } + if (disp.button()&4 && pose3d && (oX3d!=X3d || oY3d!=Y3d)) { // Middle button: shift + pose3d(3,0)-=oX3d - X3d; pose3d(3,1)-=oY3d - Y3d; view3d.assign(); + } + oX3d = X3d; oY3d = Y3d; + } + mx = my = -1; X = Y = Z = -1; + break; + } + + if (phase) { + if (!feature_type) shape_selected = phase?true:false; + else { + if (_depth>1) shape_selected = (phase==3)?true:false; + else shape_selected = (phase==2)?true:false; + } + } + + if (X0<0) X0 = 0; + if (X0>=width()) X0 = width() - 1; + if (Y0<0) Y0 = 0; + if (Y0>=height()) Y0 = height() - 1; + if (Z0<0) Z0 = 0; + if (Z0>=depth()) Z0 = depth() - 1; + if (X1<1) X1 = 0; + if (X1>=width()) X1 = width() - 1; + if (Y1<0) Y1 = 0; + if (Y1>=height()) Y1 = height() - 1; + if (Z1<0) Z1 = 0; + if (Z1>=depth()) Z1 = depth() - 1; + + // Draw visualization image on the display + if (mx!=omx || my!=omy || !visu0 || (_depth>1 && !view3d)) { + + if (!visu0) { // Create image of projected planes + if (thumb) thumb._get_select(disp,old_normalization,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0).move_to(visu0); + else _get_select(disp,old_normalization,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0).move_to(visu0); + visu0.resize(disp); + view3d.assign(); + points3d.assign(); + } + + if (is_view3d && _depth>1 && !view3d) { // Create 3D view for volumetric images + const unsigned int + _x3d = (unsigned int)cimg::round((float)_width*visu0._width/(_width + _depth),1,1), + _y3d = (unsigned int)cimg::round((float)_height*visu0._height/(_height + _depth),1,1), + x3d = _x3d>=visu0._width?visu0._width - 1:_x3d, + y3d = _y3d>=visu0._height?visu0._height - 1:_y3d; + CImg(1,2,1,1,64,128).resize(visu0._width - x3d,visu0._height - y3d,1,visu0._spectrum,3). + move_to(view3d); + if (!points3d) { + get_projections3d(primitives3d,colors3d,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0,true).move_to(points3d); + points3d.append(CImg(8,3,1,1, + 0,_width - 1,_width - 1,0,0,_width - 1,_width - 1,0, + 0,0,_height - 1,_height - 1,0,0,_height - 1,_height - 1, + 0,0,0,0,_depth - 1,_depth - 1,_depth - 1,_depth - 1),'x'); + CImg::vector(12,13).move_to(primitives3d); CImg::vector(13,14).move_to(primitives3d); + CImg::vector(14,15).move_to(primitives3d); CImg::vector(15,12).move_to(primitives3d); + CImg::vector(16,17).move_to(primitives3d); CImg::vector(17,18).move_to(primitives3d); + CImg::vector(18,19).move_to(primitives3d); CImg::vector(19,16).move_to(primitives3d); + CImg::vector(12,16).move_to(primitives3d); CImg::vector(13,17).move_to(primitives3d); + CImg::vector(14,18).move_to(primitives3d); CImg::vector(15,19).move_to(primitives3d); + colors3d.insert(12,CImg::vector(255,255,255)); + opacities3d.assign(primitives3d.width(),1,1,1,0.5f); + if (!phase) { + opacities3d[0] = opacities3d[1] = opacities3d[2] = 0.8f; + sel_primitives3d.assign(); + sel_colors3d.assign(); + sel_opacities3d.assign(); + } else { + if (feature_type==2) { + points3d.append(CImg(8,3,1,1, + X0,X1,X1,X0,X0,X1,X1,X0, + Y0,Y0,Y1,Y1,Y0,Y0,Y1,Y1, + Z0,Z0,Z0,Z0,Z1,Z1,Z1,Z1),'x'); + sel_primitives3d.assign(); + CImg::vector(20,21).move_to(sel_primitives3d); + CImg::vector(21,22).move_to(sel_primitives3d); + CImg::vector(22,23).move_to(sel_primitives3d); + CImg::vector(23,20).move_to(sel_primitives3d); + CImg::vector(24,25).move_to(sel_primitives3d); + CImg::vector(25,26).move_to(sel_primitives3d); + CImg::vector(26,27).move_to(sel_primitives3d); + CImg::vector(27,24).move_to(sel_primitives3d); + CImg::vector(20,24).move_to(sel_primitives3d); + CImg::vector(21,25).move_to(sel_primitives3d); + CImg::vector(22,26).move_to(sel_primitives3d); + CImg::vector(23,27).move_to(sel_primitives3d); + } else { + points3d.append(CImg(2,3,1,1, + X0,X1, + Y0,Y1, + Z0,Z1),'x'); + sel_primitives3d.assign(CImg::vector(20,21)); + } + sel_colors3d.assign(sel_primitives3d._width,CImg::vector(255,255,255)); + sel_opacities3d.assign(sel_primitives3d._width,1,1,1,0.8f); + } + points3d.shift_object3d(-0.5f*(_width - 1),-0.5f*(_height - 1),-0.5f*(_depth - 1)).resize_object3d(); + points3d*=0.75f*std::min(view3d._width,view3d._height); + } + + if (!pose3d) CImg(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0).move_to(pose3d); + CImg zbuffer3d(view3d._width,view3d._height,1,1,0); + const CImg rotated_points3d = pose3d.get_crop(0,0,2,2)*points3d; + if (sel_primitives3d) + view3d.draw_object3d(pose3d(3,0) + 0.5f*view3d._width, + pose3d(3,1) + 0.5f*view3d._height, + pose3d(3,2), + rotated_points3d,sel_primitives3d,sel_colors3d,sel_opacities3d, + 2,true,500,0,0,0,0,0,1,zbuffer3d); + view3d.draw_object3d(pose3d(3,0) + 0.5f*view3d._width, + pose3d(3,1) + 0.5f*view3d._height, + pose3d(3,2), + rotated_points3d,primitives3d,colors3d,opacities3d, + 2,true,500,0,0,0,0,0,1,zbuffer3d); + visu0.draw_image(x3d,y3d,view3d); + } + visu = visu0; + + if (X<0 || Y<0 || Z<0) { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; }} + else { + if (is_axes) { if (visible_cursor) { disp.hide_mouse(); visible_cursor = false; }} + else { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; }} + const int d = (depth()>1)?depth():0; + int _vX = (int)X, _vY = (int)Y, _vZ = (int)Z; + if (phase>=2) { _vX = X1; _vY = Y1; _vZ = Z1; } + int + w = disp.width(), W = width() + d, + h = disp.height(), H = height() + d, + _xp = (int)(_vX*(float)w/W), xp = _xp + ((int)(_xp*(float)W/w)!=_vX), + _yp = (int)(_vY*(float)h/H), yp = _yp + ((int)(_yp*(float)H/h)!=_vY), + _xn = (int)((_vX + 1.f)*w/W - 1), xn = _xn + ((int)((_xn + 1.f)*W/w)!=_vX + 1), + _yn = (int)((_vY + 1.f)*h/H - 1), yn = _yn + ((int)((_yn + 1.f)*H/h)!=_vY + 1), + _zxp = (int)((_vZ + width())*(float)w/W), zxp = _zxp + ((int)(_zxp*(float)W/w)!=_vZ + width()), + _zyp = (int)((_vZ + height())*(float)h/H), zyp = _zyp + ((int)(_zyp*(float)H/h)!=_vZ + height()), + _zxn = (int)((_vZ + width() + 1.f)*w/W - 1), + zxn = _zxn + ((int)((_zxn + 1.f)*W/w)!=_vZ + width() + 1), + _zyn = (int)((_vZ + height() + 1.f)*h/H - 1), + zyn = _zyn + ((int)((_zyn + 1.f)*H/h)!=_vZ + height() + 1), + _xM = (int)(width()*(float)w/W - 1), xM = _xM + ((int)((_xM + 1.f)*W/w)!=width()), + _yM = (int)(height()*(float)h/H - 1), yM = _yM + ((int)((_yM + 1.f)*H/h)!=height()), + xc = (xp + xn)/2, + yc = (yp + yn)/2, + zxc = (zxp + zxn)/2, + zyc = (zyp + zyn)/2, + xf = (int)(X*w/W), + yf = (int)(Y*h/H), + zxf = (int)((Z + width())*w/W), + zyf = (int)((Z + height())*h/H); + + if (is_axes) { // Draw axes + visu.draw_line(0,yf,visu.width() - 1,yf,foreground_color,0.7f,0xFF00FF00). + draw_line(0,yf,visu.width() - 1,yf,background_color,0.7f,0x00FF00FF). + draw_line(xf,0,xf,visu.height() - 1,foreground_color,0.7f,0xFF00FF00). + draw_line(xf,0,xf,visu.height() - 1,background_color,0.7f,0x00FF00FF); + if (_depth>1) + visu.draw_line(zxf,0,zxf,yM,foreground_color,0.7f,0xFF00FF00). + draw_line(zxf,0,zxf,yM,background_color,0.7f,0x00FF00FF). + draw_line(0,zyf,xM,zyf,foreground_color,0.7f,0xFF00FF00). + draw_line(0,zyf,xM,zyf,background_color,0.7f,0x00FF00FF); + } + + // Draw box cursor. + if (xn - xp>=4 && yn - yp>=4) + visu.draw_rectangle(xp,yp,xn,yn,foreground_color,0.2f). + draw_rectangle(xp,yp,xn,yn,foreground_color,1,0xAAAAAAAA). + draw_rectangle(xp,yp,xn,yn,background_color,1,0x55555555); + if (_depth>1) { + if (yn - yp>=4 && zxn - zxp>=4) + visu.draw_rectangle(zxp,yp,zxn,yn,background_color,0.2f). + draw_rectangle(zxp,yp,zxn,yn,foreground_color,1,0xAAAAAAAA). + draw_rectangle(zxp,yp,zxn,yn,background_color,1,0x55555555); + if (xn - xp>=4 && zyn - zyp>=4) + visu.draw_rectangle(xp,zyp,xn,zyn,background_color,0.2f). + draw_rectangle(xp,zyp,xn,zyn,foreground_color,1,0xAAAAAAAA). + draw_rectangle(xp,zyp,xn,zyn,background_color,1,0x55555555); + } + + // Draw selection. + if (phase && (phase!=1 || area_started==area)) { + const int + _xp0 = (int)(X0*(float)w/W), xp0 = _xp0 + ((int)(_xp0*(float)W/w)!=X0), + _yp0 = (int)(Y0*(float)h/H), yp0 = _yp0 + ((int)(_yp0*(float)H/h)!=Y0), + _xn0 = (int)((X0 + 1.f)*w/W - 1), xn0 = _xn0 + ((int)((_xn0 + 1.f)*W/w)!=X0 + 1), + _yn0 = (int)((Y0 + 1.f)*h/H - 1), yn0 = _yn0 + ((int)((_yn0 + 1.f)*H/h)!=Y0 + 1), + _zxp0 = (int)((Z0 + width())*(float)w/W), zxp0 = _zxp0 + ((int)(_zxp0*(float)W/w)!=Z0 + width()), + _zyp0 = (int)((Z0 + height())*(float)h/H), zyp0 = _zyp0 + ((int)(_zyp0*(float)H/h)!=Z0 + height()), + _zxn0 = (int)((Z0 + width() + 1.f)*w/W - 1), + zxn0 = _zxn0 + ((int)((_zxn0 + 1.f)*W/w)!=Z0 + width() + 1), + _zyn0 = (int)((Z0 + height() + 1.f)*h/H - 1), + zyn0 = _zyn0 + ((int)((_zyn0 + 1.f)*H/h)!=Z0 + height() + 1), + xc0 = (xp0 + xn0)/2, + yc0 = (yp0 + yn0)/2, + zxc0 = (zxp0 + zxn0)/2, + zyc0 = (zyp0 + zyn0)/2; + + switch (feature_type) { + case 1 : { // Vector + visu.draw_arrow(xc0,yc0,xc,yc,background_color,0.9f,30,5,0x33333333). + draw_arrow(xc0,yc0,xc,yc,foreground_color,0.9f,30,5,0xCCCCCCCC); + if (d) { + visu.draw_arrow(zxc0,yc0,zxc,yc,background_color,0.9f,30,5,0x33333333). + draw_arrow(zxc0,yc0,zxc,yc,foreground_color,0.9f,30,5,0xCCCCCCCC). + draw_arrow(xc0,zyc0,xc,zyc,background_color,0.9f,30,5,0x33333333). + draw_arrow(xc0,zyc0,xc,zyc,foreground_color,0.9f,30,5,0xCCCCCCCC); + } + } break; + case 2 : { // Box + visu.draw_rectangle(X0=0 && my<13) text_down = true; else if (my>=visu.height() - 13) text_down = false; + if (!feature_type || !phase) { + if (X>=0 && Y>=0 && Z>=0 && X1 || force_display_z_coord) + cimg_snprintf(text,text._width," Point (%d,%d,%d) = [ ",origX + (int)X,origY + (int)Y,origZ + (int)Z); + else cimg_snprintf(text,text._width," Point (%d,%d) = [ ",origX + (int)X,origY + (int)Y); + CImg values = get_vector_at((int)X,(int)Y,(int)Z); + const bool is_large_spectrum = values._height>8; + if (is_large_spectrum) + values.draw_image(0,4,values.get_rows(values._height - 4,values._height - 1)).resize(1,8,1,1,0); + char *ctext = text._data + std::strlen(text), *const ltext = text._data + 512; + for (unsigned int c = 0; c::format_s(), + cimg::type::format(values[c])); + ctext += std::strlen(ctext); + if (c==3 && is_large_spectrum) { + cimg_snprintf(ctext,24," ..."); + ctext += std::strlen(ctext); + } + *(ctext++) = ' '; *ctext = 0; + } + std::strcpy(text._data + std::strlen(text),"] "); + } + } else switch (feature_type) { + case 1 : { + const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1), + length = cimg::round(cimg::hypot(dX,dY,dZ),0.1); + if (_depth>1 || force_display_z_coord) + cimg_snprintf(text,text._width," Vect (%d,%d,%d)-(%d,%d,%d), Length = %g ", + origX + X0,origY + Y0,origZ + Z0,origX + X1,origY + Y1,origZ + Z1,length); + else if (_width!=1 && _height!=1) + cimg_snprintf(text,text._width," Vect (%d,%d)-(%d,%d), Length = %g, Angle = %g\260 ", + origX + X0,origY + Y0,origX + X1,origY + Y1,length, + cimg::round(cimg::mod(180*std::atan2(-dY,-dX)/cimg::PI,360.),0.1)); + else + cimg_snprintf(text,text._width," Vect (%d,%d)-(%d,%d), Length = %g ", + origX + X0,origY + Y0,origX + X1,origY + Y1,length); + } break; + case 2 : { + const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1), + length = cimg::round(cimg::hypot(dX,dY,dZ),0.1); + if (_depth>1 || force_display_z_coord) + cimg_snprintf(text,text._width, + " Box ( %d,%d,%d ) - ( %d,%d,%d )\n Size = ( %d,%d,%d ), Length = %g ", + origX + (X01 || force_display_z_coord) + cimg_snprintf(text,text._width," Ellipse ( %d,%d,%d ) - ( %d,%d,%d ), Radii = ( %d,%d,%d ) ", + origX + X0,origY + Y0,origZ + Z0,origX + X1,origY + Y1,origZ + Z1, + 1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1),1 + cimg::abs(Z0 - Z1)); + else cimg_snprintf(text,text._width," Ellipse ( %d,%d ) - ( %d,%d ), Radii = ( %d,%d ) ", + origX + X0,origY + Y0,origX + X1,origY + Y1, + 1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1)); + } + if (phase || (mx>=0 && my>=0)) visu.__draw_text("%s",font_size,(int)text_down,text._data); + } + + disp.display(visu); + } + if (!shape_selected) disp.wait(); + if (disp.is_resized()) { disp.resize(false)._is_resized = false; old_is_resized = true; visu0.assign(); } + omx = mx; omy = my; + if (!exit_on_anykey && key && key!=cimg::keyESC && + (key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + key = 0; + } + } + + // Return result. + CImg res(1,feature_type==0?3:6,1,1,-1); + if (XYZ) { XYZ[0] = (unsigned int)X0; XYZ[1] = (unsigned int)Y0; XYZ[2] = (unsigned int)Z0; } + if (shape_selected) { + if (feature_type==2) { + if (is_deep_selection) switch (area_started) { + case 1 : Z0 = 0; Z1 = _depth - 1; break; + case 2 : Y0 = 0; Y1 = _height - 1; break; + case 3 : X0 = 0; X1 = _width - 1; break; + } + if (X0>X1) cimg::swap(X0,X1); + if (Y0>Y1) cimg::swap(Y0,Y1); + if (Z0>Z1) cimg::swap(Z0,Z1); + } + if (X1<0 || Y1<0 || Z1<0) X0 = Y0 = Z0 = X1 = Y1 = Z1 = -1; + switch (feature_type) { + case 1 : case 2 : res[0] = X0; res[1] = Y0; res[2] = Z0; res[3] = X1; res[4] = Y1; res[5] = Z1; break; + case 3 : + res[3] = cimg::abs(X1 - X0); res[4] = cimg::abs(Y1 - Y0); res[5] = cimg::abs(Z1 - Z0); + res[0] = X0; res[1] = Y0; res[2] = Z0; + break; + default : res[0] = X0; res[1] = Y0; res[2] = Z0; + } + } + if (!exit_on_anykey || !(disp.button()&4)) disp.set_button(); + if (!visible_cursor) disp.show_mouse(); + disp._normalization = old_normalization; + disp._is_resized = old_is_resized; + if (key!=~0U) disp.set_key(key); + return res; + } + + // Return a visualizable 'uchar8' image for display routines. + CImg _get_select(const CImgDisplay& disp, const int normalization, + const int x, const int y, const int z) const { + if (is_empty()) return CImg(1,1,1,1,0); + const CImg crop = get_shared_channels(0,std::min(2,spectrum() - 1)); + CImg img2d; + if (_depth>1) { + const int mdisp = std::min(disp.screen_width(),disp.screen_height()); + if (depth()>mdisp) { + crop.get_resize(-100,-100,mdisp,-100,0).move_to(img2d); + img2d.projections2d(x,y,z*img2d._depth/_depth); + } else crop.get_projections2d(x,y,z).move_to(img2d); + } else CImg(crop,false).move_to(img2d); + + // Check for inf and NaN values. + if (cimg::type::is_float() && normalization) { + bool is_inf = false, is_nan = false; + cimg_for(img2d,ptr,Tuchar) + if (cimg::type::is_inf(*ptr)) { is_inf = true; break; } + else if (cimg::type::is_nan(*ptr)) { is_nan = true; break; } + if (is_inf || is_nan) { + Tint m0 = (Tint)cimg::type::max(), M0 = (Tint)cimg::type::min(); + if (!normalization) { m0 = 0; M0 = 255; } + else if (normalization==2) { m0 = (Tint)disp._min; M0 = (Tint)disp._max; } + else { + cimg_for(img2d,ptr,Tuchar) + if (!cimg::type::is_inf(*ptr) && !cimg::type::is_nan(*ptr)) { + if (*ptr<(Tuchar)m0) m0 = *ptr; + if (*ptr>(Tuchar)M0) M0 = *ptr; + } + } + const T + val_minf = (T)(normalization==1 || normalization==3?m0 - cimg::abs(m0):m0), + val_pinf = (T)(normalization==1 || normalization==3?M0 + cimg::abs(M0):M0); + if (is_nan) + cimg_for(img2d,ptr,Tuchar) + if (cimg::type::is_nan(*ptr)) *ptr = val_minf; // Replace NaN values + if (is_inf) + cimg_for(img2d,ptr,Tuchar) + if (cimg::type::is_inf(*ptr)) *ptr = (float)*ptr<0?val_minf:val_pinf; // Replace +-inf values + } + } + + switch (normalization) { + case 1 : img2d.normalize((ucharT)0,(ucharT)255); break; + case 2 : { + const float m = disp._min, M = disp._max; + (img2d-=m)*=255.f/(M - m>0?M - m:1); + } break; + case 3 : + if (cimg::type::is_float()) img2d.normalize((ucharT)0,(ucharT)255); + else { + const float + m = (float)cimg::type::min(), + M = (float)cimg::type::max(); + (img2d-=m)*=255.f/(M - m>0?M - m:1); + } break; + } + if (img2d.spectrum()==2) img2d.channels(0,2); + return img2d; + } + + //! Select sub-graph in a graph. + CImg get_select_graph(CImgDisplay &disp, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "select_graph(): Empty instance.", + cimg_instance); + if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width()/2,CImgDisplay::screen_height()/2,1),0,0). + set_title("CImg<%s>",pixel_type()); + const ulongT siz = (ulongT)_width*_height*_depth; + const unsigned int old_normalization = disp.normalization(); + disp.show().set_button().set_wheel()._normalization = 0; + + double nymin = ymin, nymax = ymax, nxmin = xmin, nxmax = xmax; + if (nymin==nymax) { nymin = (Tfloat)min_max(nymax); const double dy = nymax - nymin; nymin-=dy/20; nymax+=dy/20; } + if (nymin==nymax) { --nymin; ++nymax; } + if (nxmin==nxmax && nxmin==0) { nxmin = 0; nxmax = siz - 1.; } + + static const unsigned char black[] = { 0, 0, 0 }, white[] = { 255, 255, 255 }, gray[] = { 220, 220, 220 }; + static const unsigned char gray2[] = { 110, 110, 110 }, ngray[] = { 35, 35, 35 }; + + CImg colormap(3,_spectrum); + if (_spectrum==1) { colormap[0] = colormap[1] = 120; colormap[2] = 200; } + else { + colormap(0,0) = 220; colormap(1,0) = 10; colormap(2,0) = 10; + if (_spectrum>1) { colormap(0,1) = 10; colormap(1,1) = 220; colormap(2,1) = 10; } + if (_spectrum>2) { colormap(0,2) = 10; colormap(1,2) = 10; colormap(2,2) = 220; } + if (_spectrum>3) { colormap(0,3) = 220; colormap(1,3) = 220; colormap(2,3) = 10; } + if (_spectrum>4) { colormap(0,4) = 220; colormap(1,4) = 10; colormap(2,4) = 220; } + if (_spectrum>5) { colormap(0,5) = 10; colormap(1,5) = 220; colormap(2,5) = 220; } + if (_spectrum>6) { + cimg_uint64 rng = 10; + cimg_for_inY(colormap,6,colormap.height()-1,k) { + colormap(0,k) = (unsigned char)(120 + cimg::rand(-100.f,100.f,&rng)); + colormap(1,k) = (unsigned char)(120 + cimg::rand(-100.f,100.f,&rng)); + colormap(2,k) = (unsigned char)(120 + cimg::rand(-100.f,100.f,&rng)); + } + } + } + + CImg visu0, visu, graph, text, axes; + int x0 = -1, x1 = -1, y0 = -1, y1 = -1, omouse_x = -2, omouse_y = -2; + const unsigned int one = plot_type==3?0U:1U; + unsigned int okey = 0, obutton = 0, font_size = 32; + CImg message(1024); + CImg_3x3(I,unsigned char); + + for (bool selected = false; !selected && !disp.is_closed() && !okey && !disp.wheel(); ) { + const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y(); + const unsigned int key = disp.key(), button = disp.button(); + + // Generate graph representation. + if (!visu0) { + visu0.assign(disp.width(),disp.height(),1,3,220); + const int gdimx = disp.width() - 32, gdimy = disp.height() - 32; + if (gdimx>0 && gdimy>0) { + graph.assign(gdimx,gdimy,1,3,255); + if (siz<32) { + if (siz>1) graph.draw_grid(gdimx/(float)(siz - one),gdimy/(float)(siz - one),0,0, + false,true,black,0.2f,0x33333333,0x33333333); + } else graph.draw_grid(-10,-10,0,0,false,true,black,0.2f,0x33333333,0x33333333); + cimg_forC(*this,c) + graph.draw_graph(get_shared_channel(c),&colormap(0,c),(plot_type!=3 || _spectrum==1)?1:0.6f, + plot_type,vertex_type,nymax,nymin); + + axes.assign(gdimx,gdimy,1,1,0); + const float + dx = (float)cimg::abs(nxmax - nxmin), dy = (float)cimg::abs(nymax - nymin), + px = (float)std::pow(10.,(int)std::log10(dx?dx:1) - 2.), + py = (float)std::pow(10.,(int)std::log10(dy?dy:1) - 2.); + const CImg + seqx = dx<=0?CImg::vector(nxmin): + CImg::sequence(1 + gdimx/60,nxmin,one?nxmax:nxmin + (nxmax - nxmin)*(siz + 1)/siz), + seqy = CImg::sequence(1 + gdimy/60,nymax,nymin); + + const bool allow_zero = (nxmin*nxmax>0) || (nymin*nymax>0); + axes.draw_axes(seqx,seqy,white,1,~0U,~0U,13,allow_zero,px,py); + if (nymin>0) axes.draw_axis(seqx,gdimy - 1,gray,1,~0U,13,allow_zero,px); + if (nymax<0) axes.draw_axis(seqx,0,gray,1,~0U,13,allow_zero,px); + if (nxmin>0) axes.draw_axis(0,seqy,gray,1,~0U,13,allow_zero,py); + if (nxmax<0) axes.draw_axis(gdimx - 1,seqy,gray,1,~0U,13,allow_zero,py); + + cimg_for3x3(axes,x,y,0,0,I,unsigned char) + if (Icc) { + if (Icc==255) cimg_forC(graph,c) graph(x,y,c) = 0; + else cimg_forC(graph,c) graph(x,y,c) = (unsigned char)(2*graph(x,y,c)/3); + } + else if (Ipc || Inc || Icp || Icn || Ipp || Inn || Ipn || Inp) + cimg_forC(graph,c) graph(x,y,c) = (unsigned char)((graph(x,y,c) + 511)/3); + + visu0.draw_image(16,16,graph); + visu0.draw_line(15,15,16 + gdimx,15,gray2).draw_line(16 + gdimx,15,16 + gdimx,16 + gdimy,gray2). + draw_line(16 + gdimx,16 + gdimy,15,16 + gdimy,white).draw_line(15,16 + gdimy,15,15,white); + } else graph.assign(); + text.assign().draw_text(0,0,labelx?labelx:"X-axis",white,ngray,1,13).resize(-100,-100,1,3); + visu0.draw_image((visu0.width() - text.width())/2,visu0.height() - 14,~text); + text.assign().draw_text(0,0,labely?labely:"Y-axis",white,ngray,1,13).rotate(-90).resize(-100,-100,1,3); + visu0.draw_image(1,(visu0.height() - text.height())/2,~text); + visu.assign(); + } + + // Generate and display current view. + if (!visu) { + visu.assign(visu0); + if (graph && x0>=0 && x1>=0) { + const int + nx0 = x0<=x1?x0:x1, + nx1 = x0<=x1?x1:x0, + ny0 = y0<=y1?y0:y1, + ny1 = y0<=y1?y1:y0, + sx0 = (int)(16 + nx0*(visu.width() - 32)/std::max((ulongT)1,siz - one)), + sx1 = (int)(15 + (nx1 + 1)*(visu.width() - 32)/std::max((ulongT)1,siz - one)), + sy0 = 16 + ny0, + sy1 = 16 + ny1; + if (y0>=0 && y1>=0) + visu.draw_rectangle(sx0,sy0,sx1,sy1,gray,0.5f).draw_rectangle(sx0,sy0,sx1,sy1,black,0.5f,0xCCCCCCCCU); + else visu.draw_rectangle(sx0,0,sx1,visu.height() - 17,gray,0.5f). + draw_line(sx0,16,sx0,visu.height() - 17,black,0.5f,0xCCCCCCCCU). + draw_line(sx1,16,sx1,visu.height() - 17,black,0.5f,0xCCCCCCCCU); + } + if (mouse_x>=16 && mouse_y>=16 && mouse_x=7) + cimg_snprintf(message,message._width,"Value[%u:%g] = ( %g %g %g ... %g %g %g )",x,cx, + (double)(*this)(x,0,0,0),(double)(*this)(x,0,0,1),(double)(*this)(x,0,0,2), + (double)(*this)(x,0,0,_spectrum - 4),(double)(*this)(x,0,0,_spectrum - 3), + (double)(*this)(x,0,0,_spectrum - 1)); + else { + cimg_snprintf(message,message._width,"Value[%u:%g] = ( ",x,cx); + unsigned int len = (unsigned int)std::strlen(message); + cimg_forC(*this,c) + cimg_snprintf(message._data + len,message._width - len,"%g ",(double)(*this)(x,0,0,c)); + len = (unsigned int)std::strlen(message); + cimg_snprintf(message._data + len,message._width - len,")"); + } + if (x0>=0 && x1>=0) { + const unsigned int + nx0 = (unsigned int)(x0<=x1?x0:x1), + nx1 = (unsigned int)(x0<=x1?x1:x0), + ny0 = (unsigned int)(y0<=y1?y0:y1), + ny1 = (unsigned int)(y0<=y1?y1:y0), + len = (unsigned int)std::strlen(message); + const double + cx0 = nxmin + nx0*(nxmax - nxmin)/std::max((ulongT)1,siz - 1), + cx1 = nxmin + (nx1 + one)*(nxmax - nxmin)/std::max((ulongT)1,siz - 1), + cy0 = nymax - ny0*(nymax - nymin)/(visu._height - 32), + cy1 = nymax - ny1*(nymax - nymin)/(visu._height - 32); + if (y0>=0 && y1>=0) + cimg_snprintf(message._data + len,message._width - len," - Range ( %u:%g, %g ) - ( %u:%g, %g )", + x0,cx0,cy0,x1 + one,cx1,cy1); + else + cimg_snprintf(message._data + len,message._width - len," - Range [ %u:%g - %u:%g ]", + x0,cx0,x1 + one,cx1); + } + text.assign().draw_text(0,0,message,white,ngray,1,13).resize(-100,-100,1,3); + visu.draw_image((visu.width() - text.width())/2,1,~text); + } + visu.display(disp); + } + + // Test keys. + CImg filename(32); + switch (okey = key) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : case cimg::keySHIFTRIGHT : +#endif + case cimg::keyCTRLLEFT : case cimg::keySHIFTLEFT : okey = 0; break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(CImgDisplay::screen_width()/2, + CImgDisplay::screen_height()/2,1),false)._is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + if (visu || visu0) { + CImg &screen = visu?visu:visu0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u." +#ifdef cimg_use_png + "png", +#else + "bmp", +#endif + snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+screen).__draw_text(" Saving snapshot... ",font_size,0).display(disp); + screen.save(filename); + (+screen).__draw_text(" Snapshot '%s' saved. ",font_size,0,filename._data).display(disp); + } + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + if (visu || visu0) { + CImg &screen = visu?visu:visu0; + std::FILE *file; + do { + +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimg",snap_number++); +#endif + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+screen).__draw_text(" Saving instance... ",font_size,0).display(disp); + save(filename); + (+screen).__draw_text(" Instance '%s' saved. ",font_size,0,filename._data).display(disp); + } + disp.set_key(key,false); okey = 0; + } break; + } + + // Handle mouse motion and mouse buttons. + if (obutton!=button || omouse_x!=mouse_x || omouse_y!=mouse_y) { + visu.assign(); + if (disp.mouse_x()>=0 && disp.mouse_y()>=0) { + const int + mx = (mouse_x - 16)*(int)(siz - one)/(disp.width() - 32), + cx = cimg::cut(mx,0,(int)(siz - 1 - one)), + my = mouse_y - 16, + cy = cimg::cut(my,0,disp.height() - 32); + if (button&1) { + if (!obutton) { x0 = cx; y0 = -1; } else { x1 = cx; y1 = -1; } + } + else if (button&2) { + if (!obutton) { x0 = cx; y0 = cy; } else { x1 = cx; y1 = cy; } + } + else if (obutton) { x1 = x1>=0?cx:-1; y1 = y1>=0?cy:-1; selected = true; } + } else if (!button && obutton) selected = true; + obutton = button; omouse_x = mouse_x; omouse_y = mouse_y; + } + if (disp.is_resized()) { disp.resize(false); visu0.assign(); } + if (visu && visu0) disp.wait(); + if (!exit_on_anykey && okey && okey!=cimg::keyESC && + (okey!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + disp.set_key(key,false); + okey = 0; + } + } + + disp._normalization = old_normalization; + if (x1>=0 && x1(4,1,1,1,x0,y0,x1>=0?x1 + (int)one:-1,y1); + } + + //! Load image from a file. + /** + \param filename Filename, as a C-string. + \note The extension of \c filename defines the file format. If no filename + extension is provided, CImg::get_load() will try to load the file as a .cimg or .cimgz file. + **/ + CImg& load(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load(): Specified filename is (null).", + cimg_instance); + + if (!cimg::strncasecmp(filename,"http://",7) || !cimg::strncasecmp(filename,"https://",8)) { + CImg filename_local(256); + load(cimg::load_network(filename,filename_local)); + std::remove(filename_local); + return *this; + } + + const char *const ext = cimg::split_filename(filename); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + bool is_loaded = true; + try { +#ifdef cimg_load_plugin + cimg_load_plugin(filename); +#endif +#ifdef cimg_load_plugin1 + cimg_load_plugin1(filename); +#endif +#ifdef cimg_load_plugin2 + cimg_load_plugin2(filename); +#endif +#ifdef cimg_load_plugin3 + cimg_load_plugin3(filename); +#endif +#ifdef cimg_load_plugin4 + cimg_load_plugin4(filename); +#endif +#ifdef cimg_load_plugin5 + cimg_load_plugin5(filename); +#endif +#ifdef cimg_load_plugin6 + cimg_load_plugin6(filename); +#endif +#ifdef cimg_load_plugin7 + cimg_load_plugin7(filename); +#endif +#ifdef cimg_load_plugin8 + cimg_load_plugin8(filename); +#endif + // Text formats + if (!cimg::strcasecmp(ext,"asc")) load_ascii(filename); + else if (!cimg::strcasecmp(ext,"csv") || + !cimg::strcasecmp(ext,"dlm") || + !cimg::strcasecmp(ext,"txt")) load_dlm(filename); + else if (!cimg::strcasecmp(ext,"pdf")) load_pdf_external(filename); + + // 2D binary formats + else if (!cimg::strcasecmp(ext,"bmp")) load_bmp(filename); + else if (!cimg::strcasecmp(ext,"jpg") || + !cimg::strcasecmp(ext,"jpeg") || + !cimg::strcasecmp(ext,"jpe") || + !cimg::strcasecmp(ext,"jfif") || + !cimg::strcasecmp(ext,"jif")) load_jpeg(filename); + else if (!cimg::strcasecmp(ext,"png")) load_png(filename); + else if (!cimg::strcasecmp(ext,"ppm") || + !cimg::strcasecmp(ext,"pgm") || + !cimg::strcasecmp(ext,"pnm") || + !cimg::strcasecmp(ext,"pbm") || + !cimg::strcasecmp(ext,"pnk")) load_pnm(filename); + else if (!cimg::strcasecmp(ext,"pfm")) load_pfm(filename); + else if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) load_tiff(filename); + else if (!cimg::strcasecmp(ext,"exr")) load_exr(filename); + else if (!cimg::strcasecmp(ext,"arw") || + !cimg::strcasecmp(ext,"cr2") || + !cimg::strcasecmp(ext,"crw") || + !cimg::strcasecmp(ext,"dcr") || + !cimg::strcasecmp(ext,"dng") || + !cimg::strcasecmp(ext,"mrw") || + !cimg::strcasecmp(ext,"nef") || + !cimg::strcasecmp(ext,"orf") || + !cimg::strcasecmp(ext,"pix") || + !cimg::strcasecmp(ext,"ptx") || + !cimg::strcasecmp(ext,"raf") || + !cimg::strcasecmp(ext,"srf")) load_dcraw_external(filename); + else if (!cimg::strcasecmp(ext,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(ext,"heic") || + !cimg::strcasecmp(ext,"avif")) load_heif(filename); + + // 3D binary formats + else if (!cimg::strcasecmp(ext,"dcm") || + !cimg::strcasecmp(ext,"dicom")) load_medcon_external(filename); + else if (!cimg::strcasecmp(ext,"hdr") || + !cimg::strcasecmp(ext,"nii")) load_analyze(filename); + else if (!cimg::strcasecmp(ext,"par") || + !cimg::strcasecmp(ext,"rec")) load_parrec(filename); + else if (!cimg::strcasecmp(ext,"mnc")) load_minc2(filename); + else if (!cimg::strcasecmp(ext,"inr")) load_inr(filename); + else if (!cimg::strcasecmp(ext,"pan")) load_pandore(filename); + else if (!cimg::strcasecmp(ext,"cimg") || + !cimg::strcasecmp(ext,"cimgz") || + !*ext) return load_cimg(filename); + + // Archive files + else if (!cimg::strcasecmp(ext,"gz")) load_gzip_external(filename); + + // Image sequences + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"webm") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) load_video(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + + // If nothing loaded, try to guess file format from magic number in file. + if (!is_loaded) { + std::FILE *file = cimg::std_fopen(filename,"rb"); + if (!file) { + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load(): Failed to open file '%s'.", + cimg_instance, + filename); + } + + const char *const f_type = cimg::ftype(file,filename); + cimg::fclose(file); + is_loaded = true; + try { + if (!cimg::strcasecmp(f_type,"pnm")) load_pnm(filename); + else if (!cimg::strcasecmp(f_type,"pfm")) load_pfm(filename); + else if (!cimg::strcasecmp(f_type,"bmp")) load_bmp(filename); + else if (!cimg::strcasecmp(f_type,"inr")) load_inr(filename); + else if (!cimg::strcasecmp(f_type,"jpg")) load_jpeg(filename); + else if (!cimg::strcasecmp(f_type,"pan")) load_pandore(filename); + else if (!cimg::strcasecmp(f_type,"png")) load_png(filename); + else if (!cimg::strcasecmp(f_type,"tif")) load_tiff(filename); + else if (!cimg::strcasecmp(f_type,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(f_type,"dcm")) load_medcon_external(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + } + + // If nothing loaded, try to load file with other means. + if (!is_loaded) { + try { + load_other(filename); + } catch (CImgIOException&) { + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load(): Failed to recognize format of file '%s'.", + cimg_instance, + filename); + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load image from a file \newinstance. + static CImg get_load(const char *const filename) { + return CImg().load(filename); + } + + //! Load image from an ascii file. + /** + \param filename Filename, as a C -string. + **/ + CImg& load_ascii(const char *const filename) { + return _load_ascii(0,filename); + } + + //! Load image from an ascii file \inplace. + static CImg get_load_ascii(const char *const filename) { + return CImg().load_ascii(filename); + } + + //! Load image from an ascii file \overloading. + CImg& load_ascii(std::FILE *const file) { + return _load_ascii(file,0); + } + + //! Loadimage from an ascii file \newinstance. + static CImg get_load_ascii(std::FILE *const file) { + return CImg().load_ascii(file); + } + + CImg& _load_ascii(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_ascii(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg line(256); *line = 0; + int err = std::fscanf(nfile,"%255[^\n]",line._data); + unsigned int dx = 0, dy = 1, dz = 1, dc = 1; + cimg_sscanf(line,"%u%*c%u%*c%u%*c%u",&dx,&dy,&dz,&dc); + err = std::fscanf(nfile,"%*[^0-9.eEinfa+-]"); + if (!dx || !dy || !dz || !dc) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_ascii(): Invalid ascii header in file '%s', image dimensions are set " + "to (%u,%u,%u,%u).", + cimg_instance, + filename?filename:"(FILE*)",dx,dy,dz,dc); + } + assign(dx,dy,dz,dc); + const ulongT siz = size(); + ulongT off = 0; + double val; + T *ptr = _data; + for (err = 1, off = 0; off& load_dlm(const char *const filename) { + return _load_dlm(0,filename); + } + + //! Load image from a DLM file \newinstance. + static CImg get_load_dlm(const char *const filename) { + return CImg().load_dlm(filename); + } + + //! Load image from a DLM file \overloading. + CImg& load_dlm(std::FILE *const file) { + return _load_dlm(file,0); + } + + //! Load image from a DLM file \newinstance. + static CImg get_load_dlm(std::FILE *const file) { + return CImg().load_dlm(file); + } + + CImg& _load_dlm(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_dlm(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"r"); + CImg delimiter(256), tmp(256); *delimiter = *tmp = 0; + unsigned int cdx = 0, dx = 0, dy = 0; + int err = 0; + double val; + assign(256,256,1,1,(T)0); + while ((err = std::fscanf(nfile,"%lf%255[^0-9eEinfa.+-]",&val,delimiter._data))>0) { + if (err>0) (*this)(cdx++,dy) = (T)val; + if (cdx>=_width) resize(3*_width/2,_height,1,1,0); + char c = 0; + if (!cimg_sscanf(delimiter,"%255[^\n]%c",tmp._data,&c) || c=='\n') { + dx = std::max(cdx,dx); + if (++dy>=_height) resize(_width,3*_height/2,1,1,0); + cdx = 0; + } + } + if (cdx && err==1) { dx = cdx; ++dy; } + if (!dx || !dy) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_dlm(): Invalid DLM file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + resize(dx,dy,1,1,0); + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a BMP file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_bmp(const char *const filename) { + return _load_bmp(0,filename); + } + + //! Load image from a BMP file \newinstance. + static CImg get_load_bmp(const char *const filename) { + return CImg().load_bmp(filename); + } + + //! Load image from a BMP file \overloading. + CImg& load_bmp(std::FILE *const file) { + return _load_bmp(file,0); + } + + //! Load image from a BMP file \newinstance. + static CImg get_load_bmp(std::FILE *const file) { + return CImg().load_bmp(file); + } + + CImg& _load_bmp(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_bmp(): Specified filename is (null).", + cimg_instance); + + const ulongT fsiz = (ulongT)(file?cimg::fsize(file):cimg::fsize(filename)); + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg header(54); + cimg::fread(header._data,54,nfile); + if (*header!='B' || header[1]!='M') { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_bmp(): Invalid BMP file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + + // Read header and pixel buffer + int + file_size = header[0x02] + (header[0x03]<<8) + (header[0x04]<<16) + (header[0x05]<<24), + offset = header[0x0A] + (header[0x0B]<<8) + (header[0x0C]<<16) + (header[0x0D]<<24), + header_size = header[0x0E] + (header[0x0F]<<8) + (header[0x10]<<16) + (header[0x11]<<24), + dx = header[0x12] + (header[0x13]<<8) + (header[0x14]<<16) + (header[0x15]<<24), + dy = header[0x16] + (header[0x17]<<8) + (header[0x18]<<16) + (header[0x19]<<24), + compression = header[0x1E] + (header[0x1F]<<8) + (header[0x20]<<16) + (header[0x21]<<24), + nb_colors = header[0x2E] + (header[0x2F]<<8) + (header[0x30]<<16) + (header[0x31]<<24), + bpp = header[0x1C] + (header[0x1D]<<8); + + if ((ulongT)file_size!=fsiz) + throw CImgIOException(_cimg_instance + "load_bmp(): Invalid file_size %d specified in filename '%s' (expected %lu).", + cimg_instance, + file_size,filename?filename:"(FILE*)",fsiz); + + if (header_size<0 || header_size>=file_size) + throw CImgIOException(_cimg_instance + "load_bmp(): Invalid header size %d specified in filename '%s'.", + cimg_instance, + header_size,filename?filename:"(FILE*)"); + + if (offset<0 || offset>=file_size) + throw CImgIOException(_cimg_instance + "load_bmp(): Invalid offset %d specified in filename '%s'.", + cimg_instance, + offset,filename?filename:"(FILE*)"); + + if (header_size>40) cimg::fseek(nfile,header_size - 40,SEEK_CUR); + const int + dx_bytes = (bpp==1)?(dx/8 + (dx%8?1:0)):((bpp==4)?(dx/2 + (dx%2)):(int)((longT)dx*bpp/8)), + align_bytes = (4 - dx_bytes%4)%4; + const ulongT + cimg_iobuffer = (ulongT)24*1024*1024, + buf_size = (ulongT)cimg::abs(dy)*(dx_bytes + align_bytes); + + if (buf_size>=fsiz) + throw CImgIOException(_cimg_instance + "load_bmp(): File size %lu for filename '%s' does not match " + "encoded image dimensions (%d,%d).", + cimg_instance, + (long)fsiz,filename?filename:"(FILE*)",dx,dy); + + CImg colormap; + if (bpp<16) { if (!nb_colors) nb_colors = 1<=file_size) + throw CImgIOException(_cimg_instance + "load_bmp(): Malformed header in filename '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + cimg::fseek(nfile,xoffset,SEEK_CUR); + + CImg buffer; + if (buf_size=2) for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break; + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + unsigned char mask = 0x80, val = 0; + cimg_forX(*this,x) { + if (mask==0x80) val = *(ptrs++); + const unsigned char *col = (unsigned char*)(colormap._data + (val&mask?1:0)); + (*this)(x,y,2) = (T)*(col++); + (*this)(x,y,1) = (T)*(col++); + (*this)(x,y,0) = (T)*(col++); + mask = cimg::ror(mask); + } + ptrs+=align_bytes; + } + } break; + case 4 : { // 16 colors + if (colormap._width>=16) for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break; + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + unsigned char mask = 0xF0, val = 0; + cimg_forX(*this,x) { + if (mask==0xF0) val = *(ptrs++); + const unsigned char color = (unsigned char)((mask<16)?(val&mask):((val&mask)>>4)); + const unsigned char *col = (unsigned char*)(colormap._data + color); + (*this)(x,y,2) = (T)*(col++); + (*this)(x,y,1) = (T)*(col++); + (*this)(x,y,0) = (T)*(col++); + mask = cimg::ror(mask,4); + } + ptrs+=align_bytes; + } + } break; + case 8 : { // 256 colors + if (colormap._width>=256) for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break; + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + const unsigned char *col = (unsigned char*)(colormap._data + *(ptrs++)); + (*this)(x,y,2) = (T)*(col++); + (*this)(x,y,1) = (T)*(col++); + (*this)(x,y,0) = (T)*(col++); + } + ptrs+=align_bytes; + } + } break; + case 16 : { // 16 bits colors (RGB565) + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break; + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + const unsigned char c1 = *(ptrs++), c2 = *(ptrs++); + const unsigned short col = (unsigned short)c2<<8 | c1; + (*this)(x,y,2) = (T)((col&0x1F)<<3); + (*this)(x,y,1) = (T)(((col>>5)&0x3F)<<3); + (*this)(x,y,0) = (T)(((col>>11)&0x1F)<<3); + } + ptrs+=align_bytes; + } + } break; + case 24 : { // 24 bits colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break; + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + (*this)(x,y,2) = (T)*(ptrs++); + (*this)(x,y,1) = (T)*(ptrs++); + (*this)(x,y,0) = (T)*(ptrs++); + } + ptrs+=align_bytes; + } + } break; + case 32 : { // 32 bits colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + if (!cimg::fread(ptrs=buffer._data,dx_bytes,nfile)) break; + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + (*this)(x,y,2) = (T)*(ptrs++); + (*this)(x,y,1) = (T)*(ptrs++); + (*this)(x,y,0) = (T)*(ptrs++); + ++ptrs; + } + ptrs+=align_bytes; + } + } break; + } + if (dy<0) mirror('y'); + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a JPEG file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_jpeg(const char *const filename) { + return _load_jpeg(0,filename); + } + + //! Load image from a JPEG file \newinstance. + static CImg get_load_jpeg(const char *const filename) { + return CImg().load_jpeg(filename); + } + + //! Load image from a JPEG file \overloading. + CImg& load_jpeg(std::FILE *const file) { + return _load_jpeg(file,0); + } + + //! Load image from a JPEG file \newinstance. + static CImg get_load_jpeg(std::FILE *const file) { + return CImg().load_jpeg(file); + } + + // Custom error handler for libjpeg. +#ifdef cimg_use_jpeg + struct _cimg_error_mgr { + struct jpeg_error_mgr original; + jmp_buf setjmp_buffer; + char message[JMSG_LENGTH_MAX]; + }; + + typedef struct _cimg_error_mgr *_cimg_error_ptr; + + METHODDEF(void) _cimg_jpeg_error_exit(j_common_ptr cinfo) { + _cimg_error_ptr c_err = (_cimg_error_ptr) cinfo->err; // Return control to the setjmp point + (*cinfo->err->format_message)(cinfo,c_err->message); + jpeg_destroy(cinfo); // Clean memory and temp files + longjmp(c_err->setjmp_buffer,1); + } +#endif + + CImg& _load_jpeg(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_jpeg(): Specified filename is (null).", + cimg_instance); + +#ifndef cimg_use_jpeg + if (file) + throw CImgIOException(_cimg_instance + "load_jpeg(): Unable to load data from '(FILE*)' unless libjpeg is enabled.", + cimg_instance); + else return load_other(filename); +#else + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + struct jpeg_decompress_struct cinfo; + struct _cimg_error_mgr jerr; + cinfo.err = jpeg_std_error(&jerr.original); + jerr.original.error_exit = _cimg_jpeg_error_exit; + if (setjmp(jerr.setjmp_buffer)) { // JPEG error + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_jpeg(): Error message returned by libjpeg: %s.", + cimg_instance,jerr.message); + } + + jpeg_create_decompress(&cinfo); + jpeg_stdio_src(&cinfo,nfile); + jpeg_read_header(&cinfo,TRUE); + jpeg_start_decompress(&cinfo); + + if (cinfo.output_components!=1 && cinfo.output_components!=3 && cinfo.output_components!=4) { + if (!file) { + cimg::fclose(nfile); + return load_other(filename); + } else + throw CImgIOException(_cimg_instance + "load_jpeg(): Failed to load JPEG data from file '%s'.", + cimg_instance,filename?filename:"(FILE*)"); + } + CImg buffer(cinfo.output_width*cinfo.output_components); + JSAMPROW row_pointer[1]; + try { assign(cinfo.output_width,cinfo.output_height,1,cinfo.output_components); } + catch (...) { if (!file) cimg::fclose(nfile); throw; } + T *ptr_r = _data, *ptr_g = _data + 1UL*_width*_height, *ptr_b = _data + 2UL*_width*_height, + *ptr_a = _data + 3UL*_width*_height; + while (cinfo.output_scanline + // This is experimental code, not much tested, use with care. + CImg& load_magick(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_magick(): Specified filename is (null).", + cimg_instance); + +#ifdef cimg_use_magick + Magick::Image image(filename); + const unsigned int W = image.size().width(), H = image.size().height(); + switch (image.type()) { + case Magick::PaletteMatteType : + case Magick::TrueColorMatteType : + case Magick::ColorSeparationType : { + assign(W,H,1,4); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + *(ptr_g++) = (T)(pixels->green); + *(ptr_b++) = (T)(pixels->blue); + *(ptr_a++) = (T)(pixels->opacity); + ++pixels; + } + } break; + case Magick::PaletteType : + case Magick::TrueColorType : { + assign(W,H,1,3); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + *(ptr_g++) = (T)(pixels->green); + *(ptr_b++) = (T)(pixels->blue); + ++pixels; + } + } break; + case Magick::GrayscaleMatteType : { + assign(W,H,1,2); + T *ptr_r = data(0,0,0,0), *ptr_a = data(0,0,0,1); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + *(ptr_a++) = (T)(pixels->opacity); + ++pixels; + } + } break; + default : { + assign(W,H,1,1); + T *ptr_r = data(0,0,0,0); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + ++pixels; + } + } + } + return *this; +#else + throw CImgIOException(_cimg_instance + "load_magick(): Unable to load file '%s' unless libMagick++ is enabled.", + cimg_instance, + filename); +#endif + } + + //! Load image from a file, using Magick++ library \newinstance. + static CImg get_load_magick(const char *const filename) { + return CImg().load_magick(filename); + } + + //! Load image from a PNG file. + /** + \param filename Filename, as a C-string. + \param[out] bits_per_value Number of bits used to store a scalar value in the image file. + **/ + CImg& load_png(const char *const filename, unsigned int *const bits_per_value=0) { + return _load_png(0,filename,bits_per_value); + } + + //! Load image from a PNG file \newinstance. + static CImg get_load_png(const char *const filename, unsigned int *const bits_per_value=0) { + return CImg().load_png(filename,bits_per_value); + } + + //! Load image from a PNG file \overloading. + CImg& load_png(std::FILE *const file, unsigned int *const bits_per_value=0) { + return _load_png(file,0,bits_per_value); + } + + //! Load image from a PNG file \newinstance. + static CImg get_load_png(std::FILE *const file, unsigned int *const bits_per_value=0) { + return CImg().load_png(file,bits_per_value); + } + + // (Note: Most of this function has been written by Eric Fausett) + CImg& _load_png(std::FILE *const file, const char *const filename, unsigned int *const bits_per_value) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_png(): Specified filename is (null).", + cimg_instance); + +#ifndef cimg_use_png + cimg::unused(bits_per_value); + if (file) + throw CImgIOException(_cimg_instance + "load_png(): Unable to load data from '(FILE*)' unless libpng is enabled.", + cimg_instance); + + else return load_other(filename); +#else + // Open file and check for PNG validity +#if defined __GNUC__ + const char *volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning + std::FILE *volatile nfile = file?file:cimg::fopen(nfilename,"rb"); +#else + const char *nfilename = filename; + std::FILE *nfile = file?file:cimg::fopen(nfilename,"rb"); +#endif + unsigned char pngCheck[8] = {}; + cimg::fread(pngCheck,8,(std::FILE*)nfile); + if (png_sig_cmp(pngCheck,0,8)) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_png(): Invalid PNG file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + + // Setup PNG structures for read + png_voidp user_error_ptr = 0; + png_error_ptr user_error_fn = 0, user_warning_fn = 0; + png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING,user_error_ptr,user_error_fn,user_warning_fn); + if (!png_ptr) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_png(): Failed to initialize 'png_ptr' structure for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_infop info_ptr = png_create_info_struct(png_ptr); + if (!info_ptr) { + if (!file) cimg::fclose(nfile); + png_destroy_read_struct(&png_ptr,(png_infopp)0,(png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Failed to initialize 'info_ptr' structure for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_infop end_info = png_create_info_struct(png_ptr); + if (!end_info) { + if (!file) cimg::fclose(nfile); + png_destroy_read_struct(&png_ptr,&info_ptr,(png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Failed to initialize 'end_info' structure for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + + // Error handling callback for png file reading + if (setjmp(png_jmpbuf(png_ptr))) { + if (!file) cimg::fclose((std::FILE*)nfile); + png_destroy_read_struct(&png_ptr, &end_info, (png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Encountered unknown fatal error in libpng for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_init_io(png_ptr, nfile); + png_set_sig_bytes(png_ptr, 8); + + // Get PNG Header Info up to data block + png_read_info(png_ptr,info_ptr); + png_uint_32 W, H; + int bit_depth, color_type, interlace_type; + bool is_gray = false; + png_get_IHDR(png_ptr,info_ptr,&W,&H,&bit_depth,&color_type,&interlace_type,(int*)0,(int*)0); + png_set_interlace_handling(png_ptr); + if (bits_per_value) *bits_per_value = (unsigned int)bit_depth; + + // Transforms to unify image data + if (color_type==PNG_COLOR_TYPE_PALETTE) { + png_set_palette_to_rgb(png_ptr); + color_type = PNG_COLOR_TYPE_RGB; + bit_depth = 8; + } + if (color_type==PNG_COLOR_TYPE_GRAY && bit_depth<8) { + png_set_expand_gray_1_2_4_to_8(png_ptr); + is_gray = true; + bit_depth = 8; + } + if (png_get_valid(png_ptr,info_ptr,PNG_INFO_tRNS)) { + png_set_tRNS_to_alpha(png_ptr); + color_type |= PNG_COLOR_MASK_ALPHA; + } + if (color_type==PNG_COLOR_TYPE_GRAY || color_type==PNG_COLOR_TYPE_GRAY_ALPHA) { + png_set_gray_to_rgb(png_ptr); + color_type |= PNG_COLOR_MASK_COLOR; + is_gray = true; + } + if (color_type==PNG_COLOR_TYPE_RGB) + png_set_filler(png_ptr,0xffffU,PNG_FILLER_AFTER); + + png_read_update_info(png_ptr,info_ptr); + if (bit_depth!=8 && bit_depth!=16) { + if (!file) cimg::fclose(nfile); + png_destroy_read_struct(&png_ptr,&end_info,(png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Invalid bit depth %u in file '%s'.", + cimg_instance, + bit_depth,nfilename?nfilename:"(FILE*)"); + } + const int byte_depth = bit_depth>>3; + + // Allocate memory for image reading + png_bytep *const imgData = new png_bytep[H]; + for (unsigned int row = 0; row& load_pnm(const char *const filename) { + return _load_pnm(0,filename); + } + + //! Load image from a PNM file \newinstance. + static CImg get_load_pnm(const char *const filename) { + return CImg().load_pnm(filename); + } + + //! Load image from a PNM file \overloading. + CImg& load_pnm(std::FILE *const file) { + return _load_pnm(file,0); + } + + //! Load image from a PNM file \newinstance. + static CImg get_load_pnm(std::FILE *const file) { + return CImg().load_pnm(file); + } + + CImg& _load_pnm(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_pnm(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + unsigned int ppm_type, W, H, D = 1, colormax = 255; + CImg item(16384,1,1,1,0); + int err, rval, gval, bval; + const longT cimg_iobuffer = (longT)24*1024*1024; + while ((err=std::fscanf(nfile,"%16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item," P%u",&ppm_type)!=1) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pnm(): PNM header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if ((err=cimg_sscanf(item," %u %u %u %u",&W,&H,&D,&colormax))<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pnm(): WIDTH and HEIGHT fields undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + if (ppm_type!=1 && ppm_type!=4) { + if (err==2 || (err==3 && (ppm_type==5 || ppm_type==7 || ppm_type==8 || ppm_type==9))) { + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item,"%u",&colormax)!=1) + cimg::warn(_cimg_instance + "load_pnm(): COLORMAX field is undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } else { colormax = D; D = 1; } + } + std::fgetc(nfile); + + if (filename) { // Check that dimensions specified in file does not exceed the buffer dimension + const cimg_int64 siz = cimg::fsize(filename); + if (W*H*D>siz) + throw CImgIOException(_cimg_instance + "load_pnm(): Specified image dimensions in file '%s' exceed file size.", + cimg_instance, + filename); + } + + switch (ppm_type) { + case 1 : { // 2D B&W ascii + assign(W,H,1,1); + T* ptrd = _data; + cimg_foroff(*this,off) { if (std::fscanf(nfile,"%d",&rval)>0) *(ptrd++) = (T)(rval?0:255); else break; } + } break; + case 2 : { // 2D grey ascii + assign(W,H,1,1); + T* ptrd = _data; + cimg_foroff(*this,off) { if (std::fscanf(nfile,"%d",&rval)>0) *(ptrd++) = (T)rval; else break; } + } break; + case 3 : { // 2D color ascii + assign(W,H,1,3); + T *ptrd = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + cimg_forXY(*this,x,y) { + if (std::fscanf(nfile,"%d %d %d",&rval,&gval,&bval)==3) { + *(ptrd++) = (T)rval; *(ptr_g++) = (T)gval; *(ptr_b++) = (T)bval; + } else break; + } + } break; + case 4 : { // 2D b&w binary (support 3D PINK extension) + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + unsigned int w = 0, h = 0, d = 0; + for (longT to_read = (longT)((W/8 + (W%8?1:0))*H*D); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + unsigned char mask = 0, val = 0; + for (ulongT off = (ulongT)raw._width; off || mask; mask>>=1) { + if (!mask) { if (off--) val = *(ptrs++); mask = 128; } + *(ptrd++) = (T)((val&mask)?0:255); + if (++w==W) { w = 0; mask = 0; if (++h==H) { h = 0; if (++d==D) break; }} + } + } + } break; + case 5 : case 7 : { // 2D/3D grey binary (support 3D PINK extension) + if (colormax<256) { // 8 bits + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } else { // 16 bits + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer/2)); + cimg::fread(raw._data,raw._width,nfile); + if (!cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); + to_read-=raw._width; + const unsigned short *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } + } break; + case 6 : { // 2D color binary + if (colormax<256) { // 8 bits + CImg raw; + assign(W,H,1,3); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width/3; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } else { // 16 bits + CImg raw; + assign(W,H,1,3); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer/2)); + cimg::fread(raw._data,raw._width,nfile); + if (!cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); + to_read-=raw._width; + const unsigned short *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width/3; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } + } break; + case 8 : { // 2D/3D grey binary with int32 integers (PINK extension) + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const int *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } break; + case 9 : { // 2D/3D grey binary with float values (PINK extension) + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const float *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } break; + default : + assign(); + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pnm(): PNM type 'P%d' found, but type is not supported.", + cimg_instance, + filename?filename:"(FILE*)",ppm_type); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a PFM file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_pfm(const char *const filename) { + return _load_pfm(0,filename); + } + + //! Load image from a PFM file \newinstance. + static CImg get_load_pfm(const char *const filename) { + return CImg().load_pfm(filename); + } + + //! Load image from a PFM file \overloading. + CImg& load_pfm(std::FILE *const file) { + return _load_pfm(file,0); + } + + //! Load image from a PFM file \newinstance. + static CImg get_load_pfm(std::FILE *const file) { + return CImg().load_pfm(file); + } + + CImg& _load_pfm(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_pfm(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + char pfm_type; + CImg item(16384,1,1,1,0); + int W = 0, H = 0, err = 0; + double scale = 0; + while ((err=std::fscanf(nfile,"%16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item," P%c",&pfm_type)!=1) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pfm(): PFM header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if ((err=cimg_sscanf(item," %d %d",&W,&H))<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pfm(): WIDTH and HEIGHT fields are undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } else if (W<=0 || H<=0) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pfm(): WIDTH (%d) and HEIGHT (%d) fields are invalid in file '%s'.", + cimg_instance,W,H, + filename?filename:"(FILE*)"); + } + if (err==2) { + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item,"%lf",&scale)!=1) + cimg::warn(_cimg_instance + "load_pfm(): SCALE field is undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + std::fgetc(nfile); + const bool is_color = (pfm_type=='F'), is_inverted = (scale>0)!