-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathAutoEncoder.py
89 lines (67 loc) · 2.85 KB
/
AutoEncoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
'''
Created by Victor Delvigne
ISIA Lab, Faculty of Engineering University of Mons, Mons (Belgium)
victor.delvigne@umons.ac.be
Source: Delvigne, et al."PhyDAA: Physiological Dataset Assessing Attention" IEEE Transaction on Circuits and Systems for Video Technology (TCSVT) (2016).
Copyright (C) 2021 - UMons
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
'''
import torch
import torch.nn as nn
from models import *
from utils import *
from torch.utils.tensorboard import SummaryWriter
import warnings
device = torch.device('cuda')
warnings.simplefilter("ignore")
""" Load Files """
Images = np.load('Dataset/....npy') #insert the file with EEG Images of the dataset
""" Model Training """
# Introduction: training an autoencoder based on CNN with EEG-based Images.
batch_size = 64
n_epoch = 500
n_rep = 10
Img = ImageAEDataset(Images)
lengths = [int(len(Img) * 0.8), int(len(Img) * 0.2)]
if sum(lengths) != len(Img):
lengths[0] = lengths[0] + 1
Train, Test = random_split(Img, lengths)
Trainloader = DataLoader(Train, batch_size=batch_size, shuffle=False)
Testloader = DataLoader(Test, batch_size=batch_size, shuffle=False)
net = Autoencoder().cuda()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3,
weight_decay=1e-5)
writer = SummaryWriter()
for epoch in range(n_epoch):
running_loss = 0.0
for i, data in enumerate(Trainloader, 0):
img = data
optimizer.zero_grad()
output = net(img.to(torch.float32).cuda())
loss = criterion(output, img.to(torch.float32).cuda())
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
running_loss = running_loss/(i+1)
validation_loss = 0.0
for i, data in enumerate(Testloader, 0):
img = data
output = net(img.to(torch.float32).cuda())
loss = criterion(output, img.to(torch.float32).cuda())
validation_loss += loss.item()
validation_loss = validation_loss/(i+1)
print("Epoch {} \t---\tLoss {:.4f}, \tVal-Loss {:.4f}" .format(epoch+1, running_loss, validation_loss, ))
writer.add_scalar('Loss/train', running_loss, epoch)
writer.add_scalar('Loss/test', validation_loss, epoch)