-
Notifications
You must be signed in to change notification settings - Fork 0
/
beta-func.nb
4730 lines (4638 loc) · 228 KB
/
beta-func.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 233748, 4722]
NotebookOptionsPosition[ 226519, 4607]
NotebookOutlinePosition[ 226906, 4624]
CellTagsIndexPosition[ 226863, 4621]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"x", "^", "n"}], " ", "/", " ",
RowBox[{
RowBox[{"(",
RowBox[{"a", " ", "+", "\[NonBreakingSpace]", "x"}], ")"}], "^",
RowBox[{"(",
RowBox[{"k", "+", "1"}], ")"}]}]}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "\[Delta]", ",", "\[Infinity]"}], "}"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.835733743387698*^9, 3.835733778710059*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"a91fef71-d925-424d-8e4f-d1cfd79f837b"],
Cell[BoxData[
RowBox[{"ConditionalExpression", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{
RowBox[{"-", "k"}], "+", "n"}]], " ",
RowBox[{"Beta", "[",
RowBox[{
RowBox[{"-",
FractionBox["a", "\[Delta]"]}], ",",
RowBox[{"k", "-", "n"}], ",",
RowBox[{"-", "k"}]}], "]"}]}], ",",
RowBox[{
RowBox[{
RowBox[{"Re", "[", "\[Delta]", "]"}], ">", "0"}], "&&",
RowBox[{"\[Delta]", "\[Equal]",
RowBox[{"Re", "[", "\[Delta]", "]"}]}], "&&",
RowBox[{
RowBox[{"Re", "[", "a", "]"}], ">", "0"}], "&&",
RowBox[{
RowBox[{"Re", "[", "k", "]"}], ">",
RowBox[{"Re", "[", "n", "]"}]}]}]}], "]"}]], "Output",
CellChangeTimes->{3.8357337895315237`*^9, 3.835796190681974*^9,
3.835796261739946*^9, 3.8357966787867928`*^9, 3.835797905939418*^9,
3.835798417987257*^9, 3.835802551641387*^9},
CellLabel->"Out[18]=",ExpressionUUID->"96bc7ebe-4d67-4855-9fce-6dbeb99d0776"]
}, Open ]],
Cell[CellGroupData[{
Cell["(1) Bound (rough)", "Section",
CellChangeTimes->{{3.8357963935662107`*^9, 3.835796441146495*^9}, {
3.835798506124239*^9,
3.835798540809463*^9}},ExpressionUUID->"676c7e7c-5f5c-4037-b95c-\
28cbc47dd3d8"],
Cell[BoxData[{
RowBox[{
SuperscriptBox[
SubscriptBox["\[Integral]", "\[Delta]"], "\[Infinity]"],
RowBox[{
FractionBox[
SuperscriptBox["x", "n"],
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+", "a"}], ")"}],
RowBox[{"k", "+", "1"}]]],