=cimg::endianness(); + if (is_color) { + assign(W,H,1,3,(T)0); + CImg buf(3*W); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + cimg_forY(*this,y) { + cimg::fread(buf._data,3*W,nfile); + if (is_inverted) cimg::invert_endianness(buf._data,3*W); + const float *ptrs = buf._data; + cimg_forX(*this,x) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } else { + assign(W,H,1,1,(T)0); + CImg buf(W); + T *ptrd = data(0,0,0,0); + cimg_forY(*this,y) { + cimg::fread(buf._data,W,nfile); + if (is_inverted) cimg::invert_endianness(buf._data,W); + const float *ptrs = buf._data; + cimg_forX(*this,x) *(ptrd++) = (T)*(ptrs++); + } + } + if (!file) cimg::fclose(nfile); + return mirror('y'); // Most of the .pfm files are flipped along the y-axis + } + + //! Load image from a RGB file. + /** + \param filename Filename, as a C-string. + \param dimw Width of the image buffer. + \param dimh Height of the image buffer. + **/ + CImg& load_rgb(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgb(0,filename,dimw,dimh); + } + + //! Load image from a RGB file \newinstance. + static CImg get_load_rgb(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgb(filename,dimw,dimh); + } + + //! Load image from a RGB file \overloading. + CImg& load_rgb(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgb(file,0,dimw,dimh); + } + + //! Load image from a RGB file \newinstance. + static CImg get_load_rgb(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgb(file,dimw,dimh); + } + + CImg& _load_rgb(std::FILE *const file, const char *const filename, + const unsigned int dimw, const unsigned int dimh) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_rgb(): Specified filename is (null).", + cimg_instance); + + if (!dimw || !dimh) return assign(); + const longT cimg_iobuffer = (longT)24*1024*1024; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg raw; + assign(dimw,dimh,1,3); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = raw._width/3UL; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a RGBA file. + /** + \param filename Filename, as a C-string. + \param dimw Width of the image buffer. + \param dimh Height of the image buffer. + **/ + CImg& load_rgba(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgba(0,filename,dimw,dimh); + } + + //! Load image from a RGBA file \newinstance. + static CImg get_load_rgba(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgba(filename,dimw,dimh); + } + + //! Load image from a RGBA file \overloading. + CImg& load_rgba(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgba(file,0,dimw,dimh); + } + + //! Load image from a RGBA file \newinstance. + static CImg get_load_rgba(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgba(file,dimw,dimh); + } + + CImg& _load_rgba(std::FILE *const file, const char *const filename, + const unsigned int dimw, const unsigned int dimh) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_rgba(): Specified filename is (null).", + cimg_instance); + + if (!dimw || !dimh) return assign(); + const longT cimg_iobuffer = (longT)24*1024*1024; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg raw; + assign(dimw,dimh,1,4); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2), + *ptr_a = data(0,0,0,3); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = raw._width/4UL; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + *(ptr_a++) = (T)*(ptrs++); + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a TIFF file. + /** + \param filename Filename, as a C-string. + \param first_frame First frame to read (for multi-pages tiff). + \param last_frame Last frame to read (for multi-pages tiff). + \param step_frame Step value of frame reading. + \param[out] bits_per_value Number of bits used to store a scalar value in the image file. + \param[out] voxel_size Voxel size, as stored in the filename. + \param[out] description Description, as stored in the filename. + \note + - libtiff support is enabled by defining the precompilation + directive \c cimg_use_tiff. + - When libtiff is enabled, 2D and 3D (multipage) several + channel per pixel are supported for + char,uchar,short,ushort,float and \c double pixel types. + - If \c cimg_use_tiff is not defined at compile time the + function uses CImg& load_other(const char*). + **/ + CImg& load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, unsigned int *const bits_per_value=0, + float *const voxel_size=0, CImg *const description=0) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_tiff(): Specified filename is (null).", + cimg_instance); + + const unsigned int + nfirst_frame = first_frame1) + throw CImgArgumentException(_cimg_instance + "load_tiff(): Unable to read sub-images from file '%s' unless libtiff is enabled.", + cimg_instance, + filename); + return load_other(filename); +#else +#if cimg_verbosity<3 + TIFFSetWarningHandler(0); + TIFFSetErrorHandler(0); +#endif + TIFF *tif = TIFFOpen(filename,"r"); + if (tif) { + unsigned int nb_images = 0; + do ++nb_images; while (TIFFReadDirectory(tif)); + if (nfirst_frame>=nb_images || (nlast_frame!=~0U && nlast_frame>=nb_images)) + cimg::warn(_cimg_instance + "load_tiff(): File '%s' contains %u image(s) while specified frame range is [%u,%u] (step %u).", + cimg_instance, + filename,nb_images,nfirst_frame,nlast_frame,nstep_frame); + + if (nfirst_frame>=nb_images) return assign(); + if (nlast_frame>=nb_images) nlast_frame = nb_images - 1; + TIFFSetDirectory(tif,0); + CImg frame; + for (unsigned int l = nfirst_frame; l<=nlast_frame; l+=nstep_frame) { + frame._load_tiff(tif,l,bits_per_value,voxel_size,description); + if (l==nfirst_frame) + assign(frame._width,frame._height,1 + (nlast_frame - nfirst_frame)/nstep_frame,frame._spectrum); + if (frame._width>_width || frame._height>_height || frame._spectrum>_spectrum) + resize(std::max(frame._width,_width), + std::max(frame._height,_height),-100, + std::max(frame._spectrum,_spectrum),0); + draw_image(0,0,(l - nfirst_frame)/nstep_frame,frame); + } + TIFFClose(tif); + } else throw CImgIOException(_cimg_instance + "load_tiff(): Failed to open file '%s'.", + cimg_instance, + filename); + return *this; +#endif + } + + //! Load image from a TIFF file \newinstance. + static CImg get_load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, unsigned int *const bits_per_value=0, + float *const voxel_size=0, CImg *const description=0) { + return CImg().load_tiff(filename,first_frame,last_frame,step_frame,bits_per_value,voxel_size,description); + } + + // (Original contribution by Jerome Boulanger). +#ifdef cimg_use_tiff + template + void _load_tiff_tiled_contig(TIFF *const tif, const cimg_uint16 samplesperpixel, + const cimg_uint32 nx, const cimg_uint32 ny, + const cimg_uint32 tw, const cimg_uint32 th) { + t *const buf = (t*)_TIFFmalloc(TIFFTileSize(tif)); + if (buf) { + for (unsigned int row = 0; row + void _load_tiff_tiled_separate(TIFF *const tif, const cimg_uint16 samplesperpixel, + const cimg_uint32 nx, const cimg_uint32 ny, + const cimg_uint32 tw, const cimg_uint32 th) { + t *const buf = (t*)_TIFFmalloc(TIFFTileSize(tif)); + if (buf) { + for (unsigned int vv = 0; vv + void _load_tiff_contig(TIFF *const tif, const cimg_uint16 samplesperpixel, + const cimg_uint32 nx, const cimg_uint32 ny) { + t *const buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); + if (buf) { + cimg_uint32 row, rowsperstrip = (cimg_uint32)-1; + TIFFGetField(tif,TIFFTAG_ROWSPERSTRIP,&rowsperstrip); + for (row = 0; rowny?ny - row:rowsperstrip); + tstrip_t strip = TIFFComputeStrip(tif, row, 0); + if ((TIFFReadEncodedStrip(tif,strip,buf,-1))<0) { + _TIFFfree(buf); TIFFClose(tif); + throw CImgIOException(_cimg_instance + "load_tiff(): Invalid strip in file '%s'.", + cimg_instance, + TIFFFileName(tif)); + } + const t *ptr = buf; + for (unsigned int rr = 0; rr + void _load_tiff_separate(TIFF *const tif, const cimg_uint16 samplesperpixel, + const cimg_uint32 nx, const cimg_uint32 ny) { + t *buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); + if (buf) { + cimg_uint32 row, rowsperstrip = (cimg_uint32)-1; + TIFFGetField(tif,TIFFTAG_ROWSPERSTRIP,&rowsperstrip); + for (unsigned int vv = 0; vvny?ny - row:rowsperstrip); + tstrip_t strip = TIFFComputeStrip(tif, row, vv); + if ((TIFFReadEncodedStrip(tif,strip,buf,-1))<0) { + _TIFFfree(buf); TIFFClose(tif); + throw CImgIOException(_cimg_instance + "load_tiff(): Invalid strip in file '%s'.", + cimg_instance, + TIFFFileName(tif)); + } + const t *ptr = buf; + for (unsigned int rr = 0;rr& _load_tiff(TIFF *const tif, const unsigned int directory, unsigned int *const bits_per_value, + float *const voxel_size, CImg *const description) { + if (!TIFFSetDirectory(tif,directory)) return assign(); + cimg_uint16 samplesperpixel = 1, bitspersample = 8, photo = 0; + cimg_uint16 sampleformat = 1; + cimg_uint32 nx = 1, ny = 1; + const char *const filename = TIFFFileName(tif); + const bool is_spp = (bool)TIFFGetField(tif,TIFFTAG_SAMPLESPERPIXEL,&samplesperpixel); + TIFFGetField(tif,TIFFTAG_IMAGEWIDTH,&nx); + TIFFGetField(tif,TIFFTAG_IMAGELENGTH,&ny); + TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &sampleformat); + TIFFGetFieldDefaulted(tif,TIFFTAG_BITSPERSAMPLE,&bitspersample); + TIFFGetField(tif,TIFFTAG_PHOTOMETRIC,&photo); + if (bits_per_value) *bits_per_value = (unsigned int)bitspersample; + if (voxel_size) { + const char *s_description = 0; + float vx = 0, vy = 0, vz = 0; + if (TIFFGetField(tif,TIFFTAG_IMAGEDESCRIPTION,&s_description) && s_description) { + const char *s_desc = std::strstr(s_description,"VX="); + if (s_desc && cimg_sscanf(s_desc,"VX=%f VY=%f VZ=%f",&vx,&vy,&vz)==3) { // CImg format + voxel_size[0] = vx; voxel_size[1] = vy; voxel_size[2] = vz; + } + s_desc = std::strstr(s_description,"spacing="); + if (s_desc && cimg_sscanf(s_desc,"spacing=%f",&vz)==1) { // Fiji format + voxel_size[2] = vz; + } + } + TIFFGetField(tif,TIFFTAG_XRESOLUTION,voxel_size); + TIFFGetField(tif,TIFFTAG_YRESOLUTION,voxel_size + 1); + voxel_size[0] = 1.f/voxel_size[0]; + voxel_size[1] = 1.f/voxel_size[1]; + } + if (description) { + const char *s_description = 0; + if (TIFFGetField(tif,TIFFTAG_IMAGEDESCRIPTION,&s_description) && s_description) + CImg::string(s_description).move_to(*description); + } + const unsigned int spectrum = !is_spp || photo>=3?(photo>1?3:1):samplesperpixel; + assign(nx,ny,1,spectrum); + + if ((photo>=3 && sampleformat==1 && + (bitspersample==4 || bitspersample==8) && + (samplesperpixel==1 || samplesperpixel==3 || samplesperpixel==4)) || + (bitspersample==1 && samplesperpixel==1)) { + // Special case for unsigned color images. + cimg_uint32 *const raster = (cimg_uint32*)_TIFFmalloc(nx*ny*sizeof(cimg_uint32)); + if (!raster) { + _TIFFfree(raster); TIFFClose(tif); + throw CImgException(_cimg_instance + "load_tiff(): Failed to allocate memory (%s) for file '%s'.", + cimg_instance, + cimg::strbuffersize(nx*ny*sizeof(cimg_uint32)),filename); + } + TIFFReadRGBAImage(tif,nx,ny,raster,0); + switch (spectrum) { + case 1 : + cimg_forXY(*this,x,y) + (*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 -y) + x]); + break; + case 3 : + cimg_forXY(*this,x,y) { + (*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,1) = (T)(float)TIFFGetG(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,2) = (T)(float)TIFFGetB(raster[nx*(ny - 1 - y) + x]); + } + break; + case 4 : + cimg_forXY(*this,x,y) { + (*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,1) = (T)(float)TIFFGetG(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,2) = (T)(float)TIFFGetB(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,3) = (T)(float)TIFFGetA(raster[nx*(ny - 1 - y) + x]); + } + break; + } + _TIFFfree(raster); + } else { // Other cases + cimg_uint16 config; + TIFFGetField(tif,TIFFTAG_PLANARCONFIG,&config); + if (TIFFIsTiled(tif)) { + cimg_uint32 tw = 1, th = 1; + TIFFGetField(tif,TIFFTAG_TILEWIDTH,&tw); + TIFFGetField(tif,TIFFTAG_TILELENGTH,&th); + if (config==PLANARCONFIG_CONTIG) switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + } else switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + } + } else { + if (config==PLANARCONFIG_CONTIG) switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + } else switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + } + } + } + return *this; + } +#endif + + //! Load image from a MINC2 file. + /** + \param filename Filename, as a C-string. + **/ + // (Original code by Haz-Edine Assemlal). + CImg& load_minc2(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_minc2(): Specified filename is (null).", + cimg_instance); +#ifndef cimg_use_minc2 + return load_other(filename); +#else + minc::minc_1_reader rdr; + rdr.open(filename); + assign(rdr.ndim(1)?rdr.ndim(1):1, + rdr.ndim(2)?rdr.ndim(2):1, + rdr.ndim(3)?rdr.ndim(3):1, + rdr.ndim(4)?rdr.ndim(4):1); + if (pixel_type()==cimg::type::string()) + rdr.setup_read_byte(); + else if (pixel_type()==cimg::type::string()) + rdr.setup_read_int(); + else if (pixel_type()==cimg::type::string()) + rdr.setup_read_double(); + else + rdr.setup_read_float(); + minc::load_standard_volume(rdr,this->_data); + return *this; +#endif + } + + //! Load image from a MINC2 file \newinstance. + static CImg get_load_minc2(const char *const filename) { + return CImg().load_analyze(filename); + } + + //! Load image from an ANALYZE7.5/NIFTI file. + /** + \param filename Filename, as a C-string. + \param[out] voxel_size Pointer to the three voxel sizes read from the file. + **/ + CImg& load_analyze(const char *const filename, float *const voxel_size=0) { + return _load_analyze(0,filename,voxel_size); + } + + //! Load image from an ANALYZE7.5/NIFTI file \newinstance. + static CImg get_load_analyze(const char *const filename, float *const voxel_size=0) { + return CImg().load_analyze(filename,voxel_size); + } + + //! Load image from an ANALYZE7.5/NIFTI file \overloading. + CImg& load_analyze(std::FILE *const file, float *const voxel_size=0) { + return _load_analyze(file,0,voxel_size); + } + + //! Load image from an ANALYZE7.5/NIFTI file \newinstance. + static CImg get_load_analyze(std::FILE *const file, float *const voxel_size=0) { + return CImg().load_analyze(file,voxel_size); + } + + CImg& _load_analyze(std::FILE *const file, const char *const filename, float *const voxel_size=0) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_analyze(): Specified filename is (null).", + cimg_instance); + + std::FILE *nfile_header = 0, *nfile = 0; + if (!file) { + CImg body(1024); + const char *const ext = cimg::split_filename(filename,body); + const unsigned int len = (unsigned int)std::strlen(body); + if (!cimg::strcasecmp(ext,"hdr")) { // File is an Analyze header file + nfile_header = cimg::fopen(filename,"rb"); + cimg_snprintf(body._data + len,body._width - len,".img"); + nfile = cimg::fopen(body,"rb"); + } else if (!cimg::strcasecmp(ext,"img")) { // File is an Analyze data file + nfile = cimg::fopen(filename,"rb"); + cimg_snprintf(body._data + len,body._width - len,".hdr"); + nfile_header = cimg::fopen(body,"rb"); + } else nfile_header = nfile = cimg::fopen(filename,"rb"); // File is a Niftii file + } else nfile_header = nfile = file; // File is a Niftii file + if (!nfile || !nfile_header) + throw CImgIOException(_cimg_instance + "load_analyze(): Invalid Analyze7.5 or NIFTI header in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + // Read header. + bool endian = false; + unsigned int header_size; + cimg::fread(&header_size,1,nfile_header); + if (header_size>=4096) { endian = true; cimg::invert_endianness(header_size); } + if (header_size<128) + throw CImgIOException(_cimg_instance + "load_analyze(): Invalid header size (%u) specified in file '%s'.", + cimg_instance, + header_size,filename?filename:"(FILE*)"); + + unsigned char *const header = new unsigned char[header_size]; + const size_t header_size_read = cimg::fread(header + 4,header_size - 4,nfile_header); + if (header_size_read!=header_size - 4) + throw CImgIOException(_cimg_instance + "load_analyze(): Cannot read header (of size %u) in file '%s'.", + cimg_instance, + header_size,filename?filename:"(FILE*)"); + + if (!file && nfile_header!=nfile) cimg::fclose(nfile_header); + if (endian) { + cimg::invert_endianness((short*)(header + 40),5); + cimg::invert_endianness((short*)(header + 70),1); + cimg::invert_endianness((short*)(header + 72),1); + cimg::invert_endianness((float*)(header + 76),4); + cimg::invert_endianness((float*)(header + 108),1); + cimg::invert_endianness((float*)(header + 112),1); + } + + if (nfile_header==nfile) { + const unsigned int vox_offset = (unsigned int)*(float*)(header + 108); + std::fseek(nfile,vox_offset,SEEK_SET); + } + + unsigned short *dim = (unsigned short*)(header + 40), dimx = 1, dimy = 1, dimz = 1, dimv = 1; + if (!dim[0]) + cimg::warn(_cimg_instance + "load_analyze(): File '%s' defines an image with zero dimensions.", + cimg_instance, + filename?filename:"(FILE*)"); + + if (dim[0]>4) + cimg::warn(_cimg_instance + "load_analyze(): File '%s' defines an image with %u dimensions, reading only the 4 first.", + cimg_instance, + filename?filename:"(FILE*)",dim[0]); + + if (dim[0]>=1) dimx = dim[1]; + if (dim[0]>=2) dimy = dim[2]; + if (dim[0]>=3) dimz = dim[3]; + if (dim[0]>=4) dimv = dim[4]; + float scalefactor = *(float*)(header + 112); if (scalefactor==0) scalefactor = 1; + const unsigned short datatype = *(unsigned short*)(header + 70); + if (voxel_size) { + const float *vsize = (float*)(header + 76); + voxel_size[0] = vsize[1]; voxel_size[1] = vsize[2]; voxel_size[2] = vsize[3]; + } + delete[] header; + + // Read pixel data. + assign(dimx,dimy,dimz,dimv); + const size_t pdim = (size_t)dimx*dimy*dimz*dimv; + switch (datatype) { + case 2 : { + unsigned char *const buffer = new unsigned char[pdim]; + cimg::fread(buffer,pdim,nfile); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 4 : { + short *const buffer = new short[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 8 : { + int *const buffer = new int[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 16 : { + float *const buffer = new float[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 64 : { + double *const buffer = new double[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + default : + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_analyze(): Unable to load datatype %d in file '%s'", + cimg_instance, + datatype,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a .cimg[z] file. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_cimg(const char *const filename, const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(filename); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load image from a .cimg[z] file \newinstance + static CImg get_load_cimg(const char *const filename, const char axis='z', const float align=0) { + return CImg().load_cimg(filename,axis,align); + } + + //! Load image from a .cimg[z] file \overloading. + CImg& load_cimg(std::FILE *const file, const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(file); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load image from a .cimg[z] file \newinstance + static CImg get_load_cimg(std::FILE *const file, const char axis='z', const float align=0) { + return CImg().load_cimg(file,axis,align); + } + + //! Load sub-images of a .cimg file. + /** + \param filename Filename, as a C-string. + \param n0 Starting frame. + \param n1 Ending frame (~0U for max). + \param x0 X-coordinate of the starting sub-image vertex. + \param y0 Y-coordinate of the starting sub-image vertex. + \param z0 Z-coordinate of the starting sub-image vertex. + \param c0 C-coordinate of the starting sub-image vertex. + \param x1 X-coordinate of the ending sub-image vertex (~0U for max). + \param y1 Y-coordinate of the ending sub-image vertex (~0U for max). + \param z1 Z-coordinate of the ending sub-image vertex (~0U for max). + \param c1 C-coordinate of the ending sub-image vertex (~0U for max). + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load sub-images of a .cimg file \newinstance. + static CImg get_load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + return CImg().load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1,axis,align); + } + + //! Load sub-images of a .cimg file \overloading. + CImg& load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load sub-images of a .cimg file \newinstance. + static CImg get_load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + return CImg().load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1,axis,align); + } + + //! Load image from an INRIMAGE-4 file. + /** + \param filename Filename, as a C-string. + \param[out] voxel_size Pointer to the three voxel sizes read from the file. + **/ + CImg& load_inr(const char *const filename, float *const voxel_size=0) { + return _load_inr(0,filename,voxel_size); + } + + //! Load image from an INRIMAGE-4 file \newinstance. + static CImg get_load_inr(const char *const filename, float *const voxel_size=0) { + return CImg().load_inr(filename,voxel_size); + } + + //! Load image from an INRIMAGE-4 file \overloading. + CImg& load_inr(std::FILE *const file, float *const voxel_size=0) { + return _load_inr(file,0,voxel_size); + } + + //! Load image from an INRIMAGE-4 file \newinstance. + static CImg get_load_inr(std::FILE *const file, float *voxel_size=0) { + return CImg().load_inr(file,voxel_size); + } + + static void _load_inr_header(std::FILE *file, int out[8], float *const voxel_size) { + CImg item(1024), tmp1(64), tmp2(64); + *item = *tmp1 = *tmp2 = 0; + out[0] = std::fscanf(file,"%63s",item._data); + out[0] = out[1] = out[2] = out[3] = out[5] = 1; out[4] = out[6] = out[7] = -1; + if (cimg::strncasecmp(item,"#INRIMAGE-4#{",13)!=0) + throw CImgIOException("CImg<%s>::load_inr(): INRIMAGE-4 header not found.", + pixel_type()); + + while (std::fscanf(file," %63[^\n]%*c",item._data)!=EOF && std::strncmp(item,"##}",3)) { + cimg_sscanf(item," XDIM%*[^0-9]%d",out); + cimg_sscanf(item," YDIM%*[^0-9]%d",out + 1); + cimg_sscanf(item," ZDIM%*[^0-9]%d",out + 2); + cimg_sscanf(item," VDIM%*[^0-9]%d",out + 3); + cimg_sscanf(item," PIXSIZE%*[^0-9]%d",out + 6); + if (voxel_size) { + cimg_sscanf(item," VX%*[^0-9.+-]%f",voxel_size); + cimg_sscanf(item," VY%*[^0-9.+-]%f",voxel_size + 1); + cimg_sscanf(item," VZ%*[^0-9.+-]%f",voxel_size + 2); + } + if (cimg_sscanf(item," CPU%*[ =]%s",tmp1._data)) out[7] = cimg::strncasecmp(tmp1,"sun",3)?0:1; + switch (cimg_sscanf(item," TYPE%*[ =]%s %s",tmp1._data,tmp2._data)) { + case 0 : break; + case 2 : + out[5] = cimg::strncasecmp(tmp1,"unsigned",8)?1:0; + std::strncpy(tmp1,tmp2,tmp1._width - 1); // Fallthrough + case 1 : + if (!cimg::strncasecmp(tmp1,"int",3) || !cimg::strncasecmp(tmp1,"fixed",5)) out[4] = 0; + if (!cimg::strncasecmp(tmp1,"float",5) || !cimg::strncasecmp(tmp1,"double",6)) out[4] = 1; + if (!cimg::strncasecmp(tmp1,"packed",6)) out[4] = 2; + if (out[4]>=0) break; // Fallthrough + default : + throw CImgIOException("CImg<%s>::load_inr(): Invalid pixel type '%s' defined in header.", + pixel_type(), + tmp2._data); + } + } + if (out[0]<0 || out[1]<0 || out[2]<0 || out[3]<0) + throw CImgIOException("CImg<%s>::load_inr(): Invalid dimensions (%d,%d,%d,%d) defined in header.", + pixel_type(), + out[0],out[1],out[2],out[3]); + if (out[4]<0 || out[5]<0) + throw CImgIOException("CImg<%s>::load_inr(): Incomplete pixel type defined in header.", + pixel_type()); + if (out[6]<0) + throw CImgIOException("CImg<%s>::load_inr(): Incomplete PIXSIZE field defined in header.", + pixel_type()); + if (out[7]<0) + throw CImgIOException("CImg<%s>::load_inr(): Big/Little Endian coding type undefined in header.", + pixel_type()); + } + + CImg& _load_inr(std::FILE *const file, const char *const filename, float *const voxel_size) { +#define _cimg_load_inr_case(Tf,sign,pixsize,Ts) \ + if (!loaded && fopt[6]==pixsize && fopt[4]==Tf && fopt[5]==sign) { \ + Ts *xval, *const val = new Ts[(size_t)fopt[0]*fopt[3]]; \ + cimg_forYZ(*this,y,z) { \ + cimg::fread(val,fopt[0]*fopt[3],nfile); \ + if (fopt[7]!=endian) cimg::invert_endianness(val,fopt[0]*fopt[3]); \ + xval = val; cimg_forX(*this,x) cimg_forC(*this,c) (*this)(x,y,z,c) = (T)*(xval++); \ + } \ + delete[] val; \ + loaded = true; \ + } + + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_inr(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + int fopt[8], endian = cimg::endianness()?1:0; + bool loaded = false; + if (voxel_size) voxel_size[0] = voxel_size[1] = voxel_size[2] = 1; + _load_inr_header(nfile,fopt,voxel_size); + assign(fopt[0],fopt[1],fopt[2],fopt[3]); + _cimg_load_inr_case(0,0,8,unsigned char); + _cimg_load_inr_case(0,1,8,char); + _cimg_load_inr_case(0,0,16,unsigned short); + _cimg_load_inr_case(0,1,16,short); + _cimg_load_inr_case(0,0,32,unsigned int); + _cimg_load_inr_case(0,1,32,int); + _cimg_load_inr_case(1,0,32,float); + _cimg_load_inr_case(1,1,32,float); + _cimg_load_inr_case(1,0,64,double); + _cimg_load_inr_case(1,1,64,double); + if (!loaded) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_inr(): Unknown pixel type defined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a EXR file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_exr(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_exr(): Specified filename is (null).", + cimg_instance); +#if defined(cimg_use_openexr) + Imf::RgbaInputFile file(filename); + Imath::Box2i dw = file.dataWindow(); + const int + inwidth = dw.max.x - dw.min.x + 1, + inheight = dw.max.y - dw.min.y + 1; + Imf::Array2D pixels; + pixels.resizeErase(inheight,inwidth); + file.setFrameBuffer(&pixels[0][0] - dw.min.x - dw.min.y*inwidth, 1, inwidth); + file.readPixels(dw.min.y, dw.max.y); + assign(inwidth,inheight,1,4); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3); + cimg_forXY(*this,x,y) { + *(ptr_r++) = (T)pixels[y][x].r; + *(ptr_g++) = (T)pixels[y][x].g; + *(ptr_b++) = (T)pixels[y][x].b; + *(ptr_a++) = (T)pixels[y][x].a; + } + return *this; +#elif defined(cimg_use_tinyexr) + float *res; + const char *err = 0; + int width = 0, height = 0; + const int ret = LoadEXR(&res,&width,&height,filename,&err); + if (ret) throw CImgIOException(_cimg_instance + "load_exr(): Unable to load EXR file '%s'.", + cimg_instance,filename); + CImg(res,4,width,height,1,true).get_permute_axes("yzcx").move_to(*this); + std::free(res); + return *this; +#else + return load_other(filename); +#endif + } + + //! Load image from a EXR file \newinstance. + static CImg get_load_exr(const char *const filename) { + return CImg().load_exr(filename); + } + + //! Load image from a PANDORE-5 file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_pandore(const char *const filename) { + return _load_pandore(0,filename); + } + + //! Load image from a PANDORE-5 file \newinstance. + static CImg get_load_pandore(const char *const filename) { + return CImg().load_pandore(filename); + } + + //! Load image from a PANDORE-5 file \overloading. + CImg& load_pandore(std::FILE *const file) { + return _load_pandore(file,0); + } + + //! Load image from a PANDORE-5 file \newinstance. + static CImg get_load_pandore(std::FILE *const file) { + return CImg().load_pandore(file); + } + + CImg& _load_pandore(std::FILE *const file, const char *const filename) { +#define __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,ndim,stype) \ + cimg::fread(dims,nbdim,nfile); \ + if (endian) cimg::invert_endianness(dims,nbdim); \ + if ((ulongT)nwidth*nheight*ndepth*ndim>fsiz) \ + throw CImgIOException(_cimg_instance \ + "load_pandore(): File size %lu for filename '%s' does not match "\ + "encoded image dimensions (%d,%d,%d,%d).",\ + cimg_instance,\ + (long)fsiz,filename?filename:"(FILE*)",\ + (int)nwidth,(int)nheight,(int)ndepth,(int)ndim); \ + assign(nwidth,nheight,ndepth,ndim); \ + const size_t siz = size(); \ + stype *buffer = new stype[siz]; \ + cimg::fread(buffer,siz,nfile); \ + if (endian) cimg::invert_endianness(buffer,siz); \ + T *ptrd = _data; \ + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); \ + buffer-=siz; \ + delete[] buffer + +#define _cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype1,stype2,stype3,ltype) { \ + if (sizeof(stype1)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype1); } \ + else if (sizeof(stype2)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype2); } \ + else if (sizeof(stype3)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype3); } \ + else throw CImgIOException(_cimg_instance \ + "load_pandore(): Unknown pixel datatype in file '%s'.", \ + cimg_instance, \ + filename?filename:"(FILE*)"); } + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_pandore(): Specified filename is (null).", + cimg_instance); + + const ulongT fsiz = file?(ulongT)cimg_max_buf_size:(ulongT)cimg::fsize(filename); + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg header(32); + cimg::fread(header._data,12,nfile); + if (cimg::strncasecmp("PANDORE",header,7)) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pandore(): PANDORE header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + unsigned int imageid, dims[8] = {}; + int ptbuf[4] = {}; + cimg::fread(&imageid,1,nfile); + const bool endian = imageid>255; + if (endian) cimg::invert_endianness(imageid); + cimg::fread(header._data,20,nfile); + + switch (imageid) { + case 2 : _cimg_load_pandore_case(2,dims[1],1,1,1,unsigned char,unsigned char,unsigned char,1); break; + case 3 : _cimg_load_pandore_case(2,dims[1],1,1,1,long,int,short,4); break; + case 4 : _cimg_load_pandore_case(2,dims[1],1,1,1,double,float,float,4); break; + case 5 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,unsigned char,unsigned char,unsigned char,1); break; + case 6 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,long,int,short,4); break; + case 7 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,double,float,float,4); break; + case 8 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,unsigned char,unsigned char,unsigned char,1); break; + case 9 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,long,int,short,4); break; + case 10 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,double,float,float,4); break; + case 11 : { // Region 1D + cimg::fread(dims,3,nfile); + if (endian) cimg::invert_endianness(dims,3); + assign(dims[1],1,1,1); + const unsigned siz = size(); + if (dims[2]<256) { + unsigned char *buffer = new unsigned char[siz]; + cimg::fread(buffer,siz,nfile); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + if (dims[2]<65536) { + unsigned short *buffer = new unsigned short[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + unsigned int *buffer = new unsigned int[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } + } + } + break; + case 12 : { // Region 2D + cimg::fread(dims,4,nfile); + if (endian) cimg::invert_endianness(dims,4); + assign(dims[2],dims[1],1,1); + const size_t siz = size(); + if (dims[3]<256) { + unsigned char *buffer = new unsigned char[siz]; + cimg::fread(buffer,siz,nfile); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + if (dims[3]<65536) { + unsigned short *buffer = new unsigned short[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + unsigned int *buffer = new unsigned int[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } + } + } + break; + case 13 : { // Region 3D + cimg::fread(dims,5,nfile); + if (endian) cimg::invert_endianness(dims,5); + assign(dims[3],dims[2],dims[1],1); + const size_t siz = size(); + if (dims[4]<256) { + unsigned char *buffer = new unsigned char[siz]; + cimg::fread(buffer,siz,nfile); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + if (dims[4]<65536) { + unsigned short *buffer = new unsigned short[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + unsigned int *buffer = new unsigned int[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } + } + } + break; + case 16 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,unsigned char,unsigned char,unsigned char,1); break; + case 17 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,long,int,short,4); break; + case 18 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,double,float,float,4); break; + case 19 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,unsigned char,unsigned char,unsigned char,1); break; + case 20 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,long,int,short,4); break; + case 21 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,double,float,float,4); break; + case 22 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],unsigned char,unsigned char,unsigned char,1); break; + case 23 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],long,int,short,4); break; + case 24 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],unsigned long,unsigned int,unsigned short,4); break; + case 25 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],double,float,float,4); break; + case 26 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],unsigned char,unsigned char,unsigned char,1); break; + case 27 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],long,int,short,4); break; + case 28 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],unsigned long,unsigned int,unsigned short,4); break; + case 29 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],double,float,float,4); break; + case 30 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],unsigned char,unsigned char,unsigned char,1); + break; + case 31 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],long,int,short,4); break; + case 32 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],unsigned long,unsigned int,unsigned short,4); + break; + case 33 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],double,float,float,4); break; + case 34 : { // Points 1D + cimg::fread(ptbuf,1,nfile); + if (endian) cimg::invert_endianness(ptbuf,1); + assign(1); (*this)(0) = (T)ptbuf[0]; + } break; + case 35 : { // Points 2D + cimg::fread(ptbuf,2,nfile); + if (endian) cimg::invert_endianness(ptbuf,2); + assign(2); (*this)(0) = (T)ptbuf[1]; (*this)(1) = (T)ptbuf[0]; + } break; + case 36 : { // Points 3D + cimg::fread(ptbuf,3,nfile); + if (endian) cimg::invert_endianness(ptbuf,3); + assign(3); (*this)(0) = (T)ptbuf[2]; (*this)(1) = (T)ptbuf[1]; (*this)(2) = (T)ptbuf[0]; + } break; + default : + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pandore(): Unable to load data with ID_type %u in file '%s'.", + cimg_instance, + imageid,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a PAR-REC (Philips) file. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_parrec(const char *const filename, const char axis='c', const float align=0) { + CImgList list; + list.load_parrec(filename); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load image from a PAR-REC (Philips) file \newinstance. + static CImg get_load_parrec(const char *const filename, const char axis='c', const float align=0) { + return CImg().load_parrec(filename,axis,align); + } + + //! Load image from a raw binary file. + /** + \param filename Filename, as a C-string. + \param size_x Width of the image buffer. + \param size_y Height of the image buffer. + \param size_z Depth of the image buffer. + \param size_c Spectrum of the image buffer. + \param is_multiplexed Tells if the image values are multiplexed along the C-axis. + \param invert_endianness Tells if the endianness of the image buffer must be inverted. + \param offset Starting offset of the read in the specified file. + **/ + CImg& load_raw(const char *const filename, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return _load_raw(0,filename,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + //! Load image from a raw binary file \newinstance. + static CImg get_load_raw(const char *const filename, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return CImg().load_raw(filename,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + //! Load image from a raw binary file \overloading. + CImg& load_raw(std::FILE *const file, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return _load_raw(file,0,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + //! Load image from a raw binary file \newinstance. + static CImg get_load_raw(std::FILE *const file, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return CImg().load_raw(file,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + CImg& _load_raw(std::FILE *const file, const char *const filename, + const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const bool is_multiplexed, const bool invert_endianness, + const ulongT offset) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_raw(): Specified filename is (null).", + cimg_instance); + if (cimg::is_directory(filename)) + throw CImgArgumentException(_cimg_instance + "load_raw(): Specified filename '%s' is a directory.", + cimg_instance,filename); + const bool is_bool = pixel_type()==cimg::type::string(); + ulongT siz = (ulongT)size_x*size_y*size_z*size_c; + unsigned int + _size_x = size_x, + _size_y = size_y, + _size_z = size_z, + _size_c = size_c; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + if (!siz) { // Retrieve file size + const longT fpos = cimg::ftell(nfile); + if (fpos<0) throw CImgArgumentException(_cimg_instance + "load_raw(): Cannot determine size of input file '%s'.", + cimg_instance,filename?filename:"(FILE*)"); + cimg::fseek(nfile,0,SEEK_END); + siz = (ulongT)cimg::ftell(nfile); + if (!is_bool) { siz/=sizeof(T); _size_y = (unsigned int)siz; } + else _size_y = (unsigned int)(siz*8); + _size_x = _size_z = _size_c = 1; + cimg::fseek(nfile,fpos,SEEK_SET); + } + cimg::fseek(nfile,(longT)offset,SEEK_SET); + assign(_size_x,_size_y,_size_z,_size_c,0); + + if (is_bool) { // Boolean data (bitwise) + unsigned char *const buf = new unsigned char[siz]; + cimg::fread(buf,siz,nfile); + _uchar2bool(buf,siz,is_multiplexed); + delete[] buf; + } else { // Non-boolean data + if (siz && (!is_multiplexed || size_c==1)) { // Non-multiplexed + cimg::fread(_data,siz,nfile); + if (invert_endianness) cimg::invert_endianness(_data,siz); + } else if (siz) { // Multiplexed + CImg buf(1,1,1,_size_c); + cimg_forXYZ(*this,x,y,z) { + cimg::fread(buf._data,_size_c,nfile); + if (invert_endianness) cimg::invert_endianness(buf._data,_size_c); + set_vector_at(buf,x,y,z); + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image sequence from a YUV file. + /** + \param filename Filename, as a C-string. + \param size_x Width of the frames. + \param size_y Height of the frames. + \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. + \param first_frame Index of the first frame to read. + \param last_frame Index of the last frame to read. + \param step_frame Step value for frame reading. + \param yuv2rgb Tells if the YUV to RGB transform must be applied. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + **/ + CImg& load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return get_load_yuv(filename,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb,axis).move_to(*this); + } + + //! Load image sequence from a YUV file \newinstance. + static CImg get_load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return CImgList().load_yuv(filename,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb).get_append(axis); + } + + //! Load image sequence from a YUV file \overloading. + CImg& load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return get_load_yuv(file,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb,axis).move_to(*this); + } + + //! Load image sequence from a YUV file \newinstance. + static CImg get_load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return CImgList().load_yuv(file,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb).get_append(axis); + } + + //! Load 3D object from a .OFF file. + /** + \param[out] primitives Primitives data of the 3D object. + \param[out] colors Colors data of the 3D object. + \param filename Filename, as a C-string. + **/ + template + CImg& load_off(CImgList& primitives, CImgList& colors, const char *const filename) { + return _load_off(primitives,colors,0,filename); + } + + //! Load 3D object from a .OFF file \newinstance. + template + static CImg get_load_off(CImgList& primitives, CImgList& colors, const char *const filename) { + return CImg().load_off(primitives,colors,filename); + } + + //! Load 3D object from a .OFF file \overloading. + template + CImg& load_off(CImgList& primitives, CImgList& colors, std::FILE *const file) { + return _load_off(primitives,colors,file,0); + } + + //! Load 3D object from a .OFF file \newinstance. + template + static CImg get_load_off(CImgList& primitives, CImgList& colors, std::FILE *const file) { + return CImg().load_off(primitives,colors,file); + } + + template + CImg& _load_off(CImgList& primitives, CImgList& colors, + std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_off(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"r"); + unsigned int nb_points = 0, nb_primitives = 0, nb_read = 0; + CImg line(256); *line = 0; + int err; + + // Skip comments, and read magic string OFF + do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#')); + if (cimg::strncasecmp(line,"OFF",3) && cimg::strncasecmp(line,"COFF",4)) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_off(): OFF header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#')); + if ((err = cimg_sscanf(line,"%u%u%*[^\n] ",&nb_points,&nb_primitives))!=2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_off(): Invalid number of vertices or primitives specified in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + + // Read points data + assign(nb_points,3); + float X = 0, Y = 0, Z = 0; + cimg_forX(*this,l) { + do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#')); + if ((err = cimg_sscanf(line,"%f%f%f%*[^\n] ",&X,&Y,&Z))!=3) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_off(): Failed to read vertex %u/%u in file '%s'.", + cimg_instance, + l + 1,nb_points,filename?filename:"(FILE*)"); + } + (*this)(l,0) = (T)X; (*this)(l,1) = (T)Y; (*this)(l,2) = (T)Z; + } + + // Read primitive data + primitives.assign(); + colors.assign(); + bool stop_flag = false; + while (!stop_flag) { + float c0 = 0.7f, c1 = 0.7f, c2 = 0.7f; + unsigned int prim = 0, i0 = 0, i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0; + *line = 0; + if ((err = std::fscanf(nfile,"%u",&prim))!=1) stop_flag = true; + else { + ++nb_read; + switch (prim) { + case 1 : { + if ((err = std::fscanf(nfile,"%u%255[^\n] ",&i0,line._data))<2) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 2 : { + if ((err = std::fscanf(nfile,"%u%u%255[^\n] ",&i0,&i1,line._data))<2) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i1).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 3 : { + if ((err = std::fscanf(nfile,"%u%u%u%255[^\n] ",&i0,&i1,&i2,line._data))<3) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i2,i1).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 4 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,line._data))<4) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 5 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,line._data))<5) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector(i0,i4,i3).move_to(primitives); + colors.insert(2,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++nb_primitives; + } + } break; + case 6 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,line._data))<6) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector(i0,i5,i4,i3).move_to(primitives); + colors.insert(2,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++nb_primitives; + } + } break; + case 7 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,&i6,line._data))<7) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i4,i3,i1).move_to(primitives); + CImg::vector(i0,i6,i5,i4).move_to(primitives); + CImg::vector(i3,i2,i1).move_to(primitives); + colors.insert(3,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++(++nb_primitives); + } + } break; + case 8 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,&i6,&i7,line._data))<7) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector(i0,i5,i4,i3).move_to(primitives); + CImg::vector(i0,i7,i6,i5).move_to(primitives); + colors.insert(3,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++(++nb_primitives); + } + } break; + default : + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u (%u vertices) from file '%s'.", + cimg_instance, + nb_read,nb_primitives,prim,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } + } + } + if (!file) cimg::fclose(nfile); + if (primitives._width!=nb_primitives) + cimg::warn(_cimg_instance + "load_off(): Only %u/%u primitives read from file '%s'.", + cimg_instance, + primitives._width,nb_primitives,filename?filename:"(FILE*)"); + return *this; + } + + //! Load image sequence from a video file, using OpenCV library. + /** + \param filename Filename, as a C-string. + \param first_frame Index of the first frame to read. + \param last_frame Index of the last frame to read. + \param step_frame Step value for frame reading. + \param axis Alignment axis. + \param align Appending alignment. + **/ + CImg& load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + const char axis='z', const float align=0) { + return get_load_video(filename,first_frame,last_frame,step_frame,axis,align).move_to(*this); + } + + //! Load image sequence from a video file, using OpenCV library \newinstance. + static CImg get_load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + const char axis='z', const float align=0) { + return CImgList().load_video(filename,first_frame,last_frame,step_frame).get_append(axis,align); + } + + //! Load image sequence using FFMPEG's external tool 'ffmpeg'. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_ffmpeg_external(const char *const filename, const char axis='z', const float align=0) { + return get_load_ffmpeg_external(filename,axis,align).move_to(*this); + } + + //! Load image sequence using FFMPEG's external tool 'ffmpeg' \newinstance. + static CImg get_load_ffmpeg_external(const char *const filename, const char axis='z', const float align=0) { + return CImgList().load_ffmpeg_external(filename).get_append(axis,align); + } + + //! Load gif file, using Imagemagick or GraphicsMagicks's external tools. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_gif_external(const char *const filename, + const char axis='z', const float align=0) { + return get_load_gif_external(filename,axis,align).move_to(*this); + } + + //! Load gif file, using ImageMagick or GraphicsMagick's external tool 'convert' \newinstance. + static CImg get_load_gif_external(const char *const filename, + const char axis='z', const float align=0) { + return CImgList().load_gif_external(filename).get_append(axis,align); + } + + //! Load image from a HEIC file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_heif(const char *const filename) { + return _load_heif(filename); + } + + //! Load image from a HEIC file \newinstance. + static CImg get_load_heif(const char *const filename) { + return CImg().load_heif(filename); + } + + CImg& _load_heif(const char *const filename) { +#ifndef cimg_use_heif + return load_other(filename); +#else + try { + heif::Context ctx; + ctx.read_from_file(filename); + + heif::ImageHandle handle = ctx.get_primary_image_handle(); + const heif::Image image = + handle.decode_image(heif_colorspace_RGB,handle.has_alpha_channel()?heif_chroma_interleaved_RGBA: + heif_chroma_interleaved_RGB); + const int + W = image.get_width(heif_channel_interleaved), + H = image.get_height(heif_channel_interleaved), + S = handle.has_alpha_channel()?4:3; + assign(W,H,1,S); + + int stride; + const unsigned char *const buffer = image.get_plane(heif_channel_interleaved,&stride); + T *ptr_r = _data, *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = S>3?data(0,0,0,3):0; + cimg_forY(*this,y) { + const unsigned char *ptrs = buffer + y*stride; + if (ptr_a) cimg_forX(*this,x) { // RGBA + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + *(ptr_a++) = (T)*(ptrs++); + } + else cimg_forX(*this,x) { // RGB + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } catch (const heif::Error& e) { + throw CImgInstanceException(_cimg_instance + "load_heif(): Unable to decode image: %s", + cimg_instance, + e.get_message().c_str()); + } catch (...) { + throw; + } + return *this; +#endif + } + + //! Load image using GraphicsMagick's external tool 'gm'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_graphicsmagick_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_graphicsmagick_external(): Specified filename is (null).", + cimg_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + if (!cimg::system("which gm")) { + cimg_snprintf(command,command._width,"%s convert \"%s\" %s:-", + cimg::graphicsmagick_path(), + s_filename.data(), +#ifdef cimg_use_png + "png" +#else + "pnm" +#endif + ); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { +#ifdef cimg_use_png + load_png(file); +#else + load_pnm(file); +#endif + } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_graphicsmagick_external(): Failed to load file '%s' " + "with external command 'gm'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(), + cimg_file_separator, + cimg::filenamerand(), +#ifdef cimg_use_png + "png" +#else + "pnm" +#endif + ); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"\"%s\" convert \"%s\" \"%s\"", + cimg::graphicsmagick_path(), + s_filename.data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::graphicsmagick_path()); + if (!(file=cimg::std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_graphicsmagick_external(): Failed to load file '%s' with external command 'gm'.", + cimg_instance, + filename); + + } else cimg::fclose(file); +#ifdef cimg_use_png + load_png(filename_tmp); +#else + load_pnm(filename_tmp); +#endif + std::remove(filename_tmp); + return *this; + } + + //! Load image using GraphicsMagick's external tool 'gm' \newinstance. + static CImg get_load_graphicsmagick_external(const char *const filename) { + return CImg().load_graphicsmagick_external(filename); + } + + //! Load gzipped image file, using external tool 'gunzip'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_gzip_external(const char *const filename) { + if (!filename) + throw CImgIOException(_cimg_instance + "load_gzip_external(): Specified filename is (null).", + cimg_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256), body(256); + const char + *const ext = cimg::split_filename(filename,body), + *const ext2 = cimg::split_filename(body,0); + + std::FILE *file = 0; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"", + cimg::gunzip_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command); + if (!(file=cimg::std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_gzip_external(): Failed to load file '%s' with external command 'gunzip'.", + cimg_instance, + filename); + + } else cimg::fclose(file); + load(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load gzipped image file, using external tool 'gunzip' \newinstance. + static CImg get_load_gzip_external(const char *const filename) { + return CImg().load_gzip_external(filename); + } + + //! Load image using ImageMagick's external tool 'convert'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_imagemagick_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_imagemagick_external(): Specified filename is (null).", + cimg_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + if (!cimg::system("which convert")) { + cimg_snprintf(command,command._width,"%s%s \"%s\" %s:-", + cimg::imagemagick_path(), + !cimg::strcasecmp(cimg::split_filename(filename),"pdf")?" -density 400x400":"", + s_filename.data(), +#ifdef cimg_use_png + "png" +#else + "pnm" +#endif + ); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { +#ifdef cimg_use_png + load_png(file); +#else + load_pnm(file); +#endif + } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_imagemagick_external(): Failed to load file '%s' with " + "external command 'magick/convert'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(), + cimg_file_separator, + cimg::filenamerand(), +#ifdef cimg_use_png + "png" +#else + "pnm" +#endif + ); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"\"%s\"%s \"%s\" \"%s\"", + cimg::imagemagick_path(), + !cimg::strcasecmp(cimg::split_filename(filename),"pdf")?" -density 400x400":"", + s_filename.data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::imagemagick_path()); + if (!(file=cimg::std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_imagemagick_external(): Failed to load file '%s' with " + "external command 'magick/convert'.", + cimg_instance, + filename); + + } else cimg::fclose(file); +#ifdef cimg_use_png + load_png(filename_tmp); +#else + load_pnm(filename_tmp); +#endif + std::remove(filename_tmp); + return *this; + } + + //! Load image using ImageMagick's external tool 'convert' \newinstance. + static CImg get_load_imagemagick_external(const char *const filename) { + return CImg().load_imagemagick_external(filename); + } + + //! Load image from a DICOM file, using Medcon's external tool 'medcon'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_medcon_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_medcon_external(): Specified filename is (null).", + cimg_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256), body(256); + cimg::fclose(cimg::fopen(filename,"r")); + std::FILE *file = 0; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.hdr",cimg::filenamerand()); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"\"%s\" -w -c anlz -o \"%s\" -f \"%s\"", + cimg::medcon_path(), + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command,cimg::medcon_path()); + cimg::split_filename(filename_tmp,body); + + cimg_snprintf(command,command._width,"%s.hdr",body._data); + file = cimg::std_fopen(command,"rb"); + if (!file) { + cimg_snprintf(command,command._width,"m000-%s.hdr",body._data); + file = cimg::std_fopen(command,"rb"); + if (!file) { + throw CImgIOException(_cimg_instance + "load_medcon_external(): Failed to load file '%s' with external command 'medcon'.", + cimg_instance, + filename); + } + } + cimg::fclose(file); + load_analyze(command); + std::remove(command); + cimg::split_filename(command,body); + cimg_snprintf(command,command._width,"%s.img",body._data); + std::remove(command); + return *this; + } + + //! Load image from a DICOM file, using Medcon's external tool 'medcon' \newinstance. + static CImg get_load_medcon_external(const char *const filename) { + return CImg().load_medcon_external(filename); + } + + //! Load image from a .pdf file. + /** + \param filename Filename, as a C-string. + \param resolution Image resolution. + **/ + CImg& load_pdf_external(const char *const filename, const unsigned int resolution=400) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_pdf_external(): Specified filename is (null).", + cimg_instance); + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + cimg_snprintf(command,command._width,"gs -q -dNOPAUSE -sDEVICE=ppmraw -o - -r%u \"%s\"", + resolution,s_filename.data()); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_pnm(file); } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_pdf_external(): Failed to load file '%s' with external command 'gs'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.ppm", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"gs -q -dNOPAUSE -sDEVICE=ppmraw -o \"%s\" -r%u \"%s\"", + CImg::string(filename_tmp)._system_strescape().data(),resolution,s_filename.data()); + cimg::system(command,"gs"); + if (!