-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
162 lines (115 loc) · 5.62 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os, sys, time, warnings, glob, tqdm, h5py
warnings.filterwarnings('ignore')
import argparse
from argparse import ArgumentParser
from toolz import *
from toolz.curried import *
from itertools import islice
import torch
from torch import nn, optim
import torch.nn.functional as F
import numpy as np
import torch.distributed as dist
from torch.utils.data import DataLoader
from techniques import BYOL, SIMCLR, SIMCLR3D
from models.ResNet import resnet50_baseline
from data.DataGenSSL2 import DataGen
from utils import GET_OPTIMIZER
def Parse():
parser = ArgumentParser("pretrain", add_help = False)
parser.add_argument("--technique", type=str, default="SIMCLR", help = "SIMCLR | BYOL")
parser.add_argument("--dataPath", type=str, default="./data/datasets/processed/flatten")
parser.add_argument("--ckptPath", type=str, default="./ckpt/pretrain/SIMCLR")
parser.add_argument("--logPath", type=str, default="./log/pretrain")
parser.add_argument("--gpuN", type=str, default="0")
parser.add_argument("--cpuN", type=int, default=20) # per gpu
parser.add_argument("--batchSize", type=int, default=256) # per gpu #256
parser.add_argument("--epochN", type=int, default=251)
parser.add_argument("--precision", type=str, default="half", help = "single | half")
parser.add_argument("--optName", type=str, default="Adam")
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--local_rank", default=0, type=int, help="Please ignore and do not set this argument.")
parser = first(parser.parse_known_args())
# pick a gpu that has the largest space
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = parser.gpuN
return parser
def trainStep(data, ssl, optimizer, scaler):
optimizer.zero_grad()
if scaler is not None :
with torch.cuda.amp.autocast():
# loss : Dict
loss = ssl.forward(*data)
scaler.scale(loss["SIMCLR_LOSS"]).backward()
scaler.step(optimizer)
scaler.update()
else:
loss = ssl.forward(*data)
loss["SIMCLR_LOSS"].backward()
optimizer.step()
return loss["SIMCLR_LOSS"]
@torch.no_grad()
def validStep(data, ssl):
loss = ssl.forward(*data)
return loss["SIMCLR_LOSS"]
def train(trainDataLoader, validDataLoader, ssl, optimizer, config) :
minLoss = 9999
nIter = 0
scaler = torch.cuda.amp.GradScaler() if config.precision is "half" else None
ssl.train()
for e in range(251, 251 + config.epochN):
print("TRAINING...")
######################################################
losses = []
ssl.train()
print(f"epoch: {e}/{config.epochN}")
for i, data in enumerate(tqdm.tqdm(trainDataLoader)):
loss = trainStep(data, ssl, optimizer, scaler)
losses.append(loss.item())
nIter = nIter + 1
if i % 30 == 0:
lossStack = np.stack(losses)
lossStack = float(str(np.mean(lossStack))[:4])
print(f"(EPOCH {e}), ({i}/{len(trainDataLoader)}) TRAIN LOSS : {lossStack}")
losses = np.stack(losses)
loss = float(str(np.mean(losses))[:4])
######################################################
if config.technique == "BYOL":
ssl.update_moving_average()
if e % 10 == 0:
torch.save(ssl.state_dict(), f"{config.ckptPath}/{e}.pt")
if __name__ == '__main__':
# init configs
###################################################
config = Parse()
# model, optmizer, ssl
###################################################
net = resnet50_baseline(pretrained=None)
opt = GET_OPTIMIZER(net.parameters(), config.optName, config.lr, 0)
ssl = {"BYOL" : lambda : BYOL.BYOL,
"SIMCLR" : lambda : SIMCLR.SIMCLR,
"SIMCLR3D" : lambda : SIMCLR3D.SIMCLR3D}[config.technique]()(net).cuda()
stateDict = torch.load(f"{config.ckptPath}/240.pt")
stateDict = {k.replace("module.", "") : v for k,v in stateDict.items()}
ssl.load_state_dict(stateDict)
# dataloaders
###################################################
trainDataLoader = DataLoader(DataGen(config.dataPath,
transform = ssl.genTask,
is2D = "2D" in config.ckptPath,
train = True),
shuffle = True,
batch_size = config.batchSize,
pin_memory = True,
num_workers = config.cpuN)
validDataLoader = DataLoader(DataGen(config.dataPath,
transform = ssl.genTask,
is2D = "2D" in config.ckptPath,
train = False),
shuffle = False,
batch_size = config.batchSize,
pin_memory = True,
num_workers = config.cpuN)
# train & valid
###################################################
train(trainDataLoader, validDataLoader, ssl, opt, config)