-
Notifications
You must be signed in to change notification settings - Fork 1
/
E.cpp
332 lines (270 loc) · 11.1 KB
/
E.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// ┌───────────────────────────────────────────┐
// │ Copyright (c) 2019-2022 Nikita Paniukhin │
// │ Licensed under the MIT license │
// └───────────────────────────────────────────┘
//
// Hi there!
// Here you will find a number of data structures and useful tools for olympic programming
// If you're looking for the code to solve a specific problem, it starts down below, at about line 247
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,tune=native")
#pragma GCC target("avx2")
// #include <bits/stdc++.h>
// #define _USE_MATH_DEFINES
// #include "getCPUTime.c"
#include <algorithm>
#include <iostream>
#include <iterator>
#include <limits.h>
#include <cassert>
#include <cstring>
#include <float.h>
#include <fstream>
#include <iomanip>
#include <sstream>
#include <bitset>
#include <math.h>
#include <random>
#include <vector>
#include <cmath>
#include <deque>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;typedef long long ll;typedef unsigned long long uLL;typedef unsigned long long ull;typedef unsigned int uint;typedef unsigned char uchar;typedef long double ld;typedef long double Ld;
// ============= GLOBAL CONST =============
const int MOD = 1e9 + 7;
// const int MOD2 = 1e9 + 7;
// ========================================
#define all(_x) (_x).begin(), (_x).end()
#define rall(_x) (_x).rbegin(), (_x).rend()
#define sortv(_x) sort((_x).begin(), (_x).end())
#define get(_type, _x) _type _x; cin >> (_x);
#define print(_x) cout << (_x) << endl;
#define maxind(_v) (max_element((_v).begin(), (_v).end()) - (_v).begin())
#define minind(_v) (min_element((_v).begin(), (_v).end()) - (_v).begin())
#define print_float fixed << setprecision(20)
#define print_array(_v) for(int _i=0;_i<(_v).size();++_i){cout<<(_v)[_i]<<' ';}cout<<endl;
#define rand_init srand(time(NULL))
template <class T>
T read(){T x;cin>>x;return x;}
template <class T>
vector<T> vector_init(int n){vector<T> x;x.reserve(n);return x;}
template <class T>
long long sum(vector<T> &a){long long x=0;for(int _i=0;_i<a.size();++_i)x+=a[_i];return x;}
bool contains(string &s, char x) {for(size_t i=0;i<s.size();++i){if(s[i]==x){return true;}}return false;}
template <class T>
bool contains(vector<T> &a, T x) {for(size_t i=0;i<a.size();++i){if(a[i]==x){return true;}}return false;}
template<class InputIt, class T>
typename iterator_traits<InputIt>::difference_type
rcount(InputIt first, InputIt last, const T& value){typename iterator_traits<InputIt>::difference_type ret=0;for(;first!=last;++first){if(*first!=value)++ret;}return ret;}
string cut(string &s, int start, int end) {string r;while(max(start,0)<min((int)s.size(),end)){r+=s[start++];}return r;}
template <class T>
vector<T> cut(vector<T> &a, int start, int end) {vector<T> r;while(max(start,0)<min((int)a.size(),end)){r.emplace_back(a[start++]);}return r;}
template <class T1, class T2>
bool equal(vector<T1> &a, vector<T2> &b) {if (a.size() != b.size()) return false;for (size_t i = 0; i < a.size(); ++i) if (a[i] != b[i]) return false;return true;}
template <class T>
T gcd(T a, T b) {while(b){a%=b;swap(a,b);}return a;}
template <class T>
T gcd(T a, T b, T &x, T &y) {if(a == 0){x = 0;y = 1;return b;}int x1, y1;int d = gcd(b%a, a, x1, y1);x = y1 - (b / a) * x1;y = x1;return d;}