(file=cimg::std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_pdf_external(): Failed to load file '%s' with external command 'gs'.", + cimg_instance, + filename); + } else cimg::fclose(file); + load_pnm(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load image from a .pdf file \newinstance. + static CImg get_load_pdf_external(const char *const filename, const unsigned int resolution=400) { + return CImg().load_pdf_external(filename,resolution); + } + + //! Load image from a RAW Color Camera file, using external tool 'dcraw'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_dcraw_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_dcraw_external(): Specified filename is (null).", + cimg_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + cimg_snprintf(command,command._width,"%s -w -4 -c \"%s\"", + cimg::dcraw_path(),s_filename.data()); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_pnm(file); } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_dcraw_external(): Failed to load file '%s' with external command 'dcraw'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.ppm", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"\"%s\" -w -4 -c \"%s\" > \"%s\"", + cimg::dcraw_path(),s_filename.data(),CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::dcraw_path()); + if (!(file=cimg::std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_dcraw_external(): Failed to load file '%s' with external command 'dcraw'.", + cimg_instance, + filename); + + } else cimg::fclose(file); + load_pnm(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load image from a RAW Color Camera file, using external tool 'dcraw' \newinstance. + static CImg get_load_dcraw_external(const char *const filename) { + return CImg().load_dcraw_external(filename); + } + +#ifdef cimg_use_opencv + + // Convert a continuous cv::Mat to a CImg. + static CImg _cvmat2cimg(const cv::Mat &src) { + if (src.channels()==1) return CImg(src.ptr(),src.cols,src.rows,1,1); + else if (src.channels()==3) { // BGR + CImg res(src.cols,src.rows,1,src.channels()); + const unsigned char *ptrs = src.ptr(); + unsigned char *pR = res.data(), *pG = res.data(0,0,0,1), *pB = res.data(0,0,0,2); + cimg_forXY(res,x,y) { *(pB++) = *(ptrs++); *(pG++) = *(ptrs++); *(pR++) = *(ptrs++); } + return res; + } + return CImg(src.ptr(),src.channels(),src.cols,src.rows,1,true).get_permute_axes("yzcx"); + } + + // Convert a CImg to a cv::Mat. + cv::Mat _cimg2cvmat() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "_cimg2cvmat() : Instance image is empty.", + cimg_instance); + if (_spectrum==2) + throw CImgInstanceException(_cimg_instance + "_cimg2cvmat() : Invalid number of channels (should be '1' or '3+').", + cimg_instance); + if (_depth!=1) + throw CImgInstanceException(_cimg_instance + "_cimg2cvmat() : Invalid number of slices (should be '1').", + cimg_instance); + int mat_type = -1; + if (pixel_type()==cimg::type::string()) mat_type = CV_8UC1; + if (pixel_type()==cimg::type::string()) mat_type = CV_8SC1; + if (pixel_type()==cimg::type::string()) mat_type = CV_16UC1; + if (pixel_type()==cimg::type::string()) mat_type = CV_16SC1; + if (pixel_type()==cimg::type::string()) mat_type = CV_32SC1; + if (pixel_type()==cimg::type::string()) mat_type = CV_32FC1; + if (pixel_type()==cimg::type::string()) mat_type = CV_64FC1; + if (mat_type<0) + throw CImgInstanceException(_cimg_instance + "_cvmat2cimg() : pixel type '%s' is not supported.", + cimg_instance,pixel_type()); + cv::Mat res; + std::vector channels(_spectrum); + if (_spectrum>1) { + cimg_forC(*this,c) + channels[c] = cv::Mat(_height,_width,mat_type,_data + _width*_height*(_spectrum - 1 - c)); + cv::merge(channels,res); + } else res = cv::Mat(_height,_width,mat_type,_data).clone(); + return res; + } + +#endif + + //! Load image from a camera stream, using OpenCV. + /** + \param index Index of the camera to capture images from (from 0 to 63). + \param capture_width Width of the desired image ('0' stands for default value). + \param capture_height Height of the desired image ('0' stands for default value). + \param skip_frames Number of frames to skip before the capture. + \param release_camera Tells if the camera resource must be released at the end of the method. + **/ + CImg& load_camera(const unsigned int camera_index=0, + const unsigned int capture_width=0, const unsigned int capture_height=0, + const unsigned int skip_frames=0, const bool release_camera=true) { +#ifdef cimg_use_opencv + if (camera_index>=64) + throw CImgArgumentException(_cimg_instance + "load_camera(): Invalid request for camera #%u " + "(no more than 100 cameras can be managed simultaneously).", + cimg_instance, + camera_index); + static cv::VideoCapture *captures[64] = {}; + static unsigned int captures_w[64], captures_h[64]; + if (release_camera) { + cimg::mutex(9); + if (captures[camera_index]) captures[camera_index]->release(); + delete captures[camera_index]; + captures[camera_index] = 0; + captures_w[camera_index] = captures_h[camera_index] = 0; + cimg::mutex(9,0); + return *this; + } + if (!captures[camera_index]) { + cimg::mutex(9); + captures[camera_index] = new cv::VideoCapture(camera_index); + captures_w[camera_index] = captures_h[camera_index] = 0; + if (!captures[camera_index]->isOpened()) { + delete captures[camera_index]; + captures[camera_index] = 0; + cimg::mutex(9,0); + throw CImgIOException(_cimg_instance + "load_camera(): Failed to initialize camera #%u.", + cimg_instance, + camera_index); + } + cimg::mutex(9,0); + } + cimg::mutex(9); + if (capture_width!=captures_w[camera_index]) { + captures[camera_index]->set(_cimg_cap_prop_frame_width,capture_width); + captures_w[camera_index] = capture_width; + } + if (capture_height!=captures_h[camera_index]) { + captures[camera_index]->set(_cimg_cap_prop_frame_height,capture_height); + captures_h[camera_index] = capture_height; + } + for (unsigned int i = 0; igrab(); + cv::Mat cvimg; + captures[camera_index]->read(cvimg); + if (cvimg.empty()) { + cimg::mutex(9,0); + load_camera(camera_index,0,0,0,true); // Release camera + throw CImgIOException(_cimg_instance + "load_camera(): Failed to retrieve a %ux%u frame from camera #%u.", + cimg_instance, + capture_width,capture_height,camera_index); + } else _cvmat2cimg(cvimg).move_to(*this); + cimg::mutex(9,0); + return *this; +#else + cimg::unused(camera_index,skip_frames,release_camera,capture_width,capture_height); + throw CImgIOException(_cimg_instance + "load_camera(): This function requires features from the OpenCV library " + "('-Dcimg_use_opencv' must be defined).", + cimg_instance); +#endif + } + + //! Load image from a camera stream, using OpenCV \newinstance. + static CImg get_load_camera(const unsigned int camera_index=0, + const unsigned int capture_width=0, const unsigned int capture_height=0, + const unsigned int skip_frames=0, const bool release_camera=true) { + return CImg().load_camera(camera_index,capture_width,capture_height,skip_frames,release_camera); + } + + //! Load image using various non-native ways. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_other(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_other(): Specified filename is (null).", + cimg_instance); + + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_magick(filename); } + catch (CImgException&) { + try { load_imagemagick_external(filename); } + catch (CImgException&) { + try { load_graphicsmagick_external(filename); } + catch (CImgException&) { + try { load_cimg(filename); } + catch (CImgException&) { + try { + cimg::fclose(cimg::fopen(filename,"rb")); + } catch (CImgException&) { + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_other(): Failed to open file '%s'.", + cimg_instance, + filename); + } + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_other(): Failed to recognize format of file '%s'.", + cimg_instance, + filename); + } + } + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load image using various non-native ways \newinstance. + static CImg get_load_other(const char *const filename) { + return CImg().load_other(filename); + } + + //@} + //--------------------------- + // + //! \name Data Output + //@{ + //--------------------------- + + //! Display information about the image data. + /** + \param title Name for the considered image. + \param display_stats Tells to compute and display image statistics. + **/ + const CImg& print(const char *const title=0, const bool display_stats=true) const { + + int xm = 0, ym = 0, zm = 0, vm = 0, xM = 0, yM = 0, zM = 0, vM = 0; + CImg st; + if (!is_empty() && display_stats) { + st = get_stats(); + xm = (int)st[4]; ym = (int)st[5], zm = (int)st[6], vm = (int)st[7]; + xM = (int)st[8]; yM = (int)st[9], zM = (int)st[10], vM = (int)st[11]; + } + + const ulongT siz = size(), msiz = siz*sizeof(T), siz1 = siz - 1, + mdisp = msiz<8*1024?0U:msiz<8*1024*1024?1U:2U, width1 = _width - 1; + + CImg _title(64); + if (!title) cimg_snprintf(_title,_title._width,"CImg<%s>",pixel_type()); + + std::fprintf(cimg::output(),"%s%s%s%s: %sthis%s = %p, %ssize%s = (%u,%u,%u,%u) [%lu %s], %sdata%s = (%s*)%p", + cimg::t_magenta,cimg::t_bold,title?title:_title._data,cimg::t_normal, + cimg::t_bold,cimg::t_normal,(void*)this, + cimg::t_bold,cimg::t_normal,_width,_height,_depth,_spectrum, + (unsigned long)(mdisp==0?msiz:(mdisp==1?(msiz>>10):(msiz>>20))), + mdisp==0?"b":(mdisp==1?"Kio":"Mio"), + cimg::t_bold,cimg::t_normal,pixel_type(),(void*)begin()); + if (_data) + std::fprintf(cimg::output(),"..%p (%s) = [ ",(void*)((char*)end() - 1),_is_shared?"shared":"non-shared"); + else std::fprintf(cimg::output()," (%s) = [ ",_is_shared?"shared":"non-shared"); + + if (!is_empty()) cimg_foroff(*this,off) { + std::fprintf(cimg::output(),cimg::type::format_s(),cimg::type::format(_data[off])); + if (off!=siz1) std::fprintf(cimg::output(),"%s",off%_width==width1?" ; ":" "); + if (off==7 && siz>16) { off = siz1 - 8; std::fprintf(cimg::output(),"... "); } + } + if (!is_empty() && display_stats) + std::fprintf(cimg::output(), + " ], %smin%s = %g, %smax%s = %g, %smean%s = %g, %sstd%s = %g, %scoords_min%s = (%u,%u,%u,%u), " + "%scoords_max%s = (%u,%u,%u,%u).\n", + cimg::t_bold,cimg::t_normal,st[0], + cimg::t_bold,cimg::t_normal,st[1], + cimg::t_bold,cimg::t_normal,st[2], + cimg::t_bold,cimg::t_normal,std::sqrt(st[3]), + cimg::t_bold,cimg::t_normal,xm,ym,zm,vm, + cimg::t_bold,cimg::t_normal,xM,yM,zM,vM); + else std::fprintf(cimg::output(),"%s].\n",is_empty()?"":" "); + std::fflush(cimg::output()); + return *this; + } + + //! Display image into a CImgDisplay window. + /** + \param disp Display window. + **/ + const CImg& display(CImgDisplay& disp) const { + disp.display(*this); + return *this; + } + + //! Display image into a CImgDisplay window, in an interactive way. + /** + \param disp Display window. + \param display_info Tells if image information are displayed on the standard output. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImg& display(CImgDisplay &disp, const bool display_info, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) const { + return _display(disp,0,display_info,XYZ,exit_on_anykey,false); + } + + //! Display image into an interactive window. + /** + \param title Window title + \param display_info Tells if image information are displayed on the standard output. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImg& display(const char *const title=0, const bool display_info=true, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _display(disp,title,display_info,XYZ,exit_on_anykey,false); + } + + const CImg& _display(CImgDisplay &disp, const char *const title, const bool display_info, + unsigned int *const XYZ, const bool exit_on_anykey, + const bool exit_on_singleclick) const { + unsigned int oldw = 0, oldh = 0, _XYZ[3] = {}, key = 0; + int x0 = 0, y0 = 0, z0 = 0, x1 = width() - 1, y1 = height() - 1, z1 = depth() - 1, + old_mouse_x = -1, old_mouse_y = -1; + + if (!disp) { + disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,1); + if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)",pixel_type(),_width,_height,_depth,_spectrum); + else disp.set_title("%s",title); + } else if (title) disp.set_title("%s",title); + disp.show().flush(); + + const CImg dtitle = CImg::string(disp.title()); + if (display_info) print(dtitle); + + CImg zoom; + for (bool reset_view = true, resize_disp = false, is_first_select = true; !key && !disp.is_closed(); ) { + if (reset_view) { + if (XYZ) { _XYZ[0] = XYZ[0]; _XYZ[1] = XYZ[1]; _XYZ[2] = XYZ[2]; } + else { + _XYZ[0] = (unsigned int)(x0 + x1 + 1)/2; + _XYZ[1] = (unsigned int)(y0 + y1 + 1)/2; + _XYZ[2] = (unsigned int)(z0 + z1 + 1)/2; + } + x0 = 0; y0 = 0; z0 = 0; x1 = width() - 1; y1 = height() - 1; z1 = depth() - 1; + disp.resize(cimg_fitscreen(_width,_height,_depth),false); + oldw = disp._width; oldh = disp._height; + resize_disp = true; + reset_view = false; + } + if (!x0 && !y0 && !z0 && x1==width() - 1 && y1==height() - 1 && z1==depth() - 1) { + if (is_empty()) zoom.assign(1,1,1,1,(T)0); else zoom.assign(); + } else zoom = get_crop(x0,y0,z0,x1,y1,z1); + + const CImg& visu = zoom?zoom:*this; + const unsigned int + dx = 1U + x1 - x0, dy = 1U + y1 - y0, dz = 1U + z1 - z0, + tw = dx + (dz>1?dz:0U), th = dy + (dz>1?dz:0U); + if (!is_empty() && !disp.is_fullscreen() && resize_disp) { + const float + ttw = (float)tw*disp.width()/oldw, tth = (float)th*disp.height()/oldh, + dM = std::max(ttw,tth), diM = (float)std::max(disp.width(),disp.height()); + const unsigned int + imgw = (unsigned int)(ttw*diM/dM), imgh = (unsigned int)(tth*diM/dM); + disp.set_fullscreen(false).resize(cimg_fitscreen(imgw,imgh,1),false); + resize_disp = false; + } + oldw = tw; oldh = th; + + bool + go_up = false, go_down = false, go_left = false, go_right = false, + go_inc = false, go_dec = false, go_in = false, go_out = false, + go_in_center = false; + + disp.set_title("%s",dtitle._data); + if (_width>1 && visu._width==1) disp.set_title("%s | x=%u",disp._title,x0); + if (_height>1 && visu._height==1) disp.set_title("%s | y=%u",disp._title,y0); + if (_depth>1 && visu._depth==1) disp.set_title("%s | z=%u",disp._title,z0); + + disp._mouse_x = old_mouse_x; disp._mouse_y = old_mouse_y; + CImg selection = visu._select(disp,0,2,_XYZ,x0,y0,z0,true,is_first_select,_depth>1,true); + old_mouse_x = disp._mouse_x; old_mouse_y = disp._mouse_y; + is_first_select = false; + + if (disp.wheel()) { + if ((disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) && + (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT())) { + go_left = !(go_right = disp.wheel()>0); + } else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) { + go_down = !(go_up = disp.wheel()>0); + } else if (depth()==1 || disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + go_out = !(go_in = disp.wheel()>0); go_in_center = false; + } + disp.set_wheel(); + } + + const int + sx0 = selection(0), sy0 = selection(1), sz0 = selection(2), + sx1 = selection(3), sy1 = selection(4), sz1 = selection(5); + if (sx0>=0 && sy0>=0 && sz0>=0 && sx1>=0 && sy1>=0 && sz1>=0) { + x1 = x0 + sx1; y1 = y0 + sy1; z1 = z0 + sz1; + x0+=sx0; y0+=sy0; z0+=sz0; + if ((sx0==sx1 && sy0==sy1) || (_depth>1 && sx0==sx1 && sz0==sz1) || (_depth>1 && sy0==sy1 && sz0==sz1)) { + if (exit_on_singleclick && (!zoom || is_empty())) break; else reset_view = true; + } + resize_disp = true; + } else switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : case cimg::keySHIFTRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : case cimg::keySHIFTLEFT : key = 0; break; + case cimg::keyP : if (visu._depth>1 && (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT())) { + // Special mode: play stack of frames + const unsigned int + w1 = visu._width*disp.width()/(visu._width + (visu._depth>1?visu._depth:0)), + h1 = visu._height*disp.height()/(visu._height + (visu._depth>1?visu._depth:0)); + float frame_timing = 5; + bool is_stopped = false; + disp.set_key(key,false).set_wheel().resize(cimg_fitscreen(w1,h1,1),false); key = 0; + for (unsigned int timer = 0; !key && !disp.is_closed() && !disp.button(); ) { + if (disp.is_resized()) disp.resize(false); + if (!timer) { + visu.get_slice((int)_XYZ[2]).display(disp.set_title("%s | z=%d",dtitle.data(),_XYZ[2])); + (++_XYZ[2])%=visu._depth; + } + if (!is_stopped) { if (++timer>(unsigned int)frame_timing) timer = 0; } else timer = ~0U; + if (disp.wheel()) { frame_timing-=disp.wheel()/3.f; disp.set_wheel(); } + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyPAGEUP : frame_timing-=0.3f; key = 0; break; + case cimg::keyPAGEDOWN : frame_timing+=0.3f; key = 0; break; + case cimg::keySPACE : is_stopped = !is_stopped; disp.set_key(key,false); key = 0; break; + case cimg::keyARROWLEFT : case cimg::keyARROWUP : is_stopped = true; timer = 0; key = 0; break; + case cimg::keyARROWRIGHT : case cimg::keyARROWDOWN : is_stopped = true; + (_XYZ[2]+=visu._depth - 2)%=visu._depth; timer = 0; key = 0; break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false).set_key(key,false); key = 0; + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(_width,_height,_depth),false).set_key(key,false); key = 0; + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false). + toggle_fullscreen().set_key(key,false); key = 0; + } break; + } + frame_timing = frame_timing<1?1:(frame_timing>39?39:frame_timing); + disp.wait(20); + } + const unsigned int + w2 = (visu._width + (visu._depth>1?visu._depth:0))*disp.width()/visu._width, + h2 = (visu._height + (visu._depth>1?visu._depth:0))*disp.height()/visu._height; + disp.resize(cimg_fitscreen(w2,h2,1),false).set_title(dtitle.data()).set_key().set_button().set_wheel(); + key = 0; + } break; + case cimg::keyHOME : reset_view = resize_disp = true; key = 0; break; + case cimg::keyPADADD : go_in = true; go_in_center = true; key = 0; break; + case cimg::keyPADSUB : go_out = true; key = 0; break; + case cimg::keyARROWLEFT : case cimg::keyPAD4: go_left = true; key = 0; break; + case cimg::keyARROWRIGHT : case cimg::keyPAD6: go_right = true; key = 0; break; + case cimg::keyARROWUP : case cimg::keyPAD8: go_up = true; key = 0; break; + case cimg::keyARROWDOWN : case cimg::keyPAD2: go_down = true; key = 0; break; + case cimg::keyPAD7 : go_up = go_left = true; key = 0; break; + case cimg::keyPAD9 : go_up = go_right = true; key = 0; break; + case cimg::keyPAD1 : go_down = go_left = true; key = 0; break; + case cimg::keyPAD3 : go_down = go_right = true; key = 0; break; + case cimg::keyPAGEUP : go_inc = true; key = 0; break; + case cimg::keyPAGEDOWN : go_dec = true; key = 0; break; + } + if (go_in) { + const int + mx = go_in_center?disp.width()/2:disp.mouse_x(), + my = go_in_center?disp.height()/2:disp.mouse_y(), + mX = mx*(width() + (depth()>1?depth():0))/disp.width(), + mY = my*(height() + (depth()>1?depth():0))/disp.height(); + int X = (int)_XYZ[0], Y = (int)_XYZ[1], Z = (int)_XYZ[2]; + if (mX=height()) { + X = x0 + mX*(1 + x1 - x0)/width(); Z = z0 + (mY - height())*(1 + z1 - z0)/depth(); + } + if (mX>=width() && mY4) { x0 = X - 3*(X - x0)/4; x1 = X + 3*(x1 - X)/4; } + if (y1 - y0>4) { y0 = Y - 3*(Y - y0)/4; y1 = Y + 3*(y1 - Y)/4; } + if (z1 - z0>4) { z0 = Z - 3*(Z - z0)/4; z1 = Z + 3*(z1 - Z)/4; } + } + if (go_out) { + const int + delta_x = (x1 - x0)/8, delta_y = (y1 - y0)/8, delta_z = (z1 - z0)/8, + ndelta_x = delta_x?delta_x:(_width>1), + ndelta_y = delta_y?delta_y:(_height>1), + ndelta_z = delta_z?delta_z:(_depth>1); + x0-=ndelta_x; y0-=ndelta_y; z0-=ndelta_z; + x1+=ndelta_x; y1+=ndelta_y; z1+=ndelta_z; + if (x0<0) { x1-=x0; x0 = 0; if (x1>=width()) x1 = width() - 1; } + if (y0<0) { y1-=y0; y0 = 0; if (y1>=height()) y1 = height() - 1; } + if (z0<0) { z1-=z0; z0 = 0; if (z1>=depth()) z1 = depth() - 1; } + if (x1>=width()) { x0-=(x1 - width() + 1); x1 = width() - 1; if (x0<0) x0 = 0; } + if (y1>=height()) { y0-=(y1 - height() + 1); y1 = height() - 1; if (y0<0) y0 = 0; } + if (z1>=depth()) { z0-=(z1 - depth() + 1); z1 = depth() - 1; if (z0<0) z0 = 0; } + const float + ratio = (float)(x1-x0)/(y1-y0), + ratiow = (float)disp._width/disp._height, + sub = std::min(cimg::abs(ratio - ratiow),cimg::abs(1/ratio-1/ratiow)); + if (sub>0.01) resize_disp = true; + } + if (go_left) { + const int delta = (x1 - x0)/4, ndelta = delta?delta:(_width>1); + if (x0 - ndelta>=0) { x0-=ndelta; x1-=ndelta; } + else { x1-=x0; x0 = 0; } + } + if (go_right) { + const int delta = (x1 - x0)/4, ndelta = delta?delta:(_width>1); + if (x1+ndelta1); + if (y0 - ndelta>=0) { y0-=ndelta; y1-=ndelta; } + else { y1-=y0; y0 = 0; } + } + if (go_down) { + const int delta = (y1 - y0)/4, ndelta = delta?delta:(_height>1); + if (y1+ndelta1); + if (z0 - ndelta>=0) { z0-=ndelta; z1-=ndelta; } + else { z1-=z0; z0 = 0; } + } + if (go_dec) { + const int delta = (z1 - z0)/4, ndelta = delta?delta:(_depth>1); + if (z1+ndelta + const CImg& display_object3d(CImgDisplay& disp, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return _display_object3d(disp,0,vertices,primitives,colors,opacities,centering,render_static, + render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _display_object3d(disp,title,vertices,primitives,colors,opacities,centering,render_static, + render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(CImgDisplay &disp, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(disp,vertices,primitives,colors,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(title,vertices,primitives,colors,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(CImgDisplay &disp, + const CImg& vertices, + const CImgList& primitives, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(disp,vertices,primitives,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const CImgList& primitives, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(title,vertices,primitives,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(CImgDisplay &disp, + const CImg& vertices, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(disp,vertices,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3D in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(title,vertices,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + template + const CImg& _display_object3d(CImgDisplay& disp, const char *const title, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool centering, + const int render_static, const int render_motion, + const bool is_double_sided, const float focale, + const float light_x, const float light_y, const float light_z, + const float specular_lightness, const float specular_shininess, + const bool display_axes, float *const pose_matrix, + const bool exit_on_anykey) const { + typedef typename cimg::superset::type tpfloat; + + // Check input arguments + if (is_empty()) { + CImg background; + if (colors && colors[0].size()==1) background.assign(1,2,1,1,64,128); + else background.assign(1,2,1,3,32,64,32,116,64,96); + if (disp) background.resize(disp.width(),disp.height(),1,-100,3); + else background.resize(cimg_fitscreen(CImgDisplay::screen_width()/2, + CImgDisplay::screen_height()/2,1),1,-100,3); + return background._display_object3d(disp,title,vertices,primitives,colors,opacities,centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } else { if (disp) disp.resize(*this,false); } + CImg error_message(1024); + if (!vertices.is_object3d(primitives,colors,opacities,true,error_message)) + throw CImgArgumentException(_cimg_instance + "display_object3d(): Invalid specified 3D object (%u,%u) (%s).", + cimg_instance,vertices._width,primitives._width,error_message.data()); + if (vertices._width && !primitives) { + CImgList nprimitives(vertices._width,1,1,1,1); + cimglist_for(nprimitives,l) nprimitives(l,0) = (tf)l; + return _display_object3d(disp,title,vertices,nprimitives,colors,opacities,centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + if (!disp) { + disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,3); + if (!title) disp.set_title("CImg<%s> (%u vertices, %u primitives)", + pixel_type(),vertices._width,primitives._width); + } else if (title) disp.set_title("%s",title); + + // Init 3D objects and compute object statistics + CImg + pose, + rotated_vertices(vertices._width,3), + bbox_vertices, rotated_bbox_vertices, + axes_vertices, rotated_axes_vertices, + bbox_opacities, axes_opacities; + CImgList bbox_primitives, axes_primitives; + CImgList reverse_primitives; + CImgList bbox_colors, bbox_colors2, axes_colors; + unsigned int ns_width = 0, ns_height = 0; + int _is_double_sided = (int)is_double_sided; + bool ndisplay_axes = display_axes; + const CImg + background_color(1,1,1,_spectrum,0), + foreground_color(1,1,1,_spectrum,(T)std::min((int)cimg::type::max(),255)); + float + Xoff = 0, Yoff = 0, Zoff = 0, sprite_scale = 1, + xm = 0, xM = vertices?vertices.get_shared_row(0).max_min(xm):0, + ym = 0, yM = vertices?vertices.get_shared_row(1).max_min(ym):0, + zm = 0, zM = vertices?vertices.get_shared_row(2).max_min(zm):0; + const float delta = cimg::max(xM - xm,yM - ym,zM - zm); + + rotated_bbox_vertices = bbox_vertices.assign(8,3,1,1, + xm,xM,xM,xm,xm,xM,xM,xm, + ym,ym,yM,yM,ym,ym,yM,yM, + zm,zm,zm,zm,zM,zM,zM,zM); + bbox_primitives.assign(6,1,4,1,1, 0,3,2,1, 4,5,6,7, 1,2,6,5, 0,4,7,3, 0,1,5,4, 2,3,7,6); + bbox_colors.assign(6,_spectrum,1,1,1,background_color[0]); + bbox_colors2.assign(6,_spectrum,1,1,1,foreground_color[0]); + bbox_opacities.assign(bbox_colors._width,1,1,1,0.3f); + + rotated_axes_vertices = axes_vertices.assign(7,3,1,1, + 0,20,0,0,22,-6,-6, + 0,0,20,0,-6,22,-6, + 0,0,0,20,0,0,22); + axes_opacities.assign(3,1,1,1,1); + axes_colors.assign(3,_spectrum,1,1,1,foreground_color[0]); + axes_primitives.assign(3,1,2,1,1, 0,1, 0,2, 0,3); + + // Begin user interaction loop + CImg visu0(*this,false), visu; + CImg zbuffer(visu0.width(),visu0.height(),1,1,0); + bool init_pose = true, clicked = false, redraw = true; + unsigned int key = 0, font_size = 32; + int + x0 = 0, y0 = 0, x1 = 0, y1 = 0, + nrender_static = render_static, + nrender_motion = render_motion; + disp.show().flush(); + + while (!disp.is_closed() && !key) { + + // Init object pose + if (init_pose) { + const float + ratio = delta>0?(2.f*std::min(disp.width(),disp.height())/(3.f*delta)):1, + dx = (xM + xm)/2, dy = (yM + ym)/2, dz = (zM + zm)/2; + if (centering) + CImg(4,3,1,1, ratio,0.,0.,-ratio*dx, 0.,ratio,0.,-ratio*dy, 0.,0.,ratio,-ratio*dz).move_to(pose); + else CImg(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0).move_to(pose); + if (pose_matrix) { + CImg pose0(pose_matrix,4,3,1,1,false); + pose0.resize(4,4,1,1,0); pose.resize(4,4,1,1,0); + pose0(3,3) = pose(3,3) = 1; + (pose0*pose).get_crop(0,0,3,2).move_to(pose); + Xoff = pose_matrix[12]; Yoff = pose_matrix[13]; Zoff = pose_matrix[14]; sprite_scale = pose_matrix[15]; + } else { Xoff = Yoff = Zoff = 0; sprite_scale = 1; } + init_pose = false; + redraw = true; + } + + // Rotate and draw 3D object + if (redraw) { + const float + r00 = pose(0,0), r10 = pose(1,0), r20 = pose(2,0), r30 = pose(3,0), + r01 = pose(0,1), r11 = pose(1,1), r21 = pose(2,1), r31 = pose(3,1), + r02 = pose(0,2), r12 = pose(1,2), r22 = pose(2,2), r32 = pose(3,2); + if ((clicked && nrender_motion>=0) || (!clicked && nrender_static>=0)) { + const tp *const pv0 = vertices.data(), *const pv1 = vertices.data(0,1), *const pv2 = vertices.data(0,2); + float + *const prv0 = rotated_vertices.data(), + *const prv1 = rotated_vertices.data(0,1), + *const prv2 = rotated_vertices.data(0,2); + cimg_pragma_openmp(parallel for cimg_openmp_if(vertices.width()>(cimg_openmp_sizefactor)*1024)) + cimg_forX(vertices,l) { + const float x = (float)pv0[l], y = (float)pv1[l], z = (float)pv2[l]; + prv0[l] = r00*x + r10*y + r20*z + r30; + prv1[l] = r01*x + r11*y + r21*z + r31; + prv2[l] = r02*x + r12*y + r22*z + r32; + } + } + else cimg_forX(bbox_vertices,l) { + const float x = bbox_vertices(l,0), y = bbox_vertices(l,1), z = bbox_vertices(l,2); + rotated_bbox_vertices(l,0) = r00*x + r10*y + r20*z + r30; + rotated_bbox_vertices(l,1) = r01*x + r11*y + r21*z + r31; + rotated_bbox_vertices(l,2) = r02*x + r12*y + r22*z + r32; + } + + // Draw objects + const bool render_with_zbuffer = !clicked && nrender_static>0; + visu = visu0; + if ((clicked && nrender_motion<0) || (!clicked && nrender_static<0)) + visu.draw_object3d(Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff, + rotated_bbox_vertices,bbox_primitives,bbox_colors,bbox_opacities,2,false,focale). + draw_object3d(Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff, + rotated_bbox_vertices,bbox_primitives,bbox_colors2,1,false,focale); + else visu._draw_object3d((void*)0,render_with_zbuffer?zbuffer.fill(0):CImg::empty(), + Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff, + rotated_vertices,reverse_primitives?reverse_primitives:primitives, + colors,opacities,clicked?nrender_motion:nrender_static,_is_double_sided==1,focale, + width()/2.f + light_x,height()/2.f + light_y,light_z + Zoff, + specular_lightness,specular_shininess,1,sprite_scale); + // Draw axes + if (ndisplay_axes) { + const float + n = 1e-8f + cimg::hypot(r00,r01,r02), + _r00 = r00/n, _r10 = r10/n, _r20 = r20/n, + _r01 = r01/n, _r11 = r11/n, _r21 = r21/n, + _r02 = r01/n, _r12 = r12/n, _r22 = r22/n, + Xaxes = 25, Yaxes = visu._height - 38.f; + cimg_forX(axes_vertices,l) { + const float + x = axes_vertices(l,0), + y = axes_vertices(l,1), + z = axes_vertices(l,2); + rotated_axes_vertices(l,0) = _r00*x + _r10*y + _r20*z; + rotated_axes_vertices(l,1) = _r01*x + _r11*y + _r21*z; + rotated_axes_vertices(l,2) = _r02*x + _r12*y + _r22*z; + } + axes_opacities(0,0) = (rotated_axes_vertices(1,2)>0)?0.5f:1.f; + axes_opacities(1,0) = (rotated_axes_vertices(2,2)>0)?0.5f:1.f; + axes_opacities(2,0) = (rotated_axes_vertices(3,2)>0)?0.5f:1.f; + visu.draw_object3d(Xaxes,Yaxes,0,rotated_axes_vertices,axes_primitives, + axes_colors,axes_opacities,1,false,focale). + draw_text((int)(Xaxes + rotated_axes_vertices(4,0)), + (int)(Yaxes + rotated_axes_vertices(4,1)), + "X",axes_colors[0]._data,0,axes_opacities(0,0),13). + draw_text((int)(Xaxes + rotated_axes_vertices(5,0)), + (int)(Yaxes + rotated_axes_vertices(5,1)), + "Y",axes_colors[1]._data,0,axes_opacities(1,0),13). + draw_text((int)(Xaxes + rotated_axes_vertices(6,0)), + (int)(Yaxes + rotated_axes_vertices(6,1)), + "Z",axes_colors[2]._data,0,axes_opacities(2,0),13); + } + visu.display(disp); + if (!clicked || nrender_motion==nrender_static) redraw = false; + } + + // Handle user interaction + if (!redraw) disp.wait(); + if ((disp.button() || disp.wheel()) && disp.mouse_x()>=0 && disp.mouse_y()>=0) { + redraw = true; + if (!clicked) { x0 = x1 = disp.mouse_x(); y0 = y1 = disp.mouse_y(); if (!disp.wheel()) clicked = true; } + else { x1 = disp.mouse_x(); y1 = disp.mouse_y(); } + const bool is_keyCTRL = disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT(); + if (disp.button()&1 && !is_keyCTRL) { + const float + R = 0.45f*std::min(disp.width(),disp.height()), + R2 = R*R, + u0 = (float)(x0 - disp.width()/2), + v0 = (float)(y0 - disp.height()/2), + u1 = (float)(x1 - disp.width()/2), + v1 = (float)(y1 - disp.height()/2), + n0 = cimg::hypot(u0,v0), + n1 = cimg::hypot(u1,v1), + nu0 = n0>R?(u0*R/n0):u0, + nv0 = n0>R?(v0*R/n0):v0, + nw0 = (float)std::sqrt(std::max(0.f,R2 - nu0*nu0 - nv0*nv0)), + nu1 = n1>R?(u1*R/n1):u1, + nv1 = n1>R?(v1*R/n1):v1, + nw1 = (float)std::sqrt(std::max(0.f,R2 - nu1*nu1 - nv1*nv1)), + u = nv0*nw1 - nw0*nv1, + v = nw0*nu1 - nu0*nw1, + w = nv0*nu1 - nu0*nv1, + n = cimg::hypot(u,v,w), + alpha = (float)std::asin(n/R2)*180/cimg::PI; + (CImg::rotation_matrix(u,v,w,-alpha)*pose).move_to(pose); + x0 = x1; y0 = y1; + } + if (disp.button()&2 && !is_keyCTRL) { + if (focale>0) Zoff-=(y0 - y1)*focale/400; + else { const float s = std::exp((y0 - y1)/400.f); pose*=s; sprite_scale*=s; } + x0 = x1; y0 = y1; + } + if (disp.wheel()) { + if (focale>0) Zoff-=disp.wheel()*focale/20; + else { const float s = std::exp(disp.wheel()/20.f); pose*=s; sprite_scale*=s; } + disp.set_wheel(); + } + if (disp.button()&4 || (disp.button()&1 && is_keyCTRL)) { + Xoff+=(x1 - x0); Yoff+=(y1 - y0); x0 = x1; y0 = y1; + } + if ((disp.button()&1) && (disp.button()&2) && !is_keyCTRL) { + init_pose = true; disp.set_button(); x0 = x1; y0 = y1; + pose = CImg(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0); + } + } else if (clicked) { x0 = x1; y0 = y1; clicked = false; redraw = true; } + + CImg filename(32); + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false).resize(cimg_fitscreen(_width,_height,_depth),false)._is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + if (!ns_width || !ns_height || + ns_width>(unsigned int)disp.screen_width() || ns_height>(unsigned int)disp.screen_height()) { + ns_width = disp.screen_width()*3U/4; + ns_height = disp.screen_height()*3U/4; + } + if (disp.is_fullscreen()) disp.resize(ns_width,ns_height,false); + else { + ns_width = disp._width; ns_height = disp._height; + disp.resize(disp.screen_width(),disp.screen_height(),false); + } + disp.toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyT : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + // Switch single/double-sided primitives. + if (--_is_double_sided==-2) _is_double_sided = 1; + if (_is_double_sided>=0) reverse_primitives.assign(); + else primitives.get_reverse_object3d().move_to(reverse_primitives); + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyZ : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Enable/disable Z-buffer + if (zbuffer) zbuffer.assign(); + else zbuffer.assign(visu0.width(),visu0.height(),1,1,0); + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyX : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Show/hide 3D axes + ndisplay_axes = !ndisplay_axes; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF1 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to points + nrender_motion = (nrender_static==0 && nrender_motion!=0)?0:-1; nrender_static = 0; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF2 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to lines + nrender_motion = (nrender_static==1 && nrender_motion!=1)?1:-1; nrender_static = 1; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF3 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat + nrender_motion = (nrender_static==2 && nrender_motion!=2)?2:-1; nrender_static = 2; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF4 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat-shaded + nrender_motion = (nrender_static==3 && nrender_motion!=3)?3:-1; nrender_static = 3; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF5 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + // Set rendering mode to gouraud-shaded. + nrender_motion = (nrender_static==4 && nrender_motion!=4)?4:-1; nrender_static = 4; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF6 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to phong-shaded + nrender_motion = (nrender_static==5 && nrender_motion!=5)?5:-1; nrender_static = 5; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save snapshot + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u." +#ifdef cimg_use_png + "png", +#else + "bmp", +#endif + snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).__draw_text(" Saving snapshot... ",font_size,0).display(disp); + visu.save(filename); + (+visu).__draw_text(" Snapshot '%s' saved. ",font_size,0,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyG : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .off file + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.off",snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).__draw_text(" Saving object... ",font_size,0).display(disp); + vertices.save_off(reverse_primitives?reverse_primitives:primitives,colors,filename); + (+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .cimg file + static unsigned int snap_number = 0; + std::FILE *file; + do { + +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimg",snap_number++); +#endif + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).__draw_text(" Saving object... ",font_size,0).display(disp); + vertices.get_object3dtoCImg3d(reverse_primitives?reverse_primitives:primitives,colors,opacities). + save(filename); + (+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + +#ifdef cimg_use_board + case cimg::keyP : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .EPS file + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.eps",snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).__draw_text(" Saving EPS snapshot... ",font_size,0).display(disp); + LibBoard::Board board; + (+visu)._draw_object3d(&board,zbuffer.fill(0), + Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff, + rotated_vertices,reverse_primitives?reverse_primitives:primitives, + colors,opacities,clicked?nrender_motion:nrender_static, + _is_double_sided==1,focale, + visu.width()/2.f + light_x,visu.height()/2.f + light_y,light_z + Zoff, + specular_lightness,specular_shininess,1, + sprite_scale); + board.saveEPS(filename); + (+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyV : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .SVG file + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.svg",snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).__draw_text(" Saving SVG snapshot... ",font_size,0).display(disp); + LibBoard::Board board; + (+visu)._draw_object3d(&board,zbuffer.fill(0), + Xoff + visu._width/2.f,Yoff + visu._height/2.f,Zoff, + rotated_vertices,reverse_primitives?reverse_primitives:primitives, + colors,opacities,clicked?nrender_motion:nrender_static, + _is_double_sided==1,focale, + visu.width()/2.f + light_x,visu.height()/2.f + light_y,light_z + Zoff, + specular_lightness,specular_shininess,1, + sprite_scale); + board.saveSVG(filename); + (+visu).__draw_text(" Object '%s' saved. ",font_size,0,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; +#endif + } + if (disp.is_resized()) { + disp.resize(false); visu0 = get_resize(disp,1); + if (zbuffer) zbuffer.assign(disp.width(),disp.height()); + redraw = true; + } + if (!exit_on_anykey && key && key!=cimg::keyESC && + (key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + key = 0; + } + } + if (pose_matrix) { + std::memcpy(pose_matrix,pose._data,12*sizeof(float)); + pose_matrix[12] = Xoff; pose_matrix[13] = Yoff; pose_matrix[14] = Zoff; pose_matrix[15] = sprite_scale; + } + disp.set_button().set_key(key); + return *this; + } + + //! Display 1D graph in an interactive window. + /** + \param disp Display window. + \param plot_type Plot type. Can be { 0=points | 1=segments | 2=splines | 3=bars }. + \param vertex_type Vertex type. + \param labelx Title for the horizontal axis, as a C-string. + \param xmin Minimum value along the X-axis. + \param xmax Maximum value along the X-axis. + \param labely Title for the vertical axis, as a C-string. + \param ymin Minimum value along the X-axis. + \param ymax Maximum value along the X-axis. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImg& display_graph(CImgDisplay &disp, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + return _display_graph(disp,0,plot_type,vertex_type,labelx,xmin,xmax,labely,ymin,ymax,exit_on_anykey); + } + + //! Display 1D graph in an interactive window \overloading. + const CImg& display_graph(const char *const title=0, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _display_graph(disp,title,plot_type,vertex_type,labelx,xmin,xmax,labely,ymin,ymax,exit_on_anykey); + } + + const CImg& _display_graph(CImgDisplay &disp, const char *const title=0, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "display_graph(): Empty instance.", + cimg_instance); + if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width()/2,CImgDisplay::screen_height()/2,1),0,0). + set_title(title?"%s":"CImg<%s>",title?title:pixel_type()); + const ulongT siz = (ulongT)_width*_height*_depth, siz1 = std::max((ulongT)1,siz - 1); + const unsigned int old_normalization = disp.normalization(); + disp.show().flush()._normalization = 0; + + double y0 = ymin, y1 = ymax, nxmin = xmin, nxmax = xmax; + if (nxmin==nxmax) { nxmin = 0; nxmax = siz1; } + int x0 = 0, x1 = width()*height()*depth() - 1, key = 0; + + for (bool reset_view = true; !key && !disp.is_closed(); ) { + if (reset_view) { x0 = 0; x1 = width()*height()*depth() - 1; y0 = ymin; y1 = ymax; reset_view = false; } + CImg zoom(x1 - x0 + 1,1,1,spectrum()); + cimg_forC(*this,c) zoom.get_shared_channel(c) = CImg(data(x0,0,0,c),x1 - x0 + 1,1,1,1,true); + if (y0==y1) { y0 = zoom.min_max(y1); const double dy = y1 - y0; y0-=dy/20; y1+=dy/20; } + if (y0==y1) { --y0; ++y1; } + + const CImg selection = zoom.get_select_graph(disp,plot_type,vertex_type, + labelx, + nxmin + x0*(nxmax - nxmin)/siz1, + nxmin + x1*(nxmax - nxmin)/siz1, + labely,y0,y1,true); + const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y(); + if (selection[0]>=0) { + if (selection[2]<0) reset_view = true; + else { + x1 = x0 + selection[2]; x0+=selection[0]; + if (selection[1]>=0 && selection[3]>=0) { + y0 = y1 - selection[3]*(y1 - y0)/(disp.height() - 32); + y1-=selection[1]*(y1 - y0)/(disp.height() - 32); + } + } + } else { + bool go_in = false, go_out = false, go_left = false, go_right = false, go_up = false, go_down = false; + switch (key = (int)disp.key()) { + case cimg::keyHOME : reset_view = true; key = 0; disp.set_key(); break; + case cimg::keyPADADD : go_in = true; go_out = false; key = 0; disp.set_key(); break; + case cimg::keyPADSUB : go_out = true; go_in = false; key = 0; disp.set_key(); break; + case cimg::keyARROWLEFT : case cimg::keyPAD4 : go_left = true; go_right = false; key = 0; disp.set_key(); + break; + case cimg::keyARROWRIGHT : case cimg::keyPAD6 : go_right = true; go_left = false; key = 0; disp.set_key(); + break; + case cimg::keyARROWUP : case cimg::keyPAD8 : go_up = true; go_down = false; key = 0; disp.set_key(); break; + case cimg::keyARROWDOWN : case cimg::keyPAD2 : go_down = true; go_up = false; key = 0; disp.set_key(); break; + case cimg::keyPAD7 : go_left = true; go_up = true; key = 0; disp.set_key(); break; + case cimg::keyPAD9 : go_right = true; go_up = true; key = 0; disp.set_key(); break; + case cimg::keyPAD1 : go_left = true; go_down = true; key = 0; disp.set_key(); break; + case cimg::keyPAD3 : go_right = true; go_down = true; key = 0; disp.set_key(); break; + } + if (disp.wheel()) { + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) go_up = !(go_down = disp.wheel()<0); + else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) go_left = !(go_right = disp.wheel()>0); + else go_out = !(go_in = disp.wheel()>0); + key = 0; + } + + if (go_in) { + const int + xsiz = x1 - x0, + mx = (mouse_x - 16)*xsiz/(disp.width() - 32), + cx = x0 + cimg::cut(mx,0,xsiz); + if (x1 - x0>4) { + x0 = cx - 7*(cx - x0)/8; x1 = cx + 7*(x1 - cx)/8; + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + const double + ysiz = y1 - y0, + my = (mouse_y - 16)*ysiz/(disp.height() - 32), + cy = y1 - cimg::cut(my,0.,ysiz); + y0 = cy - 7*(cy - y0)/8; y1 = cy + 7*(y1 - cy)/8; + } else y0 = y1 = 0; + } + } + if (go_out) { + if (x0>0 || x1<(int)siz1) { + const int delta_x = (x1 - x0)/8, ndelta_x = delta_x?delta_x:(siz>1); + const double ndelta_y = (y1 - y0)/8; + x0-=ndelta_x; x1+=ndelta_x; + y0-=ndelta_y; y1+=ndelta_y; + if (x0<0) { x1-=x0; x0 = 0; if (x1>=(int)siz) x1 = (int)siz1; } + if (x1>=(int)siz) { x0-=(x1 - siz1); x1 = (int)siz1; if (x0<0) x0 = 0; } + } + } + if (go_left) { + const int delta = (x1 - x0)/5, ndelta = delta?delta:1; + if (x0 - ndelta>=0) { x0-=ndelta; x1-=ndelta; } + else { x1-=x0; x0 = 0; } + go_left = false; + } + if (go_right) { + const int delta = (x1 - x0)/5, ndelta = delta?delta:1; + if (x1 + ndelta<(int)siz) { x0+=ndelta; x1+=ndelta; } + else { x0+=(siz1 - x1); x1 = (int)siz1; } + go_right = false; + } + if (go_up) { + const double delta = (y1 - y0)/10, ndelta = delta?delta:1; + y0+=ndelta; y1+=ndelta; + go_up = false; + } + if (go_down) { + const double delta = (y1 - y0)/10, ndelta = delta?delta:1; + y0-=ndelta; y1-=ndelta; + go_down = false; + } + } + if (!exit_on_anykey && key && key!=(int)cimg::keyESC && + (key!=(int)cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + disp.set_key(key,false); + key = 0; + } + } + disp._normalization = old_normalization; + return *this; + } + + //! Save image as a file. + /** + \param filename Filename, as a C-string. + \param number When positive, represents an index added to the filename. Otherwise, no number is added. + \param digits Number of digits used for adding the number to the filename. + \note + - The used file format is defined by the file extension in the filename \p filename. + - Parameter \p number can be used to add a 6-digit number to the filename before saving. + + **/ + const CImg& save(const char *const filename, const int number=-1, const unsigned int digits=6) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save(): Specified filename is (null).", + cimg_instance); + // Do not test for empty instances, since .cimg format is able to manage empty instances. + const bool is_stdout = *filename=='-' && (!filename[1] || filename[1]=='.'); + const char *const ext = cimg::split_filename(filename); + CImg nfilename(1024); + const char *const fn = is_stdout?filename:(number>=0)?cimg::number_filename(filename,number,digits,nfilename): + filename; + +#ifdef cimg_save_plugin + cimg_save_plugin(fn); +#endif +#ifdef cimg_save_plugin1 + cimg_save_plugin1(fn); +#endif +#ifdef cimg_save_plugin2 + cimg_save_plugin2(fn); +#endif +#ifdef cimg_save_plugin3 + cimg_save_plugin3(fn); +#endif +#ifdef cimg_save_plugin4 + cimg_save_plugin4(fn); +#endif +#ifdef cimg_save_plugin5 + cimg_save_plugin5(fn); +#endif +#ifdef cimg_save_plugin6 + cimg_save_plugin6(fn); +#endif +#ifdef cimg_save_plugin7 + cimg_save_plugin7(fn); +#endif +#ifdef cimg_save_plugin8 + cimg_save_plugin8(fn); +#endif + // Text formats + if (!cimg::strcasecmp(ext,"asc")) return save_ascii(fn); + else if (!cimg::strcasecmp(ext,"csv") || + !cimg::strcasecmp(ext,"dlm") || + !cimg::strcasecmp(ext,"txt")) return save_dlm(fn); + else if (!cimg::strcasecmp(ext,"cpp") || + !cimg::strcasecmp(ext,"hpp") || + !cimg::strcasecmp(ext,"h") || + !cimg::strcasecmp(ext,"c")) return save_cpp(fn); + + // 2D binary formats + else if (!cimg::strcasecmp(ext,"bmp")) return save_bmp(fn); + else if (!cimg::strcasecmp(ext,"jpg") || + !cimg::strcasecmp(ext,"jpeg") || + !cimg::strcasecmp(ext,"jpe") || + !cimg::strcasecmp(ext,"jfif") || + !cimg::strcasecmp(ext,"jif")) return save_jpeg(fn); + else if (!cimg::strcasecmp(ext,"rgb")) return save_rgb(fn); + else if (!cimg::strcasecmp(ext,"rgba")) return save_rgba(fn); + else if (!cimg::strcasecmp(ext,"png")) return save_png(fn); + else if (!cimg::strcasecmp(ext,"pgm") || + !cimg::strcasecmp(ext,"ppm") || + !cimg::strcasecmp(ext,"pnm")) return save_pnm(fn); + else if (!cimg::strcasecmp(ext,"pnk")) return save_pnk(fn); + else if (!cimg::strcasecmp(ext,"pfm")) return save_pfm(fn); + else if (!cimg::strcasecmp(ext,"exr")) return save_exr(fn); + else if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) return save_tiff(fn); + + // 3D binary formats + else if (!*ext) { +#ifdef cimg_use_zlib + return save_cimg(fn,true); +#else + return save_cimg(fn,false); +#endif + } else if (!cimg::strcasecmp(ext,"cimgz")) return save_cimg(fn,true); + else if (!cimg::strcasecmp(ext,"cimg")) return save_cimg(fn,false); + else if (!cimg::strcasecmp(ext,"dcm")) return save_medcon_external(fn); + else if (!cimg::strcasecmp(ext,"hdr") || + !cimg::strcasecmp(ext,"nii")) return save_analyze(fn); + else if (!cimg::strcasecmp(ext,"inr")) return save_inr(fn); + else if (!cimg::strcasecmp(ext,"mnc")) return save_minc2(fn); + else if (!cimg::strcasecmp(ext,"pan")) return save_pandore(fn); + else if (!cimg::strcasecmp(ext,"raw")) return save_raw(fn); + + // Archive files + else if (!cimg::strcasecmp(ext,"gz")) return save_gzip_external(fn); + + // Image sequences + else if (!cimg::strcasecmp(ext,"yuv")) return save_yuv(fn,444,true); + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"webm") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) return save_video(fn); + return save_other(fn); + } + + //! Save image as an ascii file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_ascii(const char *const filename) const { + return _save_ascii(0,filename); + } + + //! Save image as an Ascii file \overloading. + const CImg& save_ascii(std::FILE *const file) const { + return _save_ascii(file,0); + } + + const CImg& _save_ascii(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_ascii(): Specified filename is (null).", + cimg_instance); + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + std::fprintf(nfile,"%u %u %u %u\n",_width,_height,_depth,_spectrum); + const T* ptrs = _data; + cimg_forYZC(*this,y,z,c) { + cimg_forX(*this,x) std::fprintf(nfile,"%.17g ",(double)*(ptrs++)); + std::fputc('\n',nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a .cpp source file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_cpp(const char *const filename) const { + return _save_cpp(0,filename); + } + + //! Save image as a .cpp source file \overloading. + const CImg& save_cpp(std::FILE *const file) const { + return _save_cpp(file,0); + } + + const CImg& _save_cpp(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_cpp(): Specified filename is (null).", + cimg_instance); + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + CImg varname(1024); *varname = 0; + if (filename) cimg_sscanf(cimg::basename(filename),"%1023[a-zA-Z0-9_]",varname._data); + if (!*varname) cimg_snprintf(varname,varname._width,"unnamed"); + std::fprintf(nfile, + "/* Define image '%s' of size %ux%ux%ux%u and type '%s' */\n" + "%s data_%s[] = { %s\n ", + varname._data,_width,_height,_depth,_spectrum,pixel_type(),pixel_type(),varname._data, + is_empty()?"};":""); + if (!is_empty()) for (ulongT off = 0, siz = size() - 1; off<=siz; ++off) { + std::fprintf(nfile,cimg::type::format(),cimg::type::format((*this)[off])); + if (off==siz) std::fprintf(nfile," };\n"); + else if (!((off + 1)%16)) std::fprintf(nfile,",\n "); + else std::fprintf(nfile,", "); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a DLM file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_dlm(const char *const filename) const { + return _save_dlm(0,filename); + } + + //! Save image as a DLM file \overloading. + const CImg& save_dlm(std::FILE *const file) const { + return _save_dlm(file,0); + } + + const CImg& _save_dlm(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_dlm(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_dlm(): Instance is volumetric, values along Z will be unrolled in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>1) + cimg::warn(_cimg_instance + "save_dlm(): Instance is multispectral, values along C will be unrolled in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + const T* ptrs = _data; + cimg_forYZC(*this,y,z,c) { + cimg_forX(*this,x) std::fprintf(nfile,"%.17g%s",(double)*(ptrs++),(x==width() - 1)?"":","); + std::fputc('\n',nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a BMP file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_bmp(const char *const filename) const { + return _save_bmp(0,filename); + } + + //! Save image as a BMP file \overloading. + const CImg& save_bmp(std::FILE *const file) const { + return _save_bmp(file,0); + } + + const CImg& _save_bmp(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_bmp(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_bmp(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_bmp(): Instance is multispectral, only the three first channels will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + CImg header(54,1,1,1,0); + unsigned char align_buf[4] = {}; + const unsigned int + align = (4 - (3*_width)%4)%4, + buf_size = (3*_width + align)*height(), + file_size = 54 + buf_size; + header[0] = 'B'; header[1] = 'M'; + header[0x02] = file_size&0xFF; + header[0x03] = (file_size>>8)&0xFF; + header[0x04] = (file_size>>16)&0xFF; + header[0x05] = (file_size>>24)&0xFF; + header[0x0A] = 0x36; + header[0x0E] = 0x28; + header[0x12] = _width&0xFF; + header[0x13] = (_width>>8)&0xFF; + header[0x14] = (_width>>16)&0xFF; + header[0x15] = (_width>>24)&0xFF; + header[0x16] = _height&0xFF; + header[0x17] = (_height>>8)&0xFF; + header[0x18] = (_height>>16)&0xFF; + header[0x19] = (_height>>24)&0xFF; + header[0x1A] = 1; + header[0x1B] = 0; + header[0x1C] = 24; + header[0x1D] = 0; + header[0x22] = buf_size&0xFF; + header[0x23] = (buf_size>>8)&0xFF; + header[0x24] = (buf_size>>16)&0xFF; + header[0x25] = (buf_size>>24)&0xFF; + header[0x27] = 0x1; + header[0x2B] = 0x1; + cimg::fwrite(header._data,54,nfile); + + const T + *ptr_r = data(0,_height - 1,0,0), + *ptr_g = (_spectrum>=2)?data(0,_height - 1,0,1):0, + *ptr_b = (_spectrum>=3)?data(0,_height - 1,0,2):0; + + switch (_spectrum) { + case 1 : { + cimg_forY(*this,y) { + cimg_forX(*this,x) { + const unsigned char val = (unsigned char)*(ptr_r++); + std::fputc(val,nfile); std::fputc(val,nfile); std::fputc(val,nfile); + } + cimg::fwrite(align_buf,align,nfile); + ptr_r-=2*_width; + } + } break; + case 2 : { + cimg_forY(*this,y) { + cimg_forX(*this,x) { + std::fputc(0,nfile); + std::fputc((unsigned char)(*(ptr_g++)),nfile); + std::fputc((unsigned char)(*(ptr_r++)),nfile); + } + cimg::fwrite(align_buf,align,nfile); + ptr_r-=2*_width; ptr_g-=2*_width; + } + } break; + default : { + cimg_forY(*this,y) { + cimg_forX(*this,x) { + std::fputc((unsigned char)(*(ptr_b++)),nfile); + std::fputc((unsigned char)(*(ptr_g++)),nfile); + std::fputc((unsigned char)(*(ptr_r++)),nfile); + } + cimg::fwrite(align_buf,align,nfile); + ptr_r-=2*_width; ptr_g-=2*_width; ptr_b-=2*_width; + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a JPEG file. + /** + \param filename Filename, as a C-string. + \param quality Image quality (in %) + **/ + const CImg& save_jpeg(const char *const filename, const unsigned int quality=100) const { + return _save_jpeg(0,filename,quality); + } + + //! Save image as a JPEG file \overloading. + const CImg& save_jpeg(std::FILE *const file, const unsigned int quality=100) const { + return _save_jpeg(file,0,quality); + } + + const CImg& _save_jpeg(std::FILE *const file, const char *const filename, const unsigned int quality) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_jpeg(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_jpeg(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + +#ifndef cimg_use_jpeg + if (!file) return save_other(filename,quality); + else throw CImgIOException(_cimg_instance + "save_jpeg(): Unable to save data in '(*FILE)' unless libjpeg is enabled.", + cimg_instance); +#else + unsigned int dimbuf = 0; + J_COLOR_SPACE colortype = JCS_RGB; + + switch (_spectrum) { + case 1 : dimbuf = 1; colortype = JCS_GRAYSCALE; break; + case 2 : dimbuf = 3; colortype = JCS_RGB; break; + case 3 : dimbuf = 3; colortype = JCS_RGB; break; + default : dimbuf = 4; colortype = JCS_CMYK; break; + } + + // Call libjpeg functions + struct jpeg_compress_struct cinfo; + struct jpeg_error_mgr jerr; + cinfo.err = jpeg_std_error(&jerr); + jpeg_create_compress(&cinfo); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + jpeg_stdio_dest(&cinfo,nfile); + cinfo.image_width = _width; + cinfo.image_height = _height; + cinfo.input_components = dimbuf; + cinfo.in_color_space = colortype; + jpeg_set_defaults(&cinfo); + jpeg_set_quality(&cinfo,quality<100?quality:100,TRUE); + jpeg_start_compress(&cinfo,TRUE); + + JSAMPROW row_pointer[1]; + CImg buffer(_width*dimbuf); + + while (cinfo.next_scanline& save_magick(const char *const filename, const unsigned int bytes_per_pixel=0) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_magick(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifdef cimg_use_magick + double stmin, stmax = (double)max_min(stmin); + if (_depth>1) + cimg::warn(_cimg_instance + "save_magick(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename); + + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_magick(): Instance is multispectral, only the three first channels will be " + "saved in file '%s'.", + cimg_instance, + filename); + + if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536) + cimg::warn(_cimg_instance + "save_magick(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.", + cimg_instance, + stmin,stmax,filename); + + Magick::Image image(Magick::Geometry(_width,_height),"black"); + image.type(Magick::TrueColorType); + image.depth(bytes_per_pixel?