RowBox[{"\[DifferentialD]", "x"}]}]}], "\[IndentingNewLine]",
RowBox[{"=", " ",
RowBox[{
SuperscriptBox["a",
RowBox[{
RowBox[{"-", "k"}], "+", "n"}]], " ",
RowBox[{
SuperscriptBox[
SubscriptBox["\[Integral]", "0"],
RowBox[{"a", "/", "\[Delta]"}]],
RowBox[{
SuperscriptBox["t",
RowBox[{"k", "-", "n", "-", "1"}]],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "t"}], ")"}],
RowBox[{
RowBox[{"-", "k"}], "-", "1"}]],
RowBox[{"\[DifferentialD]", "t"}]}]}]}]}]}], "DisplayFormula",
CellChangeTimes->{{3.835801250497291*^9, 3.8358013628122272`*^9}, {
3.835802534695677*^9,
3.835802535952592*^9}},ExpressionUUID->"051a974d-74f2-4b17-adfa-\
856d359ff204"],
Cell["We use", "Text",
CellChangeTimes->{{3.8358021846208487`*^9,
3.835802198572274*^9}},ExpressionUUID->"cf799446-9370-4924-85fe-\
2ce33525eb8b"],
Cell[BoxData[
RowBox[{
SuperscriptBox["t",
RowBox[{"k", "-", "n", "-", "1"}]], " ", "\[LessEqual]", " ",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox["a", "\[Delta]"], ")"}],
RowBox[{"k", "-", "n", "-", "1"}]], "."}]}]], "DisplayFormula",
CellChangeTimes->{{3.8358022063577423`*^9,
3.835802232131954*^9}},ExpressionUUID->"a709efd4-1106-48dd-a8ae-\
1bc4f6bae6aa"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"k", "\[GreaterEqual]",
RowBox[{"n", "+", "1"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"bound", " ", "=", " ",
RowBox[{
RowBox[{"\[Delta]", "^",
RowBox[{"(",
RowBox[{"n", "+", "1"}], ")"}]}],
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"\[Delta]", "^",
RowBox[{"(",
RowBox[{"-", "k"}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"a", "+", "\[Delta]"}], ")"}], "^",
RowBox[{"(",
RowBox[{"-", "k"}], ")"}]}]}], ")"}], " ", "/",
"\[NonBreakingSpace]",
RowBox[{"(",
RowBox[{"a", " ", "k"}], ")"}]}]}]}], "\[IndentingNewLine]",
RowBox[{"kmin", " ", "=", " ",
RowBox[{"n", "+", "1"}]}]}]}]], "Input",
CellChangeTimes->{{3.835765179600984*^9, 3.835765225805242*^9}, {
3.8357861602507133`*^9, 3.835786188678886*^9}, {3.835786825155311*^9,
3.835786825966598*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"3ffe8f97-935a-4b83-9221-3567bbae2ecf"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["\[Delta]",