template <class T>
T lcm(T a, T b) {return a/gcd(a, b)*b;}
long long binpow(long long a, unsigned int n) {long long r=1;while(n){if(n&1)r*=a;a*=a;n>>=1;}return r;}
bool isPrime(long long num) {
if (num == 2) return true;
if (num <= 1 || num % 2 == 0) return false;
int upperLimit = (int)( sqrt((double)num) + 1 );
for (int divisor = 3; divisor <= upperLimit; divisor += 2) {
if (num % divisor == 0) return false;
}
return true;
}
template <class T>
vector<long long> prefSumm(vector<T> a) {
vector<long long> pref_summ(a.size());
pref_summ[0] = (long long)a[0];
for (size_t i = 1; i < a.size(); ++i)
pref_summ[i] = pref_summ[i - 1] + (long long)a[i];
return pref_summ;
}
template <class T>
vector<int> prefixFunction(vector<T> a) {
int n = (int)a.length();
vector<int> prefix_function(n);
for (int i = 1; i < n; ++i) {
int j = prefix_function[i - 1];
while (j > 0 && a[i] != a[j])
j = prefix_function[j - 1];
if (a[i] == a[j]) ++j;
prefix_function[i] = j;
}
return prefix_function;
}
//============================ RANDOM ============================
int randint(int start = 0, int end = INT_MAX) {
// return rand() % (end - start) + start + 1;
std::random_device dev;
std::mt19937 rng(dev());
std::uniform_int_distribution<std::mt19937::result_type> distrib(start, end); // distribution in range [1, 6]
return distrib(rng);
}
long long randll(long long start = 0, long long end = LLONG_MAX) {
// return rand() % (end - start) + start + 1;
std::random_device dev;
std::mt19937_64 rng(dev());
std::uniform_int_distribution<std::mt19937_64::result_type> distrib(start, end); // distribution in range [1, 6]
return distrib(rng);
}
//============================ MATRIX ============================
template <class T>
vector<T> matrix_to_array(vector<vector<T>> &matrix) {
int n = matrix.size(), m = matrix[0].size();
vector<T> res(n * m);
for (size_t i = 0; i < n; ++i)
for (size_t j = 0; j < m; ++j) res[i * n + j] = matrix[i][j];
return res;
}
template <class T>
vector<vector<T>> array_to_matrix(vector<T> &matrix, pair<int, int> matrix_size) {
vector<T> tmp_v_T(matrix_size.second);
vector<vector<T>> res(matrix_size.first, tmp_v_T);
for (size_t i = 0; i < matrix_size.first; ++i) for (size_t j = 0; j < matrix_size.second; ++j) res[i][j] = matrix[i * matrix_size.first + j];
return res;
}
template <class T>
void matrix_print(vector<T> &matrix, pair<int, int> matrix_size) {
for (size_t i = 0; i < matrix_size.first; ++i) {
for (size_t j = 0; j < matrix_size.second; ++j) cout << matrix[i * matrix_size.first + j] << ' ';
cout << endl;
}
}
template <class T>
void matrix_print(vector<vector<T>> &matrix) {for(int i=0;i<matrix.size();++i){print_array(matrix[i])}}
template <class T1, class T2>
vector<vector<long long>> matrix_multiply(vector<vector<T1>> &matrix1, vector<vector<T2>> &matrix2) {
int m = matrix1.size(), k = matrix1[0].size(), n = matrix2[0].size();
vector<long long> tmp_v_ll(n, 0);
vector<vector<long long>> res(m, tmp_v_ll);
for (size_t i = 0; i < m; ++i) {
for (size_t j = 0; j < n; ++j) {
for (size_t t = 0; t < k; ++t) {
res[i][j] += matrix1[i][t] * matrix2[t][j];
res[i][j] %= MOD;
}
}
}
return res;
}
template <class T1, class T2>
vector<long long> matrix_multiply(vector<T1> &matrix1, pair<int, int> matrix1_size, vector<T2> &matrix2, pair<int, int> matrix2_size) {
int m = matrix1_size.first, k = matrix1_size.second, n = matrix2_size.second;