(8*bytes_per_pixel):(stmax>=256?16:8)); + const T + *ptr_r = data(0,0,0,0), + *ptr_g = _spectrum>1?data(0,0,0,1):0, + *ptr_b = _spectrum>2?data(0,0,0,2):0; + Magick::PixelPacket *pixels = image.getPixels(0,0,_width,_height); + switch (_spectrum) { + case 1 : // Scalar images + for (ulongT off = (ulongT)_width*_height; off; --off) { + pixels->red = pixels->green = pixels->blue = (Magick::Quantum)*(ptr_r++); + ++pixels; + } + break; + case 2 : // RG images + for (ulongT off = (ulongT)_width*_height; off; --off) { + pixels->red = (Magick::Quantum)*(ptr_r++); + pixels->green = (Magick::Quantum)*(ptr_g++); + pixels->blue = 0; ++pixels; + } + break; + default : // RGB images + for (ulongT off = (ulongT)_width*_height; off; --off) { + pixels->red = (Magick::Quantum)*(ptr_r++); + pixels->green = (Magick::Quantum)*(ptr_g++); + pixels->blue = (Magick::Quantum)*(ptr_b++); + ++pixels; + } + } + image.syncPixels(); + image.write(filename); + return *this; +#else + cimg::unused(bytes_per_pixel); + throw CImgIOException(_cimg_instance + "save_magick(): Unable to save file '%s' unless libMagick++ is enabled.", + cimg_instance, + filename); +#endif + } + + //! Save image as a PNG file. + /** + \param filename Filename, as a C-string. + \param bytes_per_pixel Force the number of bytes per pixels for the saving, when possible. + **/ + const CImg& save_png(const char *const filename, const unsigned int bytes_per_pixel=0) const { + return _save_png(0,filename,bytes_per_pixel); + } + + //! Save image as a PNG file \overloading. + const CImg& save_png(std::FILE *const file, const unsigned int bytes_per_pixel=0) const { + return _save_png(file,0,bytes_per_pixel); + } + + const CImg& _save_png(std::FILE *const file, const char *const filename, + const unsigned int bytes_per_pixel=0) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_png(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + +#ifndef cimg_use_png + cimg::unused(bytes_per_pixel); + if (!file) return save_other(filename); + else throw CImgIOException(_cimg_instance + "save_png(): Unable to save data in '(*FILE)' unless libpng is enabled.", + cimg_instance); +#else + +#if defined __GNUC__ + const char *volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning + std::FILE *volatile nfile = file?file:cimg::fopen(nfilename,"wb"); + volatile double stmin, stmax = (double)max_min(stmin); +#else + const char *nfilename = filename; + std::FILE *nfile = file?file:cimg::fopen(nfilename,"wb"); + double stmin, stmax = (double)max_min(stmin); +#endif + + if (_depth>1) + cimg::warn(_cimg_instance + "save_png(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename); + + if (_spectrum>4) + cimg::warn(_cimg_instance + "save_png(): Instance is multispectral, only the three first channels will be saved in file '%s'.", + cimg_instance, + filename); + + if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536) + cimg::warn(_cimg_instance + "save_png(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.", + cimg_instance, + stmin,stmax,filename); + + // Setup PNG structures for write + png_voidp user_error_ptr = 0; + png_error_ptr user_error_fn = 0, user_warning_fn = 0; + png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,user_error_ptr, user_error_fn, + user_warning_fn); + if (!png_ptr){ + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Failed to initialize 'png_ptr' structure when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_infop info_ptr = png_create_info_struct(png_ptr); + if (!info_ptr) { + png_destroy_write_struct(&png_ptr,(png_infopp)0); + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Failed to initialize 'info_ptr' structure when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + if (setjmp(png_jmpbuf(png_ptr))) { + png_destroy_write_struct(&png_ptr, &info_ptr); + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Encountered unknown fatal error in libpng when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_init_io(png_ptr, nfile); + + const int bit_depth = bytes_per_pixel?(bytes_per_pixel*8):(stmax>=256?16:8); + + int color_type; + switch (spectrum()) { + case 1 : color_type = PNG_COLOR_TYPE_GRAY; break; + case 2 : color_type = PNG_COLOR_TYPE_GRAY_ALPHA; break; + case 3 : color_type = PNG_COLOR_TYPE_RGB; break; + default : color_type = PNG_COLOR_TYPE_RGB_ALPHA; + } + const int interlace_type = PNG_INTERLACE_NONE; + const int compression_type = PNG_COMPRESSION_TYPE_DEFAULT; + const int filter_method = PNG_FILTER_TYPE_DEFAULT; + png_set_IHDR(png_ptr,info_ptr,_width,_height,bit_depth,color_type,interlace_type,compression_type,filter_method); + png_write_info(png_ptr,info_ptr); + const int byte_depth = bit_depth>>3; + const int numChan = spectrum()>4?4:spectrum(); + const int pixel_bit_depth_flag = numChan * (bit_depth - 1); + + // Allocate Memory for Image Save and Fill pixel data + png_bytep *const imgData = new png_byte*[_height]; + for (unsigned int row = 0; row<_height; ++row) imgData[row] = new png_byte[byte_depth*numChan*_width]; + const T *pC0 = data(0,0,0,0); + switch (pixel_bit_depth_flag) { + case 7 : { // Gray 8-bit + cimg_forY(*this,y) { + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x) *(ptrd++) = (unsigned char)*(pC0++); + } + } break; + case 14 : { // Gray w/ Alpha 8-bit + const T *pC1 = data(0,0,0,1); + cimg_forY(*this,y) { + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x) { + *(ptrd++) = (unsigned char)*(pC0++); + *(ptrd++) = (unsigned char)*(pC1++); + } + } + } break; + case 21 : { // RGB 8-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2); + cimg_forY(*this,y) { + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x) { + *(ptrd++) = (unsigned char)*(pC0++); + *(ptrd++) = (unsigned char)*(pC1++); + *(ptrd++) = (unsigned char)*(pC2++); + } + } + } break; + case 28 : { // RGB x/ Alpha 8-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2), *pC3 = data(0,0,0,3); + cimg_forY(*this,y){ + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x){ + *(ptrd++) = (unsigned char)*(pC0++); + *(ptrd++) = (unsigned char)*(pC1++); + *(ptrd++) = (unsigned char)*(pC2++); + *(ptrd++) = (unsigned char)*(pC3++); + } + } + } break; + case 15 : { // Gray 16-bit + cimg_forY(*this,y){ + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) *(ptrd++) = (unsigned short)*(pC0++); + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],_width); + } + } break; + case 30 : { // Gray w/ Alpha 16-bit + const T *pC1 = data(0,0,0,1); + cimg_forY(*this,y){ + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) { + *(ptrd++) = (unsigned short)*(pC0++); + *(ptrd++) = (unsigned short)*(pC1++); + } + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],2*_width); + } + } break; + case 45 : { // RGB 16-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2); + cimg_forY(*this,y) { + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) { + *(ptrd++) = (unsigned short)*(pC0++); + *(ptrd++) = (unsigned short)*(pC1++); + *(ptrd++) = (unsigned short)*(pC2++); + } + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],3*_width); + } + } break; + case 60 : { // RGB w/ Alpha 16-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2), *pC3 = data(0,0,0,3); + cimg_forY(*this,y) { + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) { + *(ptrd++) = (unsigned short)*(pC0++); + *(ptrd++) = (unsigned short)*(pC1++); + *(ptrd++) = (unsigned short)*(pC2++); + *(ptrd++) = (unsigned short)*(pC3++); + } + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],4*_width); + } + } break; + default : + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Encountered unknown fatal error in libpng when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_write_image(png_ptr,imgData); + png_write_end(png_ptr,info_ptr); + png_destroy_write_struct(&png_ptr, &info_ptr); + + // Deallocate Image Write Memory + cimg_forY(*this,n) delete[] imgData[n]; + delete[] imgData; + + if (!file) cimg::fclose(nfile); + return *this; +#endif + } + + //! Save image as a PNM file. + /** + \param filename Filename, as a C-string. + \param bytes_per_pixel Force the number of bytes per pixels for the saving. + **/ + const CImg& save_pnm(const char *const filename, const unsigned int bytes_per_pixel=0) const { + return _save_pnm(0,filename,bytes_per_pixel); + } + + //! Save image as a PNM file \overloading. + const CImg& save_pnm(std::FILE *const file, const unsigned int bytes_per_pixel=0) const { + return _save_pnm(file,0,bytes_per_pixel); + } + + const CImg& _save_pnm(std::FILE *const file, const char *const filename, + const unsigned int bytes_per_pixel=0) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pnm(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + double stmin, stmax = (double)max_min(stmin); + if (_depth>1) + cimg::warn(_cimg_instance + "save_pnm(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_pnm(): Instance is multispectral, only the three first channels will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536) + cimg::warn(_cimg_instance + "save_pnm(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.", + cimg_instance, + stmin,stmax,filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const T + *ptr_r = data(0,0,0,0), + *ptr_g = (_spectrum>=2)?data(0,0,0,1):0, + *ptr_b = (_spectrum>=3)?data(0,0,0,2):0; + const ulongT buf_size = std::min((ulongT)(1024*1024),(ulongT)(_width*_height*(_spectrum==1?1UL:3UL))); + + std::fprintf(nfile,"P%c\n%u %u\n%u\n", + (_spectrum==1?'5':'6'),_width,_height,stmax<256?255:(stmax<4096?4095:65535)); + + switch (_spectrum) { + case 1 : { // Scalar image + if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PGM 8 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned char)*(ptr_r++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } else { // Binary PGM 16 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + unsigned short *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned short)*(ptr_r++); + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } + } break; + case 2 : { // RG image + if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PPM 8 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned char)*(ptr_r++); + *(ptrd++) = (unsigned char)*(ptr_g++); + *(ptrd++) = 0; + } + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } else { // Binary PPM 16 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned short *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned short)*(ptr_r++); + *(ptrd++) = (unsigned short)*(ptr_g++); + *(ptrd++) = 0; + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } + } break; + default : { // RGB image + if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PPM 8 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned char)*(ptr_r++); + *(ptrd++) = (unsigned char)*(ptr_g++); + *(ptrd++) = (unsigned char)*(ptr_b++); + } + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } else { // Binary PPM 16 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned short *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned short)*(ptr_r++); + *(ptrd++) = (unsigned short)*(ptr_g++); + *(ptrd++) = (unsigned short)*(ptr_b++); + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a PNK file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_pnk(const char *const filename) const { + return _save_pnk(0,filename); + } + + //! Save image as a PNK file \overloading. + const CImg& save_pnk(std::FILE *const file) const { + return _save_pnk(file,0); + } + + const CImg& _save_pnk(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pnk(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_spectrum>1) + cimg::warn(_cimg_instance + "save_pnk(): Instance is multispectral, only the first channel will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + const ulongT buf_size = std::min((ulongT)1024*1024,(ulongT)_width*_height*_depth); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const T *ptr = data(0,0,0,0); + + if (!cimg::type::is_float() && sizeof(T)==1 && _depth<2) // Can be saved as regular PNM file + _save_pnm(file,filename,0); + else if (!cimg::type::is_float() && sizeof(T)==1) { // Save as extended P5 file: Binary byte-valued 3D + std::fprintf(nfile,"P5\n%u %u %u\n255\n",_width,_height,_depth); + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned char)*(ptr++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } else if (!cimg::type::is_float()) { // Save as P8: Binary int32-valued 3D + if (_depth>1) std::fprintf(nfile,"P8\n%u %u %u\n%d\n",_width,_height,_depth,(int)max()); + else std::fprintf(nfile,"P8\n%u %u\n%d\n",_width,_height,(int)max()); + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + int *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (int)*(ptr++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } else { // Save as P9: Binary float-valued 3D + if (_depth>1) std::fprintf(nfile,"P9\n%u %u %u\n%g\n",_width,_height,_depth,(double)max()); + else std::fprintf(nfile,"P9\n%u %u\n%g\n",_width,_height,(double)max()); + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (float)*(ptr++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } + + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a PFM file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_pfm(const char *const filename) const { + get_mirror('y')._save_pfm(0,filename); + return *this; + } + + //! Save image as a PFM file \overloading. + const CImg& save_pfm(std::FILE *const file) const { + get_mirror('y')._save_pfm(file,0); + return *this; + } + + const CImg& _save_pfm(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pfm(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_pfm(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_pfm(): image instance is multispectral, only the three first channels will be saved " + "in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const T + *ptr_r = data(0,0,0,0), + *ptr_g = (_spectrum>=2)?data(0,0,0,1):0, + *ptr_b = (_spectrum>=3)?data(0,0,0,2):0; + const unsigned int buf_size = std::min(1024*1024U,_width*_height*(_spectrum==1?1:3)); + + std::fprintf(nfile,"P%c\n%u %u\n1.0\n", + (_spectrum==1?'f':'F'),_width,_height); + + switch (_spectrum) { + case 1 : { // Scalar image + CImg buf(buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,(ulongT)buf_size); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (float)*(ptr_r++); + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } break; + case 2 : { // RG image + CImg buf(buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const unsigned int N = std::min((unsigned int)to_write,buf_size/3); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (float)*(ptr_r++); + *(ptrd++) = (float)*(ptr_g++); + *(ptrd++) = 0; + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } break; + default : { // RGB image + CImg buf(buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const unsigned int N = std::min((unsigned int)to_write,buf_size/3); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (float)*(ptr_r++); + *(ptrd++) = (float)*(ptr_g++); + *(ptrd++) = (float)*(ptr_b++); + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a RGB file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_rgb(const char *const filename) const { + return _save_rgb(0,filename); + } + + //! Save image as a RGB file \overloading. + const CImg& save_rgb(std::FILE *const file) const { + return _save_rgb(file,0); + } + + const CImg& _save_rgb(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_rgb(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_spectrum!=3) + cimg::warn(_cimg_instance + "save_rgb(): image instance has not exactly 3 channels, for file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const ulongT wh = (ulongT)_width*_height; + unsigned char *const buffer = new unsigned char[3*wh], *nbuffer = buffer; + const T + *ptr1 = data(0,0,0,0), + *ptr2 = _spectrum>1?data(0,0,0,1):0, + *ptr3 = _spectrum>2?data(0,0,0,2):0; + switch (_spectrum) { + case 1 : { // Scalar image + for (ulongT k = 0; k& save_rgba(const char *const filename) const { + return _save_rgba(0,filename); + } + + //! Save image as a RGBA file \overloading. + const CImg& save_rgba(std::FILE *const file) const { + return _save_rgba(file,0); + } + + const CImg& _save_rgba(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_rgba(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_spectrum!=4) + cimg::warn(_cimg_instance + "save_rgba(): image instance has not exactly 4 channels, for file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const ulongT wh = (ulongT)_width*_height; + unsigned char *const buffer = new unsigned char[4*wh], *nbuffer = buffer; + const T + *ptr1 = data(0,0,0,0), + *ptr2 = _spectrum>1?data(0,0,0,1):0, + *ptr3 = _spectrum>2?data(0,0,0,2):0, + *ptr4 = _spectrum>3?data(0,0,0,3):0; + switch (_spectrum) { + case 1 : { // Scalar images + for (ulongT k = 0; k{ 0=None | 1=LZW | 2=JPEG }. + \param[out] voxel_size Voxel size, to be stored in the filename. + \param[out] description Description, to be stored in the filename. + \param use_bigtiff Allow to save big tiff files (>4Gb). + \note + - libtiff support is enabled by defining the precompilation + directive \c cimg_use_tiff. + - When libtiff is enabled, 2D and 3D (multipage) several + channel per pixel are supported for + char,uchar,short,ushort,float and \c double pixel types. + - If \c cimg_use_tiff is not defined at compile time the + function uses CImg&save_other(const char*). + **/ + const CImg& save_tiff(const char *const filename, const unsigned int compression_type=0, + + const float *const voxel_size=0, const char *const description=0, + const bool use_bigtiff=true) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_tiff(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifdef cimg_use_tiff + const bool + _use_bigtiff = use_bigtiff && sizeof(ulongT)>=8 && size()*sizeof(T)>=1UL<<31; // No bigtiff for small images + TIFF *tif = TIFFOpen(filename,_use_bigtiff?"w8":"w4"); + if (tif) { + cimg_forZ(*this,z) _save_tiff(tif,z,z,compression_type,voxel_size,description); + TIFFClose(tif); + } else throw CImgIOException(_cimg_instance + "save_tiff(): Failed to open file '%s' for writing.", + cimg_instance, + filename); + return *this; +#else + cimg::unused(compression_type,voxel_size,description,use_bigtiff); + return save_other(filename); +#endif + } + +#ifdef cimg_use_tiff + +#define _cimg_save_tiff(types,typed) if (!std::strcmp(types,pixel_type())) { \ + const typed foo = (typed)0; return _save_tiff(tif,directory,z,foo,compression_type,voxel_size,description); } + + // [internal] Save a plane into a tiff file + template + const CImg& _save_tiff(TIFF *tif, const unsigned int directory, const unsigned int z, const t& pixel_t, + const unsigned int compression_type, const float *const voxel_size, + const char *const description) const { + if (is_empty() || !tif || pixel_t) return *this; + const char *const filename = TIFFFileName(tif); + cimg_uint32 rowsperstrip = (cimg_uint32)-1; + cimg_uint16 spp = _spectrum, bpp = sizeof(t)*8, photometric; + if (spp==3 || spp==4) photometric = PHOTOMETRIC_RGB; + else photometric = PHOTOMETRIC_MINISBLACK; + TIFFSetDirectory(tif,directory); + TIFFSetField(tif,TIFFTAG_IMAGEWIDTH,_width); + TIFFSetField(tif,TIFFTAG_IMAGELENGTH,_height); + if (voxel_size) { + const float vx = voxel_size[0], vy = voxel_size[1], vz = voxel_size[2]; + TIFFSetField(tif,TIFFTAG_RESOLUTIONUNIT,RESUNIT_NONE); + TIFFSetField(tif,TIFFTAG_XRESOLUTION,1.f/vx); + TIFFSetField(tif,TIFFTAG_YRESOLUTION,1.f/vy); + CImg s_description(256); + cimg_snprintf(s_description,s_description._width,"VX=%g VY=%g VZ=%g spacing=%g",vx,vy,vz,vz); + TIFFSetField(tif,TIFFTAG_IMAGEDESCRIPTION,s_description.data()); + } + if (description) TIFFSetField(tif,TIFFTAG_IMAGEDESCRIPTION,description); + TIFFSetField(tif,TIFFTAG_ORIENTATION,ORIENTATION_TOPLEFT); + TIFFSetField(tif,TIFFTAG_SAMPLESPERPIXEL,spp); + if (cimg::type::is_float()) TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,3); + else if (cimg::type::min()==0) TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,1); + else TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,2); + double valm, valM = max_min(valm); + TIFFSetField(tif,TIFFTAG_SMINSAMPLEVALUE,valm); + TIFFSetField(tif,TIFFTAG_SMAXSAMPLEVALUE,valM); + TIFFSetField(tif,TIFFTAG_BITSPERSAMPLE,bpp); + TIFFSetField(tif,TIFFTAG_PLANARCONFIG,PLANARCONFIG_CONTIG); + TIFFSetField(tif,TIFFTAG_PHOTOMETRIC,photometric); + TIFFSetField(tif,TIFFTAG_COMPRESSION,compression_type==2?COMPRESSION_JPEG: + compression_type==1?COMPRESSION_LZW:COMPRESSION_NONE); + rowsperstrip = TIFFDefaultStripSize(tif,rowsperstrip); + TIFFSetField(tif,TIFFTAG_ROWSPERSTRIP,rowsperstrip); + TIFFSetField(tif,TIFFTAG_FILLORDER,FILLORDER_MSB2LSB); + TIFFSetField(tif,TIFFTAG_SOFTWARE,cimg_appname); + + t *const buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); + if (buf) { + for (unsigned int row = 0; row<_height; row+=rowsperstrip) { + cimg_uint32 nrow = (row + rowsperstrip>_height?_height - row:rowsperstrip); + tstrip_t strip = TIFFComputeStrip(tif,row,0); + tsize_t i = 0; + for (unsigned int rr = 0; rr& _save_tiff(TIFF *tif, const unsigned int directory, const unsigned int z, + const unsigned int compression_type, const float *const voxel_size, + const char *const description) const { + _cimg_save_tiff("uint8",cimg_uint8); + _cimg_save_tiff("int8",cimg_int8); + _cimg_save_tiff("uint16",cimg_uint16); + _cimg_save_tiff("int16",cimg_int16); + _cimg_save_tiff("uint32",cimg_uint32); + _cimg_save_tiff("int32",cimg_int32); + _cimg_save_tiff("uint64",cimg_uint32); // 'int64' as 'int32' + _cimg_save_tiff("int64",cimg_int32); + _cimg_save_tiff("float32",cimg_float32); + _cimg_save_tiff("float64",cimg_float32); // 'float64' as 'float32' + const char *const filename = TIFFFileName(tif); + throw CImgInstanceException(_cimg_instance + "save_tiff(): Unsupported pixel type '%s' for file '%s'.", + cimg_instance, + pixel_type(),filename?filename:"(FILE*)"); + return *this; + } +#endif + + //! Save image as a MINC2 file. + /** + \param filename Filename, as a C-string. + \param imitate_file If non-zero, reference filename, as a C-string, to borrow header from. + **/ + const CImg& save_minc2(const char *const filename, + const char *const imitate_file=0) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_minc2(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifndef cimg_use_minc2 + cimg::unused(imitate_file); + return save_other(filename); +#else + minc::minc_1_writer wtr; + if (imitate_file) + wtr.open(filename, imitate_file); + else { + minc::minc_info di; + if (width()) di.push_back(minc::dim_info(width(),width()*0.5,-1,minc::dim_info::DIM_X)); + if (height()) di.push_back(minc::dim_info(height(),height()*0.5,-1,minc::dim_info::DIM_Y)); + if (depth()) di.push_back(minc::dim_info(depth(),depth()*0.5,-1,minc::dim_info::DIM_Z)); + if (spectrum()) di.push_back(minc::dim_info(spectrum(),spectrum()*0.5,-1,minc::dim_info::DIM_TIME)); + wtr.open(filename,di,1,NC_FLOAT,0); + } + if (pixel_type()==cimg::type::string()) + wtr.setup_write_byte(); + else if (pixel_type()==cimg::type::string()) + wtr.setup_write_int(); + else if (pixel_type()==cimg::type::string()) + wtr.setup_write_double(); + else + wtr.setup_write_float(); + minc::save_standard_volume(wtr, this->_data); + return *this; +#endif + } + + //! Save image as an ANALYZE7.5 or NIFTI file. + /** + \param filename Filename, as a C-string. + \param voxel_size Pointer to 3 consecutive values that tell about the voxel sizes along the X,Y and Z dimensions. + **/ + const CImg& save_analyze(const char *const filename, const float *const voxel_size=0) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_analyze(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + std::FILE *file; + CImg hname(1024), iname(1024); + const char *const ext = cimg::split_filename(filename); + short datatype = -1; + if (!*ext) { + cimg_snprintf(hname,hname._width,"%s.hdr",filename); + cimg_snprintf(iname,iname._width,"%s.img",filename); + } + if (!cimg::strncasecmp(ext,"hdr",3)) { + std::strcpy(hname,filename); + std::strncpy(iname,filename,iname._width - 1); + cimg_snprintf(iname._data + std::strlen(iname) - 3,4,"img"); + } + if (!cimg::strncasecmp(ext,"img",3)) { + std::strcpy(hname,filename); + std::strncpy(iname,filename,iname._width - 1); + cimg_snprintf(hname._data + std::strlen(iname) - 3,4,"hdr"); + } + if (!cimg::strncasecmp(ext,"nii",3)) { + std::strncpy(hname,filename,hname._width - 1); *iname = 0; + } + + CImg header(*iname?348:352,1,1,1,0); + int *const iheader = (int*)header._data; + *iheader = 348; + std::strcpy(header._data + 4,"CImg"); + std::strcpy(header._data + 14," "); + ((short*)&(header[36]))[0] = 4096; + ((char*)&(header[38]))[0] = 114; + ((short*)&(header[40]))[0] = 4; + ((short*)&(header[40]))[1] = (short)_width; + ((short*)&(header[40]))[2] = (short)_height; + ((short*)&(header[40]))[3] = (short)_depth; + ((short*)&(header[40]))[4] = (short)_spectrum; + if (!cimg::strcasecmp(pixel_type(),"bool") || + !cimg::strcasecmp(pixel_type(),"uint8") || + !cimg::strcasecmp(pixel_type(),"int8")) datatype = 2; + if (!cimg::strcasecmp(pixel_type(),"uint16") || + !cimg::strcasecmp(pixel_type(),"int16")) datatype = 4; + if (!cimg::strcasecmp(pixel_type(),"uint32") || + !cimg::strcasecmp(pixel_type(),"int32")) datatype = 8; + if (!cimg::strcasecmp(pixel_type(),"uint64") || + !cimg::strcasecmp(pixel_type(),"int64")) datatype = 8; + if (!cimg::strcasecmp(pixel_type(),"float32")) datatype = 16; + if (!cimg::strcasecmp(pixel_type(),"float64")) datatype = 64; + if (datatype<0) + throw CImgIOException(_cimg_instance + "save_analyze(): Unsupported pixel type '%s' for file '%s'.", + cimg_instance, + pixel_type(),filename); + + ((short*)&(header[70]))[0] = datatype; + ((short*)&(header[72]))[0] = sizeof(T); + ((float*)&(header[108]))[0] = (float)(*iname?0:header.width()); + ((float*)&(header[112]))[0] = 1; + ((float*)&(header[76]))[0] = 0; + if (voxel_size) { + ((float*)&(header[76]))[1] = voxel_size[0]; + ((float*)&(header[76]))[2] = voxel_size[1]; + ((float*)&(header[76]))[3] = voxel_size[2]; + } else ((float*)&(header[76]))[1] = ((float*)&(header[76]))[2] = ((float*)&(header[76]))[3] = 1; + file = cimg::fopen(hname,"wb"); + cimg::fwrite(header._data,header.width(),file); + if (*iname) { cimg::fclose(file); file = cimg::fopen(iname,"wb"); } + cimg::fwrite(_data,size(),file); + cimg::fclose(file); + return *this; + } + + //! Save image as a .cimg file. + /** + \param filename Filename, as a C-string. + \param is_compressed Tells if the file contains compressed image data. + **/ + const CImg& save_cimg(const char *const filename, const bool is_compressed=false) const { + CImgList(*this,true).save_cimg(filename,is_compressed); + return *this; + } + + //! Save image as a .cimg file \overloading. + const CImg& save_cimg(std::FILE *const file, const bool is_compressed=false) const { + CImgList(*this,true).save_cimg(file,is_compressed); + return *this; + } + + //! Save image as a sub-image into an existing .cimg file. + /** + \param filename Filename, as a C-string. + \param n0 Index of the image inside the file. + \param x0 X-coordinate of the sub-image location. + \param y0 Y-coordinate of the sub-image location. + \param z0 Z-coordinate of the sub-image location. + \param c0 C-coordinate of the sub-image location. + **/ + const CImg& save_cimg(const char *const filename, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + CImgList(*this,true).save_cimg(filename,n0,x0,y0,z0,c0); + return *this; + } + + //! Save image as a sub-image into an existing .cimg file \overloading. + const CImg& save_cimg(std::FILE *const file, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + CImgList(*this,true).save_cimg(file,n0,x0,y0,z0,c0); + return *this; + } + + //! Save blank image as a .cimg file. + /** + \param filename Filename, as a C-string. + \param dx Width of the image. + \param dy Height of the image. + \param dz Depth of the image. + \param dc Number of channels of the image. + \note + - All pixel values of the saved image are set to \c 0. + - Use this method to save large images without having to instantiate and allocate them. + **/ + static void save_empty_cimg(const char *const filename, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return CImgList::save_empty_cimg(filename,1,dx,dy,dz,dc); + } + + //! Save blank image as a .cimg file \overloading. + /** + Same as save_empty_cimg(const char *,unsigned int,unsigned int,unsigned int,unsigned int) + with a file stream argument instead of a filename string. + **/ + static void save_empty_cimg(std::FILE *const file, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return CImgList::save_empty_cimg(file,1,dx,dy,dz,dc); + } + + //! Save image as an INRIMAGE-4 file. + /** + \param filename Filename, as a C-string. + \param voxel_size Pointer to 3 values specifying the voxel sizes along the X,Y and Z dimensions. + **/ + const CImg& save_inr(const char *const filename, const float *const voxel_size=0) const { + return _save_inr(0,filename,voxel_size); + } + + //! Save image as an INRIMAGE-4 file \overloading. + const CImg& save_inr(std::FILE *const file, const float *const voxel_size=0) const { + return _save_inr(file,0,voxel_size); + } + + const CImg& _save_inr(std::FILE *const file, const char *const filename, const float *const voxel_size) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_inr(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + int inrpixsize = -1; + const char *inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; + if (!cimg::strcasecmp(pixel_type(),"uint8")) { + inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1; + } + if (!cimg::strcasecmp(pixel_type(),"int8")) { + inrtype = "fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1; + } + if (!cimg::strcasecmp(pixel_type(),"uint16")) { + inrtype = "unsigned fixed\nPIXSIZE=16 bits\nSCALE=2**0";inrpixsize = 2; + } + if (!cimg::strcasecmp(pixel_type(),"int16")) { + inrtype = "fixed\nPIXSIZE=16 bits\nSCALE=2**0"; inrpixsize = 2; + } + if (!cimg::strcasecmp(pixel_type(),"uint32")) { + inrtype = "unsigned fixed\nPIXSIZE=32 bits\nSCALE=2**0";inrpixsize = 4; + } + if (!cimg::strcasecmp(pixel_type(),"int32")) { + inrtype = "fixed\nPIXSIZE=32 bits\nSCALE=2**0"; inrpixsize = 4; + } + if (!cimg::strcasecmp(pixel_type(),"float32")) { + inrtype = "float\nPIXSIZE=32 bits"; inrpixsize = 4; + } + if (!cimg::strcasecmp(pixel_type(),"float64")) { + inrtype = "float\nPIXSIZE=64 bits"; inrpixsize = 8; + } + if (inrpixsize<=0) + throw CImgIOException(_cimg_instance + "save_inr(): Unsupported pixel type '%s' for file '%s'", + cimg_instance, + pixel_type(),filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + CImg header(257); + int err = cimg_snprintf(header,header._width,"#INRIMAGE-4#{\nXDIM=%u\nYDIM=%u\nZDIM=%u\nVDIM=%u\n", + _width,_height,_depth,_spectrum); + if (voxel_size) + err+=cimg_snprintf(header._data + err,128,"VX=%g\nVY=%g\nVZ=%g\n", + voxel_size[0],voxel_size[1],voxel_size[2]); + err+=cimg_snprintf(header._data + err,128,"TYPE=%s\nCPU=%s\n", + inrtype,cimg::endianness()?"sun":"decm"); + std::memset(header._data + err,'\n',252 - err); + std::memcpy(header._data + 252,"##}\n",4); + cimg::fwrite(header._data,256,nfile); + cimg_forXYZ(*this,x,y,z) cimg_forC(*this,c) cimg::fwrite(&((*this)(x,y,z,c)),1,nfile); + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as an OpenEXR file. + /** + \param filename Filename, as a C-string. + \note The OpenEXR file format is described here. + **/ + const CImg& save_exr(const char *const filename) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_exr(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_exr(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename); + +#ifndef cimg_use_openexr + return save_other(filename); +#else + Imf::Rgba *const ptrd0 = new Imf::Rgba[(size_t)_width*_height], *ptrd = ptrd0, rgba; + switch (_spectrum) { + case 1 : { // Grayscale image + for (const T *ptr_r = data(), *const ptr_e = ptr_r + (ulongT)_width*_height; ptr_rPandore file specifications + for more information). + **/ + const CImg& save_pandore(const char *const filename, const unsigned int colorspace=0) const { + return _save_pandore(0,filename,colorspace); + } + + //! Save image as a Pandore-5 file \overloading. + /** + Same as save_pandore(const char *,unsigned int) const + with a file stream argument instead of a filename string. + **/ + const CImg& save_pandore(std::FILE *const file, const unsigned int colorspace=0) const { + return _save_pandore(file,0,colorspace); + } + + unsigned int _save_pandore_header_length(unsigned int id, unsigned int *dims, const unsigned int colorspace) const { + unsigned int nbdims = 0; + if (id==2 || id==3 || id==4) { + dims[0] = 1; dims[1] = _width; nbdims = 2; + } + if (id==5 || id==6 || id==7) { + dims[0] = 1; dims[1] = _height; dims[2] = _width; nbdims=3; + } + if (id==8 || id==9 || id==10) { + dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4; + } + if (id==16 || id==17 || id==18) { + dims[0] = 3; dims[1] = _height; dims[2] = _width; dims[3] = colorspace; nbdims = 4; + } + if (id==19 || id==20 || id==21) { + dims[0] = 3; dims[1] = _depth; dims[2] = _height; dims[3] = _width; dims[4] = colorspace; nbdims = 5; + } + if (id==22 || id==23 || id==25) { + dims[0] = _spectrum; dims[1] = _width; nbdims = 2; + } + if (id==26 || id==27 || id==29) { + dims[0] = _spectrum; dims[1] = _height; dims[2] = _width; nbdims=3; + } + if (id==30 || id==31 || id==33) { + dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4; + } + return nbdims; + } + + const CImg& _save_pandore(std::FILE *const file, const char *const filename, + const unsigned int colorspace) const { + +#define __cimg_save_pandore_case(dtype) \ + dtype *buffer = new dtype[size()]; \ + const T *ptrs = _data; \ + cimg_foroff(*this,off) *(buffer++) = (dtype)(*(ptrs++)); \ + buffer-=size(); \ + cimg::fwrite(buffer,size(),nfile); \ + delete[] buffer + +#define _cimg_save_pandore_case(sy,sz,sv,stype,id) \ + if (!saved && (sy?(sy==_height):true) && (sz?(sz==_depth):true) && \ + (sv?(sv==_spectrum):true) && !std::strcmp(stype,pixel_type())) { \ + unsigned int *iheader = (unsigned int*)(header + 12); \ + nbdims = _save_pandore_header_length((*iheader=id),dims,colorspace); \ + cimg::fwrite(header,36,nfile); \ + if (sizeof(unsigned long)==4) { CImg ndims(5); \ + for (int d = 0; d<5; ++d) ndims[d] = (unsigned long)dims[d]; \ + cimg::fwrite(ndims._data,nbdims,nfile); } \ + else if (sizeof(unsigned int)==4) { CImg ndims(5); \ + for (int d = 0; d<5; ++d) ndims[d] = (unsigned int)dims[d]; \ + cimg::fwrite(ndims._data,nbdims,nfile); } \ + else if (sizeof(unsigned short)==4) { CImg ndims(5); \ + for (int d = 0; d<5; ++d) ndims[d] = (unsigned short)dims[d]; \ + cimg::fwrite(ndims._data,nbdims,nfile); } \ + else throw CImgIOException(_cimg_instance \ + "save_pandore(): Unsupported datatype for file '%s'.",\ + cimg_instance, \ + filename?filename:"(FILE*)"); \ + if (id==2 || id==5 || id==8 || id==16 || id==19 || id==22 || id==26 || id==30) { \ + __cimg_save_pandore_case(unsigned char); \ + } else if (id==3 || id==6 || id==9 || id==17 || id==20 || id==23 || id==27 || id==31) { \ + if (sizeof(unsigned long)==4) { __cimg_save_pandore_case(unsigned long); } \ + else if (sizeof(unsigned int)==4) { __cimg_save_pandore_case(unsigned int); } \ + else if (sizeof(unsigned short)==4) { __cimg_save_pandore_case(unsigned short); } \ + else throw CImgIOException(_cimg_instance \ + "save_pandore(): Unsupported datatype for file '%s'.",\ + cimg_instance, \ + filename?filename:"(FILE*)"); \ + } else if (id==4 || id==7 || id==10 || id==18 || id==21 || id==25 || id==29 || id==33) { \ + if (sizeof(double)==4) { __cimg_save_pandore_case(double); } \ + else if (sizeof(float)==4) { __cimg_save_pandore_case(float); } \ + else throw CImgIOException(_cimg_instance \ + "save_pandore(): Unsupported datatype for file '%s'.",\ + cimg_instance, \ + filename?filename:"(FILE*)"); \ + } \ + saved = true; \ + } + + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pandore(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + unsigned char header[36] = { 'P','A','N','D','O','R','E','0','4',0,0,0, + 0,0,0,0,'C','I','m','g',0,0,0,0,0, + 'N','o',' ','d','a','t','e',0,0,0,0 }; + unsigned int nbdims, dims[5] = {}; + bool saved = false; + _cimg_save_pandore_case(1,1,1,"uint8",2); + _cimg_save_pandore_case(1,1,1,"int8",3); + _cimg_save_pandore_case(1,1,1,"uint16",3); + _cimg_save_pandore_case(1,1,1,"int16",3); + _cimg_save_pandore_case(1,1,1,"uint32",3); + _cimg_save_pandore_case(1,1,1,"int32",3); + _cimg_save_pandore_case(1,1,1,"uint64",3); + _cimg_save_pandore_case(1,1,1,"int64",3); + _cimg_save_pandore_case(1,1,1,"float32",4); + _cimg_save_pandore_case(1,1,1,"float64",4); + + _cimg_save_pandore_case(0,1,1,"uint8",5); + _cimg_save_pandore_case(0,1,1,"int8",6); + _cimg_save_pandore_case(0,1,1,"uint16",6); + _cimg_save_pandore_case(0,1,1,"int16",6); + _cimg_save_pandore_case(0,1,1,"uint32",6); + _cimg_save_pandore_case(0,1,1,"int32",6); + _cimg_save_pandore_case(0,1,1,"uint64",6); + _cimg_save_pandore_case(0,1,1,"int64",6); + _cimg_save_pandore_case(0,1,1,"float32",7); + _cimg_save_pandore_case(0,1,1,"float64",7); + + _cimg_save_pandore_case(0,0,1,"uint8",8); + _cimg_save_pandore_case(0,0,1,"int8",9); + _cimg_save_pandore_case(0,0,1,"uint16",9); + _cimg_save_pandore_case(0,0,1,"int16",9); + _cimg_save_pandore_case(0,0,1,"uint32",9); + _cimg_save_pandore_case(0,0,1,"int32",9); + _cimg_save_pandore_case(0,0,1,"uint64",9); + _cimg_save_pandore_case(0,0,1,"int64",9); + _cimg_save_pandore_case(0,0,1,"float32",10); + _cimg_save_pandore_case(0,0,1,"float64",10); + + _cimg_save_pandore_case(0,1,3,"uint8",16); + _cimg_save_pandore_case(0,1,3,"int8",17); + _cimg_save_pandore_case(0,1,3,"uint16",17); + _cimg_save_pandore_case(0,1,3,"int16",17); + _cimg_save_pandore_case(0,1,3,"uint32",17); + _cimg_save_pandore_case(0,1,3,"int32",17); + _cimg_save_pandore_case(0,1,3,"uint64",17); + _cimg_save_pandore_case(0,1,3,"int64",17); + _cimg_save_pandore_case(0,1,3,"float32",18); + _cimg_save_pandore_case(0,1,3,"float64",18); + + _cimg_save_pandore_case(0,0,3,"uint8",19); + _cimg_save_pandore_case(0,0,3,"int8",20); + _cimg_save_pandore_case(0,0,3,"uint16",20); + _cimg_save_pandore_case(0,0,3,"int16",20); + _cimg_save_pandore_case(0,0,3,"uint32",20); + _cimg_save_pandore_case(0,0,3,"int32",20); + _cimg_save_pandore_case(0,0,3,"uint64",20); + _cimg_save_pandore_case(0,0,3,"int64",20); + _cimg_save_pandore_case(0,0,3,"float32",21); + _cimg_save_pandore_case(0,0,3,"float64",21); + + _cimg_save_pandore_case(1,1,0,"uint8",22); + _cimg_save_pandore_case(1,1,0,"int8",23); + _cimg_save_pandore_case(1,1,0,"uint16",23); + _cimg_save_pandore_case(1,1,0,"int16",23); + _cimg_save_pandore_case(1,1,0,"uint32",23); + _cimg_save_pandore_case(1,1,0,"int32",23); + _cimg_save_pandore_case(1,1,0,"uint64",23); + _cimg_save_pandore_case(1,1,0,"int64",23); + _cimg_save_pandore_case(1,1,0,"float32",25); + _cimg_save_pandore_case(1,1,0,"float64",25); + + _cimg_save_pandore_case(0,1,0,"uint8",26); + _cimg_save_pandore_case(0,1,0,"int8",27); + _cimg_save_pandore_case(0,1,0,"uint16",27); + _cimg_save_pandore_case(0,1,0,"int16",27); + _cimg_save_pandore_case(0,1,0,"uint32",27); + _cimg_save_pandore_case(0,1,0,"int32",27); + _cimg_save_pandore_case(0,1,0,"uint64",27); + _cimg_save_pandore_case(0,1,0,"int64",27); + _cimg_save_pandore_case(0,1,0,"float32",29); + _cimg_save_pandore_case(0,1,0,"float64",29); + + _cimg_save_pandore_case(0,0,0,"uint8",30); + _cimg_save_pandore_case(0,0,0,"int8",31); + _cimg_save_pandore_case(0,0,0,"uint16",31); + _cimg_save_pandore_case(0,0,0,"int16",31); + _cimg_save_pandore_case(0,0,0,"uint32",31); + _cimg_save_pandore_case(0,0,0,"int32",31); + _cimg_save_pandore_case(0,0,0,"uint64",31); + _cimg_save_pandore_case(0,0,0,"int64",31); + _cimg_save_pandore_case(0,0,0,"float32",33); + _cimg_save_pandore_case(0,0,0,"float64",33); + + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a raw data file. + /** + \param filename Filename, as a C-string. + \param is_multiplexed Tells if the image channels are stored in a multiplexed way (\c true) or not (\c false). + \note The .raw format does not store the image dimensions in the output file, + so you have to keep track of them somewhere to be able to read the file correctly afterwards. + **/ + const CImg& save_raw(const char *const filename, const bool is_multiplexed=false) const { + return _save_raw(0,filename,is_multiplexed); + } + + //! Save image as a raw data file \overloading. + /** + Same as save_raw(const char *,bool) const + with a file stream argument instead of a filename string. + **/ + const CImg& save_raw(std::FILE *const file, const bool is_multiplexed=false) const { + return _save_raw(file,0,is_multiplexed); + } + + const CImg& _save_raw(std::FILE *const file, const char *const filename, const bool is_multiplexed) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_raw(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + if (pixel_type()==cimg::type::string()) { // Boolean data (bitwise) + ulongT siz; + const unsigned char *const buf = _bool2uchar(siz,is_multiplexed); + cimg::fwrite(buf,siz,nfile); + delete[] buf; + } else { // Non boolean data + if (!is_multiplexed || _spectrum==1) cimg::fwrite(_data,size(),nfile); // Non-multiplexed + else { // Multiplexed + CImg buf(_spectrum); + cimg_forXYZ(*this,x,y,z) { + cimg_forC(*this,c) buf[c] = (*this)(x,y,z,c); + cimg::fwrite(buf._data,_spectrum,nfile); + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + // Return unsigned char buffer that encodes data of a CImg instance bitwise. + // (buffer needs to be deallocated afterwards, with delete[]). + const unsigned char *_bool2uchar(ulongT &siz, const bool is_multiplexed) const { + const ulongT _siz = size(); + siz = _siz/8 + (_siz%8?1:0); + unsigned char *const buf = new unsigned char[siz], *ptrd = buf, val = 0, bit = 0; + + if (!is_multiplexed || _spectrum==1) // Non-multiplexed + cimg_for(*this,ptrs,T) { (val<<=1)|=(*ptrs?1:0); if (++bit==8) { *(ptrd++) = val; val = bit = 0; }} + else // Multiplexed + cimg_forXYZ(*this,x,y,z) cimg_forC(*this,c) { + (val<<=1)|=((*this)(x,y,z,c)?1:0); if (++bit==8) { *(ptrd++) = val; val = bit = 0; } + } + if (bit) *ptrd = val; + return buf; + } + + // Fill CImg instance from bitwise data encoded in an unsigned char buffer. + void _uchar2bool(const unsigned char *buf, const ulongT siz, const bool is_multiplexed) { + const ulongT S = std::min(siz*8,size()); + const unsigned char *ptrs = buf; + unsigned char val = 0, mask = 0; + T *ptrd = _data; + if (S && (!is_multiplexed || _spectrum==1)) // Non-multiplexed + for (ulongT off = 0; off>=1)) { val = *(ptrs++); mask = 128; } + *(ptrd++) = (T)((val&mask)?1:0); + } + else if (S) { // Multiplexed + ulongT off = 0; + for (int z = 0; z>=1)) { val = *(ptrs++); ++off; mask = 128; } + (*this)(x,y,z,c) = (T)((val&mask)?1:0); + } + } + } + + //! Save image as a .yuv video file. + /** + \param filename Filename, as a C-string. + \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. + \param is_rgb Tells if pixel values of the instance image are RGB-coded (\c true) or YUV-coded (\c false). + \note Each slice of the instance image is considered to be a single frame of the output video file. + **/ + const CImg& save_yuv(const char *const filename, + const unsigned int chroma_subsampling=444, + const bool is_rgb=true) const { + CImgList(*this,true).save_yuv(filename,chroma_subsampling,is_rgb); + return *this; + } + + //! Save image as a .yuv video file \overloading. + /** + Same as save_yuv(const char*,const unsigned int,const bool) const + with a file stream argument instead of a filename string. + **/ + const CImg& save_yuv(std::FILE *const file, + const unsigned int chroma_subsampling=444, + const bool is_rgb=true) const { + CImgList(*this,true).save_yuv(file,chroma_subsampling,is_rgb); + return *this; + } + + //! Save 3D object as an Object File Format (.off) file. + /** + \param filename Filename, as a C-string. + \param primitives List of 3D object primitives. + \param colors List of 3D object colors. + \note + - Instance image contains the vertices data of the 3D object. + - Textured, transparent or sphere-shaped primitives cannot be managed by the .off file format. + Such primitives will be lost or simplified during file saving. + - The .off file format is described here. + **/ + template + const CImg& save_off(const CImgList& primitives, const CImgList& colors, + const char *const filename) const { + return _save_off(primitives,colors,0,filename); + } + + //! Save 3D object as an Object File Format (.off) file \overloading. + /** + Same as save_off(const CImgList&,const CImgList&,const char*) const + with a file stream argument instead of a filename string. + **/ + template + const CImg& save_off(const CImgList& primitives, const CImgList& colors, + std::FILE *const file) const { + return _save_off(primitives,colors,file,0); + } + + template + const CImg& _save_off(const CImgList& primitives, const CImgList& colors, + std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_off(): Specified filename is (null).", + cimg_instance); + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "save_off(): Empty instance, for file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + CImgList opacities; + CImg error_message(1024); + if (!is_object3d(primitives,colors,opacities,true,error_message)) + throw CImgInstanceException(_cimg_instance + "save_off(): Invalid specified 3D object, for file '%s' (%s).", + cimg_instance, + filename?filename:"(FILE*)",error_message.data()); + + const CImg default_color(1,3,1,1,(tc)std::min((int)cimg::type::max(),200)); + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + unsigned int supported_primitives = 0; + cimglist_for(primitives,l) if (primitives[l].size()!=5) ++supported_primitives; + std::fprintf(nfile,"OFF\n%u %u %u\n",_width,supported_primitives,3*primitives._width); + cimg_forX(*this,i) std::fprintf(nfile,"%f %f %f\n", + (float)((*this)(i,0)),(float)((*this)(i,1)),(float)((*this)(i,2))); + cimglist_for(primitives,l) { + const CImg& color = l1?color[1]:r)/255.f, b = (csiz>2?color[2]:g)/255.f; + switch (psiz) { + case 1 : std::fprintf(nfile,"1 %u %f %f %f\n", + (unsigned int)primitives(l,0),r,g,b); break; + case 2 : std::fprintf(nfile,"2 %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,1),r,g,b); break; + case 3 : std::fprintf(nfile,"3 %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,2), + (unsigned int)primitives(l,1),r,g,b); break; + case 4 : std::fprintf(nfile,"4 %u %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,3), + (unsigned int)primitives(l,2),(unsigned int)primitives(l,1),r,g,b); break; + case 5 : std::fprintf(nfile,"2 %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,1),r,g,b); break; + case 6 : { + const unsigned int xt = (unsigned int)primitives(l,2), yt = (unsigned int)primitives(l,3); + const float + rt = color.atXY(xt,yt,0)/255.f, + gt = (csiz>1?color.atXY(xt,yt,1):r)/255.f, + bt = (csiz>2?color.atXY(xt,yt,2):g)/255.f; + std::fprintf(nfile,"2 %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,1),rt,gt,bt); + } break; + case 9 : { + const unsigned int xt = (unsigned int)primitives(l,3), yt = (unsigned int)primitives(l,4); + const float + rt = color.atXY(xt,yt,0)/255.f, + gt = (csiz>1?color.atXY(xt,yt,1):r)/255.f, + bt = (csiz>2?color.atXY(xt,yt,2):g)/255.f; + std::fprintf(nfile,"3 %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,2), + (unsigned int)primitives(l,1),rt,gt,bt); + } break; + case 12 : { + const unsigned int xt = (unsigned int)primitives(l,4), yt = (unsigned int)primitives(l,5); + const float + rt = color.atXY(xt,yt,0)/255.f, + gt = (csiz>1?color.atXY(xt,yt,1):r)/255.f, + bt = (csiz>2?color.atXY(xt,yt,2):g)/255.f; + std::fprintf(nfile,"4 %u %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,3), + (unsigned int)primitives(l,2),(unsigned int)primitives(l,1),rt,gt,bt); + } break; + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save volumetric image as a video (using the OpenCV library when available). + /** + \param filename Filename to write data to. + \param fps Number of frames per second. + \param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs). + \param keep_open Tells if the video writer associated to the specified filename + must be kept open or not (to allow frames to be added in the same file afterwards). + **/ + const CImg& save_video(const char *const filename, const unsigned int fps=25, + const char *codec=0, const bool keep_open=false) const { + if (is_empty()) { CImgList().save_video(filename,fps,codec,keep_open); return *this; } + CImgList list; + get_split('z').move_to(list); + list.save_video(filename,fps,codec,keep_open); + return *this; + } + + //! Save volumetric image as a video, using ffmpeg external binary. + /** + \param filename Filename, as a C-string. + \param fps Video framerate. + \param codec Video codec, as a C-string. + \param bitrate Video bitrate. + \note + - Each slice of the instance image is considered to be a single frame of the output video file. + - This method uses \c ffmpeg, an external executable binary provided by + FFmpeg. + It must be installed for the method to succeed. + **/ + const CImg& save_ffmpeg_external(const char *const filename, const unsigned int fps=25, + const char *const codec=0, const unsigned int bitrate=2048) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_ffmpeg_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + CImgList list; + get_split('z').move_to(list); + list.save_ffmpeg_external(filename,fps,codec,bitrate); + return *this; + } + + //! Save image using gzip external binary. + /** + \param filename Filename, as a C-string. + \note This method uses \c gzip, an external executable binary provided by + gzip. + It must be installed for the method to succeed. + **/ + const CImg& save_gzip_external(const char *const filename) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_gzip_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + CImg command(1024), filename_tmp(256), body(256); + const char + *ext = cimg::split_filename(filename,body), + *ext2 = cimg::split_filename(body,0); + std::FILE *file; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + save(filename_tmp); + cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"", + cimg::gzip_path(), + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command,cimg::gzip_path()); + file = cimg::std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimg_instance + "save_gzip_external(): Failed to save file '%s' with external command 'gzip'.", + cimg_instance, + filename); + + else cimg::fclose(file); + std::remove(filename_tmp); + return *this; + } + + //! Save image using GraphicsMagick's external binary. + /** + \param filename Filename, as a C-string. + \param quality Image quality (expressed in percent), when the file format supports it. + \note This method uses \c gm, an external executable binary provided by + GraphicsMagick. + It must be installed for the method to succeed. + **/ + const CImg& save_graphicsmagick_external(const char *const filename, const unsigned int quality=100) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_graphicsmagick_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_other(): File '%s', saving a volumetric image with an external call to " + "GraphicsMagick only writes the first image slice.", + cimg_instance,filename); + +#ifdef cimg_use_png +#define _cimg_sge_extension1 "png" +#define _cimg_sge_extension2 "png" +#else +#define _cimg_sge_extension1 "pgm" +#define _cimg_sge_extension2 "ppm" +#endif + CImg command(1024), filename_tmp(256); + std::FILE *file; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(), + _spectrum==1?_cimg_sge_extension1:_cimg_sge_extension2); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + +#ifdef cimg_use_png + save_png(filename_tmp); +#else + save_pnm(filename_tmp); +#endif + cimg_snprintf(command,command._width,"\"%s\" convert -quality %u \"%s\" \"%s\"", + cimg::graphicsmagick_path(),quality, + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command,cimg::graphicsmagick_path()); + file = cimg::std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimg_instance + "save_graphicsmagick_external(): Failed to save file '%s' with external command 'gm'.", + cimg_instance, + filename); + + if (file) cimg::fclose(file); + std::remove(filename_tmp); + return *this; + } + + //! Save image using ImageMagick's external binary. + /** + \param filename Filename, as a C-string. + \param quality Image quality (expressed in percent), when the file format supports it. + \note This method uses \c convert, an external executable binary provided by + ImageMagick. + It must be installed for the method to succeed. + **/ + const CImg& save_imagemagick_external(const char *const filename, const unsigned int quality=100) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_imagemagick_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_other(): File '%s', saving a volumetric image with an external call to " + "ImageMagick only writes the first image slice.", + cimg_instance,filename); +#ifdef cimg_use_png +#define _cimg_sie_extension1 "png" +#define _cimg_sie_extension2 "png" +#else +#define _cimg_sie_extension1 "pgm" +#define _cimg_sie_extension2 "ppm" +#endif + CImg command(1024), filename_tmp(256); + std::FILE *file; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",cimg::temporary_path(), + cimg_file_separator,cimg::filenamerand(),_spectrum==1?