-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutil.py
60 lines (46 loc) · 2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
"""Utility code."""
import os
import pandas as pd
import matplotlib.pyplot as plt
def symbol_to_path(symbol, base_dir=os.path.join("../..", "data")):
"""Return CSV file path given ticker symbol."""
return os.path.join(base_dir, "{}.csv".format(str(symbol)))
def get_data(symbols, dates, addSPY=True):
"""Read stock data (adjusted close) for given symbols from CSV files."""
df = pd.DataFrame(index=dates)
if addSPY and 'SPY' not in symbols: # add SPY for reference, if absent
symbols = ['SPY'] + symbols
for symbol in symbols:
df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
df_temp = df_temp.rename(columns={'Adj Close': symbol})
df = df.join(df_temp)
if symbol == 'SPY': # drop dates SPY did not trade
df = df.dropna(subset=["SPY"])
return df
def normalize_data(df):
"""Normalize stock prices using the first row of the dataframe"""
return df/df.iloc[0,:]
def compute_daily_returns(df):
"""Compute and return the daily return values"""
daily_returns = df.pct_change()
daily_returns.iloc[0,:] = 0
return daily_returns
def compute_sharpe_ratio(k, avg_return, risk_free_rate, std_return):
"""
Compute and return the Sharpe ratio
Parameters:
k: adjustment factor, sqrt(252) for daily data, sqrt(52) for weekly data, sqrt(12) for monthly data
avg_return: daily, weekly or monthly return
risk_free_rate: daily, weekly or monthly risk free rate
std_return: daily, weekly or monthly standard deviation
Returns:
sharpe_ratio: k * (avg_return - risk_free_rate) / std_return
"""
return k * (avg_return - risk_free_rate) / std_return
def plot_data(df, title="Stock prices", xlabel="Date", ylabel="Price"):
"""Plot stock prices with a custom title and meaningful axis labels."""
ax = df.plot(title=title, fontsize=12)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
plt.show()