vector<long long> res(m * n, 0);
for (size_t i = 0; i < m; ++i) {
for (size_t j = 0; j < n; ++j) {
for (size_t t = 0; t < k; ++t) {
res[i * n + j] += matrix1[i * k + t] * matrix2[t * n + j];
res[i * n + j] %= MOD;
}
}
}
return res;
}
template <class T1, class T2>
vector<vector<long long>> matrix_binpow(vector<vector<T1>> &matrix, T2 power) {
if (power == 0) { // return identity matrix
vector<long long> tmp_v_ll(matrix[0].size(), 0);
vector<vector<long long>> res(matrix.size(), tmp_v_ll);
for (size_t i = 0; i != matrix.size(); ++i) res[i][i] = 1;
return res;
}
if (power % 2 == 1) {
vector<vector<long long>> res = matrix_binpow(matrix, power - 1);
return matrix_multiply(res, matrix);
}
vector<vector<long long>> res = matrix_binpow(matrix, power / 2);
return matrix_multiply(res, res);
}
template <class T1, class T2>
vector<long long> matrix_binpow(vector<T1> &matrix, int matrix_size, T2 power) {
if (power == 0) { // return identity matrix
vector<long long> res(matrix_size * matrix_size, 0);
for (size_t i = 0; i != matrix_size; ++i) res[i * (matrix_size + 1)] = 1;
return res;
}
if (power % 2 == 1) {
vector<long long> res = matrix_binpow(matrix, matrix_size, power - 1);
return matrix_multiply(res, make_pair(matrix_size, matrix_size), matrix, make_pair(matrix_size, matrix_size));
}
vector<long long> res = matrix_binpow(matrix, matrix_size, power / 2);
return matrix_multiply(res, make_pair(matrix_size, matrix_size), res, make_pair(matrix_size, matrix_size));
}
// ==============================================================================================================
// Usage:
// [r]count(all(vector), value)
// equal(vector1, vector2)
// cut(string/vector, int start, int end)
// contains(string/vector, value)
// Tweakable defines:
// #define int long long
#define endl '\n'
void build(vector<vector<int>> &graph, vector<int> &depth, vector<vector<int>> &dp, int steps, int v = 0, int p = 0) {
if (p != v) depth[v] = depth[p] + 1;
dp[v][0] = p;
for (int i = 1; i <= steps; ++i) dp[v][i] = dp[dp[v][i - 1]][i - 1];
for (int next : graph[v]) {
if (next != p) build(graph, depth, dp, steps, next, v);
}
}
int lca(vector<int> &depth, vector<vector<int>> &dp, int steps, int u, int v) {
if (depth[v] > depth[u]) swap(v, u);
for (int i = steps; i >= 0; --i) {
if (depth[dp[u][i]] >= depth[v]) u = dp[u][i];
}
if (v == u) return v;
for (int i = steps; i >= 0; --i) {
if (dp[v][i] != dp[u][i]) {
v = dp[v][i];
u = dp[u][i];
}
}
return dp[v][0];
}
int count(vector<vector<int>> &graph, vector<vector<int>> &dp, vector<int> &a, vector<int> &b, int &res, int v = 0) {
int r = a[v], tmp;
for (int next : graph[v]) {
if (next != dp[v][0]) {
tmp = count(graph, dp, a, b, res, next);
if (tmp == 0) ++res;
r += tmp;
}
}
return r - 2 * b[v];
}
signed main() {
ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
int n, m, u, v;
cin >> n;
vector<vector<int>> graph(n);
for (int i = 0; i < n - 1; ++i) {
cin >> u >> v; --u; --v;
graph[u].push_back(v);
graph[v].push_back(u);
}
vector<int> depth(n);
vector<vector<int>> dp(n);
int steps = 0;
while ((1 << steps) <= n) ++steps;
for (int i = 0; i < n; ++i) dp[i].resize(steps + 1);
build(graph, depth, dp, steps);
cin >> m;
vector<int> a(n), b(n);
for (int i = 0; i < m; ++i) {
cin >> u >> v; --u; --v;
++a[u]; ++a[v];
++b[lca(depth, dp, steps, u, v)];
}
int res = 0;
count(graph, dp, a, b, res, 0);
cout << res << endl;
}