RowBox[{"1", "+", "n"}]], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["\[Delta]",
RowBox[{"-", "k"}]], "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"a", "+", "\[Delta]"}], ")"}],
RowBox[{"-", "k"}]]}], ")"}]}],
RowBox[{"a", " ", "k"}]]], "Output",
CellChangeTimes->{
3.835765228052706*^9, 3.835786215767002*^9, {3.835796088579822*^9,
3.835796110038588*^9}, 3.835796261932231*^9, 3.835796679083441*^9,
3.83579761384763*^9, 3.835797906238593*^9, 3.835798418285062*^9,
3.8358008414889193`*^9, 3.835802551748345*^9},
CellLabel->"Out[19]=",ExpressionUUID->"e4c025d3-ca04-41d3-aa56-270ce4ac1d2a"],
Cell[BoxData[
RowBox[{"1", "+", "n"}]], "Output",
CellChangeTimes->{
3.835765228052706*^9, 3.835786215767002*^9, {3.835796088579822*^9,
3.835796110038588*^9}, 3.835796261932231*^9, 3.835796679083441*^9,
3.83579761384763*^9, 3.835797906238593*^9, 3.835798418285062*^9,
3.8358008414889193`*^9, 3.8358025517507687`*^9},
CellLabel->"Out[20]=",ExpressionUUID->"a9d86440-18fe-4b01-b6cd-14c9ded1a05c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"vals", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Delta]", "\[Rule]",
RowBox[{"1", "/", "2"}]}], ",",
RowBox[{"a", "\[Rule]", "1"}], ",",
RowBox[{"n", "\[Rule]", "2"}]}], "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "a"}], ")"}],
RowBox[{
RowBox[{"-", "k"}], "+", "n"}]], " ",
RowBox[{"Beta", "[",
RowBox[{
RowBox[{"-",
FractionBox["a", "\[Delta]"]}], ",",
RowBox[{"k", "-", "n"}], ",",
RowBox[{"-", "k"}]}], "]"}]}], ",", " ", "bound"}], "}"}], " ", "/.",
" ", "vals"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"%", ",", " ",
RowBox[{"{",
RowBox[{"k", ",", " ",
RowBox[{"kmin", "/.", "vals"}], ",",
RowBox[{
RowBox[{"kmin", "+", "2"}], "/.", "vals"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"%%", ",", " ",
RowBox[{"{",
RowBox[{"k", ",",
RowBox[{"kmin", " ", "/.", "vals"}], ",", "100"}], "}"}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.8357976115491447`*^9, 3.835797611707358*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"8ec414e0-e6a2-4886-b91b-12702f6da364"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "-", "k"}]], " ",
RowBox[{"Beta", "[",
RowBox[{