_cimg_sie_extension1:_cimg_sie_extension2); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); +#ifdef cimg_use_png + save_png(filename_tmp); +#else + save_pnm(filename_tmp); +#endif + cimg_snprintf(command,command._width,"\"%s\" -quality %u \"%s\" \"%s\"", + cimg::imagemagick_path(),quality, + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command,cimg::imagemagick_path()); + file = cimg::std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimg_instance + "save_imagemagick_external(): Failed to save file '%s' with " + "external command 'magick/convert'.", + cimg_instance, + filename); + + if (file) cimg::fclose(file); + std::remove(filename_tmp); + return *this; + } + + //! Save image as a Dicom file. + /** + \param filename Filename, as a C-string. + \note This method uses \c medcon, an external executable binary provided by + (X)Medcon. + It must be installed for the method to succeed. + **/ + const CImg& save_medcon_external(const char *const filename) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_medcon_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + CImg command(1024), filename_tmp(256), body(256); + std::FILE *file; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.hdr",cimg::filenamerand()); + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + save_analyze(filename_tmp); + cimg_snprintf(command,command._width,"\"%s\" -w -c dicom -o \"%s\" -f \"%s\"", + cimg::medcon_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::medcon_path()); + std::remove(filename_tmp); + cimg::split_filename(filename_tmp,body); + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.img",body._data); + std::remove(filename_tmp); + + file = cimg::std_fopen(filename,"rb"); + if (!file) { + cimg_snprintf(command,command._width,"m000-%s",filename); + file = cimg::std_fopen(command,"rb"); + if (!file) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "save_medcon_external(): Failed to save file '%s' with external command 'medcon'.", + cimg_instance, + filename); + } + } + cimg::fclose(file); + std::rename(command,filename); + return *this; + } + + // Save image for non natively supported formats. + /** + \param filename Filename, as a C-string. + \param quality Image quality (expressed in percent), when the file format supports it. + \note + - The filename extension tells about the desired file format. + - This method tries to save the instance image as a file, using external tools from + ImageMagick or + GraphicsMagick. + At least one of these tool must be installed for the method to succeed. + - It is recommended to use the generic method save(const char*, int) const instead, + as it can handle some file formats natively. + **/ + const CImg& save_other(const char *const filename, const unsigned int quality=100) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_other(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_other(): File '%s', saving a volumetric image with an external call to " + "ImageMagick or GraphicsMagick only writes the first image slice.", + cimg_instance,filename); + + const unsigned int omode = cimg::exception_mode(); + bool is_saved = true; + cimg::exception_mode(0); + try { save_magick(filename); } + catch (CImgException&) { + try { save_imagemagick_external(filename,quality); } + catch (CImgException&) { + try { save_graphicsmagick_external(filename,quality); } + catch (CImgException&) { + is_saved = false; + } + } + } + cimg::exception_mode(omode); + if (!is_saved) + throw CImgIOException(_cimg_instance + "save_other(): Failed to save file '%s'. Format is not natively supported, " + "and no external commands succeeded.", + cimg_instance, + filename); + return *this; + } + + //! Serialize a CImg instance into a raw CImg buffer. + /** + \param is_compressed tells if zlib compression must be used for serialization + (this requires 'cimg_use_zlib' been enabled). + \param header_size Reserve empty bytes as a starting header. + **/ + CImg get_serialize(const bool is_compressed=false, const unsigned int header_size=0) const { + return CImgList(*this,true).get_serialize(is_compressed,header_size); + } + + // [internal] Return a 40x38 color logo of a 'danger' item. + static CImg _logo40x38() { + CImg res(40,38,1,3); + const unsigned char *ptrs = cimg::logo40x38; + T *ptr1 = res.data(0,0,0,0), *ptr2 = res.data(0,0,0,1), *ptr3 = res.data(0,0,0,2); + for (ulongT off = 0; off<(ulongT)res._width*res._height;) { + const unsigned char n = *(ptrs++), r = *(ptrs++), g = *(ptrs++), b = *(ptrs++); + for (unsigned int l = 0; l structure + # + # + # + #------------------------------------------ + */ + //! Represent a list of images CImg. + template + struct CImgList { + unsigned int _width, _allocated_width; + CImg *_data; + + //! Simple iterator type, to loop through each image of a list. + /** + \note + - The \c CImgList::iterator type is defined as a CImg*. + - You may use it like this: + \code + CImgList<> list; // Assuming this image list is not empty + for (CImgList<>::iterator it = list.begin(); it* iterator; + + //! Simple const iterator type, to loop through each image of a \c const list instance. + /** + \note + - The \c CImgList::const_iterator type is defined to be a const CImg*. + - Similar to CImgList::iterator, but for constant list instances. + **/ + typedef const CImg* const_iterator; + + //! Pixel value type. + /** + Refer to the pixels value type of the images in the list. + \note + - The \c CImgList::value_type type of a \c CImgList is defined to be a \c T. + It is then similar to CImg::value_type. + - \c CImgList::value_type is actually not used in %CImg methods. It has been mainly defined for + compatibility with STL naming conventions. + **/ + typedef T value_type; + + // Define common types related to template type T. + typedef typename cimg::superset::type Tbool; + typedef typename cimg::superset::type Tuchar; + typedef typename cimg::superset::type Tchar; + typedef typename cimg::superset::type Tushort; + typedef typename cimg::superset::type Tshort; + typedef typename cimg::superset::type Tuint; + typedef typename cimg::superset::type Tint; + typedef typename cimg::superset::type Tulong; + typedef typename cimg::superset::type Tlong; + typedef typename cimg::superset::type Tfloat; + typedef typename cimg::superset::type Tdouble; + typedef typename cimg::last::type boolT; + typedef typename cimg::last::type ucharT; + typedef typename cimg::last::type charT; + typedef typename cimg::last::type ushortT; + typedef typename cimg::last::type shortT; + typedef typename cimg::last::type uintT; + typedef typename cimg::last::type intT; + typedef typename cimg::last::type ulongT; + typedef typename cimg::last::type longT; + typedef typename cimg::last::type uint64T; + typedef typename cimg::last::type int64T; + typedef typename cimg::last::type floatT; + typedef typename cimg::last::type doubleT; + + //@} + //--------------------------- + // + //! \name Plugins + //@{ + //--------------------------- +#ifdef cimglist_plugin +#include cimglist_plugin +#endif +#ifdef cimglist_plugin1 +#include cimglist_plugin1 +#endif +#ifdef cimglist_plugin2 +#include cimglist_plugin2 +#endif +#ifdef cimglist_plugin3 +#include cimglist_plugin3 +#endif +#ifdef cimglist_plugin4 +#include cimglist_plugin4 +#endif +#ifdef cimglist_plugin5 +#include cimglist_plugin5 +#endif +#ifdef cimglist_plugin6 +#include cimglist_plugin6 +#endif +#ifdef cimglist_plugin7 +#include cimglist_plugin7 +#endif +#ifdef cimglist_plugin8 +#include cimglist_plugin8 +#endif + + //@} + //-------------------------------------------------------- + // + //! \name Constructors / Destructor / Instance Management + //@{ + //-------------------------------------------------------- + + //! Destructor. + /** + Destroy current list instance. + \note + - Any allocated buffer is deallocated. + - Destroying an empty list does nothing actually. + **/ + ~CImgList() { + delete[] _data; + } + + //! Default constructor. + /** + Construct a new empty list instance. + \note + - An empty list has no pixel data and its dimension width() is set to \c 0, as well as its + image buffer pointer data(). + - An empty list may be reassigned afterwards, with the family of the assign() methods. + In all cases, the type of pixels stays \c T. + **/ + CImgList(): + _width(0),_allocated_width(0),_data(0) {} + + //! Construct list containing empty images. + /** + \param n Number of empty images. + \note Useful when you know by advance the number of images you want to manage, as + it will allocate the right amount of memory for the list, without needs for reallocation + (that may occur when starting from an empty list and inserting several images in it). + **/ + explicit CImgList(const unsigned int n):_width(n) { + if (n) _data = new CImg[_allocated_width = std::max(16U,(unsigned int)cimg::nearest_pow2(n))]; + else { _allocated_width = 0; _data = 0; } + } + + //! Construct list containing images of specified size. + /** + \param n Number of images. + \param width Width of images. + \param height Height of images. + \param depth Depth of images. + \param spectrum Number of channels of images. + \note Pixel values are not initialized and may probably contain garbage. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height=1, + const unsigned int depth=1, const unsigned int spectrum=1): + _width(0),_allocated_width(0),_data(0) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum); + } + + //! Construct list containing images of specified size, and initialize pixel values. + /** + \param n Number of images. + \param width Width of images. + \param height Height of images. + \param depth Depth of images. + \param spectrum Number of channels of images. + \param val Initialization value for images pixels. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const T& val): + _width(0),_allocated_width(0),_data(0) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum,val); + } + + //! Construct list containing images of specified size, and initialize pixel values from a sequence of integers. + /** + \param n Number of images. + \param width Width of images. + \param height Height of images. + \param depth Depth of images. + \param spectrum Number of channels of images. + \param val0 First value of the initializing integers sequence. + \param val1 Second value of the initializing integers sequence. + \warning You must specify at least width*height*depth*spectrum values in your argument list, + or you will probably segfault. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...): + _width(0),_allocated_width(0),_data(0) { +#define _CImgList_stdarg(t) { \ + assign(n,width,height,depth,spectrum); \ + const ulongT siz = (ulongT)width*height*depth*spectrum, nsiz = siz*n; \ + T *ptrd = _data->_data; \ + va_list ap; \ + va_start(ap,val1); \ + for (ulongT l = 0, s = 0, i = 0; iwidth*height*depth*spectrum values in your argument list, + or you will probably segfault. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const double val0, const double val1, ...): + _width(0),_allocated_width(0),_data(0) { + _CImgList_stdarg(double); + } + + //! Construct list containing copies of an input image. + /** + \param n Number of images. + \param img Input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of \c img. + **/ + template + CImgList(const unsigned int n, const CImg& img, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(n); + cimglist_apply(*this,assign)(img,is_shared); + } + + //! Construct list from one image. + /** + \param img Input image to copy in the constructed list. + \param is_shared Tells if the element of the list is a shared or non-shared copy of \c img. + **/ + template + explicit CImgList(const CImg& img, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(1); + _data[0].assign(img,is_shared); + } + + //! Construct list from two images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(2); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); + } + + //! Construct list from three images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(3); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + } + + //! Construct list from four images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(4); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); + } + + //! Construct list from five images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(5); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); + } + + //! Construct list from six images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param img6 Sixth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(6); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + } + + //! Construct list from seven images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param img6 Sixth input image to copy in the constructed list. + \param img7 Seventh input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(7); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); + } + + //! Construct list from eight images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param img6 Sixth input image to copy in the constructed list. + \param img7 Seventh input image to copy in the constructed list. + \param img8 Eighth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const CImg& img8, + const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(8); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); _data[7].assign(img8,is_shared); + } + + //! Construct list copy. + /** + \param list Input list to copy. + \note The shared state of each element of the constructed list is kept the same as in \c list. + **/ + template + CImgList(const CImgList& list):_width(0),_allocated_width(0),_data(0) { + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],false); + } + + //! Construct list copy \specialization. + CImgList(const CImgList& list):_width(0),_allocated_width(0),_data(0) { + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],list[l]._is_shared); + } + + //! Construct list copy, and force the shared state of the list elements. + /** + \param list Input list to copy. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImgList& list, const bool is_shared):_width(0),_allocated_width(0),_data(0) { + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],is_shared); + } + + //! Construct list by reading the content of a file. + /** + \param filename Filename, as a C-string. + **/ + explicit CImgList(const char *const filename):_width(0),_allocated_width(0),_data(0) { + assign(filename); + } + + //! Construct list from the content of a display window. + /** + \param disp Display window to get content from. + \note Constructed list contains a single image only. + **/ + explicit CImgList(const CImgDisplay& disp):_width(0),_allocated_width(0),_data(0) { + assign(disp); + } + + //! Return a list with elements being shared copies of images in the list instance. + /** + \note list2 = list1.get_shared() is equivalent to list2.assign(list1,true). + **/ + CImgList get_shared() { + CImgList res(_width); + cimglist_for(*this,l) res[l].assign(_data[l],true); + return res; + } + + //! Return a list with elements being shared copies of images in the list instance \const. + const CImgList get_shared() const { + CImgList res(_width); + cimglist_for(*this,l) res[l].assign(_data[l],true); + return res; + } + + //! Destructor \inplace. + /** + \see CImgList(). + **/ + CImgList& assign() { + delete[] _data; + _width = _allocated_width = 0; + _data = 0; + return *this; + } + + //! Destructor \inplace. + /** + Equivalent to assign(). + \note Only here for compatibility with STL naming conventions. + **/ + CImgList& clear() { + return assign(); + } + + //! Construct list containing empty images \inplace. + /** + \see CImgList(unsigned int). + **/ + CImgList& assign(const unsigned int n) { + if (!n) return assign(); + if (_allocated_width(n<<2)) { + delete[] _data; + _data = new CImg[_allocated_width = std::max(16U,(unsigned int)cimg::nearest_pow2(n))]; + } + _width = n; + return *this; + } + + //! Construct list containing images of specified size \inplace. + /** + \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height=1, + const unsigned int depth=1, const unsigned int spectrum=1) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum); + return *this; + } + + //! Construct list containing images of specified size, and initialize pixel values \inplace. + /** + \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const T). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const T& val) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum,val); + return *this; + } + + //! Construct list with images of specified size, and initialize pixel values from a sequence of integers \inplace. + /** + \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const int, const int, ...). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...) { + _CImgList_stdarg(int); + return *this; + } + + //! Construct list with images of specified size, and initialize pixel values from a sequence of doubles \inplace. + /** + \see CImgList(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,const double,const double,...). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, + const double val0, const double val1, ...) { + _CImgList_stdarg(double); + return *this; + } + + //! Construct list containing copies of an input image \inplace. + /** + \see CImgList(unsigned int, const CImg&, bool). + **/ + template + CImgList& assign(const unsigned int n, const CImg& img, const bool is_shared=false) { + assign(n); + cimglist_apply(*this,assign)(img,is_shared); + return *this; + } + + //! Construct list from one image \inplace. + /** + \see CImgList(const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img, const bool is_shared=false) { + assign(1); + _data[0].assign(img,is_shared); + return *this; + } + + //! Construct list from two images \inplace. + /** + \see CImgList(const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const bool is_shared=false) { + assign(2); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); + return *this; + } + + //! Construct list from three images \inplace. + /** + \see CImgList(const CImg&, const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const bool is_shared=false) { + assign(3); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + return *this; + } + + //! Construct list from four images \inplace. + /** + \see CImgList(const CImg&, const CImg&, const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const bool is_shared=false) { + assign(4); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); + return *this; + } + + //! Construct list from five images \inplace. + /** + \see CImgList(const CImg&, const CImg&, const CImg&, const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const bool is_shared=false) { + assign(5); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); + return *this; + } + + //! Construct list from six images \inplace. + /** + \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const bool is_shared=false) { + assign(6); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + return *this; + } + + //! Construct list from seven images \inplace. + /** + \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, + const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const bool is_shared=false) { + assign(7); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); + return *this; + } + + //! Construct list from eight images \inplace. + /** + \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, + const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const CImg& img8, + const bool is_shared=false) { + assign(8); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); _data[7].assign(img8,is_shared); + return *this; + } + + //! Construct list as a copy of an existing list and force the shared state of the list elements \inplace. + /** + \see CImgList(const CImgList&, bool is_shared). + **/ + template + CImgList& assign(const CImgList& list, const bool is_shared=false) { + cimg::unused(is_shared); + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],false); + return *this; + } + + //! Construct list as a copy of an existing list and force shared state of elements \inplace \specialization. + CImgList& assign(const CImgList& list, const bool is_shared=false) { + if (this==&list) return *this; + CImgList res(list._width); + cimglist_for(res,l) res[l].assign(list[l],is_shared); + return res.move_to(*this); + } + + //! Construct list by reading the content of a file \inplace. + /** + \see CImgList(const char *const). + **/ + CImgList& assign(const char *const filename) { + return load(filename); + } + + //! Construct list from the content of a display window \inplace. + /** + \see CImgList(const CImgDisplay&). + **/ + CImgList& assign(const CImgDisplay &disp) { + return assign(CImg(disp)); + } + + //! Transfer the content of the list instance to another list. + /** + \param list Destination list. + \note When returning, the current list instance is empty and the initial content of \c list is destroyed. + **/ + template + CImgList& move_to(CImgList& list) { + list.assign(_width); + bool is_one_shared_element = false; + cimglist_for(*this,l) is_one_shared_element|=_data[l]._is_shared; + if (is_one_shared_element) cimglist_for(*this,l) list[l].assign(_data[l]); + else cimglist_for(*this,l) _data[l].move_to(list[l]); + assign(); + return list; + } + + //! Transfer the content of the list instance at a specified position in another list. + /** + \param list Destination list. + \param pos Index of the insertion in the list. + \note When returning, the list instance is empty and the initial content of \c list is preserved + (only images indexes may be modified). + **/ + template + CImgList& move_to(CImgList& list, const unsigned int pos) { + if (is_empty()) return list; + const unsigned int npos = pos>list._width?list._width:pos; + list.insert(_width,npos); + bool is_one_shared_element = false; + cimglist_for(*this,l) is_one_shared_element|=_data[l]._is_shared; + if (is_one_shared_element) cimglist_for(*this,l) list[npos + l].assign(_data[l]); + else cimglist_for(*this,l) _data[l].move_to(list[npos + l]); + assign(); + return list; + } + + //! Swap all fields between two list instances. + /** + \param list List to swap fields with. + \note Can be used to exchange the content of two lists in a fast way. + **/ + CImgList& swap(CImgList& list) { + cimg::swap(_width,list._width,_allocated_width,list._allocated_width); + cimg::swap(_data,list._data); + return list; + } + + //! Return a reference to an empty list. + /** + \note Can be used to define default values in a function taking a CImgList as an argument. + \code + void f(const CImgList& list=CImgList::empty()); + \endcode + **/ + static CImgList& empty() { + static CImgList _empty; + return _empty.assign(); + } + + //! Return a reference to an empty list \const. + static const CImgList& const_empty() { + static const CImgList _empty; + return _empty; + } + + //@} + //------------------------------------------ + // + //! \name Overloaded Operators + //@{ + //------------------------------------------ + + //! Return a reference to one image element of the list. + /** + \param pos Index of the image element. + **/ + CImg& operator()(const unsigned int pos) { +#if cimg_verbosity>=3 + if (pos>=_width) { + cimg::warn(_cimglist_instance + "operator(): Invalid image request, at position [%u].", + cimglist_instance, + pos); + return *_data; + } +#endif + return _data[pos]; + } + + //! Return a reference to one image of the list. + /** + \param pos Index of the image element. + **/ + const CImg& operator()(const unsigned int pos) const { + return const_cast*>(this)->operator()(pos); + } + + //! Return a reference to one pixel value of one image of the list. + /** + \param pos Index of the image element. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list(n,x,y,z,c) is equivalent to list[n](x,y,z,c). + **/ + T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) { + return (*this)[pos](x,y,z,c); + } + + //! Return a reference to one pixel value of one image of the list \const. + const T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) const { + return (*this)[pos](x,y,z,c); + } + + //! Return pointer to the first image of the list. + /** + \note Images in a list are stored as a buffer of \c CImg. + **/ + operator CImg*() { + return _data; + } + + //! Return pointer to the first image of the list \const. + operator const CImg*() const { + return _data; + } + + //! Construct list from one image \inplace. + /** + \param img Input image to copy in the constructed list. + \note list = img; is equivalent to list.assign(img);. + **/ + template + CImgList& operator=(const CImg& img) { + return assign(img); + } + + //! Construct list from another list. + /** + \param list Input list to copy. + \note list1 = list2 is equivalent to list1.assign(list2);. + **/ + template + CImgList& operator=(const CImgList& list) { + return assign(list); + } + + //! Construct list from another list \specialization. + CImgList& operator=(const CImgList& list) { + return assign(list); + } + + //! Construct list by reading the content of a file \inplace. + /** + \see CImgList(const char *const). + **/ + CImgList& operator=(const char *const filename) { + return assign(filename); + } + + //! Construct list from the content of a display window \inplace. + /** + \see CImgList(const CImgDisplay&). + **/ + CImgList& operator=(const CImgDisplay& disp) { + return assign(disp); + } + + //! Return a non-shared copy of a list. + /** + \note +list is equivalent to CImgList(list,false). + It forces the copy to have non-shared elements. + **/ + CImgList operator+() const { + return CImgList(*this,false); + } + + //! Return a copy of the list instance, where image \c img has been inserted at the end. + /** + \param img Image inserted at the end of the instance copy. + \note Define a convenient way to create temporary lists of images, as in the following code: + \code + (img1,img2,img3,img4).display("My four images"); + \endcode + **/ + template + CImgList& operator,(const CImg& img) { + return insert(img); + } + + //! Return a copy of the list instance, where image \c img has been inserted at the end \const. + template + CImgList operator,(const CImg& img) const { + return (+*this).insert(img); + } + + //! Return a copy of the list instance, where all elements of input list \c list have been inserted at the end. + /** + \param list List inserted at the end of the instance copy. + **/ + template + CImgList& operator,(const CImgList& list) { + return insert(list); + } + + //! Return a copy of the list instance, where all elements of input \c list have been inserted at the end \const. + template + CImgList& operator,(const CImgList& list) const { + return (+*this).insert(list); + } + + //! Return image corresponding to the appending of all images of the instance list along specified axis. + /** + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \note list>'x' is equivalent to list.get_append('x'). + **/ + CImg operator>(const char axis) const { + return get_append(axis,0); + } + + //! Return list corresponding to the splitting of all images of the instance list along specified axis. + /** + \param axis Axis used for image splitting. + \note list<'x' is equivalent to list.get_split('x'). + **/ + CImgList operator<(const char axis) const { + return get_split(axis); + } + + //@} + //------------------------------------- + // + //! \name Instance Characteristics + //@{ + //------------------------------------- + + //! Return the type of image pixel values as a C string. + /** + Return a \c char* string containing the usual type name of the image pixel values + (i.e. a stringified version of the template parameter \c T). + \note + - The returned string does not contain any spaces. + - If the pixel type \c T does not correspond to a registered type, the string "unknown" is returned. + **/ + static const char* pixel_type() { + return cimg::type::string(); + } + + //! Return the size of the list, i.e. the number of images contained in it. + /** + \note Similar to size() but returns result as a (signed) integer. + **/ + int width() const { + return (int)_width; + } + + //! Return the size of the list, i.e. the number of images contained in it. + /** + \note Similar to width() but returns result as an unsigned integer. + **/ + unsigned int size() const { + return _width; + } + + //! Return pointer to the first image of the list. + /** + \note Images in a list are stored as a buffer of \c CImg. + **/ + CImg *data() { + return _data; + } + + //! Return pointer to the first image of the list \const. + const CImg *data() const { + return _data; + } + + //! Return pointer to the pos-th image of the list. + /** + \param pos Index of the image element to access. + \note list.data(n); is equivalent to list.data + n;. + **/ +#if cimg_verbosity>=3 + CImg *data(const unsigned int pos) { + if (pos>=size()) + cimg::warn(_cimglist_instance + "data(): Invalid pointer request, at position [%u].", + cimglist_instance, + pos); + return _data + pos; + } + + const CImg *data(const unsigned int l) const { + return const_cast*>(this)->data(l); + } +#else + CImg *data(const unsigned int l) { + return _data + l; + } + + //! Return pointer to the pos-th image of the list \const. + const CImg *data(const unsigned int l) const { + return _data + l; + } +#endif + + //! Return iterator to the first image of the list. + /** + **/ + iterator begin() { + return _data; + } + + //! Return iterator to the first image of the list \const. + const_iterator begin() const { + return _data; + } + + //! Return iterator to one position after the last image of the list. + /** + **/ + iterator end() { + return _data + _width; + } + + //! Return iterator to one position after the last image of the list \const. + const_iterator end() const { + return _data + _width; + } + + //! Return reference to the first image of the list. + /** + **/ + CImg& front() { + return *_data; + } + + //! Return reference to the first image of the list \const. + const CImg& front() const { + return *_data; + } + + //! Return a reference to the last image of the list. + /** + **/ + const CImg& back() const { + return *(_data + _width - 1); + } + + //! Return a reference to the last image of the list \const. + CImg& back() { + return *(_data + _width - 1); + } + + //! Return pos-th image of the list. + /** + \param pos Index of the image element to access. + **/ + CImg& at(const int pos) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "at(): Empty instance.", + cimglist_instance); + + return _data[cimg::cut(pos,0,width() - 1)]; + } + + //! Access to pixel value with Dirichlet boundary conditions. + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);. + **/ + T& atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atXYZC(x,y,z,c,out_value); + } + + //! Access to pixel value with Dirichlet boundary conditions \const. + T atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=width())?out_value:_data[pos].atXYZC(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions. + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);. + **/ + T& atNXYZC(const int pos, const int x, const int y, const int z, const int c) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZC(): Empty instance.", + cimglist_instance); + + return _atNXYZC(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions \const. + T atNXYZC(const int pos, const int x, const int y, const int z, const int c) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZC(): Empty instance.", + cimglist_instance); + + return _atNXYZC(pos,x,y,z,c); + } + + T& _atNXYZC(const int pos, const int x, const int y, const int z, const int c) { + return _data[cimg::cut(pos,0,width() - 1)].atXYZC(x,y,z,c); + } + + T _atNXYZC(const int pos, const int x, const int y, const int z, const int c) const { + return _data[cimg::cut(pos,0,width() - 1)].atXYZC(x,y,z,c); + } + + //! Access pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y,\c z). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atXYZ(x,y,z,c,out_value); + } + + //! Access pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y,\c z) \const. + T atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=width())?out_value:_data[pos].atXYZ(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions for the 4 coordinates (\c pos, \c x,\c y,\c z). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZ(): Empty instance.", + cimglist_instance); + + return _atNXYZ(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions for the 4 coordinates (\c pos, \c x,\c y,\c z) \const. + T atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZ(): Empty instance.", + cimglist_instance); + + return _atNXYZ(pos,x,y,z,c); + } + + T& _atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)].atXYZ(x,y,z,c); + } + + T _atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)].atXYZ(x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atXY(x,y,z,c,out_value); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y) \const. + T atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=width())?out_value:_data[pos].atXY(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions for the 3 coordinates (\c pos, \c x,\c y). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXY(): Empty instance.", + cimglist_instance); + + return _atNXY(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions for the 3 coordinates (\c pos, \c x,\c y) \const. + T atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXY(): Empty instance.", + cimglist_instance); + + return _atNXY(pos,x,y,z,c); + } + + T& _atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)].atXY(x,y,z,c); + } + + T _atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)].atXY(x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (\c pos,\c x). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):_data[pos].atX(x,y,z,c,out_value); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (\c pos,\c x) \const. + T atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=width())?out_value:_data[pos].atX(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions for the 2 coordinates (\c pos, \c x). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNX(): Empty instance.", + cimglist_instance); + + return _atNX(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions for the 2 coordinates (\c pos, \c x) \const. + T atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNX(): Empty instance.", + cimglist_instance); + + return _atNX(pos,x,y,z,c); + } + + T& _atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)].atX(x,y,z,c); + } + + T _atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)].atX(x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the coordinate (\c pos). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=width())?(cimg::temporary(out_value)=out_value):(*this)(pos,x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the coordinate (\c pos) \const. + T atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=width())?out_value:(*this)(pos,x,y,z,c); + } + + //! Return pixel value with Neumann boundary conditions for the coordinate (\c pos). + /** + \param pos Index of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atN(): Empty instance.", + cimglist_instance); + return _atN(pos,x,y,z,c); + } + + //! Return pixel value with Neumann boundary conditions for the coordinate (\c pos) \const. + T atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atN(): Empty instance.", + cimglist_instance); + return _atN(pos,x,y,z,c); + } + + T& _atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)](x,y,z,c); + } + + T _atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)](x,y,z,c); + } + + //@} + //------------------------------------- + // + //! \name Instance Checking + //@{ + //------------------------------------- + + //! Return \c true if list is empty. + /** + **/ + bool is_empty() const { + return (!_data || !_width); + } + + //! Test if number of image elements is equal to specified value. + /** + \param size_n Number of image elements to test. + **/ + bool is_sameN(const unsigned int size_n) const { + return _width==size_n; + } + + //! Test if number of image elements is equal between two images lists. + /** + \param list Input list to compare with. + **/ + template + bool is_sameN(const CImgList& list) const { + return is_sameN(list._width); + } + + // Define useful functions to check list dimensions. + // (cannot be documented because macro-generated). +#define _cimglist_def_is_same1(axis) \ + bool is_same##axis(const unsigned int val) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis(val); \ + return res; \ + } \ + bool is_sameN##axis(const unsigned int n, const unsigned int val) const { \ + return is_sameN(n) && is_same##axis(val); \ + } \ + +#define _cimglist_def_is_same2(axis1,axis2) \ + bool is_same##axis1##axis2(const unsigned int val1, const unsigned int val2) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis1##axis2(val1,val2); \ + return res; \ + } \ + bool is_sameN##axis1##axis2(const unsigned int n, const unsigned int val1, const unsigned int val2) const { \ + return is_sameN(n) && is_same##axis1##axis2(val1,val2); \ + } \ + +#define _cimglist_def_is_same3(axis1,axis2,axis3) \ + bool is_same##axis1##axis2##axis3(const unsigned int val1, const unsigned int val2, \ + const unsigned int val3) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis1##axis2##axis3(val1,val2,val3); \ + return res; \ + } \ + bool is_sameN##axis1##axis2##axis3(const unsigned int n, const unsigned int val1, \ + const unsigned int val2, const unsigned int val3) const { \ + return is_sameN(n) && is_same##axis1##axis2##axis3(val1,val2,val3); \ + } \ + +#define _cimglist_def_is_same(axis) \ + template bool is_same##axis(const CImg& img) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis(img); \ + return res; \ + } \ + template bool is_same##axis(const CImgList& list) const { \ + const unsigned int lmin = std::min(_width,list._width); \ + bool res = true; \ + for (unsigned int l = 0; l bool is_sameN##axis(const unsigned int n, const CImg& img) const { \ + return (is_sameN(n) && is_same##axis(img)); \ + } \ + template bool is_sameN##axis(const CImgList& list) const { \ + return (is_sameN(list) && is_same##axis(list)); \ + } + + _cimglist_def_is_same(XY) + _cimglist_def_is_same(XZ) + _cimglist_def_is_same(XC) + _cimglist_def_is_same(YZ) + _cimglist_def_is_same(YC) + _cimglist_def_is_same(XYZ) + _cimglist_def_is_same(XYC) + _cimglist_def_is_same(YZC) + _cimglist_def_is_same(XYZC) + _cimglist_def_is_same1(X) + _cimglist_def_is_same1(Y) + _cimglist_def_is_same1(Z) + _cimglist_def_is_same1(C) + _cimglist_def_is_same2(X,Y) + _cimglist_def_is_same2(X,Z) + _cimglist_def_is_same2(X,C) + _cimglist_def_is_same2(Y,Z) + _cimglist_def_is_same2(Y,C) + _cimglist_def_is_same2(Z,C) + _cimglist_def_is_same3(X,Y,Z) + _cimglist_def_is_same3(X,Y,C) + _cimglist_def_is_same3(X,Z,C) + _cimglist_def_is_same3(Y,Z,C) + + //! Test if dimensions of each image of the list match specified arguments. + /** + \param dx Checked image width. + \param dy Checked image height. + \param dz Checked image depth. + \param dc Checked image spectrum. + **/ + bool is_sameXYZC(const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) const { + bool res = true; + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_sameXYZC(dx,dy,dz,dc); + return res; + } + + //! Test if list dimensions match specified arguments. + /** + \param n Number of images in the list. + \param dx Checked image width. + \param dy Checked image height. + \param dz Checked image depth. + \param dc Checked image spectrum. + **/ + bool is_sameNXYZC(const unsigned int n, + const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) const { + return is_sameN(n) && is_sameXYZC(dx,dy,dz,dc); + } + + //! Test if list contains one particular pixel location. + /** + \param n Index of the image whom checked pixel value belong to. + \param x X-coordinate of the checked pixel value. + \param y Y-coordinate of the checked pixel value. + \param z Z-coordinate of the checked pixel value. + \param c C-coordinate of the checked pixel value. + **/ + bool containsNXYZC(const int n, const int x=0, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) return false; + return n>=0 && n=0 && x<_data[n].width() && y>=0 && y<_data[n].height() && + z>=0 && z<_data[n].depth() && c>=0 && c<_data[n].spectrum(); + } + + //! Test if list contains image with specified index. + /** + \param n Index of the checked image. + **/ + bool containsN(const int n) const { + if (is_empty()) return false; + return n>=0 && n + bool contains(const T& pixel, t& n, t& x, t&y, t& z, t& c) const { + if (is_empty()) return false; + cimglist_for(*this,l) if (_data[l].contains(pixel,x,y,z,c)) { n = (t)l; return true; } + return false; + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \param[out] y Y-coordinate of the pixel value, if test succeeds. + \param[out] z Z-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x,y,z). + **/ + template + bool contains(const T& pixel, t& n, t& x, t&y, t& z) const { + t c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \param[out] y Y-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x,y). + **/ + template + bool contains(const T& pixel, t& n, t& x, t&y) const { + t z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x). + **/ + template + bool contains(const T& pixel, t& n, t& x) const { + t y, z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \note If true, set coordinates (n). + **/ + template + bool contains(const T& pixel, t& n) const { + t x, y, z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + **/ + bool contains(const T& pixel) const { + unsigned int n, x, y, z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if the list contains the image 'img'. + /** + \param img Reference to image to test. + \param[out] n Index of image in the list, if test succeeds. + \note If true, returns the position (n) of the image in the list. + **/ + template + bool contains(const CImg& img, t& n) const { + if (is_empty()) return false; + const CImg *const ptr = &img; + cimglist_for(*this,i) if (_data + i==ptr) { n = (t)i; return true; } + return false; + } + + //! Test if the list contains the image img. + /** + \param img Reference to image to test. + **/ + bool contains(const CImg& img) const { + unsigned int n; + return contains(img,n); + } + + //@} + //------------------------------------- + // + //! \name Mathematical Functions + //@{ + //------------------------------------- + + //! Return a reference to the minimum pixel value of the instance list. + /** + **/ + T& min() { + bool is_all_empty = true; + T *ptr_min = 0; + cimglist_for(*this,l) if (!_data[l].is_empty()) { + ptr_min = _data[l]._data; + is_all_empty = false; + break; + } + if (is_all_empty) + throw CImgInstanceException(_cimglist_instance + "min(): %s.", + _data?"List of empty images":"Empty instance", + cimglist_instance); + T min_value = *ptr_min; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs); + } + return *ptr_max; + } + + //! Return a reference to the maximum pixel value of the instance list \const. + const T& max() const { + bool is_all_empty = true; + T *ptr_max = 0; + cimglist_for(*this,l) if (!_data[l].is_empty()) { + ptr_max = _data[l]._data; + is_all_empty = false; + break; + } + if (is_all_empty) + throw CImgInstanceException(_cimglist_instance + "max(): %s.", + _data?"List of empty images":"Empty instance", + cimglist_instance); + T max_value = *ptr_max; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs); + } + return *ptr_max; + } + + //! Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well. + /** + \param[out] max_val Value of the maximum value found. + **/ + template + T& min_max(t& max_val) { + bool is_all_empty = true; + T *ptr_min = 0; + cimglist_for(*this,l) if (!_data[l].is_empty()) { + ptr_min = _data[l]._data; + is_all_empty = false; + break; + } + if (is_all_empty) + throw CImgInstanceException(_cimglist_instance + "min_max(): %s.", + _data?"List of empty images":"Empty instance", + cimglist_instance); + T min_value = *ptr_min, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well \const. + /** + \param[out] max_val Value of the maximum value found. + **/ + template + const T& min_max(t& max_val) const { + bool is_all_empty = true; + T *ptr_min = 0; + cimglist_for(*this,l) if (!_data[l].is_empty()) { + ptr_min = _data[l]._data; + is_all_empty = false; + break; + } + if (is_all_empty) + throw CImgInstanceException(_cimglist_instance + "min_max(): %s.", + _data?"List of empty images":"Empty instance", + cimglist_instance); + T min_value = *ptr_min, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the minimum pixel value of the instance list and return the minimum value as well. + /** + \param[out] min_val Value of the minimum value found. + **/ + template + T& max_min(t& min_val) { + bool is_all_empty = true; + T *ptr_max = 0; + cimglist_for(*this,l) if (!_data[l].is_empty()) { + ptr_max = _data[l]._data; + is_all_empty = false; + break; + } + if (is_all_empty) + throw CImgInstanceException(_cimglist_instance + "max_min(): %s.", + _data?"List of empty images":"Empty instance", + cimglist_instance); + T min_value = *ptr_max, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val + const T& max_min(t& min_val) const { + bool is_all_empty = true; + T *ptr_max = 0; + cimglist_for(*this,l) if (!_data[l].is_empty()) { + ptr_max = _data[l]._data; + is_all_empty = false; + break; + } + if (is_all_empty) + throw CImgInstanceException(_cimglist_instance + "max_min(): %s.", + _data?"List of empty images":"Empty instance", + cimglist_instance); + T min_value = *ptr_max, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val + CImgList& insert(const CImg& img, const unsigned int pos=~0U, const bool is_shared=false) { + const unsigned int npos = pos==~0U?_width:pos; + if (npos>_width) + throw CImgArgumentException(_cimglist_instance + "insert(): Invalid insertion request of specified image (%u,%u,%u,%u,%p) " + "at position %u.", + cimglist_instance, + img._width,img._height,img._depth,img._spectrum,img._data,npos); + if (is_shared) + throw CImgArgumentException(_cimglist_instance + "insert(): Invalid insertion request of specified shared image " + "CImg<%s>(%u,%u,%u,%u,%p) at position %u (pixel types are different).", + cimglist_instance, + img.pixel_type(),img._width,img._height,img._depth,img._spectrum,img._data,npos); + + CImg *const new_data = (++_width>_allocated_width)?new CImg[_allocated_width?(_allocated_width<<=1): + (_allocated_width=16)]:0; + if (!_data) { // Insert new element into empty list + _data = new_data; + *_data = img; + } else { + if (new_data) { // Insert with re-allocation + if (npos) std::memcpy((void*)new_data,(void*)_data,sizeof(CImg)*npos); + if (npos!=_width - 1) + std::memcpy((void*)(new_data + npos + 1),(void*)(_data + npos),sizeof(CImg)*(_width - 1 - npos)); + std::memset((void*)_data,0,sizeof(CImg)*(_width - 1)); + delete[] _data; + _data = new_data; + } else if (npos!=_width - 1) // Insert without re-allocation + std::memmove((void*)(_data + npos + 1),(void*)(_data + npos),sizeof(CImg)*(_width - 1 - npos)); + _data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0; + _data[npos]._data = 0; + _data[npos] = img; + } + return *this; + } + + //! Insert a copy of the image \c img into the current image list, at position \c pos \specialization. + CImgList& insert(const CImg& img, const unsigned int pos=~0U, const bool is_shared=false) { + const unsigned int npos = pos==~0U?_width:pos; + if (npos>_width) + throw CImgArgumentException(_cimglist_instance + "insert(): Invalid insertion request of specified image (%u,%u,%u,%u,%p) " + "at position %u.", + cimglist_instance, + img._width,img._height,img._depth,img._spectrum,img._data,npos); + CImg *const new_data = (++_width>_allocated_width)?new CImg[_allocated_width?(_allocated_width<<=1): + (_allocated_width=16)]:0; + if (!_data) { // Insert new element into empty list + _data = new_data; + if (is_shared && img) { + _data->_width = img._width; + _data->_height = img._height; + _data->_depth = img._depth; + _data->_spectrum = img._spectrum; + _data->_is_shared = true; + _data->_data = img._data; + } else *_data = img; + } + else { + if (new_data) { // Insert with re-allocation + if (npos) std::memcpy((void*)new_data,(void*)_data,sizeof(CImg)*npos); + if (npos!=_width - 1) + std::memcpy((void*)(new_data + npos + 1),(void*)(_data + npos),sizeof(CImg)*(_width - 1 - npos)); + if (is_shared && img) { + new_data[npos]._width = img._width; + new_data[npos]._height = img._height; + new_data[npos]._depth = img._depth; + new_data[npos]._spectrum = img._spectrum; + new_data[npos]._is_shared = true; + new_data[npos]._data = img._data; + } else { + new_data[npos]._width = new_data[npos]._height = new_data[npos]._depth = new_data[npos]._spectrum = 0; + new_data[npos]._data = 0; + new_data[npos] = img; + } + std::memset((void*)_data,0,sizeof(CImg)*(_width - 1)); + delete[] _data; + _data = new_data; + } else { // Insert without re-allocation + if (npos!=_width - 1) + std::memmove((void*)(_data + npos + 1),(void*)(_data + npos),sizeof(CImg)*(_width - 1 - npos)); + if (is_shared && img) { + _data[npos]._width = img._width; + _data[npos]._height = img._height; + _data[npos]._depth = img._depth; + _data[npos]._spectrum = img._spectrum; + _data[npos]._is_shared = true; + _data[npos]._data = img._data; + } else { + _data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0; + _data[npos]._data = 0; + _data[npos] = img; + } + } + } + return *this; + } + + //! Insert a copy of the image \c img into the current image list, at position \c pos \newinstance. + template + CImgList get_insert(const CImg& img, const unsigned int pos=~0U, const bool is_shared=false) const { + return (+*this).insert(img,pos,is_shared); + } + + //! Insert n empty images img into the current image list, at position \p pos. + /** + \param n Number of empty images to insert. + \param pos Index of the insertion. + **/ + CImgList& insert(const unsigned int n, const unsigned int pos=~0U) { + CImg empty; + if (!n) return *this; + const unsigned int npos = pos==~0U?_width:pos; + for (unsigned int i = 0; i get_insert(const unsigned int n, const unsigned int pos=~0U) const { + return (+*this).insert(n,pos); + } + + //! Insert \c n copies of the image \c img into the current image list, at position \c pos. + /** + \param n Number of image copies to insert. + \param img Image to insert by copy. + \param pos Index of the insertion. + \param is_shared Tells if inserted images are shared copies of \c img or not. + **/ + template + CImgList& insert(const unsigned int n, const CImg& img, const unsigned int pos=~0U, + const bool is_shared=false) { + if (!n) return *this; + const unsigned int npos = pos==~0U?_width:pos; + insert(img,npos,is_shared); + for (unsigned int i = 1; i + CImgList get_insert(const unsigned int n, const CImg& img, const unsigned int pos=~0U, + const bool is_shared=false) const { + return (+*this).insert(n,img,pos,is_shared); + } + + //! Insert a copy of the image list \c list into the current image list, starting from position \c pos. + /** + \param list Image list to insert. + \param pos Index of the insertion. + \param is_shared Tells if inserted images are shared copies of images of \c list or not. + **/ + template + CImgList& insert(const CImgList& list, const unsigned int pos=~0U, const bool is_shared=false) { + const unsigned int npos = pos==~0U?_width:pos; + if ((void*)this!=(void*)&list) cimglist_for(list,l) insert(list[l],npos + l,is_shared); + else insert(CImgList(list),npos,is_shared); + return *this; + } + + //! Insert a copy of the image list \c list into the current image list, starting from position \c pos \newinstance. + template + CImgList get_insert(const CImgList& list, const unsigned int pos=~0U, const bool is_shared=false) const { + return (+*this).insert(list,pos,is_shared); + } + + //! Insert n copies of the list \c list at position \c pos of the current list. + /** + \param n Number of list copies to insert. + \param list Image list to insert. + \param pos Index of the insertion. + \param is_shared Tells if inserted images are shared copies of images of \c list or not. + **/ + template + CImgList& insert(const unsigned int n, const CImgList& list, const unsigned int pos=~0U, + const bool is_shared=false) { + if (!n) return *this; + const unsigned int npos = pos==~0U?_width:pos; + for (unsigned int i = 0; i + CImgList get_insert(const unsigned int n, const CImgList& list, const unsigned int pos=~0U, + const bool is_shared=false) const { + return (+*this).insert(n,list,pos,is_shared); + } + + //! Remove all images between from indexes. + /** + \param pos1 Starting index of the removal. + \param pos2 Ending index of the removal. + **/ + CImgList& remove(const unsigned int pos1, const unsigned int pos2) { + const unsigned int + npos1 = pos1=_width) + throw CImgArgumentException(_cimglist_instance + "remove(): Invalid remove request at positions %u->%u.", + cimglist_instance, + npos1,tpos2); + else { + if (tpos2>=_width) + throw CImgArgumentException(_cimglist_instance + "remove(): Invalid remove request at positions %u->%u.", + cimglist_instance, + npos1,tpos2); + + for (unsigned int k = npos1; k<=npos2; ++k) _data[k].assign(); + const unsigned int nb = 1 + npos2 - npos1; + if (!(_width-=nb)) return assign(); + if (_width>(_allocated_width>>4) || _allocated_width<=16) { // Removing items without reallocation + if (npos1!=_width) + std::memmove((void*)(_data + npos1),(void*)(_data + npos2 + 1),sizeof(CImg)*(_width - npos1)); + std::memset((void*)(_data + _width),0,sizeof(CImg)*nb); + } else { // Removing items with reallocation + _allocated_width>>=4; + while (_allocated_width>16 && _width<(_allocated_width>>1)) _allocated_width>>=1; + CImg *const new_data = new CImg[_allocated_width]; + if (npos1) std::memcpy((void*)new_data,(void*)_data,sizeof(CImg)*npos1); + if (npos1!=_width) + std::memcpy((void*)(new_data + npos1),(void*)(_data + npos2 + 1),sizeof(CImg)*(_width - npos1)); + if (_width!