-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c_agent.py
272 lines (241 loc) · 10.4 KB
/
a2c_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import random
import torch
import torch.optim as optim
from .a2c_network import A2CNetwork
# from .rung_network import RungNetwork
# from .replay_memory import ReplayMemory, Transition, ActionMemory, StateAction
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
gpu = torch.device("cuda")
# BATCH_SIZE = 64
GAMMA = 0.99
# EPS_START = 0.3
# EPS_END = 0.05
# EPS_DECAY = 1000000
# TARGET_UPDATE = 1000
# MIN_BUFFER_SIZE = 1000
# RUNG_BATCH_SIZE = 64
NUM_ACTIONS = 13
INPUTS = 1482
LEARNING_STARTS = 1000
MODEL_PATH = os.getcwd() + "/models/a2c"
LR = 5e-5
class A2CAgent:
def __init__(self, train=True):
# self.BATCH_SIZE = BATCH_SIZE
self.GAMMA = GAMMA
# self.EPS_START = EPS_START
# self.EPS_END = EPS_END
# self.EPS_DECAY = EPS_DECAY
# self.TARGET_UPDATE = TARGET_UPDATE
# self.RUNG_BATCH_SIZE = RUNG_BATCH_SIZE
self.num_actions = NUM_ACTIONS
self.steps = [0, 0, 0, 0] # the total steps taken by the agent
self.rewards = [[], [], [], []] # rewards acheived at each step
self.log_probs = [[], [], [], []] # log probs of action taken at each step
self.entropies = [[], [], [], []] # entropy of each distribution produced
# self.actions = [] # the actions taken at each step
# self.states = [] # the states (does not really matter)
self.values = [[], [], [], []] # the values predicted by the critic
self.values_tensor = [None, None, None, None]
self.dones = [[], [], [], []]
self.actor_critic = A2CNetwork(INPUTS, 128, NUM_ACTIONS).to(device)
# self.critic = A2CNetwork(INPUTS, 128, 1).to(device) # there is only one output which is the value of the state
# self.target_net = DQNNetwork(INPUTS, NUM_ACTIONS).to(device).eval()
# self.rung_net = RungNetwork(85, 4).to(device)
# self.rung_optimizer = optim.Adam(self.rung_net.parameters(),lr=1e-4)
# self.rung_memory = ReplayMemory(100000)
# self.average_policy = DQNNetwork(INPUTS, NUM_ACTIONS).to(device)
# self.policy_optimizer = optim.RMSprop(self.average_policy.parameters())
self.actor_optimizer = optim.Adam(self.actor_critic.parameters(), lr=LR)
# self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=LR)
# self.action_memory = ActionMemory(1000000)
# self.last_actions = [None, None, None, None]
# self.last_rewards = [0, 0, 0, 0]
# self.last_states = [None, None, None, None]
self.total_reward = [0, 0, 0, 0]
self.train = train
self.wins = [0, 0, 0, 0]
# self.rung_selected = [None, None, None, None]
# self.rung_state = [None, None, None, None]
self.deterministic = False
self.steps = [0, 0, 0, 0]
self.eval = False
# self.last_ga?me_reward = 0
# self.cards_seen_index = 0
self.load_model()
def get_rung(self, state, player):
return torch.tensor([random.randint(0, 3)]) # return a random rung for now
# state = self.get_rung_obs(state)
# self.rung_state[player] = state
# self.rung_selected[player] = self.select_rung(self.rung_state[player])
# return self.rung_selected[player]
def select_action(self, state, action_mask):
raw_probs, value = self.actor_critic(state)
mask = self.create_action_mask_tensor(action_mask)
# sm = torch.nn.Softmax(-1)
# print(sm(raw_probs))
# print(action_mask)
probs = raw_probs + mask
# print(action_mask)
# print(probs)
# log_probs = torch.log(probs)
# log_prob = log_probs
# print(action_mask)
# print(probs)
# raw_probs = raw_probs.detach() + mask
dist = torch.distributions.Categorical(logits=probs)
if self.eval:
# print(dist.probs)
action = dist.probs.max(1)[1]
# print(action)
else:
action = dist.sample()
# print(log_probs)
# return sm(probs).max(1)[1], dist.log_prob(action)
return action, dist.log_prob(action), dist.entropy(), value
def reward(self, r, player, done=False):
# self.last_rewards[player] = torch.tensor([[r]], dtype=torch.float).to(device)
self.total_reward[player] += r
self.rewards[player].append(r)
if done:
self.dones[player].append(0)
else:
self.dones[player].append(1)
def get_value(self, state):
out = self.critic(state)
return out.view(1, 1)
def get_move(self, state):
player = state.player_id
action_mask = state.get_action_mask()
state = self.get_obs(state)
# value = self.get_value(state)
action, log_prob, _, value = self.select_action(state, action_mask)
# print(value)
self.log_probs[player].append(log_prob)
# print(value)
self.values[player].append(value)