RowBox[{"-", "2"}], ",",
RowBox[{
RowBox[{"-", "2"}], "+", "k"}], ",",
RowBox[{"-", "k"}]}], "]"}]}], ",",
FractionBox[
RowBox[{
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
FractionBox["2", "3"], ")"}], "k"]}], "+",
SuperscriptBox["2", "k"]}],
RowBox[{"8", " ", "k"}]]}], "}"}]], "Output",
CellChangeTimes->{
3.8357962619824343`*^9, 3.835796679127172*^9, {3.8357976120291233`*^9,
3.8357976146268*^9}, 3.835797906281962*^9, 3.835798418329056*^9,
3.8358008415992327`*^9, 3.835802551792973*^9},
CellLabel->"Out[22]=",ExpressionUUID->"a02f6ea1-ca14-417a-9f0f-76b75fe52896"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd0Xk01AsUB/DJxJsNM/OjkhZKh4pWXpbq3rTglJ54jiWH8rJUKo2tTHiO
LZRqStRvKEYSJhnKElGSpTFPGUqdPEpEtl6mrPXmvXvOPd/zOff739X3PuHo
o0KhUPYq9780DQxXpVBo2J4mk2gmyyFnzveMbXNoqG4r/qKIlYPW5aBfY1Ro
qGEsye+KlMPX+wF+aqo0dKobjivjyUEy7dnEYtAwwzutKt5dDusStp/X0aLh
o8PvaddXyWF1Jkt7oxENeZfWWiVL22CZNNPA14GGPw/rZDnNb4PnjIi4C7eV
/coa8mbBC5jU7LX8Z4KGw6NTjcdOtQLxMWVrlS0di3M2JGhIZfBJ+DXG7gYd
q/yKcmRiKVjr9ixmj9Gx0as0ltrdDC5nzk5es2Egy4ROOT6vCdzEQcuTMxgY
d3lwrIvfAN05/Vn3hxloo7hrKtN9BsuitL1FO5i4JdEgyq7qKQwslYY2pzKx
Vc93/OH5OhBefNbp+pGJWZuyn8rDnwCjNzwy34qFhdV1Jam+j2F2tizM7BwL
UzcPepJhtVAwdVcS84GFKTtHmQ4aNbCrYcDKwkIdtWUhPJ5rNfi4i3WMEtWx
p+cqY+LtQ8DWVRZv/lbH9sJ9u3X2V8IN1npx/ToNHOEHG8qYFVC5+ot38FkN
dL0VQTlUXgaPFyp8k7o0MGeXU4979AOwb42u6VyjiQtY6bYBJ+/DFf9Gt6E4
TeRUL1814FEKBxrSbM1faWLbM7WO7CMlQPl/2Pjua7zCaEICLH77kxCCjVpD
9Pb+JAnUUzerFG9lo+OdTWpRucXweLTvM82Pjd8rw4pl7+7BwpbjoU8EbPw8
EnKsl30PDgsW5BVVs9HkQRNV5/ZdmK5Ui634yMZd0sunE9zEMCh/QVnB4aAr
b0P8Q2ohLHLsMRRbcPD8SQNrg4582FHG/eZ/kIOL4ugrm6rvQLO6vk/8OQ4a
JFhlp2XkgaAhKLK2VHkvDpU1ZN6Gcp7I3KObgxMfLuX2p+eCXvT8DC06F8+c
W66rUnwLIsPEeZT1XBwruWJZ/zoHLL30nPd6cLEwsGl/36QIzPNfFZTHctFx
t+T5RlMRXOk7Koq9x8VD6nafYvyzoY+xzDr2LRcddO1+CPKzgC9YlHyTSmBh
mrvOyzlZcIw5HrxkLYEek40JUU43Ibtfk17hQuD7RL+xjsAb0FJgvyMhisA8
E2OF295McD7or1eWT+BI4qOkZP0M0AtvyKW2EZi4PWoqXVsILn766WVKT3V5
B/7CEULK7/zEo3ICtex/tISyhDCzZm1AWzuBUowAV6oQOj9cXS96TeCSIzGK
FV9IENj7Vll3Eeh1wSBiSEoCVV/1ZfQAgV1ewtMGcSRYanjVmQ0SuPlSCL/o
TxJ40+WlA0o7jaz0tDpDQnd7QNq+IQL1S/bUOweRUJUk99AfJdCHf00r9SAJ
weOi/tpxAmcN+We3bCWhoGf2dbCCwBXyvsgOCxLey1yajb4R2FTb4RhoRoLD