=_allocated_width) + std::memset((void*)(new_data + _width),0,sizeof(CImg)*(_allocated_width - _width)); + std::memset((void*)_data,0,sizeof(CImg)*(_width + nb)); + delete[] _data; + _data = new_data; + } + } + return *this; + } + + //! Remove all images between from indexes \newinstance. + CImgList get_remove(const unsigned int pos1, const unsigned int pos2) const { + return (+*this).remove(pos1,pos2); + } + + //! Remove image at index \c pos from the image list. + /** + \param pos Index of the image to remove. + **/ + CImgList& remove(const unsigned int pos) { + return remove(pos,pos); + } + + //! Remove image at index \c pos from the image list \newinstance. + CImgList get_remove(const unsigned int pos) const { + return (+*this).remove(pos); + } + + //! Remove last image. + /** + **/ + CImgList& remove() { + return remove(_width - 1); + } + + //! Remove last image \newinstance. + CImgList get_remove() const { + return (+*this).remove(); + } + + //! Reverse list order. + CImgList& reverse() { + for (unsigned int l = 0; l<_width/2; ++l) (*this)[l].swap((*this)[_width - 1 - l]); + return *this; + } + + //! Reverse list order \newinstance. + CImgList get_reverse() const { + return (+*this).reverse(); + } + + //! Return a sublist. + /** + \param pos0 Starting index of the sublist. + \param pos1 Ending index of the sublist. + **/ + CImgList& images(const unsigned int pos0, const unsigned int pos1) { + return get_images(pos0,pos1).move_to(*this); + } + + //! Return a sublist \newinstance. + CImgList get_images(const unsigned int pos0, const unsigned int pos1) const { + if (pos0>pos1 || pos1>=_width) + throw CImgArgumentException(_cimglist_instance + "images(): Specified sub-list indices (%u->%u) are out of bounds.", + cimglist_instance, + pos0,pos1); + CImgList res(pos1 - pos0 + 1); + cimglist_for(res,l) res[l].assign(_data[pos0 + l]); + return res; + } + + //! Return a shared sublist. + /** + \param pos0 Starting index of the sublist. + \param pos1 Ending index of the sublist. + **/ + CImgList get_shared_images(const unsigned int pos0, const unsigned int pos1) { + if (pos0>pos1 || pos1>=_width) + throw CImgArgumentException(_cimglist_instance + "get_shared_images(): Specified sub-list indices (%u->%u) are out of bounds.", + cimglist_instance, + pos0,pos1); + CImgList res(pos1 - pos0 + 1); + cimglist_for(res,l) res[l].assign(_data[pos0 + l],_data[pos0 + l]?true:false); + return res; + } + + //! Return a shared sublist \newinstance. + const CImgList get_shared_images(const unsigned int pos0, const unsigned int pos1) const { + if (pos0>pos1 || pos1>=_width) + throw CImgArgumentException(_cimglist_instance + "get_shared_images(): Specified sub-list indices (%u->%u) are out of bounds.", + cimglist_instance, + pos0,pos1); + CImgList res(pos1 - pos0 + 1); + cimglist_for(res,l) res[l].assign(_data[pos0 + l],_data[pos0 + l]?true:false); + return res; + } + + //! Return a single image which is the appending of all images of the current CImgList instance. + /** + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg get_append(const char axis, const float align=0) const { + if (is_empty()) return CImg(); + if (_width==1) return +((*this)[0]); + unsigned int dx = 0, dy = 0, dz = 0, dc = 0, pos = 0; + CImg res; + switch (cimg::lowercase(axis)) { + case 'x' : { // Along the X-axis + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx+=img._width; + dy = std::max(dy,img._height); + dz = std::max(dz,img._depth); + dc = std::max(dc,img._spectrum); + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + if (img._height==1 && img._depth==1 && img._spectrum==1 && + res._height==1 && res._depth==1 && res._spectrum==1) + std::memcpy(&res[pos],img._data,sizeof(T)*img._width); + else + res.draw_image(pos, + (int)(align*(dy - img._height)), + (int)(align*(dz - img._depth)), + (int)(align*(dc - img._spectrum)), + img); + } + pos+=img._width; + } + } break; + case 'y' : { // Along the Y-axis + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx = std::max(dx,img._width); + dy+=img._height; + dz = std::max(dz,img._depth); + dc = std::max(dc,img._spectrum); + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + if (img._width==1 && img._depth==1 && img._spectrum==1 && + res._width==1 && res._depth==1 && res._spectrum==1) + std::memcpy(&res[pos],img._data,sizeof(T)*img._height); + else + res.draw_image((int)(align*(dx - img._width)), + pos, + (int)(align*(dz - img._depth)), + (int)(align*(dc - img._spectrum)), + img); + } + pos+=img._height; + } + } break; + case 'z' : { // Along the Z-axis + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx = std::max(dx,img._width); + dy = std::max(dy,img._height); + dz+=img._depth; + dc = std::max(dc,img._spectrum); + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + if (img._width==1 && img._height==1 && img._spectrum==1 && + res._width==1 && res._height==1 && res._spectrum==1) + std::memcpy(&res[pos],img._data,sizeof(T)*img._depth); + else + res.draw_image((int)(align*(dx - img._width)), + (int)(align*(dy - img._height)), + pos, + (int)(align*(dc - img._spectrum)), + img); + } + pos+=img._depth; + } + } break; + default : { // Along the C-axis + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx = std::max(dx,img._width); + dy = std::max(dy,img._height); + dz = std::max(dz,img._depth); + dc+=img._spectrum; + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + if (img._width==1 && img._height==1 && img._depth==1 && + res._width==1 && res._height==1 && res._depth==1) + std::memcpy(&res[pos],img._data,sizeof(T)*img._spectrum); + else + res.draw_image((int)(align*(dx - img._width)), + (int)(align*(dy - img._height)), + (int)(align*(dz - img._depth)), + pos, + img); + } + pos+=img._spectrum; + } + } + } + return res; + } + + //! Return a list where each image has been split along the specified axis. + /** + \param axis Axis to split images along. + \param nb Number of split parts for each image. + **/ + CImgList& split(const char axis, const int nb=-1) { + return get_split(axis,nb).move_to(*this); + } + + //! Return a list where each image has been split along the specified axis \newinstance. + CImgList get_split(const char axis, const int nb=-1) const { + CImgList res; + cimglist_for(*this,l) _data[l].get_split(axis,nb).move_to(res,~0U); + return res; + } + + //! Insert image at the end of the list. + /** + \param img Image to insert. + **/ + template + CImgList& push_back(const CImg& img) { + return insert(img); + } + + //! Insert image at the front of the list. + /** + \param img Image to insert. + **/ + template + CImgList& push_front(const CImg& img) { + return insert(img,0); + } + + //! Insert list at the end of the current list. + /** + \param list List to insert. + **/ + template + CImgList& push_back(const CImgList& list) { + return insert(list); + } + + //! Insert list at the front of the current list. + /** + \param list List to insert. + **/ + template + CImgList& push_front(const CImgList& list) { + return insert(list,0); + } + + //! Remove last image. + /** + **/ + CImgList& pop_back() { + return remove(_width - 1); + } + + //! Remove first image. + /** + **/ + CImgList& pop_front() { + return remove(0); + } + + //! Remove image pointed by iterator. + /** + \param iter Iterator pointing to the image to remove. + **/ + CImgList& erase(const iterator iter) { + return remove(iter - _data); + } + + //@} + //---------------------------------- + // + //! \name Data Input + //@{ + //---------------------------------- + + //! Display a simple interactive interface to select images or sublists. + /** + \param disp Window instance to display selection and user interface. + \param feature_type Can be \c false to select a single image, or \c true to select a sublist. + \param axis Axis along whom images are appended for visualization. + \param align Alignment setting when images have not all the same size. + \param exit_on_anykey Exit function when any key is pressed. + \return A one-column vector containing the selected image indexes. + **/ + CImg get_select(CImgDisplay &disp, const bool feature_type=true, + const char axis='x', const float align=0, + const bool exit_on_anykey=false) const { + return _select(disp,0,feature_type,axis,align,exit_on_anykey,0,false,false,false); + } + + //! Display a simple interactive interface to select images or sublists. + /** + \param title Title of a new window used to display selection and user interface. + \param feature_type Can be \c false to select a single image, or \c true to select a sublist. + \param axis Axis along whom images are appended for visualization. + \param align Alignment setting when images have not all the same size. + \param exit_on_anykey Exit function when any key is pressed. + \return A one-column vector containing the selected image indexes. + **/ + CImg get_select(const char *const title, const bool feature_type=true, + const char axis='x', const float align=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _select(disp,title,feature_type,axis,align,exit_on_anykey,0,false,false,false); + } + + CImg _select(CImgDisplay &disp, const char *const title, const bool feature_type, + const char axis, const float align, const bool exit_on_anykey, + const unsigned int orig, const bool resize_disp, + const bool exit_on_rightbutton, const bool exit_on_wheel) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "select(): Empty instance.", + cimglist_instance); + + // Create image correspondence table and get list dimensions for visualization. + CImgList _indices; + unsigned int max_width = 0, max_height = 0, sum_width = 0, sum_height = 0; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + const unsigned int + w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false), + h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true); + if (w>max_width) max_width = w; + if (h>max_height) max_height = h; + sum_width+=w; sum_height+=h; + if (axis=='x') CImg(w,1,1,1,(unsigned int)l).move_to(_indices); + else CImg(h,1,1,1,(unsigned int)l).move_to(_indices); + } + const CImg indices0 = _indices>'x'; + + // Create display window. + if (!disp) { + if (axis=='x') disp.assign(cimg_fitscreen(sum_width,max_height,1),title?title:0,1); + else disp.assign(cimg_fitscreen(max_width,sum_height,1),title?title:0,1); + if (!title) disp.set_title("CImgList<%s> (%u)",pixel_type(),_width); + } else { + if (title) disp.set_title("%s",title); + disp.move_inside_screen(); + } + if (resize_disp) { + if (axis=='x') disp.resize(cimg_fitscreen(sum_width,max_height,1),false); + else disp.resize(cimg_fitscreen(max_width,sum_height,1),false); + } + + const unsigned int old_normalization = disp.normalization(); + bool old_is_resized = disp.is_resized(); + disp._normalization = 0; + disp.show().set_key(0).show_mouse(); + static const unsigned char foreground_color[] = { 255,255,255 }, background_color[] = { 0,0,0 }; + + // Enter event loop. + CImg visu0, visu; + CImg indices; + CImg positions(_width,4,1,1,-1); + int oindex0 = -1, oindex1 = -1, index0 = -1, index1 = -1; + bool is_clicked = false, is_selected = false, text_down = false, update_display = true; + unsigned int key = 0, font_size = 32; + + while (!is_selected && !disp.is_closed() && !key) { + + // Create background image. + if (!visu0) { + visu0.assign(disp._width,disp._height,1,3,0); visu.assign(); + (indices0.get_resize(axis=='x'?visu0._width:visu0._height,1)).move_to(indices); + unsigned int _ind = 0; + const CImg onexone(1,1,1,1,(T)0); + if (axis=='x') + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,4)) + cimglist_for(*this,ind) { + unsigned int x0 = 0; + while (x0 &src = _data[ind]?_data[ind]:onexone; + CImg res; + src._get_select(disp,old_normalization,src._width/2,src._height/2,src._depth/2). + move_to(res); + const unsigned int h = CImgDisplay::_fitscreen(res._width,res._height,1,128,-85,true); + res.resize(x1 - x0,std::max(32U,h*disp._height/max_height),1,res._spectrum==1?3:-100); + positions(ind,0) = positions(ind,2) = (int)x0; + positions(ind,1) = positions(ind,3) = (int)(align*(visu0.height() - res.height())); + positions(ind,2)+=res._width; + positions(ind,3)+=res._height - 1; + visu0.draw_image(positions(ind,0),positions(ind,1),res); + } + else + cimg_pragma_openmp(parallel for cimg_openmp_if_size(_width,4)) + cimglist_for(*this,ind) { + unsigned int y0 = 0; + while (y0 &src = _data[ind]?_data[ind]:onexone; + CImg res; + src._get_select(disp,old_normalization,(src._width - 1)/2,(src._height - 1)/2,(src._depth - 1)/2). + move_to(res); + const unsigned int w = CImgDisplay::_fitscreen(res._width,res._height,1,128,-85,false); + res.resize(std::max(32U,w*disp._width/max_width),y1 - y0,1,res._spectrum==1?3:-100); + positions(ind,0) = positions(ind,2) = (int)(align*(visu0.width() - res.width())); + positions(ind,1) = positions(ind,3) = (int)y0; + positions(ind,2)+=res._width - 1; + positions(ind,3)+=res._height; + visu0.draw_image(positions(ind,0),positions(ind,1),res); + } + if (axis=='x') --positions(_ind,2); else --positions(_ind,3); + update_display = true; + } + + if (!visu || oindex0!=index0 || oindex1!=index1) { + if (index0>=0 && index1>=0) { + visu.assign(visu0,false); + const int indm = std::min(index0,index1), indM = std::max(index0,index1); + for (int ind = indm; ind<=indM; ++ind) if (positions(ind,0)>=0) { + visu.draw_rectangle(positions(ind,0),positions(ind,1),positions(ind,2),positions(ind,3), + background_color,0.2f); + if ((axis=='x' && positions(ind,2) - positions(ind,0)>=8) || + (axis!='x' && positions(ind,3) - positions(ind,1)>=8)) + visu.draw_rectangle(positions(ind,0),positions(ind,1),positions(ind,2),positions(ind,3), + foreground_color,0.9f,0xAAAAAAAA); + } + if (is_clicked) visu.__draw_text(" Images #%u - #%u, Size = %u ",font_size,(int)text_down, + orig + indm,orig + indM,indM - indm + 1); + else visu.__draw_text(" Image #%u (%u,%u,%u,%u) ",font_size,(int)text_down, + orig + index0, + _data[index0]._width, + _data[index0]._height, + _data[index0]._depth, + _data[index0]._spectrum); + update_display = true; + } else visu.assign(); + } + if (!visu) { visu.assign(visu0,true); update_display = true; } + if (update_display) { visu.display(disp); update_display = false; } + disp.wait(); + + // Manage user events. + const int xm = disp.mouse_x(), ym = disp.mouse_y(); + int index = -1; + + if (xm>=0) { + index = (int)indices(axis=='x'?xm:ym); + if (disp.button()&1) { + if (!is_clicked) { is_clicked = true; oindex0 = index0; index0 = index; } + oindex1 = index1; index1 = index; + if (!feature_type) is_selected = true; + } else { + if (!is_clicked) { oindex0 = oindex1 = index0; index0 = index1 = index; } + else is_selected = true; + } + } else { + if (is_clicked) { + if (!(disp.button()&1)) { is_clicked = is_selected = false; index0 = index1 = -1; } + else index1 = -1; + } else index0 = index1 = -1; + } + + if (disp.button()&4) { is_clicked = is_selected = false; index0 = index1 = -1; } + if (disp.button()&2 && exit_on_rightbutton) { is_selected = true; index1 = index0 = -1; } + if (disp.wheel() && exit_on_wheel) is_selected = true; + + CImg filename(32); + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(axis=='x'?sum_width:max_width,axis=='x'?max_height:sum_height,1),false). + _is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u." +#ifdef cimg_use_png + "png", +#else + "bmp", +#endif + snap_number++); + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + if (visu0) { + (+visu0).__draw_text(" Saving snapshot... ",font_size,(int)text_down).display(disp); + visu0.save(filename); + (+visu0).__draw_text(" Snapshot '%s' saved. ",font_size,(int)text_down,filename._data).display(disp); + } + disp.set_key(key,false).wait(); key = 0; + } break; + case cimg::keyO : + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.6u.cimg",snap_number++); +#endif + if ((file=cimg::std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu0).__draw_text(" Saving instance... ",font_size,(int)text_down).display(disp); + save(filename); + (+visu0).__draw_text(" Instance '%s' saved. ",font_size,(int)text_down,filename._data).display(disp); + disp.set_key(key,false).wait(); key = 0; + } break; + } + if (disp.is_resized()) { disp.resize(false); visu0.assign(); } + if (ym>=0 && ym<13) { if (!text_down) { visu.assign(); text_down = true; }} + else if (ym>=visu.height() - 13) { if (text_down) { visu.assign(); text_down = false; }} + if (!exit_on_anykey && key && key!=cimg::keyESC && + (key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + key = 0; + } + } + CImg res(1,2,1,1,-1); + if (is_selected) { + if (feature_type) res.fill(std::min(index0,index1),std::max(index0,index1)); + else res.fill(index0); + } + if (!(disp.button()&2)) disp.set_button(); + disp._normalization = old_normalization; + disp._is_resized = old_is_resized; + disp.set_key(key); + return res; + } + + //! Load a list from a file. + /** + \param filename Filename to read data from. + **/ + CImgList& load(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load(): Specified filename is (null).", + cimglist_instance); + + if (!cimg::strncasecmp(filename,"http://",7) || !cimg::strncasecmp(filename,"https://",8)) { + CImg filename_local(256); + load(cimg::load_network(filename,filename_local)); + std::remove(filename_local); + return *this; + } + + const bool is_stdin = *filename=='-' && (!filename[1] || filename[1]=='.'); + const char *const ext = cimg::split_filename(filename); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + bool is_loaded = true; + try { +#ifdef cimglist_load_plugin + cimglist_load_plugin(filename); +#endif +#ifdef cimglist_load_plugin1 + cimglist_load_plugin1(filename); +#endif +#ifdef cimglist_load_plugin2 + cimglist_load_plugin2(filename); +#endif +#ifdef cimglist_load_plugin3 + cimglist_load_plugin3(filename); +#endif +#ifdef cimglist_load_plugin4 + cimglist_load_plugin4(filename); +#endif +#ifdef cimglist_load_plugin5 + cimglist_load_plugin5(filename); +#endif +#ifdef cimglist_load_plugin6 + cimglist_load_plugin6(filename); +#endif +#ifdef cimglist_load_plugin7 + cimglist_load_plugin7(filename); +#endif +#ifdef cimglist_load_plugin8 + cimglist_load_plugin8(filename); +#endif + if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) load_tiff(filename); + else if (!cimg::strcasecmp(ext,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(ext,"cimg") || + !cimg::strcasecmp(ext,"cimgz") || + !*ext) load_cimg(filename); + else if (!cimg::strcasecmp(ext,"rec") || + !cimg::strcasecmp(ext,"par")) load_parrec(filename); + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"webm") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) load_video(filename); + else if (!cimg::strcasecmp(ext,"gz")) load_gzip_external(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + + // If nothing loaded, try to guess file format from magic number in file. + if (!is_loaded && !is_stdin) { + std::FILE *const file = cimg::std_fopen(filename,"rb"); + if (!file) { + cimg::exception_mode(omode); + throw CImgIOException(_cimglist_instance + "load(): Failed to open file '%s'.", + cimglist_instance, + filename); + } + + const char *const f_type = cimg::ftype(file,filename); + cimg::fclose(file); + is_loaded = true; + try { + if (!cimg::strcasecmp(f_type,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(f_type,"tif") && + cimg::strcasecmp(ext,"nef") && + cimg::strcasecmp(ext,"dng")) load_tiff(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + } + + // If nothing loaded, try to load file as a single image. + if (!is_loaded) { + assign(1); + try { + _data->load(filename); + } catch (CImgIOException&) { + cimg::exception_mode(omode); + throw CImgIOException(_cimglist_instance + "load(): Failed to recognize format of file '%s'.", + cimglist_instance, + filename); + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load a list from a file \newinstance. + static CImgList get_load(const char *const filename) { + return CImgList().load(filename); + } + + //! Load a list from a .cimg file. + /** + \param filename Filename to read data from. + **/ + CImgList& load_cimg(const char *const filename) { + return _load_cimg(0,filename); + } + + //! Load a list from a .cimg file \newinstance. + static CImgList get_load_cimg(const char *const filename) { + return CImgList().load_cimg(filename); + } + + //! Load a list from a .cimg file. + /** + \param file File to read data from. + **/ + CImgList& load_cimg(std::FILE *const file) { + return _load_cimg(file,0); + } + + //! Load a list from a .cimg file \newinstance. + static CImgList get_load_cimg(std::FILE *const file) { + return CImgList().load_cimg(file); + } + + CImgList& _load_cimg(std::FILE *const file, const char *const filename) { +#ifdef cimg_use_zlib +#define _cimgz_load_cimg_case(Tss) { \ + Bytef *const cbuf = new Bytef[csiz]; \ + cimg::fread(cbuf,(size_t)csiz,nfile); \ + if (is_bool) { \ + CImg raw(W*H*D*C/8); \ + uLongf destlen = (uLongf)raw.size(); \ + uncompress((Bytef*)raw._data,&destlen,cbuf,(uLong)csiz); \ + img.assign(W,H,D,C); \ + img._uchar2bool(raw,raw.size(),false); \ + } else { \ + CImg raw(W,H,D,C); \ + uLongf destlen = (uLongf)(raw.size()*sizeof(Tss)); \ + uncompress((Bytef*)raw._data,&destlen,cbuf,(uLong)csiz); \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \ + raw.move_to(img); \ + } \ + delete[] cbuf; \ +} +#else +#define _cimgz_load_cimg_case(Tss) \ + throw CImgIOException(_cimglist_instance \ + "load_cimg(): Unable to load compressed data from file '%s' unless zlib is enabled.", \ + cimglist_instance, \ + filename?filename:"(FILE*)"); +#endif + +#define _cimg_load_cimg_case(Ts1,Ts2,Ts3,Tss) \ + if (!loaded && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \ + (Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \ + (Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \ + const bool is_bool = cimg::type::string()==cimg::type::string(); \ + for (unsigned int l = 0; l=0 && j<255) tmp[j++] = (char)i; tmp[j] = 0; \ + W = H = D = C = 0; csiz = 0; \ + if ((err = cimg_sscanf(tmp,"%u %u %u %u #" cimg_fuint64,&W,&H,&D,&C,&csiz))<4) \ + throw CImgIOException(_cimglist_instance \ + "load_cimg(): Invalid specified size (%u,%u,%u,%u) of image %u in file '%s'.", \ + cimglist_instance, \ + W,H,D,C,l,filename?filename:("(FILE*)")); \ + if (W*H*D*C>0) { \ + CImg &img = _data[l]; \ + if (err==5) _cimgz_load_cimg_case(Tss) \ + else { \ + img.assign(W,H,D,C); \ + T *ptrd = img._data; \ + if (is_bool) { \ + CImg raw; \ + for (ulongT to_read = img.size(); to_read; ) { \ + raw.assign((unsigned int)std::min(to_read,cimg_iobuffer)); \ + cimg::fread(raw._data,raw._width,nfile); \ + CImg(ptrd,std::min(8*raw._width,(unsigned int)(img.end() - ptrd)),1,1,1,true).\ + _uchar2bool(raw,raw._width,false); \ + to_read-=raw._width; \ + } \ + } else { \ + CImg raw; \ + for (ulongT to_read = img.size(); to_read; ) { \ + raw.assign((unsigned int)std::min(to_read,cimg_iobuffer)); \ + cimg::fread(raw._data,raw._width,nfile); \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \ + const Tss *ptrs = raw._data; \ + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); \ + to_read-=raw._width; \ + } \ + } \ + } \ + } \ + } \ + loaded = true; \ + } + + if (!filename && !file) + throw CImgArgumentException(_cimglist_instance + "load_cimg(): Specified filename is (null).", + cimglist_instance); + + const ulongT cimg_iobuffer = (ulongT)24*1024*1024; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + bool loaded = false, endian = cimg::endianness(); + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N = 0, W, H, D, C; + cimg_uint64 csiz; + int i, err; + do { + j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0 && j<255) tmp[j++] = (char)i; tmp[j] = 0; + } while (*tmp=='#' && i>=0); + err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]", + &N,str_pixeltype._data,str_endian._data); + if (err<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): File or CImg header not found in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + } + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + assign(N); + _cimg_load_cimg_case("bool",0,0,cimg_uint8); + _cimg_load_cimg_case("uint8","unsigned_char","uchar",cimg_uint8); + _cimg_load_cimg_case("int8",0,0,cimg_int8); + _cimg_load_cimg_case("char",0,0,char); + _cimg_load_cimg_case("uint16","unsigned_short","ushort",cimg_uint16); + _cimg_load_cimg_case("int16","short",0,cimg_int16); + _cimg_load_cimg_case("uint32","unsigned_int","uint",cimg_uint32); + _cimg_load_cimg_case("int32","int",0,cimg_int32); + _cimg_load_cimg_case("unsigned_long","ulong",0,cimg_ulong); + _cimg_load_cimg_case("long",0,0,cimg_long); + _cimg_load_cimg_case("uint64","unsigned_int64",0,cimg_uint64); + _cimg_load_cimg_case("int64",0,0,cimg_int64); + _cimg_load_cimg_case("float32","float",0,cimg_float32); + _cimg_load_cimg_case("float64","double",0,cimg_float64); + + if (!loaded) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): Unsupported pixel type '%s' for file '%s'.", + cimglist_instance, + str_pixeltype._data,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load a sublist list from a (non compressed) .cimg file. + /** + \param filename Filename to read data from. + \param n0 Starting index of images to read (~0U for max). + \param n1 Ending index of images to read (~0U for max). + \param x0 Starting X-coordinates of image regions to read. + \param y0 Starting Y-coordinates of image regions to read. + \param z0 Starting Z-coordinates of image regions to read. + \param c0 Starting C-coordinates of image regions to read. + \param x1 Ending X-coordinates of image regions to read (~0U for max). + \param y1 Ending Y-coordinates of image regions to read (~0U for max). + \param z1 Ending Z-coordinates of image regions to read (~0U for max). + \param c1 Ending C-coordinates of image regions to read (~0U for max). + **/ + CImgList& load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return _load_cimg(0,filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + //! Load a sublist list from a (non compressed) .cimg file \newinstance. + static CImgList get_load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return CImgList().load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + //! Load a sub-image list from a (non compressed) .cimg file \overloading. + CImgList& load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return _load_cimg(file,0,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + //! Load a sub-image list from a (non compressed) .cimg file \newinstance. + static CImgList get_load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return CImgList().load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + CImgList& _load_cimg(std::FILE *const file, const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { +#define _cimg_load_cimg_case2(Ts1,Ts2,Ts3,Tss) \ + if (!loaded && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \ + (Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \ + (Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \ + for (unsigned int l = 0; l<=nn1; ++l) { \ + j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0) tmp[j++] = (char)i; tmp[j] = 0; \ + W = H = D = C = 0; \ + if (cimg_sscanf(tmp,"%u %u %u %u",&W,&H,&D,&C)!=4) \ + throw CImgIOException(_cimglist_instance \ + "load_cimg(): Invalid specified size (%u,%u,%u,%u) of image %u in file '%s'", \ + cimglist_instance, \ + W,H,D,C,l,filename?filename:"(FILE*)"); \ + if (W*H*D*C>0) { \ + if (l=W || ny0>=H || nz0>=D || nc0>=C) cimg::fseek(nfile,W*H*D*C*sizeof(Tss),SEEK_CUR); \ + else { \ + const unsigned int \ + _nx1 = nx1==~0U?W - 1:nx1, \ + _ny1 = ny1==~0U?H - 1:ny1, \ + _nz1 = nz1==~0U?D - 1:nz1, \ + _nc1 = nc1==~0U?C - 1:nc1; \ + if (_nx1>=W || _ny1>=H || _nz1>=D || _nc1>=C) \ + throw CImgArgumentException(_cimglist_instance \ + "load_cimg(): Invalid specified coordinates " \ + "[%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) " \ + "because image [%u] in file '%s' has size (%u,%u,%u,%u).", \ + cimglist_instance, \ + n0,x0,y0,z0,c0,n1,x1,y1,z1,c1,l,filename?filename:"(FILE*)",W,H,D,C); \ + CImg raw(1 + _nx1 - nx0); \ + CImg &img = _data[l - nn0]; \ + img.assign(1 + _nx1 - nx0,1 + _ny1 - ny0,1 + _nz1 - nz0,1 + _nc1 - nc0); \ + T *ptrd = img._data; \ + ulongT skipvb = nc0*W*H*D*sizeof(Tss); \ + if (skipvb) cimg::fseek(nfile,skipvb,SEEK_CUR); \ + for (unsigned int c = 1 + _nc1 - nc0; c; --c) { \ + const ulongT skipzb = nz0*W*H*sizeof(Tss); \ + if (skipzb) cimg::fseek(nfile,skipzb,SEEK_CUR); \ + for (unsigned int z = 1 + _nz1 - nz0; z; --z) { \ + const ulongT skipyb = ny0*W*sizeof(Tss); \ + if (skipyb) cimg::fseek(nfile,skipyb,SEEK_CUR); \ + for (unsigned int y = 1 + _ny1 - ny0; y; --y) { \ + const ulongT skipxb = nx0*sizeof(Tss); \ + if (skipxb) cimg::fseek(nfile,skipxb,SEEK_CUR); \ + cimg::fread(raw._data,raw._width,nfile); \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); \ + const Tss *ptrs = raw._data; \ + for (unsigned int off = raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); \ + const ulongT skipxe = (W - 1 - _nx1)*sizeof(Tss); \ + if (skipxe) cimg::fseek(nfile,skipxe,SEEK_CUR); \ + } \ + const ulongT skipye = (H - 1 - _ny1)*W*sizeof(Tss); \ + if (skipye) cimg::fseek(nfile,skipye,SEEK_CUR); \ + } \ + const ulongT skipze = (D - 1 - _nz1)*W*H*sizeof(Tss); \ + if (skipze) cimg::fseek(nfile,skipze,SEEK_CUR); \ + } \ + const ulongT skipve = (C - 1 - _nc1)*W*H*D*sizeof(Tss); \ + if (skipve) cimg::fseek(nfile,skipve,SEEK_CUR); \ + } \ + } \ + } \ + loaded = true; \ + } + + if (!filename && !file) + throw CImgArgumentException(_cimglist_instance + "load_cimg(): Specified filename is (null).", + cimglist_instance); + unsigned int + nn0 = std::min(n0,n1), nn1 = std::max(n0,n1), + nx0 = std::min(x0,x1), nx1 = std::max(x0,x1), + ny0 = std::min(y0,y1), ny1 = std::max(y0,y1), + nz0 = std::min(z0,z1), nz1 = std::max(z0,z1), + nc0 = std::min(c0,c1), nc1 = std::max(c0,c1); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + bool loaded = false, endian = cimg::endianness(); + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N, W, H, D, C; + int i, err; + j = 0; while ((i=std::fgetc(nfile))!='\n' && i!=EOF && j<256) tmp[j++] = (char)i; tmp[j] = 0; + err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]", + &N,str_pixeltype._data,str_endian._data); + if (err<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): CImg header not found in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + } + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + nn1 = n1==~0U?N - 1:n1; + if (nn1>=N) + throw CImgArgumentException(_cimglist_instance + "load_cimg(): Invalid specified coordinates [%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) " + "because file '%s' contains only %u images.", + cimglist_instance, + n0,x0,y0,z0,c0,n1,x1,y1,z1,c1,filename?filename:"(FILE*)",N); + assign(1 + nn1 - n0); + _cimg_load_cimg_case2("bool",0,0,cimg_uint8); + _cimg_load_cimg_case2("uint8","unsigned char","uchar",cimg_uint8); + _cimg_load_cimg_case2("int8",0,0,cimg_int8); + _cimg_load_cimg_case2("char",0,0,char); + _cimg_load_cimg_case2("uint16","unsigned_short","ushort",cimg_uint16); + _cimg_load_cimg_case2("int16","short",0,cimg_int16); + _cimg_load_cimg_case2("uint32","unsigned_int","uint",cimg_uint32); + _cimg_load_cimg_case2("int32","int",0,cimg_int32); + _cimg_load_cimg_case2("unsigned_long","ulong",0,cimg_ulong); + _cimg_load_cimg_case2("long",0,0,cimg_long); + _cimg_load_cimg_case2("uint64","unsigned_int64",0,cimg_uint64); + _cimg_load_cimg_case2("int64",0,0,cimg_int64); + _cimg_load_cimg_case2("float32","float",0,cimg_float32); + _cimg_load_cimg_case2("float64","double",0,cimg_float64); + if (!loaded) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): Unsupported pixel type '%s' for file '%s'.", + cimglist_instance, + str_pixeltype._data,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load a list from a PAR/REC (Philips) file. + /** + \param filename Filename to read data from. + **/ + CImgList& load_parrec(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_parrec(): Specified filename is (null).", + cimglist_instance); + + CImg body(1024), filenamepar(1024), filenamerec(1024); + *body = *filenamepar = *filenamerec = 0; + const char *const ext = cimg::split_filename(filename,body); + if (!std::strcmp(ext,"par")) { + std::strncpy(filenamepar,filename,filenamepar._width - 1); + cimg_snprintf(filenamerec,filenamerec._width,"%s.rec",body._data); + } + if (!std::strcmp(ext,"PAR")) { + std::strncpy(filenamepar,filename,filenamepar._width - 1); + cimg_snprintf(filenamerec,filenamerec._width,"%s.REC",body._data); + } + if (!std::strcmp(ext,"rec")) { + std::strncpy(filenamerec,filename,filenamerec._width - 1); + cimg_snprintf(filenamepar,filenamepar._width,"%s.par",body._data); + } + if (!std::strcmp(ext,"REC")) { + std::strncpy(filenamerec,filename,filenamerec._width - 1); + cimg_snprintf(filenamepar,filenamepar._width,"%s.PAR",body._data); + } + std::FILE *file = cimg::fopen(filenamepar,"r"); + + // Parse header file + CImgList st_slices; + CImgList st_global; + CImg line(256); *line = 0; + int err; + do { err = std::fscanf(file,"%255[^\n]%*c",line._data); } while (err!=EOF && (*line=='#' || *line=='.')); + do { + unsigned int sn,size_x,size_y,pixsize; + float rs,ri,ss; + err = std::fscanf(file,"%u%*u%*u%*u%*u%*u%*u%u%*u%u%u%g%g%g%*[^\n]",&sn,&pixsize,&size_x,&size_y,&ri,&rs,&ss); + if (err==7) { + CImg::vector((float)sn,(float)pixsize,(float)size_x,(float)size_y,ri,rs,ss,0).move_to(st_slices); + unsigned int i; for (i = 0; i::vector(size_x,size_y,sn).move_to(st_global); + else { + CImg &vec = st_global[i]; + if (size_x>vec[0]) vec[0] = size_x; + if (size_y>vec[1]) vec[1] = size_y; + vec[2] = sn; + } + st_slices[st_slices._width - 1][7] = (float)i; + } + } while (err==7); + + // Read data + std::FILE *file2 = cimg::fopen(filenamerec,"rb"); + cimglist_for(st_global,l) { + const CImg& vec = st_global[l]; + CImg(vec[0],vec[1],vec[2]).move_to(*this); + } + + cimglist_for(st_slices,l) { + const CImg& vec = st_slices[l]; + const unsigned int + sn = (unsigned int)vec[0] - 1, + pixsize = (unsigned int)vec[1], + size_x = (unsigned int)vec[2], + size_y = (unsigned int)vec[3], + imn = (unsigned int)vec[7]; + const float ri = vec[4], rs = vec[5], ss = vec[6]; + switch (pixsize) { + case 8 : { + CImg buf(size_x,size_y); + cimg::fread(buf._data,size_x*size_y,file2); + if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y); + CImg& img = (*this)[imn]; + cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss)); + } break; + case 16 : { + CImg buf(size_x,size_y); + cimg::fread(buf._data,size_x*size_y,file2); + if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y); + CImg& img = (*this)[imn]; + cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss)); + } break; + case 32 : { + CImg buf(size_x,size_y); + cimg::fread(buf._data,size_x*size_y,file2); + if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y); + CImg& img = (*this)[imn]; + cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss)); + } break; + default : + cimg::fclose(file); + cimg::fclose(file2); + throw CImgIOException(_cimglist_instance + "load_parrec(): Unsupported %d-bits pixel type for file '%s'.", + cimglist_instance, + pixsize,filename); + } + } + cimg::fclose(file); + cimg::fclose(file2); + if (!_width) + throw CImgIOException(_cimglist_instance + "load_parrec(): Failed to recognize valid PAR-REC data in file '%s'.", + cimglist_instance, + filename); + return *this; + } + + //! Load a list from a PAR/REC (Philips) file \newinstance. + static CImgList get_load_parrec(const char *const filename) { + return CImgList().load_parrec(filename); + } + + //! Load a list from a YUV image sequence file. + /** + \param filename Filename to read data from. + \param size_x Width of the images. + \param size_y Height of the images. + \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. + \param first_frame Index of first image frame to read. + \param last_frame Index of last image frame to read. + \param step_frame Step applied between each frame. + \param yuv2rgb Apply YUV to RGB transformation during reading. + **/ + CImgList& load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return _load_yuv(0,filename,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb); + } + + //! Load a list from a YUV image sequence file \newinstance. + static CImgList get_load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return CImgList().load_yuv(filename,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb); + } + + //! Load a list from an image sequence YUV file \overloading. + CImgList& load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return _load_yuv(file,0,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb); + } + + //! Load a list from an image sequence YUV file \newinstance. + static CImgList get_load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int chroma_subsampling=444, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return CImgList().load_yuv(file,size_x,size_y,chroma_subsampling, + first_frame,last_frame,step_frame,yuv2rgb); + } + + CImgList& _load_yuv(std::FILE *const file, const char *const filename, + const unsigned int size_x, const unsigned int size_y, + const unsigned int chroma_subsampling, + const unsigned int first_frame, const unsigned int last_frame, + const unsigned int step_frame, const bool yuv2rgb) { + if (!filename && !file) + throw CImgArgumentException(_cimglist_instance + "load_yuv(): Specified filename is (null).", + cimglist_instance); + if (chroma_subsampling!=420 && chroma_subsampling!=422 && chroma_subsampling!=444) + throw CImgArgumentException(_cimglist_instance + "load_yuv(): Specified chroma subsampling %u is invalid, for file '%s'.", + cimglist_instance, + chroma_subsampling,filename?filename:"(FILE*)"); + const unsigned int + cfx = chroma_subsampling==420 || chroma_subsampling==422?2:1, + cfy = chroma_subsampling==420?2:1, + nfirst_frame = first_frame YUV(size_x,size_y,1,3), UV(size_x/cfx,size_y/cfy,1,2); + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + bool stop_flag = false; + int err; + if (nfirst_frame) { + err = cimg::fseek(nfile,(uint64T)nfirst_frame*(YUV._width*YUV._height + 2*UV._width*UV._height),SEEK_CUR); + if (err) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_yuv(): File '%s' doesn't contain frame number %u.", + cimglist_instance, + filename?filename:"(FILE*)",nfirst_frame); + } + } + unsigned int frame; + for (frame = nfirst_frame; !stop_flag && frame<=nlast_frame; frame+=nstep_frame) { + YUV.get_shared_channel(0).fill(0); + // *TRY* to read the luminance part, do not replace by cimg::fread! + err = (int)std::fread((void*)(YUV._data),1,(size_t)YUV._width*YUV._height,nfile); + if (err!=(int)(YUV._width*YUV._height)) { + stop_flag = true; + if (err>0) + cimg::warn(_cimglist_instance + "load_yuv(): File '%s' contains incomplete data or given image dimensions " + "(%u,%u) are incorrect.", + cimglist_instance, + filename?filename:"(FILE*)",size_x,size_y); + } else { + UV.fill(0); + // *TRY* to read the luminance part, do not replace by cimg::fread! + err = (int)std::fread((void*)(UV._data),1,(size_t)UV.size(),nfile); + if (err!=(int)(UV.size())) { + stop_flag = true; + if (err>0) + cimg::warn(_cimglist_instance + "load_yuv(): File '%s' contains incomplete data or given image dimensions " + "(%u,%u) are incorrect.", + cimglist_instance, + filename?filename:"(FILE*)",size_x,size_y); + } else { + const ucharT *ptrs1 = UV._data, *ptrs2 = UV.data(0,0,0,1); + ucharT *ptrd1 = YUV.data(0,0,0,1), *ptrd2 = YUV.data(0,0,0,2); + const unsigned int wd = YUV._width; + switch (chroma_subsampling) { + case 420 : + cimg_forY(UV,y) { + cimg_forX(UV,x) { + const ucharT U = *(ptrs1++), V = *(ptrs2++); + ptrd1[wd] = U; *(ptrd1)++ = U; + ptrd1[wd] = U; *(ptrd1)++ = U; + ptrd2[wd] = V; *(ptrd2)++ = V; + ptrd2[wd] = V; *(ptrd2)++ = V; + } + ptrd1+=wd; ptrd2+=wd; + } + break; + case 422 : + cimg_forXY(UV,x,y) { + const ucharT U = *(ptrs1++), V = *(ptrs2++); + *(ptrd1++) = U; *(ptrd1++) = U; + *(ptrd2++) = V; *(ptrd2++) = V; + } + break; + default : + YUV.draw_image(0,0,0,1,UV); + } + if (yuv2rgb) YUV.YCbCrtoRGB(); + insert(YUV); + if (nstep_frame>1) cimg::fseek(nfile,(uint64T)(nstep_frame - 1)*(size_x*size_y + size_x*size_y/2),SEEK_CUR); + } + } + } + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_yuv() : Missing data in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + if (stop_flag && nlast_frame!=~0U && frame!=nlast_frame) + cimg::warn(_cimglist_instance + "load_yuv(): Frame %d not reached since only %u frames were found in file '%s'.", + cimglist_instance, + nlast_frame,frame - 1,filename?filename:"(FILE*)"); + + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load an image from a video file, using OpenCV library. + /** + \param filename Filename, as a C-string. + \param first_frame Index of the first frame to read. + \param last_frame Index of the last frame to read (can be higher than the actual number of frames, e.g. '~0U'). + \param step_frame Step value for frame reading. + \note If step_frame==0, the current video stream is forced to be released (without any frames read). + **/ + CImgList& load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1) { +#ifndef cimg_use_opencv + if (first_frame || last_frame!=~0U || step_frame>1) + throw CImgArgumentException(_cimglist_instance + "load_video() : File '%s', arguments 'first_frame', 'last_frame' " + "and 'step_frame' requires features from the OpenCV library " + "('-Dcimg_use_opencv' must be defined).", + cimglist_instance,filename); + return load_ffmpeg_external(filename); +#else + static cv::VideoCapture *captures[32] = {}; + static CImgList filenames(32); + static CImg positions(32,1,1,1,0); + static int last_used_index = -1; + + // Detect if a video capture already exists for the specified filename. + cimg::mutex(9); + int index = -1; + if (filename) { + if (last_used_index>=0 && !std::strcmp(filename,filenames[last_used_index])) { + index = last_used_index; + } else cimglist_for(filenames,l) if (filenames[l] && !std::strcmp(filename,filenames[l])) { + index = l; break; + } + } else index = last_used_index; + cimg::mutex(9,0); + + // Release stream if needed. + if (!step_frame || (index>=0 && positions[index]>first_frame)) { + if (index>=0) { + cimg::mutex(9); + captures[index]->release(); + delete captures[index]; + captures[index] = 0; + positions[index] = 0; + filenames[index].assign(); + if (last_used_index==index) last_used_index = -1; + index = -1; + cimg::mutex(9,0); + } else + if (filename) + cimg::warn(_cimglist_instance + "load_video() : File '%s', no opened video stream associated with filename found.", + cimglist_instance,filename); + else + cimg::warn(_cimglist_instance + "load_video() : No opened video stream found.", + cimglist_instance,filename); + if (!step_frame) return *this; + } + + // Find empty slot for capturing video stream. + if (index<0) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_video(): No already open video reader found. You must specify a " + "non-(null) filename argument for the first call.", + cimglist_instance); + else { cimg::mutex(9); cimglist_for(filenames,l) if (!filenames[l]) { index = l; break; } cimg::mutex(9,0); } + if (index<0) + throw CImgIOException(_cimglist_instance + "load_video(): File '%s', no video reader slots available. " + "You have to release some of your previously opened videos.", + cimglist_instance,filename); + cimg::mutex(9); + captures[index] = new cv::VideoCapture(filename); + positions[index] = 0; + if (!captures[index]->isOpened()) { + delete captures[index]; + captures[index] = 0; + cimg::mutex(9,0); + cimg::fclose(cimg::fopen(filename,"rb")); // Check file availability + throw CImgIOException(_cimglist_instance + "load_video(): File '%s', unable to detect format of video file.", + cimglist_instance,filename); + } + CImg::string(filename).move_to(filenames[index]); + cimg::mutex(9,0); + } + + cimg::mutex(9); + const unsigned int nb_frames = (unsigned int)std::max(0.,captures[index]->get(_cimg_cap_prop_frame_count)); + cimg::mutex(9,0); + assign(); + + // Skip frames if requested. + bool go_on = true; + unsigned int &pos = positions[index]; + while (posgrab()) { cimg::mutex(9,0); go_on = false; break; } + cimg::mutex(9,0); + ++pos; + } + + // Read and convert frames. + const unsigned int _last_frame = std::min(nb_frames?nb_frames - 1:~0U,last_frame); + while (go_on && pos<=_last_frame) { + cv::Mat cvimg; + cimg::mutex(9); + if (captures[index]->read(cvimg)) { CImg::_cvmat2cimg(cvimg).move_to(*this); ++pos; } + else go_on = false; + cimg::mutex(9,0); + if (go_on) + for (unsigned int i = 1; go_on && igrab()) go_on = false; + cimg::mutex(9,0); + } + } + + if (!go_on || (nb_frames && pos>=nb_frames)) { // Close video stream when necessary + cimg::mutex(9); + captures[index]->release(); + delete captures[index]; + captures[index] = 0; + filenames[index].assign(); + positions[index] = 0; + index = -1; + cimg::mutex(9,0); + } + + cimg::mutex(9); + last_used_index = index; + cimg::mutex(9,0); + + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_video(): File '%s', unable to locate frame %u.", + cimglist_instance,filename,first_frame); + return *this; +#endif + } + + //! Load an image from a video file, using OpenCV library \newinstance. + static CImgList get_load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1) { + return CImgList().load_video(filename,first_frame,last_frame,step_frame); + } + + //! Load an image from a video file using the external tool 'ffmpeg'. + /** + \param filename Filename to read data from. + **/ + CImgList& load_ffmpeg_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_ffmpeg_external(): Specified filename is (null).", + cimglist_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256), filename_tmp2(256); + std::FILE *file = 0; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001.ppm",filename_tmp._data); + if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%%6d.ppm",filename_tmp._data); + cimg_snprintf(command,command._width,"\"%s\" -v -8 -i \"%s\" \"%s\"", + cimg::ffmpeg_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp2)._system_strescape().data()); + cimg::system(command,cimg::ffmpeg_path()); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + assign(); + unsigned int i = 1; + for (bool stop_flag = false; !stop_flag; ++i) { + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u.ppm",filename_tmp._data,i); + CImg img; + try { img.load_pnm(filename_tmp2); } + catch (CImgException&) { stop_flag = true; } + if (img) { img.move_to(*this); std::remove(filename_tmp2); } + } + cimg::exception_mode(omode); + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_ffmpeg_external(): Failed to open file '%s' with external command 'ffmpeg'.", + cimglist_instance, + filename); + return *this; + } + + //! Load an image from a video file using the external tool 'ffmpeg' \newinstance. + static CImgList get_load_ffmpeg_external(const char *const filename) { + return CImgList().load_ffmpeg_external(filename); + } + + //! Load gif file, using ImageMagick or GraphicsMagick's external tools. + /** + \param filename Filename to read data from. + **/ + CImgList& load_gif_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_gif_external(): Specified filename is (null).", + cimglist_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + if (!_load_gif_external(filename,false)) + if (!_load_gif_external(filename,true)) + try { assign(CImg().load_other(filename)); } catch (CImgException&) { assign(); } + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_gif_external(): Failed to open file '%s'.", + cimglist_instance,filename); + return *this; + } + + CImgList& _load_gif_external(const char *const filename, const bool use_graphicsmagick=false) { + CImg command(1024), filename_tmp(256), filename_tmp2(256); + std::FILE *file = 0; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if (use_graphicsmagick) cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png.0",filename_tmp._data); + else cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s-0.png",filename_tmp._data); + if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + if (use_graphicsmagick) cimg_snprintf(command,command._width,"%s convert \"%s\" \"%s.png\"", + cimg::graphicsmagick_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + else cimg_snprintf(command,command._width,"\"%s\" -coalesce \"%s\" \"%s.png\"", + cimg::imagemagick_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::imagemagick_path()); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + assign(); + + // Try to read a single frame gif. + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png",filename_tmp._data); + CImg img; + try { img.load_png(filename_tmp2); } + catch (CImgException&) { } + if (img) { img.move_to(*this); std::remove(filename_tmp2); } + else { // Try to read animated gif + unsigned int i = 0; + for (bool stop_flag = false; !stop_flag; ++i) { + if (use_graphicsmagick) cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png.%u",filename_tmp._data,i); + else cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s-%u.png",filename_tmp._data,i); + try { img.load_png(filename_tmp2); } + catch (CImgException&) { stop_flag = true; } + if (img) { img.move_to(*this); std::remove(filename_tmp2); } + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load gif file, using ImageMagick or GraphicsMagick's external tools \newinstance. + static CImgList get_load_gif_external(const char *const filename) { + return CImgList().load_gif_external(filename); + } + + //! Load a gzipped list, using external tool 'gunzip'. + /** + \param filename Filename to read data from. + **/ + CImgList& load_gzip_external(const char *const filename) { + if (!filename) + throw CImgIOException(_cimglist_instance + "load_gzip_external(): Specified filename is (null).", + cimglist_instance); + cimg::fclose(cimg::fopen(filename,"rb")); // Check if file exists + CImg command(1024), filename_tmp(256), body(256); + const char + *ext = cimg::split_filename(filename,body), + *ext2 = cimg::split_filename(body,0); + std::FILE *file = 0; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"", + cimg::gunzip_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::gunzip_path()); + if (!(file=cimg::std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimglist_instance + "load_gzip_external(): Failed to open file '%s'.", + cimglist_instance, + filename); + + } else cimg::fclose(file); + load(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load a gzipped list, using external tool 'gunzip' \newinstance. + static CImgList get_load_gzip_external(const char *const filename) { + return CImgList().load_gzip_external(filename); + } + + //! Load images from a TIFF file. + /** + \param filename Filename to read data from. + \param first_frame Index of first image frame to read. + \param last_frame Index of last image frame to read. + \param step_frame Step applied between each frame. + \param[out] bits_per_value Number of bits used to store a scalar value in the image file. + \param[out] voxel_size Voxel size, as stored in the filename. + \param[out] description Description, as stored in the filename. + **/ + CImgList& load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, unsigned int *const bits_per_value=0, + float *const voxel_size=0, CImg *const description=0) { + const unsigned int + nfirst_frame = first_frame::get_load_tiff(filename)); +#else +#if cimg_verbosity<3 + TIFFSetWarningHandler(0); + TIFFSetErrorHandler(0); +#endif + TIFF *tif = TIFFOpen(filename,"r"); + if (tif) { + unsigned int nb_images = 0; + do ++nb_images; while (TIFFReadDirectory(tif)); + if (nfirst_frame>=nb_images || (nlast_frame!=~0U && nlast_frame>=nb_images)) + cimg::warn(_cimglist_instance + "load_tiff(): Invalid specified frame range is [%u,%u] (step %u) since " + "file '%s' contains %u image(s).", + cimglist_instance, + nfirst_frame,nlast_frame,nstep_frame,filename,nb_images); + + if (nfirst_frame>=nb_images) return assign(); + if (nlast_frame>=nb_images) nlast_frame = nb_images - 1; + assign(1 + (nlast_frame - nfirst_frame)/nstep_frame); + TIFFSetDirectory(tif,0); + cimglist_for(*this,l) + _data[l]._load_tiff(tif,nfirst_frame + l*nstep_frame,bits_per_value,voxel_size,description); + TIFFClose(tif); + } else throw CImgIOException(_cimglist_instance + "load_tiff(): Failed to open file '%s'.", + cimglist_instance, + filename); + return *this; +#endif + } + + //! Load a multi-page TIFF file \newinstance. + static CImgList get_load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, unsigned int *const bits_per_value=0, + float *const voxel_size=0, CImg *const description=0) { + return CImgList().load_tiff(filename,first_frame,last_frame,step_frame,bits_per_value,voxel_size,description); + } + + //@} + //---------------------------------- + // + //! \name Data Output + //@{ + //---------------------------------- + + //! Print information about the list on the standard output. + /** + \param title Label set to the information displayed. + \param display_stats Tells if image statistics must be computed and displayed. + **/ + const CImgList& print(const char *const title=0, const bool display_stats=true) const { + unsigned int msiz = 0; + cimglist_for(*this,l) msiz+=_data[l].size(); + msiz*=sizeof(T); + const unsigned int mdisp = msiz<8*1024?0U:msiz<8*1024*1024?1U:2U; + CImg _title(64); + if (!title) cimg_snprintf(_title,_title._width,"CImgList<%s>",pixel_type()); + std::fprintf(cimg::output(),"%s%s%s%s: %sthis%s = %p, %ssize%s = %u/%u [%u %s], %sdata%s = (CImg<%s>*)%p", + cimg::t_magenta,cimg::t_bold,title?title:_title._data,cimg::t_normal, + cimg::t_bold,cimg::t_normal,(void*)this, + cimg::t_bold,cimg::t_normal,_width,_allocated_width, + mdisp==0?msiz:(mdisp==1?(msiz>>10):(msiz>>20)), + mdisp==0?"b":(mdisp==1?"Kio":"Mio"), + cimg::t_bold,cimg::t_normal,pixel_type(),(void*)begin()); + if (_data) std::fprintf(cimg::output(),"..%p.\n",(void*)((char*)end() - 1)); + else std::fprintf(cimg::output(),".\n"); + + char tmp[16] = {}; + cimglist_for(*this,ll) { + cimg_snprintf(tmp,sizeof(tmp),"[%d]",ll); + std::fprintf(cimg::output()," "); + _data[ll].print(tmp,display_stats); + if (ll==3 && width()>8) { ll = width() - 5; std::fprintf(cimg::output()," ...\n"); } + } + std::fflush(cimg::output()); + return *this; + } + + //! Display the current CImgList instance in an existing CImgDisplay window (by reference). + /** + \param disp Reference to an existing CImgDisplay instance, where the current image list will be displayed. + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + \note This function displays the list images of the current CImgList instance into an existing + CImgDisplay window. + Images of the list are appended in a single temporary image for visualization purposes. + The function returns immediately. + **/ + const CImgList& display(CImgDisplay &disp, const char axis='x', const float align=0) const { + disp.display(*this,axis,align); + return *this; + } + + //! Display the current CImgList instance in a new display window. + /** + \param disp Display window. + \param display_info Tells if image information are displayed on the standard output. + \param axis Alignment axis for images viewing. + \param align Appending alignment. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + \note This function opens a new window with a specific title and displays the list images of the + current CImgList instance into it. + Images of the list are appended in a single temporary image for visualization purposes. + The function returns when a key is pressed or the display window is closed by the user. + **/ + const CImgList& display(CImgDisplay &disp, const bool display_info, + const char axis='x', const float align=0, + unsigned int *const XYZ=0, const bool exit_on_anykey=false) const { + bool is_exit = false; + return _display(disp,0,0,display_info,axis,align,XYZ,exit_on_anykey,0,true,is_exit); + } + + //! Display the current CImgList instance in a new display window. + /** + \param title Title of the opening display window. + \param display_info Tells if list information must be written on standard output. + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImgList& display(const char *const title=0, const bool display_info=true, + const char axis='x', const float align=0, + unsigned int *const XYZ=0, const bool exit_on_anykey=false) const { + CImgDisplay disp; + bool is_exit = false; + return _display(disp,title,0,display_info,axis,align,XYZ,exit_on_anykey,0,true,is_exit); + } + + const CImgList& _display(CImgDisplay &disp, const char *const title, const CImgList *const titles, + const bool display_info, const char axis, const float align, unsigned int *const XYZ, + const bool exit_on_anykey, const unsigned int orig, const bool is_first_call, + bool &is_exit) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "display(): Empty instance.", + cimglist_instance); + if (!disp) { + if (axis=='x') { + unsigned int sum_width = 0, max_height = 0; + cimglist_for(*this,l) { + const CImg &img = _data[l]; + const unsigned int + w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false), + h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true); + sum_width+=w; + if (h>max_height) max_height = h; + } + disp.assign(cimg_fitscreen(sum_width,max_height,1),title?title:titles?titles->__display()._data:0,1); + } else { + unsigned int max_width = 0, sum_height = 0; + cimglist_for(*this,l) { + const CImg &img = _data[l]; + const unsigned int + w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false), + h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true); + if (w>max_width) max_width = w; + sum_height+=h; + } + disp.assign(cimg_fitscreen(max_width,sum_height,1),title?title:titles?titles->__display()._data:0,1); + } + if (!title && !titles) disp.set_title("CImgList<%s> (%u)",pixel_type(),_width); + } else if (title) disp.set_title("%s",title); + else if (titles) disp.set_title("%s",titles->__display()._data); + const CImg dtitle = CImg::string(disp.title()); + if (display_info) print(disp.title()); + disp.show().flush(); + + if (_width==1) { + const unsigned int dw = disp._width, dh = disp._height; + if (!is_first_call) + disp.resize(cimg_fitscreen(_data[0]._width,_data[0]._height,_data[0]._depth),false); + disp.set_title("%s (%ux%ux%ux%u)", + dtitle.data(),_data[0]._width,_data[0]._height,_data[0]._depth,_data[0]._spectrum); + _data[0]._display(disp,0,false,XYZ,exit_on_anykey,!is_first_call); + if (disp.key()) is_exit = true; + disp.resize(cimg_fitscreen(dw,dh,1),false).set_title("%s",dtitle.data()); + } else { + bool disp_resize = !is_first_call; + while (!disp.is_closed() && !is_exit) { + const CImg s = _select(disp,0,true,axis,align,exit_on_anykey,orig,disp_resize,!is_first_call,true); + disp_resize = true; + if (s[0]<0 && !disp.wheel()) { // No selections done + if (disp.button()&2) { disp.flush(); break; } + is_exit = true; + } else if (disp.wheel()) { // Zoom in/out + const int wheel = disp.wheel(); + disp.set_wheel(); + if (!is_first_call && wheel<0) break; + if (wheel>0 && _width>=4) { + const unsigned int + delta = std::max(1U,(unsigned int)cimg::round(0.3*_width)), + ind0 = (unsigned int)std::max(0,s[0] - (int)delta), + ind1 = (unsigned int)std::min(width() - 1,s[0] + (int)delta); + if ((ind0!=0 || ind1!=_width - 1) && ind1 - ind0>=3) { + const CImgList sublist = get_shared_images(ind0,ind1); + CImgList t_sublist; + if (titles) t_sublist = titles->get_shared_images(ind0,ind1); + sublist._display(disp,0,titles?&t_sublist:0,false,axis,align,XYZ,exit_on_anykey, + orig + ind0,false,is_exit); + } + } + } else if (s[0]!=0 || s[1]!=width() - 1) { + const CImgList sublist = get_shared_images(s[0],s[1]); + CImgList t_sublist; + if (titles) t_sublist = titles->get_shared_images(s[0],s[1]); + sublist._display(disp,0,titles?&t_sublist:0,false,axis,align,XYZ,exit_on_anykey, + orig + s[0],false,is_exit); + } + disp.set_title("%s",dtitle.data()); + } + } + return *this; + } + + // [internal] Return string to describe display title. + CImg __display() const { + CImg res, str; + cimglist_for(*this,l) { + CImg::string((char*)_data[l]._data).move_to(str); + if (l!=width() - 1) { + str.resize(str._width + 1,1,1,1,0); + str[str._width - 2] = ','; + str[str._width - 1] = ' '; + } + res.append(str,'x'); + } + if (!res) return CImg(1,1,1,1,0).move_to(res); + cimg::strellipsize(res,128,false); + if (_width>1) { + const unsigned int l = (unsigned int)std::strlen(res); + if (res._width<=l + 16) res.resize(l + 16,1,1,1,0); + cimg_snprintf(res._data + l,16," (#%u)",_width); + } + return res; + } + + //! Save list into a file. + /** + \param filename Filename to write data to. + \param number When positive, represents an index added to the filename. Otherwise, no number is added. + \param digits Number of digits used for adding the number to the filename. + **/ + const CImgList& save(const char *const filename, const int number=-1, const unsigned int digits=6) const { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save(): Specified filename is (null).", + cimglist_instance); + // Do not test for empty instances, since .cimg format is able to manage empty instances. + const bool is_stdout = *filename=='-' && (!filename[1] || filename[1]=='.'); + const char *const ext = cimg::split_filename(filename); + CImg nfilename(1024); + const char *const fn = is_stdout?filename:number>=0?cimg::number_filename(filename,number,digits,nfilename): + filename; + +#ifdef cimglist_save_plugin + cimglist_save_plugin(fn); +#endif +#ifdef cimglist_save_plugin1 + cimglist_save_plugin1(fn); +#endif +#ifdef cimglist_save_plugin2 + cimglist_save_plugin2(fn); +#endif +#ifdef cimglist_save_plugin3 + cimglist_save_plugin3(fn); +#endif +#ifdef cimglist_save_plugin4 + cimglist_save_plugin4(fn); +#endif +#ifdef cimglist_save_plugin5 + cimglist_save_plugin5(fn); +#endif +#ifdef cimglist_save_plugin6 + cimglist_save_plugin6(fn); +#endif +#ifdef cimglist_save_plugin7 + cimglist_save_plugin7(fn); +#endif +#ifdef cimglist_save_plugin8 + cimglist_save_plugin8(fn); +#endif + if (!cimg::strcasecmp(ext,"cimgz")) return save_cimg(fn,true); + else if (!cimg::strcasecmp(ext,"cimg") || !*ext) return save_cimg(fn,false); + else if (!cimg::strcasecmp(ext,"yuv")) return save_yuv(fn,444,true); + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"webm") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) return save_video(fn); +#ifdef cimg_use_tiff + else if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) return save_tiff(fn); +#endif + else if (!cimg::strcasecmp(ext,"gz")) return save_gzip_external(fn); + else { + if (_width==1) _data[0].save(fn,-1); + else cimglist_for(*this,l) { _data[l].save(fn,is_stdout?-1:l); if (is_stdout) std::fputc(EOF,cimg::_stdout()); } + } + return *this; + } + + //! Tell if an image list can be saved as one single file. + /** + \param filename Filename, as a C-string. + \return \c true if the file format supports multiple images, \c false otherwise. + **/ + static bool is_saveable(const char *const filename) { + const char *const ext = cimg::split_filename(filename); + if (!cimg::strcasecmp(ext,"cimgz") || +#ifdef cimg_use_tiff + !cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff") || +#endif + !cimg::strcasecmp(ext,"yuv") || + !cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"webm") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) return true; + return false; + } + + //! Save image sequence as a GIF animated file. + /** + \param filename Filename to write data to. + \param fps Number of desired frames per second. + \param nb_loops Number of loops (\c 0 for infinite looping). + **/ + const CImgList& save_gif_external(const char *const filename, const float fps=25, + const unsigned int nb_loops=0) { + CImg command(1024), filename_tmp(256), filename_tmp2(256); + CImgList filenames; + std::FILE *file = 0; + +#ifdef cimg_use_png +#define _cimg_save_gif_extension "png" +#else +#define _cimg_save_gif_extension "ppm" +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001." _cimg_save_gif_extension,filename_tmp._data); + if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + cimglist_for(*this,l) { + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u." _cimg_save_gif_extension,filename_tmp._data,l + 1); + CImg::string(filename_tmp2).move_to(filenames); + CImg frame; + if (_data[l]._depth>1) _data[l].get_slice(0).move_to(frame); else frame.assign(_data[l],true); + if (frame._spectrum>4) frame.assign(frame.get_channels(0,3),false); + else if (frame._spectrum==1) frame.assign(frame.get_resize(-100,-100,1,3),false); + else if (frame._spectrum==2) + frame.assign(frame.get_resize(-100,-100,1,4).draw_image(0,0,0,2,frame.get_shared_channel(0)),false); + frame.save(filename_tmp2); + } + cimg_snprintf(command,command._width,"\"%s\" -delay %u -loop %u -dispose previous", + cimg::imagemagick_path(), + (unsigned int)std::max(0.f,cimg::round(100/fps)), + nb_loops); + CImg::string(command).move_to(filenames,0); + cimg_snprintf(command,command._width,"\"%s\"", + CImg::string(filename)._system_strescape().data()); + CImg::string(command).move_to(filenames); + CImg _command = filenames>'x'; + cimg_for(_command,p,char) if (!*p) *p = ' '; + _command.back() = 0; + + cimg::system(_command,cimg::imagemagick_path()); + file = cimg::std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimglist_instance + "save_gif_external(): Failed to save file '%s' with external command 'magick/convert'.", + cimglist_instance, + filename); + else cimg::fclose(file); + cimglist_for_in(*this,1,filenames._width - 1,l) std::remove(filenames[l]); + return *this; + } + + //! Save list as a YUV image sequence file. + /** + \param filename Filename to write data to. + \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. + \param is_rgb Tells if the RGB to YUV conversion must be done for saving. + **/ + const CImgList& save_yuv(const char *const filename=0, + const unsigned int chroma_subsampling=444, + const bool is_rgb=true) const { + return _save_yuv(0,filename,chroma_subsampling,is_rgb); + } + + //! Save image sequence into a YUV file. + /** + \param file File to write data to. + \param chroma_subsampling Type of chroma subsampling. Can be { 420 | 422 | 444 }. + \param is_rgb Tells if the RGB to YUV conversion must be done for saving. + **/ + const CImgList& save_yuv(std::FILE *const file, + const unsigned int chroma_subsampling=444, + const bool is_rgb=true) const { + return _save_yuv(file,0,chroma_subsampling,is_rgb); + } + + const CImgList& _save_yuv(std::FILE *const file, const char *const filename, + const unsigned int chroma_subsampling, + const bool is_rgb) const { + if (!file && !filename) + throw CImgArgumentException(_cimglist_instance + "save_yuv(): Specified filename is (null).", + cimglist_instance); + if (chroma_subsampling!=420 && chroma_subsampling!=422 && chroma_subsampling!=444) + throw CImgArgumentException(_cimglist_instance + "save_yuv(): Specified chroma subsampling %u is invalid, for file '%s'.", + cimglist_instance, + chroma_subsampling,filename?filename:"(FILE*)"); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + const unsigned int + cfx = chroma_subsampling==420 || chroma_subsampling==422?2:1, + cfy = chroma_subsampling==420?2:1, + w0 = (*this)[0]._width, h0 = (*this)[0]._height, + width0 = w0 + (w0%cfx), height0 = h0 + (h0%cfy); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + cimglist_for(*this,l) { + const CImg &frame = (*this)[l]; + cimg_forZ(frame,z) { + CImg YUV; + if (sizeof(T)==1 && !is_rgb && + frame._width==width0 && frame._height==height0 && frame._depth==1 && frame._spectrum==3) + YUV.assign((unsigned char*)frame._data,width0,height0,1,3,true); + else { + YUV = frame.get_slice(z); + if (YUV._width!=width0 || YUV._height!=height0) YUV.resize(width0,height0,1,-100,0); + if (YUV._spectrum!=3) YUV.resize(-100,-100,1,3,YUV._spectrum==1?1:0); + if (is_rgb) YUV.RGBtoYCbCr(); + } + if (chroma_subsampling==444) + cimg::fwrite(YUV._data,(size_t)YUV._width*YUV._height*3,nfile); + else { + cimg::fwrite(YUV._data,(size_t)YUV._width*YUV._height,nfile); + CImg UV = YUV.get_channels(1,2); + UV.resize(UV._width/cfx,UV._height/cfy,1,2,2); + cimg::fwrite(UV._data,(size_t)UV._width*UV._height*2,nfile); + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save list into a .cimg file. + /** + \param filename Filename to write data to. + \param is_compressed Tells if data compression must be enabled. + **/ + const CImgList& save_cimg(const char *const filename, const bool is_compressed=false) const { + return _save_cimg(0,filename,is_compressed); + } + + const CImgList& _save_cimg(std::FILE *const file, const char *const filename, const bool is_compressed) const { + if (!file && !filename) + throw CImgArgumentException(_cimglist_instance + "save_cimg(): Specified filename is (null).", + cimglist_instance); +#ifndef cimg_use_zlib + if (is_compressed) + cimg::warn(_cimglist_instance + "save_cimg(): Unable to save compressed data in file '%s' unless zlib is enabled, " + "saving them uncompressed.", + cimglist_instance, + filename?filename:"(FILE*)"); +#endif + const char *const ptype = pixel_type(), *const etype = cimg::endianness()?"big":"little"; + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const bool is_bool = ptype==cimg::type::string(); + std::fprintf(nfile,"%u %s %s_endian\n",_width,ptype,etype); + + cimglist_for(*this,l) { + const CImg& img = _data[l]; + std::fprintf(nfile,"%u %u %u %u",img._width,img._height,img._depth,img._spectrum); + if (img._data) { + CImg tmp; + if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data,tmp.size()); } + const CImg& ref = cimg::endianness()?tmp:img; + bool failed_to_compress = true; + if (is_compressed) { +#ifdef cimg_use_zlib + Bytef *cbuf = 0; + uLongf csiz = 0; + + if (is_bool) { // Boolean data (bitwise) + ulongT siz; + const unsigned char *const buf = ref._bool2uchar(siz,false); + csiz = siz + siz/100 + 16; + cbuf = new Bytef[csiz]; + failed_to_compress = (bool)compress(cbuf,&csiz,(Bytef*)buf,siz); + if (!failed_to_compress) { + std::fprintf(nfile," #%lu\n",csiz); + cimg::fwrite(cbuf,csiz,nfile); + } + delete[] buf; + } else { // Non-boolean data + const ulongT siz = sizeof(T)*ref.size(); + csiz = siz + siz/100 + 16; + cbuf = new Bytef[csiz]; + failed_to_compress = (bool)compress(cbuf,&csiz,(Bytef*)ref._data,siz); + if (!failed_to_compress) { + std::fprintf(nfile," #%lu\n",csiz); + cimg::fwrite(cbuf,csiz,nfile); + } + } + if (failed_to_compress) + cimg::warn(_cimglist_instance + "save_cimg(): Failed to save compressed data for file '%s', saving them uncompressed.", + cimglist_instance, + filename?filename:"(FILE*)"); + delete[] cbuf; +#endif + } + if (failed_to_compress) { // Write non-compressed + std::fputc('\n',nfile); + if (is_bool) { // Boolean data (bitwise) + ulongT siz; + const unsigned char *const buf = ref._bool2uchar(siz,false); + cimg::fwrite(buf,siz,nfile); + delete[] buf; + } else cimg::fwrite(ref._data,ref.size(),nfile); // Non-boolean data + } + } else std::fputc('\n',nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save list into a .cimg file. + /** + \param file File to write data to. + \param is_compressed Tells if data compression must be enabled. + **/ + const CImgList& save_cimg(std::FILE *file, const bool is_compressed=false) const { + return _save_cimg(file,0,is_compressed); + } + + const CImgList& _save_cimg(std::FILE *const file, const char *const filename, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { +#define _cimg_save_cimg_case(Ts1,Ts2,Ts3,Tss) \ + if (!saved && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \ + (Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \ + (Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \ + for (unsigned int l = 0; l0) { \ + if (l=W || y0>=H || z0>=D || c0>=D) cimg::fseek(nfile,W*H*D*C*sizeof(Tss),SEEK_CUR); \ + else { \ + const CImg& img = (*this)[l - n0]; \ + const T *ptrs = img._data; \ + const unsigned int \ + x1 = x0 + img._width - 1, \ + y1 = y0 + img._height - 1, \ + z1 = z0 + img._depth - 1, \ + c1 = c0 + img._spectrum - 1, \ + nx1 = x1>=W?W - 1:x1, \ + ny1 = y1>=H?H - 1:y1, \ + nz1 = z1>=D?D - 1:z1, \ + nc1 = c1>=C?C - 1:c1; \ + CImg raw(1 + nx1 - x0); \ + const unsigned int skipvb = c0*W*H*D*sizeof(Tss); \ + if (skipvb) cimg::fseek(nfile,skipvb,SEEK_CUR); \ + for (unsigned int v = 1 + nc1 - c0; v; --v) { \ + const unsigned int skipzb = z0*W*H*sizeof(Tss); \ + if (skipzb) cimg::fseek(nfile,skipzb,SEEK_CUR); \ + for (unsigned int z = 1 + nz1 - z0; z; --z) { \ + const unsigned int skipyb = y0*W*sizeof(Tss); \ + if (skipyb) cimg::fseek(nfile,skipyb,SEEK_CUR); \ + for (unsigned int y = 1 + ny1 - y0; y; --y) { \ + const unsigned int skipxb = x0*sizeof(Tss); \ + if (skipxb) cimg::fseek(nfile,skipxb,SEEK_CUR); \ + raw.assign(ptrs, raw._width); \ + ptrs+=img._width; \ + if (endian) cimg::invert_endianness(raw._data,raw._width); \ + cimg::fwrite(raw._data,raw._width,nfile); \ + const unsigned int skipxe = (W - 1 - nx1)*sizeof(Tss); \ + if (skipxe) cimg::fseek(nfile,skipxe,SEEK_CUR); \ + } \ + const unsigned int skipye = (H - 1 - ny1)*W*sizeof(Tss); \ + if (skipye) cimg::fseek(nfile,skipye,SEEK_CUR); \ + } \ + const unsigned int skipze = (D - 1 - nz1)*W*H*sizeof(Tss); \ + if (skipze) cimg::fseek(nfile,skipze,SEEK_CUR); \ + } \ + const unsigned int skipve = (C - 1 - nc1)*W*H*D*sizeof(Tss); \ + if (skipve) cimg::fseek(nfile,skipve,SEEK_CUR); \ + } \ + } \ + } \ + saved = true; \ + } + + if (!file && !filename) + throw CImgArgumentException(_cimglist_instance + "save_cimg(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "save_cimg(): Empty instance, for file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb+"); + bool saved = false, endian = cimg::endianness(); + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N, W, H, D, C; + int i, err; + j = 0; while ((i=std::fgetc(nfile))!='\n' && i!=EOF && j<256) tmp[j++] = (char)i; tmp[j] = 0; + err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z123468_]%*c%255[sA-Za-z_ ]",&N,str_pixeltype._data,str_endian._data); + if (err<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "save_cimg(): CImg header not found in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + } + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + const unsigned int lmax = std::min(N,n0 + _width); + _cimg_save_cimg_case("bool",0,0,cimg_uint8); + _cimg_save_cimg_case("uint8","unsigned_char","uchar",cimg_uint8); + _cimg_save_cimg_case("int8",0,0,cimg_int8); + _cimg_save_cimg_case("char",0,0,char); + _cimg_save_cimg_case("uint16","unsigned_short","ushort",cimg_uint16); + _cimg_save_cimg_case("int16","short",0,cimg_int16); + _cimg_save_cimg_case("uint32","unsigned_int","uint",cimg_uint32); + _cimg_save_cimg_case("int32","int",0,cimg_int32); + _cimg_save_cimg_case("uint64","unsigned_int64",0,cimg_uint64); + _cimg_save_cimg_case("int64",0,0,cimg_int64); + _cimg_save_cimg_case("float","float32",0,cimg_float32); + _cimg_save_cimg_case("float64","double",0,cimg_float64); + + if (!saved) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "save_cimg(): Unsupported data type '%s' for file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)",str_pixeltype._data); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Insert the image instance into into an existing .cimg file, at specified coordinates. + /** + \param filename Filename to write data to. + \param n0 Starting index of images to write. + \param x0 Starting X-coordinates of image regions to write. + \param y0 Starting Y-coordinates of image regions to write. + \param z0 Starting Z-coordinates of image regions to write. + \param c0 Starting C-coordinates of image regions to write. + **/ + const CImgList& save_cimg(const char *const filename, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + return _save_cimg(0,filename,n0,x0,y0,z0,c0); + } + + //! Insert the image instance into into an existing .cimg file, at specified coordinates. + /** + \param file File to write data to. + \param n0 Starting index of images to write. + \param x0 Starting X-coordinates of image regions to write. + \param y0 Starting Y-coordinates of image regions to write. + \param z0 Starting Z-coordinates of image regions to write. + \param c0 Starting C-coordinates of image regions to write. + **/ + const CImgList& save_cimg(std::FILE *const file, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + return _save_cimg(file,0,n0,x0,y0,z0,c0); + } + + static void _save_empty_cimg(std::FILE *const file, const char *const filename, + const unsigned int nb, + const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) { + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const ulongT siz = (ulongT)dx*dy*dz*dc*sizeof(T); + std::fprintf(nfile,"%u %s\n",nb,pixel_type()); + for (unsigned int i=nb; i; --i) { + std::fprintf(nfile,"%u %u %u %u\n",dx,dy,dz,dc); + for (ulongT off = siz; off; --off) std::fputc(0,nfile); + } + if (!file) cimg::fclose(nfile); + } + + //! Save empty (non-compressed) .cimg file with specified dimensions. + /** + \param filename Filename to write data to. + \param nb Number of images to write. + \param dx Width of images in the written file. + \param dy Height of images in the written file. + \param dz Depth of images in the written file. + \param dc Spectrum of images in the written file. + **/ + static void save_empty_cimg(const char *const filename, + const unsigned int nb, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return _save_empty_cimg(0,filename,nb,dx,dy,dz,dc); + } + + //! Save empty .cimg file with specified dimensions. + /** + \param file File to write data to. + \param nb Number of images to write. + \param dx Width of images in the written file. + \param dy Height of images in the written file. + \param dz Depth of images in the written file. + \param dc Spectrum of images in the written file. + **/ + static void save_empty_cimg(std::FILE *const file, + const unsigned int nb, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return _save_empty_cimg(file,0,nb,dx,dy,dz,dc); + } + + //! Save list as a TIFF file. + /** + \param filename Filename to write data to. + \param compression_type Compression mode used to write data. + \param voxel_size Voxel size, to be stored in the filename. + \param description Description, to be stored in the filename. + \param use_bigtiff Allow to save big tiff files (>4Gb). + **/ + const CImgList& save_tiff(const char *const filename, const unsigned int compression_type=0, + const float *const voxel_size=0, const char *const description=0, + const bool use_bigtiff=true) const { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save_tiff(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifndef cimg_use_tiff + if (_width==1) _data[0].save_tiff(filename,compression_type,voxel_size,description,use_bigtiff); + else cimglist_for(*this,l) { + CImg nfilename(1024); + cimg::number_filename(filename,l,6,nfilename); + _data[l].save_tiff(nfilename,compression_type,voxel_size,description,use_bigtiff); + } +#else + ulongT siz = 0; + cimglist_for(*this,l) siz+=_data[l].size(); + const bool _use_bigtiff = use_bigtiff && sizeof(siz)>=8 && siz*sizeof(T)>=1UL<<31; // No bigtiff for small images + TIFF *tif = TIFFOpen(filename,_use_bigtiff?"w8":"w4"); + if (tif) { + for (unsigned int dir = 0, l = 0; l<_width; ++l) { + const CImg& img = (*this)[l]; + cimg_forZ(img,z) img._save_tiff(tif,dir++,z,compression_type,voxel_size,description); + } + TIFFClose(tif); + } else + throw CImgIOException(_cimglist_instance + "save_tiff(): Failed to open stream for file '%s'.", + cimglist_instance, + filename); +#endif + return *this; + } + + //! Save list as a gzipped file, using external tool 'gzip'. + /** + \param filename Filename to write data to. + **/ + const CImgList& save_gzip_external(const char *const filename) const { + if (!filename) + throw CImgIOException(_cimglist_instance + "save_gzip_external(): Specified filename is (null).", + cimglist_instance); + CImg command(1024), filename_tmp(256), body(256); + const char + *ext = cimg::split_filename(filename,body), + *ext2 = cimg::split_filename(body,0); + std::FILE *file; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=cimg::std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + + if (is_saveable(body)) { + save(filename_tmp); + cimg_snprintf(command,command._width,"\"%s\" -c \"%s\" > \"%s\"", + cimg::gzip_path(), + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command,cimg::gzip_path()); + file = cimg::std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimglist_instance + "save_gzip_external(): Failed to save file '%s' with external command 'gzip'.", + cimglist_instance, + filename); + else cimg::fclose(file); + std::remove(filename_tmp); + } else { + CImg nfilename(1024); + cimglist_for(*this,l) { + cimg::number_filename(body,l,6,nfilename); + if (*ext) cimg_snprintf(nfilename._data + std::strlen(nfilename),64,".%s",ext); + _data[l].save_gzip_external(nfilename); + } + } + return *this; + } + + //! Save image sequence (using the OpenCV library when available). + /** + \param filename Filename to write data to. + \param fps Number of frames per second. + \param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs). + \param keep_open Tells if the video writer associated to the specified filename + must be kept open or not (to allow frames to be added in the same file afterwards). + **/ + const CImgList& save_video(const char *const filename, const unsigned int fps=25, + const char *codec=0, const bool keep_open=false) const { +#ifndef cimg_use_opencv + cimg::unused(codec,keep_open); + if (keep_open) cimg::warn(_cimglist_instance + "save_video(): Cannot output streamed video, as this requires features from the " + "OpenCV library ('-Dcimg_use_opencv') must be defined).", + cimglist_instance); + if (!is_empty()) return save_ffmpeg_external(filename,fps); + return *this; +#else + try { + static cv::VideoWriter *writers[32] = {}; + static CImgList filenames(32); + static CImg sizes(32,2,1,1,0); + static int last_used_index = -1; + + // Detect if a video writer already exists for the specified filename. + cimg::mutex(9); + int index = -1; + if (filename) { + if (last_used_index>=0 && !std::strcmp(filename,filenames[last_used_index])) { + index = last_used_index; + } else cimglist_for(filenames,l) if (filenames[l] && !std::strcmp(filename,filenames[l])) { + index = l; break; + } + } else index = last_used_index; + cimg::mutex(9,0); + + // Find empty slot for capturing video stream. + if (index<0) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save_video(): No already open video writer found. You must specify a " + "non-(null) filename argument for the first call.", + cimglist_instance); + else { cimg::mutex(9); cimglist_for(filenames,l) if (!filenames[l]) { index = l; break; } cimg::mutex(9,0); } + if (index<0) + throw CImgIOException(_cimglist_instance + "save_video(): File '%s', no video writer slots available. " + "You have to release some of your previously opened videos.", + cimglist_instance,filename); + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "save_video(): Instance list is empty.", + cimglist_instance); + const unsigned int W = _data?_data[0]._width:0, H = _data?_data[0]._height:0; + if (!W || !H) + throw CImgInstanceException(_cimglist_instance + "save_video(): Frame [0] is an empty image.", + cimglist_instance); + const char + *const _codec = codec && *codec?codec:"h264", + codec0 = cimg::uppercase(_codec[0]), + codec1 = _codec[0]?cimg::uppercase(_codec[1]):0, + codec2 = _codec[1]?cimg::uppercase(_codec[2]):0, + codec3 = _codec[2]?cimg::uppercase(_codec[3]):0; + cimg::mutex(9); + writers[index] = new cv::VideoWriter(filename,_cimg_fourcc(codec0,codec1,codec2,codec3),fps,cv::Size(W,H)); + if (!writers[index]->isOpened()) { + delete writers[index]; + writers[index] = 0; + cimg::mutex(9,0); + throw CImgIOException(_cimglist_instance + "save_video(): File '%s', unable to initialize video writer with codec '%c%c%c%c'.", + cimglist_instance,filename, + codec0,codec1,codec2,codec3); + } + CImg::string(filename).move_to(filenames[index]); + sizes(index,0) = W; + sizes(index,1) = H; + cimg::mutex(9,0); + } + + if (!is_empty()) { + const unsigned int W = sizes(index,0), H = sizes(index,1); + cimg::mutex(9); + cimglist_for(*this,l) { + CImg &src = _data[l]; + if (src.is_empty()) + cimg::warn(_cimglist_instance + "save_video(): Skip empty frame %d for file '%s'.", + cimglist_instance,l,filename); + if (src._spectrum>3) + cimg::warn(_cimglist_instance + "save_video(): Frame %u has incompatible dimension (%u,%u,%u,%u). " + "Some image data may be ignored when writing frame into video file '%s'.", + cimglist_instance,l,src._width,src._height,src._depth,src._spectrum,filename); + cimg_forZ(src,z) { + CImg _src = src._depth>1?src.get_slice(z):src.get_shared(); + if (_src._width==W && _src._height==H && _src._spectrum==3) + writers[index]->write(CImg(_src)._cimg2cvmat()); + else { + CImg __src(_src,false); + __src.channels(0,std::min(__src._spectrum - 1,2U)).resize(W,H); + __src.resize(W,H,1,3,__src._spectrum==1); + writers[index]->write(__src._cimg2cvmat()); + } + } + } + cimg::mutex(9,0); + } + + cimg::mutex(9); + if (!keep_open) { + delete writers[index]; + writers[index] = 0; + filenames[index].assign(); + sizes(index,0) = sizes(index,1) = 0; + last_used_index = -1; + } else last_used_index = index; + cimg::mutex(9,0); + } catch (CImgIOException &e) { + if (!keep_open) return save_ffmpeg_external(filename,fps); + throw e; + } + return *this; +#endif + } + + //! Save image sequence, using the external tool 'ffmpeg'. + /** + \param filename Filename to write data to. + \param fps Number of frames per second. + \param codec Type of compression. + \param bitrate Output bitrate + **/ + const CImgList& save_ffmpeg_external(const char *const filename, const unsigned int fps=25, + const char *const codec=0, const unsigned int bitrate=2048) const { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save_ffmpeg_external(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + const char + *const ext = cimg::split_filename(filename), + *const _codec = codec?codec: + !cimg::strcasecmp(ext,"flv")?"flv": + !cimg::strcasecmp(ext,"mp4")?"h264":"mpeg2video"; + + CImg command(1024), filename_tmp(256), filename_tmp2(256); + CImgList filenames; + std::FILE *file = 0; + cimglist_for(*this,l) if (!_data[l].is_sameXYZ(_data[0])) + throw CImgInstanceException(_cimglist_instance + "save_ffmpeg_external(): Invalid instance dimensions for file '%s'.", + cimglist_instance, + filename); + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001.ppm",filename_tmp._data); + if ((file=cimg::std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + unsigned int frame = 1; + cimglist_for(*this,l) { + CImg& src = _data[l]; + cimg_forZ(src,z) { + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u.ppm",filename_tmp._data,frame); + CImg::string(filename_tmp2).move_to(filenames); + CImg _src = src._depth>1?src.get_slice(z):src.get_shared(); + if (_src._width%2 || _src._height%2) // Force output to have an even number of columns and rows + _src.assign(_src.get_resize(_src._width + (_src._width%2),_src._height + (_src._height%2),1,-100,0),false); + if (_src._spectrum!=3) // Force output to be one slice, in color + _src.assign(_src.get_resize(-100,-100,1,3),false); + _src.save_pnm(filename_tmp2); + ++frame; + } + } + cimg_snprintf(command,command._width, + "\"%s\" -framerate %u -v -8 -y -i \"%s_%%6d.ppm\" -pix_fmt yuv420p -vcodec %s -b %uk -r %u \"%s\"", + cimg::ffmpeg_path(), + fps,CImg::string(filename_tmp)._system_strescape().data(), + _codec,bitrate,fps, + CImg::string(filename)._system_strescape().data()); + cimg::system(command,cimg::ffmpeg_path()); + file = cimg::std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimglist_instance + "save_ffmpeg_external(): Failed to save file '%s' with external command 'ffmpeg'.", + cimglist_instance, + filename); + else cimg::fclose(file); + cimglist_for(*this,l) std::remove(filenames[l]); + return *this; + } + + //! Serialize a CImgList instance into a raw CImg buffer. + /** + \param is_compressed tells if zlib compression must be used for serialization + (this requires 'cimg_use_zlib' been enabled). + \param header_size Reserve empty bytes as a starting header. + **/ + CImg get_serialize(const bool is_compressed=false, const unsigned int header_size=0) const { +#ifndef cimg_use_zlib + if (is_compressed) + cimg::warn(_cimglist_instance + "get_serialize(): Unable to compress data unless zlib is enabled, " + "storing them uncompressed.", + cimglist_instance); +#endif + CImgList stream; + if (header_size) CImg(1,header_size,1,1,0).move_to(stream); + CImg tmpstr(128); + const char *const ptype = pixel_type(), *const etype = cimg::endianness()?"big":"little"; + cimg_snprintf(tmpstr,tmpstr._width,"%u %s %s_endian\n",_width,ptype,etype); + CImg::string(tmpstr,false).move_to(stream); + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_snprintf(tmpstr,tmpstr._width,"%u %u %u %u",img._width,img._height,img._depth,img._spectrum); + CImg::string(tmpstr,false).move_to(stream); + if (img._data) { + CImg tmp; + if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data,tmp.size()); } + const CImg& ref = cimg::endianness()?tmp:img; + bool failed_to_compress = true; + if (is_compressed) { +#ifdef cimg_use_zlib + const ulongT siz = sizeof(T)*ref.size(); + uLongf csiz = (ulongT)compressBound(siz); + Bytef *const cbuf = new Bytef[csiz]; + if (compress(cbuf,&csiz,(Bytef*)ref._data,siz)) + cimg::warn(_cimglist_instance + "get_serialize(): Failed to save compressed data, saving them uncompressed.", + cimglist_instance); + else { + cimg_snprintf(tmpstr,tmpstr._width," #%lu\n",csiz); + CImg::string(tmpstr,false).move_to(stream); + CImg(cbuf,csiz).move_to(stream); + delete[] cbuf; + failed_to_compress = false; + } +#endif + } + if (failed_to_compress) { // Write in a non-compressed way + CImg::string("\n",false).move_to(stream); + stream.insert(1); + stream.back(). + assign((unsigned char*)ref._data,ref._width,ref._height,ref._depth,ref._spectrum*sizeof(T),true); + } + } else CImg::string("\n",false).move_to(stream); + } + + // Determine best serialized image dimensions to store the whole buffer. + ulongT siz = 0; + cimglist_for(stream,l) siz+=stream[l].size(); + const ulongT max_siz = (ulongT)cimg::type::max(); + const unsigned int + nw = (unsigned int)(siz/max_siz + ((siz%max_siz)?1:0)), + nh = (unsigned int)(siz/nw + (siz%nw?1:0)); + CImg res(nw,nh,1,1,0); + unsigned char *ptr = res.data(); + cimglist_for(stream,l) { siz = stream[l].size(); std::memcpy(ptr,stream[l]._data,siz); ptr+=siz; } + return res; + } + + //! Unserialize a CImg serialized buffer into a CImgList list. + template + static CImgList get_unserialize(const CImg& buffer, const unsigned int header_size=0) { +#ifdef cimg_use_zlib +#define _cimgz_unserialize_case(Tss) { \ + Bytef *cbuf = 0; \ + if (sizeof(t)!=1 || buffer.pixel_type()==cimg::type::string()) { \ + cbuf = new Bytef[csiz]; Bytef *_cbuf = cbuf; \ + for (ulongT k = 0; k::get_unserialize(): Unable to unserialize compressed data " \ + "unless zlib is enabled.", \ + pixel_type()); +#endif + +#define _cimg_unserialize_case(Ts1,Ts2,Ts3,Tss) \ + if (!loaded && ((Ts1 && !cimg::strcasecmp(Ts1,str_pixeltype)) || \ + (Ts2 && !cimg::strcasecmp(Ts2,str_pixeltype)) || \ + (Ts3 && !cimg::strcasecmp(Ts3,str_pixeltype)))) { \ + for (unsigned int l = 0; l::unserialize(): Invalid specified size (%u,%u,%u,%u) for " \ + "image #%u in serialized buffer.", \ + pixel_type(),W,H,D,C,l); \ + if (W*H*D*C>0) { \ + CImg raw; \ + CImg &img = res._data[l]; \ + if (err==5) _cimgz_unserialize_case(Tss) \ + else { \ + raw.assign(W,H,D,C); \ + CImg _raw((unsigned char*)raw._data,W*sizeof(Tss),H,D,C,true); \ + if (sizeof(t)==1) { std::memcpy(_raw,stream,_raw.size()); stream+=_raw.size(); } \ + else cimg_for(_raw,p,unsigned char) *p = (unsigned char)*(stream++); \ + } \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \ + raw.move_to(img); \ + } \ + } \ + loaded = true; \ + } + + if (buffer.is_empty()) + throw CImgArgumentException("CImgList<%s>::get_unserialize(): Specified serialized buffer is (null).", + pixel_type()); + CImgList res; + const t *stream = buffer._data + header_size, *const estream = buffer._data + buffer.size(); + bool loaded = false, endian = cimg::endianness(), is_bytef = false; + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N = 0, W, H, D, C; + uint64T csiz; + int i, err; + cimg::unused(is_bytef); + do { + j = 0; while ((i=(int)*stream)!='\n' && stream::get_unserialize(): CImg header not found in serialized buffer.", + pixel_type()); + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + res.assign(N); + _cimg_unserialize_case("bool",0,0,cimg_uint8); + _cimg_unserialize_case("uint8","unsigned_char","uchar",cimg_uint8); + _cimg_unserialize_case("int8",0,0,cimg_int8); + _cimg_unserialize_case("char",0,0,char); + _cimg_unserialize_case("uint16","unsigned_short","ushort",cimg_uint16); + _cimg_unserialize_case("int16","short",0,cimg_int16); + _cimg_unserialize_case("uint32","unsigned_int","uint",cimg_uint32); + _cimg_unserialize_case("int32","int",0,cimg_int32); + _cimg_unserialize_case("uint64","unsigned_int64",0,cimg_uint64); + _cimg_unserialize_case("int64",0,0,cimg_int64); + _cimg_unserialize_case("float32","float",0,cimg_float32); + _cimg_unserialize_case("float64","double",0,cimg_float64); + if (!loaded) + throw CImgArgumentException("CImgList<%s>::get_unserialize(): Unsupported pixel type '%s' defined " + "in serialized buffer.", + pixel_type(),str_pixeltype._data); + return res; + } + + //@} + //---------------------------------- + // + //! \name Others + //@{ + //---------------------------------- + + //! Return a CImg pre-defined font with requested height. + /** + \param font_height Height of the desired font (exact match for 13,23,53,103). + \param is_variable_width Decide if the font has a variable (\c true) or fixed (\c false) width. + **/ + static const CImgList& font(const unsigned int requested_height, const bool is_variable_width=true) { + if (!requested_height) return CImgList::const_empty(); + cimg::mutex(11); + static const unsigned char font_resizemap[] = { + 0, 4, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 27, 29, 30, + 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 52, + 54, 55, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, + 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, + 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, + 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, + 123, 124, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, + 138, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 148, 149, 150, 151, + 152, 153, 154, 155, 156, 157, 157, 158, 159, 160, 161, 162, 163, 164, 164, 165, + 166, 167, 168, 169, 170, 170, 171, 172, 173, 174, 175, 176, 176, 177, 178, 179, + 180, 181, 181, 182, 183, 184, 185, 186, 186, 187, 188, 189, 190, 191, 191, 192, + 193, 194, 195, 196, 196, 197, 198, 199, 200, 200, 201, 202, 203, 204, 205, 205, + 206, 207, 208, 209, 209, 210, 211, 212, 213, 213, 214, 215, 216, 216, 217, 218, + 219, 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 227, 228, 229, 230, 231, + 231, 232, 233, 234, 234, 235, 236, 237, 238, 238, 239, 240, 241, 241, 242, 243, + 244, 244, 245, 246, 247, 247, 248, 249, 250, 250, 251, 252, 253, 253, 254, 255 }; + static const char *const *font_data[] = { + cimg::data_font_small, + cimg::data_font_normal, + cimg::data_font_large, + cimg::data_font_huge }; + static const unsigned int + font_width[] = { 10,26,52,104 }, + font_height[] = { 13,32,64,128 }, + font_M[] = { 86,91,91,47 }, + font_chunk[] = { sizeof(cimg::data_font_small)/sizeof(char*), + sizeof(cimg::data_font_normal)/sizeof(char*), + sizeof(cimg::data_font_large)/sizeof(char*), + sizeof(cimg::data_font_huge)/sizeof(char*) }; + static const unsigned char font_is_binary[] = { 1,0,0,1 }; + static CImg font_base[4]; + + unsigned int ind = + requested_height<=font_height[0]?0U: + requested_height<=font_height[1]?1U: + requested_height<=font_height[2]?2U:3U; + + // Decompress nearest base font data if needed. + CImg &basef = font_base[ind]; + if (!basef) { + basef.assign(256*font_width[ind],font_height[ind]); + + unsigned char *ptrd = basef; + const unsigned char *const ptrde = basef.end(); + + // Recompose font data from several chunks, to deal with MS compiler limit with big strings (64 Kb). + CImg dataf; + for (unsigned int k = 0; k::string(font_data[ind][k],k==font_chunk[ind] - 1,true),'x'); + + // Uncompress font data (decode RLE). + const unsigned int M = font_M[ind]; + if (font_is_binary[ind]) + for (const char *ptrs = dataf; *ptrs; ++ptrs) { + const int _n = (int)(*ptrs - M - 32), v = _n>=0?255:0, n = _n>=0?_n:-_n; + if (ptrd + n<=ptrde) { std::memset(ptrd,v,n); ptrd+=n; } + else { std::memset(ptrd,v,ptrde - ptrd); break; } + } + else + for (const char *ptrs = dataf; *ptrs; ++ptrs) { + int n = (int)*ptrs - M - 32, v = 0; + if (n>=0) { v = 85*n; n = 1; } + else { + n = -n; + v = (int)*(++ptrs) - M - 32; + if (v<0) { v = 0; --ptrs; } else v*=85; + } + if (ptrd + n<=ptrde) { std::memset(ptrd,v,n); ptrd+=n; } + else { std::memset(ptrd,v,ptrde - ptrd); break; } + } + } + + // Find optimal font cache location to return. + static CImgList fonts[16]; + static bool is_variable_widths[16] = {}; + ind = ~0U; + for (int i = 0; i<16; ++i) + if (!fonts[i] || (is_variable_widths[i]==is_variable_width && requested_height==fonts[i][0]._height)) { + ind = (unsigned int)i; break; // Found empty slot or cached font + } + if (ind==~0U) { // No empty slots nor existing font in cache + fonts->assign(); + std::memmove((void*)fonts,(void*)(fonts + 1),15*sizeof(CImgList)); + std::memmove(is_variable_widths,is_variable_widths + 1,15*sizeof(bool)); + std::memset((void*)(fonts + (ind=15)),0,sizeof(CImgList)); // Free a slot in cache for new font + } + CImgList &font = fonts[ind]; + + // Render requested font. + if (!font) { + is_variable_widths[ind] = is_variable_width; + basef.get_split('x',256).move_to(font); + if (requested_height!=font[0]._height) + cimglist_for(font,l) { + font[l].resize(std::max(1U,font[l]._width*requested_height/font[l]._height),requested_height,-100,-100,5); + cimg_for(font[l],ptr,ucharT) *ptr = font_resizemap[*ptr]; + } + if (is_variable_width) { // Crop font + cimglist_for(font,l) { + CImg& letter = font[l]; + int xmin = letter.width(), xmax = 0; + cimg_forX(letter,x) { // Find xmin + cimg_forY(letter,y) if (letter(x,y)) { xmin = x; break; } + if (xmin!=letter.width()) break; + } + cimg_rofX(letter,x) { // Find xmax + cimg_forY(letter,y) if (letter(x,y)) { xmax = x; break; } + if (xmax) break; + } + if (xmin<=xmax) letter.crop(xmin,0,xmax,letter._height - 1); + } + font[(int)' '].resize(font[(int)'f']._width,-100,-100,-100,0); + if (' ' + 256& FFT(const char axis, const bool invert=false) { + if (is_empty()) return *this; + if (_width==1) insert(1); + if (_width>2) + cimg::warn(_cimglist_instance + "FFT(): Instance has more than 2 images", + cimglist_instance); + CImg::FFT(_data[0],_data[1],axis,invert); + return *this; + } + + //! Compute a 1-D Fast Fourier Transform, along specified axis \newinstance. + CImgList get_FFT(const char axis, const bool invert=false) const { + return CImgList(*this,false).FFT(axis,invert); + } + + //! Compute n-D Fast Fourier Transform. + /** + \param invert Tells if the direct (\c false) or inverse transform (\c true) is computed. + **/ + CImgList& FFT(const bool invert=false) { + if (is_empty()) return *this; + if (_width==1) insert(1); + if (_width>2) + cimg::warn(_cimglist_instance + "FFT(): Instance has more than 2 images", + cimglist_instance); + + CImg::FFT(_data[0],_data[1],invert); + return *this; + } + + //! Compute n-D Fast Fourier Transform \newinstance. + CImgList get_FFT(const bool invert=false) const { + return CImgList(*this,false).FFT(invert); + } + + //! Reverse primitives orientations of a 3D object. + /** + **/ + CImgList& reverse_object3d() { + cimglist_for(*this,l) { + CImg& p = _data[l]; + switch (p.size()) { + case 2 : case 3: cimg::swap(p[0],p[1]); break; + case 6 : cimg::swap(p[0],p[1],p[2],p[4],p[3],p[5]); break; + case 9 : cimg::swap(p[0],p[1],p[3],p[5],p[4],p[6]); break; + case 4 : cimg::swap(p[0],p[1],p[2],p[3]); break; + case 12 : cimg::swap(p[0],p[1],p[2],p[3],p[4],p[6],p[5],p[7],p[8],p[10],p[9],p[11]); break; + } + } + return *this; + } + + //! Reverse primitives orientations of a 3D object \newinstance. + CImgList get_reverse_object3d() const { + return (+*this).reverse_object3d(); + } + + //@} + }; // struct CImgList { ... + + // Completion of previously declared functions + //-------------------------------------------- + namespace cimg { + + // Functions to return standard streams 'stdin', 'stdout' and 'stderr'. + // (throw a CImgIOException when macro 'cimg_use_r' is defined). + inline FILE* _stdin(const bool throw_exception) { +#ifndef cimg_use_r + cimg::unused(throw_exception); + return stdin; +#else + if (throw_exception) { + cimg::exception_mode(0); + throw CImgIOException("cimg::stdin(): Reference to 'stdin' stream not allowed in R mode " + "('cimg_use_r' is defined)."); + } + return 0; +#endif + } + + inline FILE* _stdout(const bool throw_exception) { +#ifndef cimg_use_r + cimg::unused(throw_exception); + return stdout; +#else + if (throw_exception) { + cimg::exception_mode(0); + throw CImgIOException("cimg::stdout(): Reference to 'stdout' stream not allowed in R mode " + "('cimg_use_r' is defined)."); + } + return 0; +#endif + } + + inline FILE* _stderr(const bool throw_exception) { +#ifndef cimg_use_r + cimg::unused(throw_exception); + return stderr; +#else + if (throw_exception) { + cimg::exception_mode(0); + throw CImgIOException("cimg::stderr(): Reference to 'stderr' stream not allowed in R mode " + "('cimg_use_r' is defined)."); + } + return 0; +#endif + } + + // Open a file (similar to std:: fopen(), but with wide character support on Windows). + inline std::FILE *std_fopen(const char *const path, const char *const mode) { + std::FILE *const res = std::fopen(path,mode); + if (res) return res; +#if cimg_OS==2 + // Try alternative method, with wide-character string. + int err = MultiByteToWideChar(CP_UTF8,0,path,-1,0,0); + if (err) { + CImg wpath((unsigned int)err); + err = MultiByteToWideChar(CP_UTF8,0,path,-1,wpath,err); + if (err) { // Convert 'mode' to a wide-character string + err = MultiByteToWideChar(CP_UTF8,0,mode,-1,0,0); + if (err) { + CImg wmode((unsigned int)err); + if (MultiByteToWideChar(CP_UTF8,0,mode,-1,wmode,err)) + return _wfopen(wpath,wmode); + } + } + } +#endif + return 0; + } + + //! Search path of an executable. +#if cimg_OS==2 + inline bool win_searchpath(const char *const exec_name, char *const res, const unsigned int size_res) { + char *ptr = 0; + DWORD err = SearchPathA(0,exec_name,0,size_res,res,&ptr); + return err!=0; + } +#endif + +#if cimg_OS==1 + inline bool posix_searchpath(const char *file) { + if (!file || !*file) return false; + const char *path = std::getenv("PATH"); + + if (!path) path = "/usr/local/bin:/bin:/usr/bin"; + size_t file_len = strnlen(file,NAME_MAX + 1); + if (file_len>NAME_MAX) return false; + size_t path_total_len = strnlen(path,PATH_MAX - 1) + 1; + + char *buf = new char[path_total_len + file_len + 1]; + const char *p = path, *z = 0; + while (true) { + z = std::strchr(p,':'); + if (!z) z = p + std::strlen(p); + if ((size_t)(z - p)>=path_total_len) { + if (!*z++) break; + continue; + } + std::memcpy(buf,p,z - p); + buf[z - p] = '/'; + std::memcpy(buf + (z - p) + (z>p),file,file_len + 1); + if (cimg::is_file(buf)) { delete[] buf; return true; } + if (!*z++) break; + p = z; + } + delete[] buf; + return false; + } +#endif + + //! Get the file or directory attributes with support for UTF-8 paths (Windows only). +#if cimg_OS==2 + inline DWORD win_getfileattributes(const char *const path) { + DWORD res = GetFileAttributesA(path); + if (res==INVALID_FILE_ATTRIBUTES) { + // Try alternative method, with wide-character string. + int err = MultiByteToWideChar(CP_UTF8,0,path,-1,0,0); + if (err) { + CImg wpath((unsigned int)err); + if (MultiByteToWideChar(CP_UTF8,0,path,-1,wpath,err)) res = GetFileAttributesW(wpath); + } + } + return res; + } +#endif + + //! Get/set path to the Program Files/ directory (Windows only). + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the program files. + **/ +#if cimg_OS==2 + inline const char* win_programfiles_path(const char *const user_path=0, const bool reinit_path=false) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(MAX_PATH); + *s_path = 0; + // Note: in the following line, 0x26 = CSIDL_PROGRAM_FILES (not defined on every compiler). +#if !defined(__INTEL_COMPILER) + if (!SHGetSpecialFolderPathA(0,s_path,0x0026,false)) { + const char *const pfPath = std::getenv("PROGRAMFILES"); + if (pfPath) std::strncpy(s_path,pfPath,MAX_PATH - 1); + else std::strcpy(s_path,"C:\\PROGRA~1"); + } +#else + std::strcpy(s_path,"C:\\PROGRA~1"); +#endif + } + cimg::mutex(7,0); + return s_path; + } +#endif + + //! Get/set path to the \c curl binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c curl binary. + **/ + inline const char *curl_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("curl.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\curl.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"curl.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./curl"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"curl"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c dcraw binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c dcraw binary. + **/ + inline const char *dcraw_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("dcraw.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\dcraw.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"dcraw.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./dcraw"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"dcraw"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the FFMPEG's \c ffmpeg binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c ffmpeg binary. + **/ + inline const char *ffmpeg_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("ffmpeg.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\ffmpeg.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"ffmpeg.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./ffmpeg"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"ffmpeg"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the GraphicsMagick's \c gm binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c gm binary. + **/ + inline const char* graphicsmagick_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("gm.exe",s_path,s_path._width)) path_found = true; + const char *const pf_path = win_programfiles_path(); + if (!path_found) { + std::strcpy(s_path,".\\gm.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%.2d-\\gm.exe",pf_path,k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d-Q\\gm.exe",pf_path,k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d\\gm.exe",pf_path,k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",pf_path,k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",pf_path,k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",pf_path,k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%.2d-\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d-Q\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%.2d-\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d-Q\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",k); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gm.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./gm"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gm"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c gunzip binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c gunzip binary. + **/ + inline const char *gunzip_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("gunzip.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\gunzip.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gunzip.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./gunzip"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gunzip"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c gzip binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c gzip binary. + **/ + inline const char *gzip_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("gzip.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\gzip.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gzip.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./gzip"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gzip"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the ImageMagick's \c convert binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c convert binary. + **/ + inline const char* imagemagick_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("magick.exe",s_path,s_path._width)) path_found = true; + const char *const pf_path = win_programfiles_path(); + for (int l = 0; l<2 && !path_found; ++l) { + const char *const s_exe = l?"convert":"magick"; + cimg_snprintf(s_path,s_path._width,".\\%s.exe",s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%.2d-\\%s.exe",pf_path,k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d-Q\\%s.exe",pf_path,k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d\\%s.exe",pf_path,k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%.2d-\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d-Q\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%.2d-\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d-Q\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) cimg_snprintf(s_path,s_path._width,"%s.exe",s_exe); + } +#else + std::strcpy(s_path,"./magick"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + if (!path_found) { + std::strcpy(s_path,"./convert"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + std::strcpy(s_path,"magick"); + if (posix_searchpath("magick")) path_found = true; + } + if (!path_found) std::strcpy(s_path,"convert"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the Medcon's \c medcon binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c medcon binary. + **/ + inline const char* medcon_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("medcon.exe",s_path,s_path._width)) path_found = true; + const char *const pf_path = win_programfiles_path(); + if (!path_found) { + std::strcpy(s_path,".\\medcon.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + cimg_snprintf(s_path,s_path._width,"%s\\XMedCon\\bin\\medcon.bat",pf_path); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + cimg_snprintf(s_path,s_path._width,"%s\\XMedCon\\bin\\medcon.exe",pf_path); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + std::strcpy(s_path,"C:\\XMedCon\\bin\\medcon.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"medcon.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./medcon"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"medcon"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to store temporary files. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path where temporary files can be saved. + **/ + inline const char* temporary_path(const char *const user_path, const bool reinit_path) { +#define _cimg_test_temporary_path(p) \ + if (!path_found) { \ + cimg_snprintf(s_path,s_path._width,"%s",p); \ + cimg_snprintf(tmp,tmp._width,"%s%c%s",s_path.data(),cimg_file_separator,filename_tmp._data); \ + if ((file=cimg::std_fopen(tmp,"wb"))!