-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathUtils.py
152 lines (119 loc) · 5.3 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
'''
Created by Victor Delvigne
ISIA Lab, Faculty of Engineering University of Mons, Mons (Belgium)
victor.delvigne@umons.ac.be
Source: Bashivan, et al."Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks." International conference on learning representations (2016).
Copyright (C) 2019 - UMons
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
'''
from torch.utils.data.dataset import Dataset
from Utils_Bashivan import *
import torch
import scipy.io as sio
import torch.optim as optim
import torch.nn as nn
import numpy as np
def kfold(length, n_fold):
tot_id = np.arange(length)
np.random.shuffle(tot_id)
len_fold = int(length/n_fold)
train_id = []
test_id = []
for i in range(n_fold):
test_id.append(tot_id[i*len_fold:(i+1)*len_fold])
train_id.append(np.hstack([tot_id[0:i*len_fold],tot_id[(i+1)*len_fold:-1]]))
return train_id, test_id
class EEGImagesDataset(Dataset):
"""EEGLearn Images Dataset from EEG."""
def __init__(self, label, image):
self.label = label
self.Images = image
def __len__(self):
return len(self.label)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image = self.Images[idx]
label = self.label[idx]
sample = (image, label)
return sample
def Test_Model(net, Testloader, criterion, is_cuda=True):
running_loss = 0.0
evaluation = []
for i, data in enumerate(Testloader, 0):
input_img, labels = data
input_img = input_img.to(torch.float32)
if is_cuda:
input_img = input_img.cuda()
outputs = net(input_img)
_, predicted = torch.max(outputs.cpu().data, 1)
evaluation.append((predicted==labels).tolist())
loss = criterion(outputs, labels.cuda())
running_loss += loss.item()
running_loss = running_loss/(i+1)
evaluation = [item for sublist in evaluation for item in sublist]
running_acc = sum(evaluation)/len(evaluation)
return running_loss, running_acc
def TrainTest_Model(model, trainloader, testloader, n_epoch=30, opti='SGD', learning_rate=0.0001, is_cuda=True, print_epoch =5, verbose=False):
if is_cuda:
net = model().cuda()
else :
net = model()
criterion = nn.CrossEntropyLoss()
if opti=='SGD':
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
elif opti =='Adam':
optimizer = optim.Adam(net.parameters(), lr=learning_rate)
else:
print("Optimizer: "+optim+" not implemented.")
for epoch in range(n_epoch):
running_loss = 0.0
evaluation = []
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs.to(torch.float32).cuda())
_, predicted = torch.max(outputs.cpu().data, 1)
evaluation.append((predicted==labels).tolist())
loss = criterion(outputs, labels.cuda())
loss.backward()
optimizer.step()
running_loss += loss.item()
running_loss = running_loss/(i+1)
evaluation = [item for sublist in evaluation for item in sublist]
running_acc = sum(evaluation)/len(evaluation)
validation_loss, validation_acc = Test_Model(net, testloader, criterion,True)
if epoch%print_epoch==(print_epoch-1):
print('[%d, %3d]\tloss: %.3f\tAccuracy : %.3f\t\tval-loss: %.3f\tval-Accuracy : %.3f' %
(epoch+1, n_epoch, running_loss, running_acc, validation_loss, validation_acc))
if verbose:
print('Finished Training \n loss: %.3f\tAccuracy : %.3f\t\tval-loss: %.3f\tval-Accuracy : %.3f' %
(running_loss, running_acc, validation_loss,validation_acc))
return (running_loss, running_acc, validation_loss,validation_acc)
def create_img():
feats = sio.loadmat('Sample Data/FeatureMat_timeWin.mat')['features']
locs = sio.loadmat('Sample Data/Neuroscan_locs_orig.mat')
locs_3d = locs['A']
locs_2d = []
# Convert to 2D
for e in locs_3d:
locs_2d.append(azim_proj(e))
images_timewin = np.array([gen_images(np.array(locs_2d),
feats[:, i * 192:(i + 1) * 192], 32, normalize=True) for i in
range(int(feats.shape[1] / 192))
])
sio.savemat("Sample Data/images_time.mat",{"img":images_timewin})
print("Images Created and Save in Sample Dat/images_time")