Hab44ncCZx6cEOQak2DiGcQ7MEWgSX/NkcW6JBza3fKH1jSBf83E21TPI0Fo
bujcqHStwJjiySWBQbzdtG6WQHHEtrnZdBK2UcxW9iqtPd/2t52qJJwaTlmY
/kP5j4r9IQMUEorefGLu+UngXBPb0JSZ69DXYD37U2mxTec+04nr8C9jnDjr
"]]},
Annotation[#, "Charting`Private`Tag$57418#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVzHs01HkcxvHJRGMuzMxX1+1iKqXa6LLCcHw+Lls60cHm2EoiuexmsyJC
KbnlXkqlJcSWaLJNOmiVy6opZbcy0wwKg2F+UnIvsu3sH895n9c/j+BAsJuf
Fo1Gc9bs/373a5Q2jcZA4eV5LfqpUiieNZlnO4uBB1PD3u1Nk4LB+dAtcVoM
5M0eMyxJl8LovaAAHW0GNuX59OBZKYinvZ6ymQx8uMrmcWi2FDYk2acvNGAg
fXyTTme+FNZdZc/dbKz5X/Ls1LMKKSx/fnWlvwsDf2iJHPrSIYVnzBMJmTcY
OBC8Jo5Yy+Czfq9w5BMDpdrDnfRsGRBVhk2Noy66udo5GH2QgTp3NG57vi6W
KwI5bNfXYPeNcgn3oy7ezrwzHFn+GjyOn/mcs42J4opNIaYL5LBbFLoiNY+J
gk8h3iGxcugq7i+8956JZqUPwjtVclh+cu6BIgcWJgzc/dnRXQHUsufhTdks
vJXY+EFcq4Dcs49bf1Sx8JWXdu2uta3A7I2KKbVio18Dx+ZWQSvMzFRGmKWx
cc9ivZvXeG1QNnVbHNfDRrfTNc0DGW2wVUJZWVpysOBT4xwFux389ogWGidz
8PfN9hmT8e2AL9ZatnVyUAUGDcB8A/nsjaJHG/Sw/vafh5KS38D9dcMHws7o
4WlfE6eSeW+hftG4f0qHHmbOE85OLX4Lzi9ia1tN9LE9STdmdF0HXAh8snsw
QR+vlB3LN27oAG/JJUcLuT6GP/0oLnXtBHa0rOEo4aKEk8w+oeyER3RrrTs2
XFw/UjU7HbugfqjvHSOAizYuY//UpnXBoubD4Q1ZXDxnlahtp+yCn7IWlJQ/
4KJTVHaq+RYlTN/Xia9WcfGJ9R4fxyQlDEhf0ox4PHQucaFZKZWw2E25WmTJ
w+qU7o5V5t3gUMmfCPThYUvjtgnb9G5o4gj8EtN46OtfnC0f7IYsSWhMXQUP
Vzt/T5/v2ANVR4osPLt4+FC+NNdF1AOGsfPzDHT5aBGhNcLR64WYCFEJbSMf
cxZ6SXWCe0G439B9pycf9b4kdl1v6wWLUnlZVTwfw2VGKSG2KrjQd6go/g8+
2h8rHAy9q4I+5nK7+HY+3uD/pl6wqg+isxanFtAJTp+r5iee74NfWGNhS00J
us8MXx9h98O1fn3dag+CwVzxpc+n+qG5zNkh6STB2gJhyrbxfnD3CTSsLCWo
taMu0i9cDYZRkuv0FoJxtZlB4mE1eAQILldq3Mhpt+8cVUPGrujkQ1KCOlfu
urEn1PDFxDSoRUbQa8uK+QFTamjtubixSEHw3spcq2V0CrKc/WvsOghenDM2
mWNAAV2g/SqWInjO2t2/2pwCod7+v8wGCI5F7xO+t6TgyHRVBaVxfXDpVoE1
BV2yoEuugwTXp61hpCAFNSlST8EQwbneXqZe2ykIGyvqrxsjqKgQE95eCsqU
M4qwcYLHHWoOO+6joPtvjybjCYKbTAK0Tu2nwOUmS3R2kuDTnVUtQ74UrPcK
PeI9RbAuf2DpqyAKDu5o9jWYJih5XQisYApyLVa7P9H45bhxjkMIBUzSbr5h
hmCSzcOJyqMU2NLM1vRqvIQopoYjKDj2PmPR5X8JRhq1mn8bRUF5m5rl9JXg
FSeJyP84BX0Su5mvGi/zLvEsjKHgP65VPBo=
"]]},
Annotation[#, "Charting`Private`Tag$57418#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{3., 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{3, 5}, {0., 0.7967078027459172}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8357962619824343`*^9, 3.835796679127172*^9, {3.8357976120291233`*^9,