self.steps[player] += 1
# self.last_states[player] = state
# self.last_actions[player] = self.select_action(state, action_mask, player)
return action
def create_action_mask_tensor(self, mask):
return torch.tensor([[0 if m else -1e8 for m in mask]], dtype=torch.float, device=device)
def get_obs(self, state):
obs = state.get_obs()
return torch.tensor([obs.get()], dtype=torch.float).to(device)
def calculate_returns(self, player):
# if len(self.rewards[player]) == 1:
# 1 step a2c
# future_returns =
# print(self.rewards[player])
returns = 0
for i in range(len(self.rewards[player]) - 1, -1, -1):
returns = self.rewards[player][i] + GAMMA * returns * self.dones[player][i]
self.rewards[player][i] = returns
def optimize_model(self):
if self.eval:
return
for player in range(4):
self.calculate_returns(player)
self.values_tensor[player] = torch.cat(self.values[player], 1)
loss_actor_critic = 0
# loss_critic = 0
self.actor_optimizer.zero_grad()
# self.critic_optimizer.zero_grad()
for player in range(4):
loss_actor_critic += self.optimize_actor_critic(player)
# loss_critic += self.optimize_critic(player)
# loss_actor /= 4
# loss_critic /= 4
for param in self.actor_critic.parameters():
param.grad.data.clamp_(-0.5, 0.5)
# for param in self.critic.parameters():
# param.grad.data.clamp_(-0.5, 0.5)
self.actor_optimizer.step()
# self.critic_optimizer.step()
self.actor_optimizer.zero_grad()
# self.critic_optimizer.zero_grad()
# print(loss_critic)
print("Loss: {:.5f}".format(loss_actor_critic), end=" - ")
self.clear_trajectory()
def optimize_actor_critic(self, player):
# print(self.log_probs)
# print(self.rewards)
advantages = torch.tensor(self.rewards[player]) - self.values_tensor[player]
log_probs = torch.cat(self.log_probs[player], 0)
# print(self.log_probs)
# print(log_probs)
# print(advantages)
actor_loss = (-1 * log_probs) * advantages
# print(actor_loss)
# print()
# print(actor_loss)
actor_loss_mean = torch.mean(actor_loss) / 4 # averaging across 4 workers (players)
critic_loss = torch.mean(torch.square(advantages)) / 4
loss = actor_loss_mean + critic_loss
# print(actor_loss_mean)
# self.actor_optimizer.zero_grad()
loss.backward()
# self.actor_optimizer.step()
return loss.item()
def optimize_critic(self, player):
advantages = torch.tensor(self.rewards[player]) - self.values_tensor[player]
critic_loss = torch.mean(torch.square(advantages)) / 4
# self.critic_optimizer.zero_grad()
critic_loss.backward()
# self.critic_optimizer.step()
return critic_loss.item()
# self.optimizer.zero_grad()
# loss.backward()
# for param in self.policy_net.parameters():
# param.grad.data.clamp_(-1, 1)
# self.optimizer.step()
# if self.steps_done % 1300 == 0:
# print(loss.item())
# return loss.item()
def clear_trajectory(self):
# clear the trajectory
self.rewards = [[], [], [], []]
# self.steps = 0
self.log_probs = [[], [], [], []]
self.values = [[], [], [], []]
self.dones = [[], [], [], []]
self.values_tensor = [None, None, None, None]
def end(self, win, player):
self.wins[player] += win
# self.total_reward = [0, 0, 0, 0]
# self.memory.push(self.last_state, self.last_action, None, self.last_reward)
# self.last_game_reward = self.game_reward
# self.game_reward = 0
# self.last_state = None
# self.last_action = None
# self.last_reward = None
# self.cards_seen = [None for _ in range(52)]
# self.cards_seen_index = 0
# do nothing at the end of the game
pass
def reset(self, player):
wins = self.wins[player]
reward = self.total_reward[player]
self.wins[player] = 0
self.total_reward[player] = 0
return wins, reward
def save_model(self, i="final"):
torch.save(self.actor_critic.state_dict(), self.model_path("actor_critic"))
# torch.save(self.critic.state_dict(), self.model_path("critic"))
# torch.save(self.average_policy.state_dict(), self.average_model_path(i))
def load_model(self, i="final"):
try:
state_dict = torch.load(self.model_path("actor_critic"))
# self.policy_net.load_state_dict(state_dict)
self.actor_critic.load_state_dict(state_dict)
# state_dict = torch.load(self.model_path("critic"))
# self.critic.load_state_dict(state_dict)
# state_dict = torch.load(self.average_model_path(i))
# self.average_policy.load_state_dict(state_dict)
except FileNotFoundError:
print("File not found. Creating a new network...")
def model_path(self, model_name, i="final"):
return "{}/model_{}_{}".format(MODEL_PATH, model_name, i)