=0) { cimg::fclose(file); std::remove(tmp); path_found = true; } \ + } + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + CImg tmp(1024), filename_tmp(256); + std::FILE *file = 0; + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.tmp",cimg::filenamerand()); + char *tmpPath = std::getenv("TMP"); + if (!tmpPath) { tmpPath = std::getenv("TEMP"); winformat_string(tmpPath); } + if (tmpPath) _cimg_test_temporary_path(tmpPath); +#if cimg_OS==2 + _cimg_test_temporary_path("C:\\WINNT\\Temp"); + _cimg_test_temporary_path("C:\\WINDOWS\\Temp"); + _cimg_test_temporary_path("C:\\Temp"); + _cimg_test_temporary_path("C:"); + _cimg_test_temporary_path("D:\\WINNT\\Temp"); + _cimg_test_temporary_path("D:\\WINDOWS\\Temp"); + _cimg_test_temporary_path("D:\\Temp"); + _cimg_test_temporary_path("D:"); +#else + _cimg_test_temporary_path("/tmp"); + _cimg_test_temporary_path("/var/tmp"); +#endif + if (!path_found) { + *s_path = 0; + std::strncpy(tmp,filename_tmp,tmp._width - 1); + if ((file=cimg::std_fopen(tmp,"wb"))!=0) { cimg::fclose(file); std::remove(tmp); path_found = true; } + } + if (!path_found) { + cimg::mutex(7,0); + throw CImgIOException("cimg::temporary_path(): Failed to locate path for writing temporary files.\n"); + } + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c wget binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c wget binary. + **/ + inline const char *wget_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (win_searchpath("wget.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\wget.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"wget.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./wget"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"wget"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + +#if cimg_OS==2 + //! Get/set path to the \c powershell binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c wget binary. + **/ + inline const char *powershell_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; + if (win_searchpath("powershell.exe",s_path,s_path._width)) path_found = true; + if (!path_found) { + std::strcpy(s_path,".\\powershell.exe"); + if ((file=cimg::std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"powershell.exe"); + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } +#endif + + // [internal] Sorting function, used by cimg::files(). + inline int _sort_files(const void* a, const void* b) { + const CImg &sa = *(CImg*)a, &sb = *(CImg*)b; + return std::strcmp(sa._data,sb._data); + } + + //! Generate a numbered version of a filename. + inline char* number_filename(const char *const filename, const int number, + const unsigned int digits, char *const str) { + if (!filename) { if (str) *str = 0; return 0; } + const unsigned int siz = (unsigned int)std::strlen(filename); + CImg format(16), body(siz + 32); + const char *const ext = cimg::split_filename(filename,body); + if (*ext) cimg_snprintf(format,format._width,"%%s_%%.%ud.%%s",digits); + else cimg_snprintf(format,format._width,"%%s_%%.%ud",digits); + cimg_snprintf(str,1024,format._data,body._data,number,ext); + return str; + } + + //! Return list of files/directories in specified directory. + /** + \param path Path to the directory. Set to 0 for current directory. + \param is_pattern Tell if specified path has a matching pattern in it. + \param mode Output type, can be primary { 0=files only | 1=folders only | 2=files + folders }. + \param include_path Tell if \c path must be included in resulting filenames. + \return A list of filenames. + **/ + inline CImgList files(const char *const path, const bool is_pattern=false, + const unsigned int mode=2, const bool include_path=false) { + if (!path || !*path) return files("*",true,mode,include_path); + CImgList res; + + // If path is a valid folder name, ignore argument 'is_pattern'. + const bool _is_pattern = is_pattern && !cimg::is_directory(path); + bool is_root = false, is_current = false; + cimg::unused(is_root,is_current); + + // Clean format of input path. + CImg pattern, _path = CImg::string(path); +#if cimg_OS==2 + for (char *ps = _path; *ps; ++ps) if (*ps=='\\') *ps='/'; +#endif + char *pd = _path; + for (char *ps = pd; *ps; ++ps) { if (*ps!='/' || *ps!=*(ps+1)) *(pd++) = *ps; } + *pd = 0; + unsigned int lp = (unsigned int)std::strlen(_path); + if (!_is_pattern && lp && _path[lp - 1]=='/') { + _path[lp - 1] = 0; --lp; +#if cimg_OS!=2 + is_root = !*_path; +#endif + } + + // Separate folder path and matching pattern. + if (_is_pattern) { + const unsigned int bpos = (unsigned int)(cimg::basename(_path,'/') - _path.data()); + CImg::string(_path).move_to(pattern); + if (bpos) { + _path[bpos - 1] = 0; // End 'path' at last slash +#if cimg_OS!=2 + is_root = !*_path; +#endif + } else { // No path to folder specified, assuming current folder + is_current = true; *_path = 0; + } + lp = (unsigned int)std::strlen(_path); + } + + // Windows version. +#if cimg_OS==2 + if (!_is_pattern) { + pattern.assign(lp + 3); + std::memcpy(pattern,_path,lp); + pattern[lp] = '/'; pattern[lp + 1] = '*'; pattern[lp + 2] = 0; + } + WIN32_FIND_DATAA file_data; + const HANDLE dir = FindFirstFileA(pattern.data(),&file_data); + if (dir==INVALID_HANDLE_VALUE) return CImgList::const_empty(); + do { + const char *const filename = file_data.cFileName; + if (*filename!='.' || (filename[1] && (filename[1]!='.' || filename[2]))) { + const unsigned int lf = (unsigned int)std::strlen(filename); + const bool is_directory = (file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)!=0; + if ((!mode && !is_directory) || (mode==1 && is_directory) || mode>=2) { + if (include_path) { + CImg full_filename((lp?lp+1:0) + lf + 1); + if (lp) { std::memcpy(full_filename,_path,lp); full_filename[lp] = '/'; } + std::memcpy(full_filename._data + (lp?lp + 1:0),filename,lf + 1); + full_filename.move_to(res); + } else CImg(filename,lf + 1).move_to(res); + } + } + } while (FindNextFileA(dir,&file_data)); + FindClose(dir); + + // Unix version (posix). +#elif cimg_OS == 1 + DIR *const dir = opendir(is_root?"/":is_current?".":_path.data()); + if (!dir) return CImgList::const_empty(); + struct dirent *ent; + while ((ent=readdir(dir))!=0) { + const char *const filename = ent->d_name; + if (*filename!='.' || (filename[1] && (filename[1]!='.' || filename[2]))) { + const unsigned int lf = (unsigned int)std::strlen(filename); + CImg full_filename(lp + lf + 2); + + if (!is_current) { + full_filename.assign(lp + lf + 2); + if (lp) std::memcpy(full_filename,_path,lp); + full_filename[lp] = '/'; + std::memcpy(full_filename._data + lp + 1,filename,lf + 1); + } else full_filename.assign(filename,lf + 1); + + struct stat st; + if (stat(full_filename,&st)==-1) continue; + const bool is_directory = (st.st_mode & S_IFDIR)!=0; + if ((!mode && !is_directory) || (mode==1 && is_directory) || mode==2) { + if (include_path) { + if (!_is_pattern || (_is_pattern && !fnmatch(pattern,full_filename,0))) + full_filename.move_to(res); + } else { + if (!_is_pattern || (_is_pattern && !fnmatch(pattern,full_filename,0))) + CImg(filename,lf + 1).move_to(res); + } + } + } + } + closedir(dir); +#endif + + // Sort resulting list by lexicographic order. + if (res._width>=2) std::qsort(res._data,res._width,sizeof(CImg),_sort_files); + + return res; + } + + //! Try to guess format from an image file. + /** + \param file Input file (can be \c 0 if \c filename is set). + \param filename Filename, as a C-string (can be \c 0 if \c file is set). + \return C-string containing the guessed file format, or \c 0 if nothing has been guessed. + **/ + inline const char *ftype(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException("cimg::ftype(): Specified filename is (null)."); + static const char + *const _bmp = "bmp", + *const _cr2 = "cr2", + *const _dcm = "dcm", + *const _gif = "gif", + *const _inr = "inr", + *const _jpg = "jpg", + *const _off = "off", + *const _pan = "pan", + *const _pfm = "pfm", + *const _png = "png", + *const _pnm = "pnm", + *const _tif = "tif"; + + const char *f_type = 0; + CImg header; + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { + header._load_raw(file,filename,512,1,1,1,false,false,0); + const unsigned char *const uheader = (unsigned char*)header._data; + if (!std::strncmp(header,"OFF\n",4)) f_type = _off; // OFF + else if (!std::strncmp(header,"#INRIMAGE",9)) // INRIMAGE + f_type = _inr; + else if (!std::strncmp(header,"PANDORE",7)) // PANDORE + f_type = _pan; + else if (!std::strncmp(header.data() + 128,"DICM",4)) // DICOM + f_type = _dcm; + else if (uheader[0]==0xFF && uheader[1]==0xD8 && uheader[2]==0xFF) // JPEG + f_type = _jpg; + else if (header[0]=='B' && header[1]=='M') // BMP + f_type = _bmp; + else if (header[0]=='G' && header[1]=='I' && header[2]=='F' && header[3]=='8' && header[5]=='a' && + (header[4]=='7' || header[4]=='9')) // GIF + f_type = _gif; + else if (uheader[0]==0x89 && uheader[1]==0x50 && uheader[2]==0x4E && uheader[3]==0x47 && + uheader[4]==0x0D && uheader[5]==0x0A && uheader[6]==0x1A && uheader[7]==0x0A) // PNG + f_type = _png; + else if (uheader[0]==0x49 && uheader[1]==0x49 && uheader[2]==0x2A && uheader[3]==0x00 && // CR2 + uheader[4]==0x10 && uheader[5]==0x00 && uheader[6]==0x00 && uheader[7]==0x00 && + uheader[8]==0x43 && uheader[9]==0x52) + f_type = _cr2; + else if ((uheader[0]==0x49 && uheader[1]==0x49 && uheader[2]==0x2A && uheader[3]==0x00) || + (uheader[0]==0x4D && uheader[1]==0x4D && uheader[2]==0x00 && uheader[3]==0x2A)) // TIFF + f_type = _tif; + else { // PNM or PFM + CImgList _header = header.get_split(CImg::vector('\n'),0,false); + cimglist_for(_header,l) { + if (_header(l,0)=='#') continue; + if (_header[l]._width==2 && _header(l,0)=='P') { + const char c = _header(l,1); + if (c=='f' || c=='F') { f_type = _pfm; break; } + if (c>='1' && c<='9') { f_type = _pnm; break; } + } + f_type = 0; break; + } + } + } catch (CImgIOException&) { } + cimg::exception_mode(omode); + return f_type; + } + + //! Load file from network as a local temporary file. + /** + \param url URL of the filename, as a C-string. + \param[out] filename_local C-string containing the path to a local copy of \c filename. + \param timeout Maximum time (in seconds) authorized for downloading the file from the URL. + \param try_fallback When using libcurl, tells using system calls as fallbacks in case of libcurl failure. + \param referer Referer used, as a C-string. + \param user_agent User agent used, as a C-string. + \return Value of \c filename_local. + \note Use the \c libcurl library, or the external binaries \c wget or \c curl to perform the download. + **/ + inline char *load_network(const char *const url, char *const filename_local, + const unsigned int timeout, const bool try_fallback, + const char *const referer, const char *const user_agent) { + if (!url) + throw CImgArgumentException("cimg::load_network(): Specified URL is (null)."); + if (!filename_local) + throw CImgArgumentException("cimg::load_network(): Specified destination string is (null)."); + if (!network_mode()) + throw CImgIOException("cimg::load_network(): Loading files from network is disabled."); + + const char *const __ext = cimg::split_filename(url), *const _ext = (*__ext && __ext>url)?__ext - 1:__ext; + CImg ext = CImg::string(_ext); + std::FILE *file = 0; + *filename_local = 0; + if (ext._width>16 || !cimg::strncasecmp(ext,"cgi",3)) *ext = 0; + else cimg::strwindows_reserved(ext); + do { + cimg_snprintf(filename_local,256,"%s%c%s%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext._data); + if ((file = cimg::std_fopen(filename_local,"rb"))!=0) cimg::fclose(file); + } while (file); + file = 0; + +#ifdef cimg_use_curl + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { + CURL *curl = 0; + CURLcode res; + curl = curl_easy_init(); + if (curl) { + file = cimg::fopen(filename_local,"wb"); + curl_easy_setopt(curl,CURLOPT_URL,url); + curl_easy_setopt(curl,CURLOPT_WRITEFUNCTION,0); + curl_easy_setopt(curl,CURLOPT_WRITEDATA,file); + curl_easy_setopt(curl,CURLOPT_SSL_VERIFYPEER,0L); + curl_easy_setopt(curl,CURLOPT_SSL_VERIFYHOST,0L); + curl_easy_setopt(curl,CURLOPT_FOLLOWLOCATION,1L); + curl_easy_setopt(curl,CURLOPT_MAXREDIRS,20L); + if (timeout) curl_easy_setopt(curl,CURLOPT_TIMEOUT,(long)timeout); + if (std::strchr(url,'?')) curl_easy_setopt(curl,CURLOPT_HTTPGET,1L); + if (referer) curl_easy_setopt(curl,CURLOPT_REFERER,referer); + if (user_agent) curl_easy_setopt(curl,CURLOPT_USERAGENT,user_agent); + res = curl_easy_perform(curl); + curl_easy_cleanup(curl); + cimg::fseek(file,0,SEEK_END); // Check if file size is 0 + const cimg_ulong siz = cimg::ftell(file); + cimg::fclose(file); + file = 0; + if (siz>0 && res==CURLE_OK) { cimg::exception_mode(omode); return filename_local; } + else std::remove(filename_local); + } + } catch (...) { } + cimg::exception_mode(omode); + if (!try_fallback) throw CImgIOException("cimg::load_network(): Failed to load file '%s' with libcurl.",url); +#endif + + CImg command((unsigned int)std::strlen(url) + 1024), s_referer, s_user_agent, s_timeout; + cimg::unused(try_fallback); + + // Try with 'curl' first. + if (timeout) cimg_snprintf(s_timeout.assign(64),64,"-m %u ",timeout); + else s_timeout.assign(1,1,1,1,0); + if (referer) cimg_snprintf(s_referer.assign(1024),1024,"-e %s ",referer); + else s_referer.assign(1,1,1,1,0); + if (user_agent) cimg_snprintf(s_user_agent.assign(1024),1024,"-A \"%s\" ",user_agent); + else s_user_agent.assign(1,1,1,1,0); + cimg_snprintf(command,command._width, + "\"%s\" -L --max-redirs 20 %s%s%s-f --silent --compressed -o \"%s\" \"%s\"", + cimg::curl_path(),s_timeout._data,s_referer._data,s_user_agent._data,filename_local, + CImg::string(url)._system_strescape().data()); + cimg::system(command,cimg::curl_path()); + +#if cimg_OS==2 + if (cimg::fsize(filename_local)<=0) { // Try with 'powershell' otherwise. + if (timeout) cimg_snprintf(s_timeout.assign(64),64,"-TimeoutSec %u ",timeout); + else s_timeout.assign(1,1,1,1,0); + if (referer) cimg_snprintf(s_referer.assign(1024),1024,"-Headers @{'Referer'='%s'} ",referer); + else s_referer.assign(1,1,1,1,0); + if (user_agent) cimg_snprintf(s_user_agent.assign(1024),1024,"-UserAgent \"%s\" ",user_agent); + else s_user_agent.assign(1,1,1,1,0); + cimg_snprintf(command,command._width, + "\"%s\" -NonInteractive -Command Invoke-WebRequest %s%s%s-OutFile \"%s\" -Uri \"%s\"", + cimg::powershell_path(),s_timeout._data,s_referer._data,s_user_agent._data,filename_local, + CImg::string(url)._system_strescape().data()); + cimg::system(command,cimg::powershell_path()); + } +#endif + + if (cimg::fsize(filename_local)<=0) { // Try with 'wget' otherwise. + if (timeout) cimg_snprintf(s_timeout.assign(64),64,"-T %u ",timeout); + else s_timeout.assign(1,1,1,1,0); + if (referer) cimg_snprintf(s_referer.assign(1024),1024,"--referer=%s ",referer); + else s_referer.assign(1,1,1,1,0); + if (user_agent) cimg_snprintf(s_user_agent.assign(1024),1024,"--user-agent=\"%s\" ",user_agent); + else s_user_agent.assign(1,1,1,1,0); + cimg_snprintf(command,command._width, + "\"%s\" --max-redirect=20 %s%s%s-q -r -l 0 --no-cache -O \"%s\" \"%s\"", + cimg::wget_path(),s_timeout._data,s_referer._data,s_user_agent._data,filename_local, + CImg::string(url)._system_strescape().data()); + cimg::system(command,cimg::wget_path()); + + if (cimg::fsize(filename_local)<=0) + throw CImgIOException("cimg::load_network(): Failed to load file '%s' with external commands " +#if cimg_OS==2 + "'wget', 'curl', or 'powershell'.",url); +#else + "'wget' or 'curl'.",url); +#endif + + // Try gunzip it. + cimg_snprintf(command,command._width,"%s.gz",filename_local); + std::rename(filename_local,command); + cimg_snprintf(command,command._width,"\"%s\" --quiet \"%s.gz\"", + gunzip_path(),filename_local); + cimg::system(command,gunzip_path()); + file = cimg::std_fopen(filename_local,"rb"); + if (!file) { + cimg_snprintf(command,command._width,"%s.gz",filename_local); + std::rename(command,filename_local); + file = cimg::std_fopen(filename_local,"rb"); + } + } + + if (file) cimg::fclose(file); + return filename_local; + } + + // Implement a tic/toc mechanism to display elapsed time of algorithms. + inline cimg_uint64 tictoc(const bool is_tic) { + cimg::mutex(2); + static CImg times(64); + static unsigned int pos = 0; + const cimg_uint64 t1 = cimg::time(); + if (is_tic) { + // Tic + times[pos++] = t1; + if (pos>=times._width) + throw CImgArgumentException("cimg::tic(): Too much calls to 'cimg::tic()' without calls to 'cimg::toc()'."); + cimg::mutex(2,0); + return t1; + } + + // Toc + if (!pos) + throw CImgArgumentException("cimg::toc(): No previous call to 'cimg::tic()' has been made."); + const cimg_uint64 + t0 = times[--pos], + dt = t1>=t0?(t1 - t0):cimg::type::max(); + const unsigned int + edays = (unsigned int)(dt/86400000.), + ehours = (unsigned int)((dt - edays*86400000.)/3600000.), + emin = (unsigned int)((dt - edays*86400000. - ehours*3600000.)/60000.), + esec = (unsigned int)((dt - edays*86400000. - ehours*3600000. - emin*60000.)/1000.), + ems = (unsigned int)(dt - edays*86400000. - ehours*3600000. - emin*60000. - esec*1000.); + if (!edays && !ehours && !emin && !esec) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u ms%s\n", + cimg::t_red,1 + 2*pos,"",ems,cimg::t_normal); + else { + if (!edays && !ehours && !emin) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",esec,ems,cimg::t_normal); + else { + if (!edays && !ehours) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u min %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",emin,esec,ems,cimg::t_normal); + else{ + if (!edays) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u hours %u min %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",ehours,emin,esec,ems,cimg::t_normal); + else{ + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u days %u hours %u min %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",edays,ehours,emin,esec,ems,cimg::t_normal); + } + } + } + } + cimg::mutex(2,0); + return dt; + } + + // Return a temporary string describing the size of a memory buffer. + inline const char *strbuffersize(const cimg_ulong size) { + static CImg res(256); + cimg::mutex(5); + if (size<1024LU) cimg_snprintf(res,res._width,"%lu byte%s",(unsigned long)size,size>1?"s":""); + else if (size<1024*1024LU) { const float nsize = size/1024.f; cimg_snprintf(res,res._width,"%.1f Kio",nsize); } + else if (size<1024*1024*1024LU) { + const float nsize = size/(1024*1024.f); cimg_snprintf(res,res._width,"%.1f Mio",nsize); + } else { const float nsize = size/(1024*1024*1024.f); cimg_snprintf(res,res._width,"%.1f Gio",nsize); } + cimg::mutex(5,0); + return res; + } + + //! Display a simple dialog box, and wait for the user's response. + /** + \param title Title of the dialog window. + \param msg Main message displayed inside the dialog window. + \param button1_label Label of the 1st button. + \param button2_label Label of the 2nd button (\c 0 to hide button). + \param button3_label Label of the 3rd button (\c 0 to hide button). + \param button4_label Label of the 4th button (\c 0 to hide button). + \param button5_label Label of the 5th button (\c 0 to hide button). + \param button6_label Label of the 6th button (\c 0 to hide button). + \param logo Image logo displayed at the left of the main message. + \param is_centered Tells if the dialog window must be centered on the screen. + \return Index of clicked button (from \c 0 to \c 5), or \c -1 if the dialog window has been closed by the user. + \note + - Up to 6 buttons can be defined in the dialog window. + - The function returns when a user clicked one of the button or closed the dialog window. + - If a button text is set to 0, the corresponding button (and the following) will not appear in the dialog box. + At least one button must be specified. + **/ + template + inline int dialog(const char *const title, const char *const msg, + const char *const button1_label, const char *const button2_label, + const char *const button3_label, const char *const button4_label, + const char *const button5_label, const char *const button6_label, + const CImg& logo, const bool is_centered=false) { +#if cimg_display==0 + cimg::unused(title,msg,button1_label,button2_label,button3_label,button4_label,button5_label,button6_label, + logo._data,is_centered); + throw CImgIOException("cimg::dialog(): No display available."); +#else + static const unsigned char + black[] = { 0,0,0 }, white[] = { 255,255,255 }, gray[] = { 200,200,200 }, gray2[] = { 150,150,150 }; + + // Create buttons and canvas graphics + CImgList buttons, cbuttons, sbuttons; + if (button1_label) { + CImg().draw_text(0,0,button1_label,black,gray,1,13).move_to(buttons); + if (button2_label) { + CImg().draw_text(0,0,button2_label,black,gray,1,13).move_to(buttons); + if (button3_label) { + CImg().draw_text(0,0,button3_label,black,gray,1,13).move_to(buttons); + if (button4_label) { + CImg().draw_text(0,0,button4_label,black,gray,1,13).move_to(buttons); + if (button5_label) { + CImg().draw_text(0,0,button5_label,black,gray,1,13).move_to(buttons); + if (button6_label) { + CImg().draw_text(0,0,button6_label,black,gray,1,13).move_to(buttons); + }}}}}} + if (!buttons._width) + throw CImgArgumentException("cimg::dialog(): No buttons have been defined."); + cimglist_for(buttons,l) buttons[l].resize(-100,-100,1,3); + + unsigned int bw = 0, bh = 0; + cimglist_for(buttons,l) { bw = std::max(bw,buttons[l]._width); bh = std::max(bh,buttons[l]._height); } + bw+=8; bh+=8; + if (bw<64) bw = 64; + if (bw>128) bw = 128; + if (bh<24) bh = 24; + if (bh>48) bh = 48; + + CImg button(bw,bh,1,3); + button.draw_rectangle(0,0,bw - 1,bh - 1,gray); + button.draw_line(0,0,bw - 1,0,white).draw_line(0,bh - 1,0,0,white); + button.draw_line(bw - 1,0,bw - 1,bh - 1,black).draw_line(bw - 1,bh - 1,0,bh - 1,black); + button.draw_line(1,bh - 2,bw - 2,bh - 2,gray2).draw_line(bw - 2,bh - 2,bw - 2,1,gray2); + CImg sbutton(bw,bh,1,3); + sbutton.draw_rectangle(0,0,bw - 1,bh - 1,gray); + sbutton.draw_line(0,0,bw - 1,0,black).draw_line(bw - 1,0,bw - 1,bh - 1,black); + sbutton.draw_line(bw - 1,bh - 1,0,bh - 1,black).draw_line(0,bh - 1,0,0,black); + sbutton.draw_line(1,1,bw - 2,1,white).draw_line(1,bh - 2,1,1,white); + sbutton.draw_line(bw - 2,1,bw - 2,bh - 2,black).draw_line(bw - 2,bh - 2,1,bh - 2,black); + sbutton.draw_line(2,bh - 3,bw - 3,bh - 3,gray2).draw_line(bw - 3,bh - 3,bw - 3,2,gray2); + sbutton.draw_line(4,4,bw - 5,4,black,1,0xAAAAAAAA,true). + draw_line(bw - 5,4,bw - 5,bh - 5,black,1,0xAAAAAAAA,false); + sbutton.draw_line(bw - 5,bh - 5,4,bh - 5,black,1,0xAAAAAAAA,false). + draw_line(4,bh - 5,4,4,black,1,0xAAAAAAAA,false); + CImg cbutton(bw,bh,1,3); + cbutton.draw_rectangle(0,0,bw - 1,bh - 1,black).draw_rectangle(1,1,bw - 2,bh - 2,gray2). + draw_rectangle(2,2,bw - 3,bh - 3,gray); + cbutton.draw_line(4,4,bw - 5,4,black,1,0xAAAAAAAA,true). + draw_line(bw - 5,4,bw - 5,bh - 5,black,1,0xAAAAAAAA,false); + cbutton.draw_line(bw - 5,bh - 5,4,bh - 5,black,1,0xAAAAAAAA,false). + draw_line(4,bh - 5,4,4,black,1,0xAAAAAAAA,false); + + cimglist_for(buttons,ll) { + CImg(cbutton). + draw_image(1 + (bw -buttons[ll].width())/2,1 + (bh - buttons[ll].height())/2,buttons[ll]). + move_to(cbuttons); + CImg(sbutton). + draw_image((bw - buttons[ll].width())/2,(bh - buttons[ll].height())/2,buttons[ll]). + move_to(sbuttons); + CImg(button). + draw_image((bw - buttons[ll].width())/2,(bh - buttons[ll].height())/2,buttons[ll]). + move_to(buttons[ll]); + } + + CImg canvas; + if (msg) + ((CImg().draw_text(0,0,"%s",gray,0,1,13,msg)*=-1)+=200).resize(-100,-100,1,3).move_to(canvas); + + const unsigned int + bwall = (buttons._width - 1)*(12 + bw) + bw, + w = cimg::max(196U,36 + logo._width + canvas._width,24 + bwall), + h = cimg::max(96U,36 + canvas._height + bh,36 + logo._height + bh), + lx = 12 + (canvas._data?0:((w - 24 - logo._width)/2)), + ly = (h - 12 - bh - logo._height)/2, + tx = lx + logo._width + 12, + ty = (h - 12 - bh - canvas._height)/2, + bx = (w - bwall)/2, + by = h - 12 - bh; + + if (canvas._data) + canvas = CImg(w,h,1,3). + draw_rectangle(0,0,w - 1,h - 1,gray). + draw_line(0,0,w - 1,0,white).draw_line(0,h - 1,0,0,white). + draw_line(w - 1,0,w - 1,h - 1,black).draw_line(w - 1,h - 1,0,h - 1,black). + draw_image(tx,ty,canvas); + else + canvas = CImg(w,h,1,3). + draw_rectangle(0,0,w - 1,h - 1,gray). + draw_line(0,0,w - 1,0,white).draw_line(0,h - 1,0,0,white). + draw_line(w - 1,0,w - 1,h - 1,black).draw_line(w - 1,h - 1,0,h - 1,black); + if (logo._data) canvas.draw_image(lx,ly,logo); + + unsigned int xbuttons[6] = {}; + cimglist_for(buttons,lll) { + xbuttons[lll] = bx + (bw + 12)*lll; + canvas.draw_image(xbuttons[lll],by,buttons[lll]); + } + + // Open window and enter events loop + CImgDisplay disp(canvas,title?title:" ",0,false,is_centered?true:false); + if (is_centered) disp.move((CImgDisplay::screen_width() - disp.width())/2, + (CImgDisplay::screen_height() - disp.height())/2); + bool stop_flag = false, refresh = false; + int oselected = -1, oclicked = -1, selected = -1, clicked = -1; + while (!disp.is_closed() && !stop_flag) { + if (refresh) { + if (clicked>=0) + CImg(canvas).draw_image(xbuttons[clicked],by,cbuttons[clicked]).display(disp); + else { + if (selected>=0) + CImg(canvas).draw_image(xbuttons[selected],by,sbuttons[selected]).display(disp); + else canvas.display(disp); + } + refresh = false; + } + disp.wait(15); + if (disp.is_resized()) disp.resize(disp,false); + + if (disp.button()&1) { + oclicked = clicked; + clicked = -1; + cimglist_for(buttons,l) + if (disp.mouse_y()>=(int)by && disp.mouse_y()<(int)(by + bh) && + disp.mouse_x()>=(int)xbuttons[l] && disp.mouse_x()<(int)(xbuttons[l] + bw)) { + clicked = selected = l; + refresh = true; + } + if (clicked!=oclicked) refresh = true; + } else if (clicked>=0) stop_flag = true; + + if (disp.key()) { + oselected = selected; + switch (disp.key()) { + case cimg::keyESC : selected = -1; stop_flag = true; break; + case cimg::keyENTER : if (selected<0) selected = 0; stop_flag = true; break; + case cimg::keyTAB : + case cimg::keyARROWRIGHT : + case cimg::keyARROWDOWN : selected = (selected + 1)%buttons.width(); break; + case cimg::keyARROWLEFT : + case cimg::keyARROWUP : selected = (selected + buttons.width() - 1)%buttons.width(); break; + } + disp.set_key(); + if (selected!=oselected) refresh = true; + } + } + if (!disp) selected = -1; + return selected; +#endif + } + + //! Display a simple dialog box, and wait for the user's response \specialization. + inline int dialog(const char *const title, const char *const msg, + const char *const button1_label, const char *const button2_label, + const char *const button3_label, const char *const button4_label, + const char *const button5_label, const char *const button6_label, + const bool is_centered) { + return dialog(title,msg,button1_label,button2_label,button3_label,button4_label,button5_label,button6_label, + CImg::_logo40x38(),is_centered); + } + + //! Evaluate math expression. + /** + \param expression C-string describing the formula to evaluate. + \param x Value of the pre-defined variable \c x. + \param y Value of the pre-defined variable \c y. + \param z Value of the pre-defined variable \c z. + \param c Value of the pre-defined variable \c c. + \return Result of the formula evaluation. + \note Set \c expression to \c 0 to keep evaluating the last specified \c expression. + \par Example + \code + const double + res1 = cimg::eval("cos(x)^2 + sin(y)^2",2,2), // will return '1' + res2 = cimg::eval(0,1,1); // will return '1' too + \endcode + **/ + inline double eval(const char *const expression, const double x, const double y, const double z, const double c) { + static const CImg empty; + return empty.eval(expression,x,y,z,c); + } + + template + inline CImg::type> eval(const char *const expression, const CImg& xyzc) { + static const CImg empty; + return empty.eval(expression,xyzc); + } + + } // namespace cimg { ... +} // namespace cimg_library { ... + +//! Short alias name. +namespace cil = cimg_library; + +#ifdef _cimg_redefine_False +#define False 0 +#endif +#ifdef _cimg_redefine_True +#define True 1 +#endif +#ifdef _cimg_redefine_Status +#define Status int +#endif +#ifdef _cimg_redefine_Success +#define Success 0 +#endif +#ifdef _cimg_redefine_min +#define min(a,b) (((a)<(b))?(a):(b)) +#endif +#ifdef _cimg_redefine_max +#define max(a,b) (((a)>(b))?(a):(b)) +#endif +#ifdef _cimg_redefine_PI +#define PI 3.141592653589793238462643383 +#endif +#ifdef _MSC_VER +#pragma warning(pop) +#endif + +#endif + +// Local Variables: +// mode: c++ +// End: diff --git a/src/ui/components/libs/tiv_lib.cpp b/src/ui/components/libs/tiv_lib.cpp new file mode 100644 index 0000000..e2cf5bf --- /dev/null +++ b/src/ui/components/libs/tiv_lib.cpp @@ -0,0 +1,553 @@ +/* + * Copyright (c) 2017-2023, Stefan Haustein, Aaron Liu + * + * This file is free software: you may copy, redistribute and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation, either version 3 of the License, or (at your + * option) any later version. + * + * This file is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + * Alternatively, you may copy, redistribute and/or modify this file under + * the terms of the Apache License, version 2.0: + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * https://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + #include "tiv_lib.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#ifdef _POSIX_VERSION +// Console output size detection +#include +// Error explanation, for some reason +#include +#endif + +#ifdef _WIN32 +#include +// Error explanation +#include +#endif + + +namespace tiv +{ + +const int END_MARKER = 0; + +// An interleaved map of 4x8 bit character bitmaps (each hex digit represents a +// row) to the corresponding Unicode character code point. +constexpr unsigned int BITMAPS[] = { + 0x00000000, 0x00a0, 0, + + // Block graphics + // 0xffff0000, 0x2580, 0, // upper 1/2; redundant with inverse lower 1/2 + + 0x0000000f, 0x2581, 0, // lower 1/8 + 0x000000ff, 0x2582, 0, // lower 1/4 + 0x00000fff, 0x2583, 0, + 0x0000ffff, 0x2584, 0, // lower 1/2 + 0x000fffff, 0x2585, 0, + 0x00ffffff, 0x2586, 0, // lower 3/4 + 0x0fffffff, 0x2587, 0, + // 0xffffffff, 0x2588, // full; redundant with inverse space + + 0xeeeeeeee, 0x258a, 0, // left 3/4 + 0xcccccccc, 0x258c, 0, // left 1/2 + 0x88888888, 0x258e, 0, // left 1/4 + + 0x0000cccc, 0x2596, 0, // quadrant lower left + 0x00003333, 0x2597, 0, // quadrant lower right + 0xcccc0000, 0x2598, 0, // quadrant upper left + // 0xccccffff, 0x2599, // 3/4 redundant with inverse 1/4 + 0xcccc3333, 0x259a, 0, // diagonal 1/2 + // 0xffffcccc, 0x259b, // 3/4 redundant + // 0xffff3333, 0x259c, // 3/4 redundant + 0x33330000, 0x259d, 0, // quadrant upper right + // 0x3333cccc, 0x259e, // 3/4 redundant + // 0x3333ffff, 0x259f, // 3/4 redundant + + // Line drawing subset: no double lines, no complex light lines + + 0x000ff000, 0x2501, 0, // Heavy horizontal + 0x66666666, 0x2503, 0, // Heavy vertical + + 0x00077666, 0x250f, 0, // Heavy down and right + 0x000ee666, 0x2513, 0, // Heavy down and left + 0x66677000, 0x2517, 0, // Heavy up and right + 0x666ee000, 0x251b, 0, // Heavy up and left + + 0x66677666, 0x2523, 0, // Heavy vertical and right + 0x666ee666, 0x252b, 0, // Heavy vertical and left + 0x000ff666, 0x2533, 0, // Heavy down and horizontal + 0x666ff000, 0x253b, 0, // Heavy up and horizontal + 0x666ff666, 0x254b, 0, // Heavy cross + + 0x000cc000, 0x2578, 0, // Bold horizontal left + 0x00066000, 0x2579, 0, // Bold horizontal up + 0x00033000, 0x257a, 0, // Bold horizontal right + 0x00066000, 0x257b, 0, // Bold horizontal down + + 0x06600660, 0x254f, 0, // Heavy double dash vertical + + 0x000f0000, 0x2500, 0, // Light horizontal + 0x0000f000, 0x2500, 0, // + 0x44444444, 0x2502, 0, // Light vertical + 0x22222222, 0x2502, 0, + + 0x000e0000, 0x2574, 0, // light left + 0x0000e000, 0x2574, 0, // light left + 0x44440000, 0x2575, 0, // light up + 0x22220000, 0x2575, 0, // light up + 0x00030000, 0x2576, 0, // light right + 0x00003000, 0x2576, 0, // light right + 0x00004444, 0x2577, 0, // light down + 0x00002222, 0x2577, 0, // light down + + // Misc technical + + 0x44444444, 0x23a2, 0, // [ extension + 0x22222222, 0x23a5, 0, // ] extension + + 0x0f000000, 0x23ba, 0, // Horizontal scanline 1 + 0x00f00000, 0x23bb, 0, // Horizontal scanline 3 + 0x00000f00, 0x23bc, 0, // Horizontal scanline 7 + 0x000000f0, 0x23bd, 0, // Horizontal scanline 9 + + // Geometrical shapes. Tricky because some of them are too wide. + + // 0x00ffff00, 0x25fe, 0, // Black medium small square + 0x00066000, 0x25aa, 0, // Black small square + + // 0x11224488, 0x2571, 0, // diagonals + // 0x88442211, 0x2572, 0, + // 0x99666699, 0x2573, 0, + // 0x000137f0, 0x25e2, 0, // Triangles + // 0x0008cef0, 0x25e3, 0, + // 0x000fec80, 0x25e4, 0, + // 0x000f7310, 0x25e5, 0, + + // Teletext / legacy graphics 3x2 block character codes. + // Using a 3-2-3 pattern consistently, perhaps we should create automatic + // variations.... + + 0xccc00000, 0xfb00, FLAG_TELETEXT, + 0x33300000, 0xfb01, FLAG_TELETEXT, + 0xfff00000, 0xfb02, FLAG_TELETEXT, + 0x000cc000, 0xfb03, FLAG_TELETEXT, + 0xccccc000, 0xfb04, FLAG_TELETEXT, + 0x333cc000, 0xfb05, FLAG_TELETEXT, + 0xfffcc000, 0xfb06, FLAG_TELETEXT, + 0x00033000, 0xfb07, FLAG_TELETEXT, + 0xccc33000, 0xfb08, FLAG_TELETEXT, + 0x33333000, 0xfb09, FLAG_TELETEXT, + 0xfff33000, 0xfb0a, FLAG_TELETEXT, + 0x000ff000, 0xfb0b, FLAG_TELETEXT, + 0xcccff000, 0xfb0c, FLAG_TELETEXT, + 0x333ff000, 0xfb0d, FLAG_TELETEXT, + 0xfffff000, 0xfb0e, FLAG_TELETEXT, + 0x00000ccc, 0xfb0f, FLAG_TELETEXT, + + 0xccc00ccc, 0xfb10, FLAG_TELETEXT, + 0x33300ccc, 0xfb11, FLAG_TELETEXT, + 0xfff00ccc, 0xfb12, FLAG_TELETEXT, + 0x000ccccc, 0xfb13, FLAG_TELETEXT, + 0x333ccccc, 0xfb14, FLAG_TELETEXT, + 0xfffccccc, 0xfb15, FLAG_TELETEXT, + 0x00033ccc, 0xfb16, FLAG_TELETEXT, + 0xccc33ccc, 0xfb17, FLAG_TELETEXT, + 0x33333ccc, 0xfb18, FLAG_TELETEXT, + 0xfff33ccc, 0xfb19, FLAG_TELETEXT, + 0x000ffccc, 0xfb1a, FLAG_TELETEXT, + 0xcccffccc, 0xfb1b, FLAG_TELETEXT, + 0x333ffccc, 0xfb1c, FLAG_TELETEXT, + 0xfffffccc, 0xfb1d, FLAG_TELETEXT, + 0x00000333, 0xfb1e, FLAG_TELETEXT, + 0xccc00333, 0xfb1f, FLAG_TELETEXT, + + 0x33300333, 0x1b20, FLAG_TELETEXT, + 0xfff00333, 0x1b21, FLAG_TELETEXT, + 0x000cc333, 0x1b22, FLAG_TELETEXT, + 0xccccc333, 0x1b23, FLAG_TELETEXT, + 0x333cc333, 0x1b24, FLAG_TELETEXT, + 0xfffcc333, 0x1b25, FLAG_TELETEXT, + 0x00033333, 0x1b26, FLAG_TELETEXT, + 0xccc33333, 0x1b27, FLAG_TELETEXT, + 0xfff33333, 0x1b28, FLAG_TELETEXT, + 0x000ff333, 0x1b29, FLAG_TELETEXT, + 0xcccff333, 0x1b2a, FLAG_TELETEXT, + 0x333ff333, 0x1b2b, FLAG_TELETEXT, + 0xfffff333, 0x1b2c, FLAG_TELETEXT, + 0x00000fff, 0x1b2d, FLAG_TELETEXT, + 0xccc00fff, 0x1b2e, FLAG_TELETEXT, + 0x33300fff, 0x1b2f, FLAG_TELETEXT, + + 0xfff00fff, 0x1b30, FLAG_TELETEXT, + 0x000ccfff, 0x1b31, FLAG_TELETEXT, + 0xcccccfff, 0x1b32, FLAG_TELETEXT, + 0x333ccfff, 0x1b33, FLAG_TELETEXT, + 0xfffccfff, 0x1b34, FLAG_TELETEXT, + 0x00033fff, 0x1b35, FLAG_TELETEXT, + 0xccc33fff, 0x1b36, FLAG_TELETEXT, + 0x33333fff, 0x1b37, FLAG_TELETEXT, + 0xfff33fff, 0x1b38, FLAG_TELETEXT, + 0x000fffff, 0x1b39, FLAG_TELETEXT, + 0xcccfffff, 0x1b3a, FLAG_TELETEXT, + 0x333fffff, 0x1b3b, FLAG_TELETEXT, + + 0, END_MARKER, 0 // End marker +}; + +// The channel indices are 0, 1, 2 for R, G, B +unsigned char get_channel(unsigned long rgb, int index) { + return (unsigned char) ((rgb >> ((2 - index) * 8)) & 255); +} + +CharData createCharData(GetPixelFunction get_pixel, int x0, int y0, + int codepoint, int pattern) { + CharData result; + result.codePoint = codepoint; + int fg_count = 0; + int bg_count = 0; + unsigned int mask = 0x80000000; + + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + int *avg; + if (pattern & mask) { + avg = result.fgColor.data(); + fg_count++; + } else { + avg = result.bgColor.data(); + bg_count++; + } + long rgb = get_pixel(x0 + x, y0 + y); + for (int i = 0; i < 3; i++) { + avg[i] += get_channel(rgb, i); + } + mask = mask >> 1; + } + } + + // Calculate the average color value for each bucket + for (int i = 0; i < 3; i++) { + if (bg_count != 0) { + result.bgColor[i] /= bg_count; + } + if (fg_count != 0) { + result.fgColor[i] /= fg_count; + } + } + return result; +} + +CharData findCharData(GetPixelFunction get_pixel, int x0, int y0, + const int &flags) { + int min[3] = {255, 255, 255}; + int max[3] = {0}; + std::map count_per_color; + + // Determine the minimum and maximum value for each color channel + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + long color = 0; + long rgb = get_pixel(x0 + x, y0 + y); + for (int i = 0; i < 3; i++) { + int d = get_channel(rgb, i); + min[i] = std::min(min[i], d); + max[i] = std::max(max[i], d); + color = (color << 8) | d; + } + count_per_color[color]++; + } + } + + std::multimap color_per_count; + for (auto i = count_per_color.begin(); i != count_per_color.end(); ++i) { + color_per_count.insert(std::pair(i->second, i->first)); + } + + auto iter = color_per_count.rbegin(); + int count2 = iter->first; + long max_count_color_1 = iter->second; + long max_count_color_2 = max_count_color_1; + if ((++iter) != color_per_count.rend()) { + count2 += iter->first; + max_count_color_2 = iter->second; + } + + unsigned int bits = 0; + bool direct = count2 > (8 * 4) / 2; + + if (direct) { + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + bits = bits << 1; + int d1 = 0; + int d2 = 0; + unsigned long rgb = get_pixel(x0 + x, y0 + y); + for (int i = 0; i < 3; i++) { + int shift = 16 - 8 * i; + int c1 = (max_count_color_1 >> shift) & 255; + int c2 = (max_count_color_2 >> shift) & 255; + int c = get_channel(rgb, i); + d1 += (c1 - c) * (c1 - c); + d2 += (c2 - c) * (c2 - c); + } + if (d1 > d2) { + bits |= 1; + } + } + } + } else { + // Determine the color channel with the greatest range. + int splitIndex = 0; + int bestSplit = 0; + for (int i = 0; i < 3; i++) { + if (max[i] - min[i] > bestSplit) { + bestSplit = max[i] - min[i]; + splitIndex = i; + } + } + + // We just split at the middle of the interval instead of computing the + // median. + int splitValue = min[splitIndex] + bestSplit / 2; + + // Compute a bitmap using the given split and sum the color values for + // both buckets. + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + bits = bits << 1; + if (get_channel(get_pixel(x0 + x, y0 + y), splitIndex) > splitValue) { + bits |= 1; + } + } + } + } + + // Find the best bitmap match by counting the bits that don't match, + // including the inverted bitmaps. + int best_diff = 8; + unsigned int best_pattern = 0x0000ffff; + int codepoint = 0x2584; + bool inverted = false; + for (int i = 0; BITMAPS[i + 1] != END_MARKER; i += 3) { + if ((BITMAPS[i + 2] & flags) != BITMAPS[i + 2]) { + continue; + } + unsigned int pattern = BITMAPS[i]; + for (int j = 0; j < 2; j++) { + int diff = (std::bitset<32>(pattern ^ bits)).count(); + if (diff < best_diff) { + best_pattern = BITMAPS[i]; // pattern might be inverted. + codepoint = BITMAPS[i + 1]; + best_diff = diff; + inverted = best_pattern != pattern; + } + pattern = ~pattern; + } + } + + if (direct) { + CharData result; + if (inverted) { + long tmp = max_count_color_1; + max_count_color_1 = max_count_color_2; + max_count_color_2 = tmp; + } + for (int i = 0; i < 3; i++) { + int shift = 16 - 8 * i; + result.fgColor[i] = (max_count_color_2 >> shift) & 255; + result.bgColor[i] = (max_count_color_1 >> shift) & 255; + result.codePoint = codepoint; + } + return result; + } + return createCharData(get_pixel, x0, y0, codepoint, best_pattern); +} + +void printTermColor(std::ostream& os, const int &flags, int r, int g, int b) { + r = clamp_byte(r); + g = clamp_byte(g); + b = clamp_byte(b); + + bool bg = (flags & FLAG_BG) != 0; + + if ((flags & FLAG_MODE_256) == 0) { + os << (bg ? "\x1b[48;2;" : "\x1b[38;2;") << r << ';' << g << ';' + << b << 'm'; + return; + } + + int ri = best_index(r, COLOR_STEPS, COLOR_STEP_COUNT); + int gi = best_index(g, COLOR_STEPS, COLOR_STEP_COUNT); + int bi = best_index(b, COLOR_STEPS, COLOR_STEP_COUNT); + + int rq = COLOR_STEPS[ri]; + int gq = COLOR_STEPS[gi]; + int bq = COLOR_STEPS[bi]; + + int gray = + static_cast(std::round(r * 0.2989f + g * 0.5870f + b * 0.1140f)); + + int gri = best_index(gray, GRAYSCALE_STEPS, GRAYSCALE_STEP_COUNT); + int grq = GRAYSCALE_STEPS[gri]; + + int color_index; + if (0.3 * sqr(rq - r) + 0.59 * sqr(gq - g) + 0.11 * sqr(bq - b) < + 0.3 * sqr(grq - r) + 0.59 * sqr(grq - g) + 0.11 * sqr(grq - b)) { + color_index = 16 + 36 * ri + 6 * gi + bi; + } else { + color_index = 232 + gri; // 1..24 -> 232..255 + } + os << (bg ? "\x1B[48;5;" : "\u001B[38;5;") << color_index << "m"; +} + +int clamp_byte(int value) { + return value < 0 ? 0 : (value > 255 ? 255 : value); +} + +double sqr(double n) { return n * n; } + +int best_index(int value, const int STEPS[], int count) { + int best_diff = std::abs(STEPS[0] - value); + int result = 0; + for (int i = 1; i < count; i++) { + int diff = std::abs(STEPS[i] - value); + if (diff < best_diff) { + result = i; + best_diff = diff; + } + } + return result; +} + +cimg_library::CImg load_rgb_CImg(const char *const &filename) { + cimg_library::CImg image(filename); + if (image.spectrum() == 1) { + // Greyscale. Just copy greyscale data to all channels + cimg_library::CImg rgb_image( + image.width(), image.height(), image.depth(), 3); + for (unsigned int chn = 0; chn < 3; chn++) { + rgb_image.draw_image(0, 0, 0, chn, image); + } + return rgb_image; + } + return image; +} + +void printCodepoint(std::ostream& os, int codepoint) { + if (codepoint < 128) { + os << static_cast(codepoint); + } else if (codepoint < 0x7ff) { + os << static_cast(0xc0 | (codepoint >> 6)); + os << static_cast(0x80 | (codepoint & 0x3f)); + } else if (codepoint < 0xffff) { + os << static_cast(0xe0 | (codepoint >> 12)); + os << static_cast(0x80 | ((codepoint >> 6) & 0x3f)); + os << static_cast(0x80 | (codepoint & 0x3f)); + } else if (codepoint < 0x10ffff) { + os << static_cast(0xf0 | (codepoint >> 18)); + os << static_cast(0x80 | ((codepoint >> 12) & 0x3f)); + os << static_cast(0x80 | ((codepoint >> 6) & 0x3f)); + os << static_cast(0x80 | (codepoint & 0x3f)); + } else { + os << "ERROR"; + } +} + +void printImage(const cimg_library::CImg &image, + const int &flags) { + GetPixelFunction get_pixel = [&](int x, int y) -> unsigned long { + return (((unsigned long) image(x, y, 0, 0)) << 16) + | (((unsigned long) image(x, y, 0, 1)) << 8) + | (((unsigned long) image(x, y, 0, 2))); + }; + + CharData lastCharData; + for (int y = 0; y <= image.height() - 8; y += 8) { + for (int x = 0; x <= image.width() - 4; x += 4) { + CharData charData = + flags & FLAG_NOOPT + ? createCharData(get_pixel, x, y, 0x2584, 0x0000ffff) + : findCharData(get_pixel, x, y, flags); + if (x == 0 || charData.bgColor != lastCharData.bgColor) + printTermColor(std::cout, flags | FLAG_BG, charData.bgColor[0], + charData.bgColor[1], charData.bgColor[2]); + if (x == 0 || charData.fgColor != lastCharData.fgColor) + printTermColor(std::cout, flags | FLAG_FG, charData.fgColor[0], + charData.fgColor[1], charData.fgColor[2]); + printCodepoint(std::cout, charData.codePoint); + lastCharData = charData; + } + std::cout << "\x1b[0m" << std::endl; + } +} + +// width, height +std::pair get_windows_size() +{ +#ifdef _POSIX_VERSION + struct winsize w; + // If redirecting STDOUT to one file ( col or row == 0, or the previous + // ioctl call's failed ) + if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &w) != 0 || + (w.ws_col | w.ws_row) == 0) + { + std::cerr << "Warning: failed to determine most reasonable size: " + << strerror(errno) << ", defaulting to 20x6" << std::endl; + return std::make_pair(0, 0); + } + return std::make_pair(w.ws_col * 4, w.ws_row * 8); +#elif defined _WIN32 + CONSOLE_SCREEN_BUFFER_INFO w; + if (GetConsoleScreenBufferInfo( + GetStdHandle(STD_OUTPUT_HANDLE), + &w)) + { // just like PowerShell, but without the hyphens, hooray + return std::make_pair(w.dwSize.X * 4, w.dwSize.Y * 8); + } + else + { + std::cerr << "Warning: failed to determine most reasonable size: " + << std::system_category().message(GetLastError()) + << ", defaulting to 80x24" << std::endl; + return std::make_pair(0, 0); + } +#else + std::cerr << "Warning: failed to determine most reasonable size: " + "unrecognized system, defaulting to 80x24" + << std::endl; + return std::make_pair(0, 0); +#endif +} + +} // namespace tiv \ No newline at end of file diff --git a/src/ui/components/libs/tiv_lib.h b/src/ui/components/libs/tiv_lib.h new file mode 100644 index 0000000..ec4a81f --- /dev/null +++ b/src/ui/components/libs/tiv_lib.h @@ -0,0 +1,129 @@ + +/* + * Copyright (c) 2017-2023, Stefan Haustein, Aaron Liu + * + * This file is free software: you may copy, redistribute and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation, either version 3 of the License, or (at your + * option) any later version. + * + * This file is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + * Alternatively, you may copy, redistribute and/or modify this file under + * the terms of the Apache License, version 2.0: + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * https://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef TIV_LIB_H +#define TIV_LIB_H + + +#include +#include +#include +#include "CImg.h" + +namespace tiv +{ + +struct size { + size(unsigned int in_width, unsigned int in_height) + : width(in_width), height(in_height) {} + explicit size(cimg_library::CImg img) + : width(img.width()), height(img.height()) {} + unsigned int width; + unsigned int height; + size scaled(double scale) { return size(width * scale, height * scale); } + size fitted_within(size container) { + double scale = std::min(container.width / static_cast(width), + container.height / static_cast(height)); + return scaled(scale); + } +}; + +// Implementation of flag representation for flags in the main() method +constexpr int FLAG_FG = 1; +constexpr int FLAG_BG = 2; +constexpr int FLAG_MODE_256 = 4; // Limit colors to 256-color mode +constexpr int FLAG_24BIT = 8; // 24-bit color mode +constexpr int FLAG_NOOPT = 16; // Only use the same half-block character +constexpr int FLAG_TELETEXT = 32; // Use teletext characters + + +// Color saturation value steps from 0 to 255 +constexpr int COLOR_STEP_COUNT = 6; +constexpr int COLOR_STEPS[COLOR_STEP_COUNT] = {0, 0x5f, 0x87, 0xaf, 0xd7, 0xff}; + +// Grayscale saturation value steps from 0 to 255 +constexpr int GRAYSCALE_STEP_COUNT = 24; +constexpr int GRAYSCALE_STEPS[GRAYSCALE_STEP_COUNT] = { + 0x08, 0x12, 0x1c, 0x26, 0x30, 0x3a, 0x44, 0x4e, 0x58, 0x62, 0x6c, 0x76, + 0x80, 0x8a, 0x94, 0x9e, 0xa8, 0xb2, 0xbc, 0xc6, 0xd0, 0xda, 0xe4, 0xee}; + + +typedef std::function GetPixelFunction; + +int clamp_byte(int value); + +int best_index(int value, const int STEPS[], int count); + +double sqr(double n); + +/** + * @brief Struct to represent a character to be drawn. + * @param fgColor RGB + * @param bgColor RGB + * @param codePoint The code point of the character to be drawn. + */ +struct CharData { + std::array fgColor = std::array{0, 0, 0}; + std::array bgColor = std::array{0, 0, 0}; + int codePoint; +}; + +// Return a CharData struct with the given code point and corresponding averag +// fg and bg colors. +CharData createCharData(GetPixelFunction get_pixel, int x0, int y0, + int codepoint, int pattern); + +/** + * @brief Find the best character and colors + * for a 4x8 part of the image at the given position + * + * @param image + * @param x0 + * @param y0 + * @param flags + * @return CharData + */ +CharData findCharData(GetPixelFunction get_pixel, int x0, int y0, + const int &flags); + +cimg_library::CImg load_rgb_CImg(const char *const &filename); + +void printTermColor(std::ostream& os, const int &flags, int r, int g, int b); + +void printCodepoint(std::ostream& os, int codepoint); + +void printImage(const cimg_library::CImg &image, const int &flags); +std::pair get_windows_size(); +#endif + +} // namespace tiv \ No newline at end of file diff --git a/src/ui/components/scroller.hpp b/src/ui/components/scroller.hpp index 95033b1..819cc4c 100644 --- a/src/ui/components/scroller.hpp +++ b/src/ui/components/scroller.hpp @@ -1,22 +1,23 @@ #ifndef SCROLLER_H #define SCROLLER_H -#include // for max, min -#include // for Component, ComponentBase -#include // for Event, Event::ArrowDown, Event::ArrowUp, Event::End, Event::Home, Event::PageDown, Event::PageUp -#include // for shared_ptr, allocator, __shared_ptr_access -#include // for move +#include // for max, min +#include // for Component, ComponentBase +#include // for Event, Event::ArrowDown, Event::ArrowUp, Event::End, Event::Home, Event::PageDown, Event::PageUp +#include // for shared_ptr, allocator, __shared_ptr_access +#include // for move -#include // for Make -#include // for Mouse, Mouse::WheelDown, Mouse::WheelUp -#include // for text -#include // for operator|, Element, size, vbox, EQUAL, HEIGHT, dbox, reflect, focus, inverted, nothing, select, vscroll_indicator, yflex, yframe -#include // for Node -#include // for Requirement -#include // for Box +#include // for Make +#include // for Mouse, Mouse::WheelDown, Mouse::WheelUp +#include // for text +#include // for operator|, Element, size, vbox, EQUAL, HEIGHT, dbox, reflect, focus, inverted, nothing, select, vscroll_indicator, yflex, yframe +#include // for Node +#include // for Requirement +#include // for Box -namespace ftxui { - Component Scroller(Component child, int* external_selected, Color menu_cursor_bg); +namespace ftxui +{ +Component Scroller(Component child, int* external_selected, Color menu_cursor_bg); } #endif diff --git a/src/ui/keymaps.hpp b/src/ui/keymaps.hpp index 382ad33..c26906b 100644 --- a/src/ui/keymaps.hpp +++ b/src/ui/keymaps.hpp @@ -36,6 +36,7 @@ struct Keybinds char remove_song_from_queue; /**< Key for removing a song from the queue */ char play_this_song_next; /**< Key for playing a song next */ char view_song_queue; /**< Key for viewing the song queue */ + char view_current_song_info; /**< Key for viewing in-depth song info */ }; /** @@ -126,7 +127,8 @@ Keybinds parseKeybinds() {"add_artists_songs_to_queue", &keybinds.add_artists_songs_to_queue}, {"remove_song_from_queue", &keybinds.remove_song_from_queue}, {"play_this_song_next", &keybinds.play_this_song_next}, - {"view_song_queue", &keybinds.view_song_queue}}; + {"view_song_queue", &keybinds.view_song_queue}, + {"view_current_song_info", &keybinds.view_current_song_info}}; // Populate the keybinds struct by reading the fields from the TOML configuration for (const auto& [field, member_ptr] : field_map) diff --git a/src/ui/misc.hpp b/src/ui/misc.hpp index 7f03825..16cdd5b 100644 --- a/src/ui/misc.hpp +++ b/src/ui/misc.hpp @@ -1,7 +1,9 @@ #ifndef MISC_HEADER #define MISC_HEADER +#include "../dirsort/taglib_parser.h" #include "./colors.hpp" +#include "components/image_view.hpp" #include #include #include @@ -19,6 +21,7 @@ struct ComponentState Component songs_queue_comp; Component lyrics_scroller; Component MainRenderer; + Component ThumbnailRenderer; }; auto formatLyrics(const std::string& lyrics) @@ -176,4 +179,62 @@ auto RenderSongMenu(const std::vector& items) return vbox(std::move(rendered_items)); } +auto RenderThumbnail(const std::string& songFilePath, const std::string& cacheDirPath, + const std::string& songTitle, const std::string& artistName, + const std::string& albumName, const std::string& genre, unsigned int year, + unsigned int trackNumber, unsigned int discNumber, + float progress) // progress: a value between 0.0 (0%) and 1.0 (100%) +{ + auto thumbnailFilePath = cacheDirPath + "thumbnail.png"; + + if (extractThumbnail(songFilePath, thumbnailFilePath)) + { + auto thumbnail = Renderer( + [&] + { + return vbox({image_view(thumbnailFilePath)}) | + center; // [TODO] Is not being centered properly + }); + + auto metadataView = vbox({ + hbox({text(albumName) | bold | underlined}) | center, + hbox({text(songTitle) | bold, text(" by "), text(artistName) | bold, text(" ["), + text(std::to_string(year)), text("]"), text(" ("), + text(std::to_string(discNumber)) | bold, text("/"), + text(std::to_string(trackNumber)) | bold, text(")")}) | + center, + hbox({text("Seems like a "), text(genre) | bold, text(" type of song...")}) | center, // Genre + }); + + auto progressBar = hbox({ + text("Progress: ") | bold, + gauge(progress) | flex, // Progress bar + text(" "), + text(std::to_string(static_cast(progress * 100)) + "%"), + }); + + auto thumbNailEle = vbox({thumbnail->Render()}); + + auto modernUI = vbox({ + thumbNailEle | flex_shrink, // Centered and scaled thumbnail + separator(), + metadataView | borderRounded, // Metadata in a rounded bordered box + separator(), + progressBar, // Progress bar below the metadata + }) | + borderRounded; + + return modernUI; + } + + // Fallback for when thumbnail extraction fails + auto errorView = vbox({ + text("Error: Thumbnail not found!") | center | dim, + separator(), + text("Please ensure the file has embedded artwork.") | center, + }); + + return errorView; +} + #endif diff --git a/src/ui/ui_handler.hpp b/src/ui/ui_handler.hpp index 3c16c6c..d907fc3 100644 --- a/src/ui/ui_handler.hpp +++ b/src/ui/ui_handler.hpp @@ -25,10 +25,11 @@ using namespace ftxui; #define MAX_LENGTH_ARTIST_NAME 30 /** SCREEN MACROS */ -#define SHOW_MAIN_UI 0 -#define SHOW_HELP_SCREEN 1 -#define SHOW_LYRICS_SCREEN 2 -#define SHOW_QUEUE_SCREEN 3 +#define SHOW_MAIN_UI 0 +#define SHOW_HELP_SCREEN 1 +#define SHOW_LYRICS_SCREEN 2 +#define SHOW_QUEUE_SCREEN 3 +#define SHOW_SONG_INFO_SCREEN 4 #define MIN_DEBOUNCE_TIME_IN_MS 500 @@ -158,6 +159,7 @@ class MusicPlayer std::string lyrics; std::string comment; std::unordered_map additionalProperties; + std::string filePath; }; PlayingState current_playing_state; @@ -591,6 +593,7 @@ class MusicPlayer current_playing_state.lyrics = metadata.lyrics; current_playing_state.has_comment = (metadata.comment != "No Comment"); current_playing_state.has_lyrics = (metadata.lyrics != "No Lyrics"); + current_playing_state.filePath = metadata.filePath; // duration gets updated in the PlayCurrentSong() thread itself // If there's additional properties, you can either copy them or process as needed @@ -768,6 +771,15 @@ class MusicPlayer else if (event.is_mouse()) return false; + else if (active_screen == SHOW_SONG_INFO_SCREEN) + { + if (is_keybind_match(global_keybinds.goto_main_screen)) + { + active_screen = SHOW_MAIN_UI; + return true; + } + } + else if (active_screen == SHOW_MAIN_UI) { @@ -911,6 +923,11 @@ class MusicPlayer active_screen = SHOW_MAIN_UI; return true; } + else if (is_keybind_match(global_keybinds.view_current_song_info)) + { + active_screen = SHOW_SONG_INFO_SCREEN; + return true; + } // Some default keybinds else if (is_keybind_match('g')) { @@ -1006,6 +1023,14 @@ class MusicPlayer { interface = RenderQueueScreen(); } + if (active_screen == SHOW_SONG_INFO_SCREEN) + { + interface = RenderThumbnail( + current_playing_state.filePath, getCachePath(), current_playing_state.title, + current_playing_state.artist, current_playing_state.album, + current_playing_state.genre, current_playing_state.year, + current_playing_state.track, current_playing_state.discNumber, progress); + } if (show_dialog) { // Create a semi-transparent overlay with the dialog box