3.8357976146268*^9}, 3.835797906281962*^9, 3.835798418329056*^9,
3.8358008415992327`*^9, 3.8358025518498*^9},
CellLabel->"Out[23]=",ExpressionUUID->"9f1a613b-5807-4272-a02d-8f03f55ad285"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtmnc8lt//x0Uiyl7Zm2TvcV/netub28wskbITkkhJyCwhoZCRlhEhISuE
rKxEJFmVUdkRv37fj+uf+/F+3Nf7nNfzec7jvs/1eFx8zufMXUlJSEi0yEhI
/v/zl3rZwX0klHBDm7uJKm4Az+gx9F4kUEK4jovTmnc/ruU43Tt6iRKimnjz
E1z78MXvV+TbKynhR6aZ1Oy593haEFta5TIlGNyJXyfG9eIaB8q28qQPwrbb
UsNtrx58Ptnw5G3vg5Dd+nV5frwLh5Irwl6zB6Eqn/xyBO07/DuBLdZWkAqI
ZzSePGpvx1M6Shd0TlGB27j8xdW7bTiyMTSTz6KCg8KHvn8MeovPTU+V841S
QaGX3JVZj1Y8yf8KGy0bNYzENA/2ebXghH1sl7ctqcG8Q2rVJ7QZT+Q01PzQ
TQ05Azpqsa1NuOrTqYJm6kMgPFTReOxvIz6ldIWqTO8QkPmepKtDjbiyRen7
+KZD8ExmZ+B2fT0+OWGgELx7COQfVzyaDKnD432m0s4SDkNaBlllt95rfCKG
1Umj8jDQ6YunGNDV4LGspW+klg+DedKC1xplNS7/0ECES5oGhAMlv52neYVH
N4Qurj+hgU1Jw54Owktc1oTVfHqGBtIDuqe0Tlfin0afV/QJ0AJXJWVyy50K
XHr96+WiTFqgC26wTGUqx0ciQicyRmihIOHL1ienFzjJ/y46EB59lOyzXobP
szyMLNWjAw/r3tJH/qV449h5JdGzdNDsbXZRaew5npqPvmVF0oGps2GJkPFz
HGSHjeKb6OAqt/zgvdBinHkzf4f0y79+M3ajkatF+Pf6888v7dKBakYTuXt8
IZ5iTM10lkAPVFHHRnyanuJzbmhUvZIeunUXzK/eeYS/lqJOqBqgB7+tCgrX
sQI8ae0DklqmB2uyflaCeAFOiDifyynNANwONgPBY/k4vSGyTDZhgBtHBTsN
8Xx8hp76AJU3A7y4tys0UZCHJ2bnu68/YQC7LS6cGJWLu545z+HTxgBFH83Z
X/zNwVUlUNfUDAPoZ00Izl7KwaeqP0j3CTDCn3pbkt9XH+DKQ1QbhZmM8NHX
gWs4OBNfo65/+KKOERjwYsOj9+7j5er+FtWfGcE+6b1j+Jt7ez6ZgCJAW+LL
VgYuXTRa/JaPCZD7D/l5sQx8cfKWQ7cGE1AeWJa1cU/HC9m0qAZdmODEnbs7
14rTcNGIQtfJh0zAzb8u/8vwLj7zyonxWysT0M/ERTzPS8Xzl5gal2aZYP66
8X6+fak4r30o59+jzDAv6TRwrDMFZ5U16WctZgZuYX02jswkfOAs6TXuHmZY
hW7vMM4kPCmzUlLoJzNE8yeKkj+4jdMc5ImVlWWBox6aJl1liXgn6ldSsWCB
c9Jq3i3qiXhswI1pPIAFLr63sox/fAs/MLEExpUsQPQW5nh14CbezJy/aPGB
BfQCpp6dwRPwcEOb+3YbLECVNV9x9Eo8vlPZsH5WlRU8vqW50h+Ow9cSbheH
17HC9dQanh6PaLz8jbZDzGdWmOyKEL/SfWPPHxs83OzZMVe5gS+ednbN1GAD
e6LmtiFTFD6jJsdZ1coGj58ntT7bvY7nn59tr5tlA9E8TfvO69dx50f3LrZQ
HgGv7mMKrtTX8XGG/f19BkcgyWPYL14wHB/8NhCz0H0ExiQN21pCwvAknhil
laUj4CYr/b6cLQwnWmHTf+jYQVfpZ1+271W8s+EhUFqww9H5K8keO6F4893A
df4P7HDixeE7IhYheHiX2MOjG+zwyeTNR7cXwTiQfTaXPsIBS/yYTz9rMF7r
o1uM2XNA4lMrt4fzQXi5NpurzWcO4JjanN5pCtzj5QThEDbndo1A/MHxRFly
Lk7wt7gq59J/AU9wpyQps+OEybHPjHOLAfiZhI0M6iFOeOhncG9Xyx93SC3f
N7nCCfVayxfSJvxw82xftypGLjDgWCu9csUPx0vnFFzNuODCB4Pd1YbzONvg
cG9dJxeo5L5Z3Drhi9OMpyjd+cEFsa8bHd2offH9s8QsTypuMH6Wc9fV/xz+
a6PNk02PGzDDbxPOSj54B+erA35vuEHgcT+t1Jwn3iB0wVtvkhsMLo9vuDp4
4i8lZQa49/HA5VYFoSf9Hng+PMl5h3jgQ9HsMMU7dzz0dDpBqJoHPt9W2BIf
PYsHeFvlbQ3zQFmWj0Gb69k9H7xwvOem56nBM/ix5mbPenZeWFgNPeHEdAZn
GyKoeNnwQnuayNkhv9N48kiG14ezvEDcX4yP057GaT5vZGtc5AWHZ88q14pd
8P1z5QeOpPLC/kN1rqLLzvivTfGBln5eiLxa814v6RTutRNLIfOVF4ZDAUtA
p/A50m+q93/zwp2CNKroeSd8nPphjh89H5yI8D10ydgJ7+DiOsdjygfqOths
mNYJPE/9MNWlDj7IF4972sxjh5Py1PekfuSDw+MM4uxPbHHnbd875XN8QPaM
4kiNvO0eHz+Qyr55lBBlg2eJ31c6q8kPfWcqL5E/tsZ3Dpr8jTDnB+tP3v1n
NKxxx9ndptxT/DD+XIXu5bgVzpnrYjJ+lR/sb6HlP5xWeAbrMVerWn6IVd/4
sF1sgf9Z+STm/44fnmFVW/XHLXDbvps/E0f4QTrww0UhUgucLeF3SOcGP2yt
v9WosDfH75BWJ2kqCEB7V9JJMj4zPHFBr0GmWADK6C3Gbo0a4z87/kSavhaA
438YUzjsjHHTx4WG3p0CAJvlVaSjRjiNC92Hx98FwLgWL3jx1XCPTxCu9q3m
uCNDPG74wwKPiCCoTvz84kRrgH+viHmBKQqCSfCDH1HZ+rhBstole21BoJR2
uF0io49TmmTvv+siCHji2coJez086s0ZDpoHgjChsWtT2aqDzzxg+3KsRBA4
zirmfHXVwbWvdBTo1wnCfWna6bYDOvh+FUnZyE+CwOfI8TLdWBsPL17V22YT
guw/0U/8FjXx0PSIwO+3heBmz2JncKA6TpQUUyXmCkFUpAmFj4g6Lvim529F
mRCwiD54M/YR8M559shr/UJw22iMi0kT9viEgWJWzyqQDMc5oTSZjVkYju28
1eU2QvjPAevjV4SEoVdUZVWqGcOb3bfZpxSEgXH2RlAbwnCvZN3cEmth2H4/
/chOjYDXzIw910kTBkvbjahnRFX8Zsj1gMLHwvCBaqk8fVQFd6Y7qszwShgY
Si1/Frup4FSqAfVjH4UhPc/KTSBGGbdLoOoO4BCBCWL7T4ZJRXxTTulHbpYI
HJZdFC39IYd3tn0qpiwRgQL1wXG/FDn8gWO4n0+9CKh71R9+i+RwvRtdmyoT
IvDneR87ZZrsHp8obJkbjezsyOBpIy6U7/lEYW5MJp7bQQb3OnewU1H2X92k
FZxPJ4PD/pJb9zVEQeTTvhPXW6XxOYk/LG4uopBqhf2VUZTGla4lCu3miwIZ
2aiRrr4kTsWi+O10hSgkJPs9CW+VwMefjhZ2tIjCtZVjbjQ6EnjUgLB86owo
MDPED3w3FMeHRF5rSIgeBfkwd56b58XwC93fTto/Owqe5qEunzlE8BkjRpIn
1UfhwATBcLpeGLd+R3iw1n4UUpp3F91dhXHFtlsTt+eOwoWnhdqD5UI46f/4
xODpboAQu7wQvtaocKpNSAxWLIJarp8WxM/AyX0sCmKgJTqs2c0oiA/VRee4
aIlB626j7JlmAbyyZvTLjrMYkNXf6zl7VAAPrLjmrPBADLJGu/OPkPLjM3LP
SK+XiMFQk2W0Yg0fbl02kNtbJwZ/rLu1Ay/w4YolIl89x8Tg1Ru7doMFXnzt
cZdLLvsxOMNsjUf38+CB94+40t45Bo8ev55QFeTEZ9g1yR3zj4Glb3lvciUH
bp3u9fDpi2Owrp0z8diAA1dMrZ/W7jsGq3msh75fZN9bP3Go0ml3KTE8gq/d
cj1zmVYc+liHHUhn2PAzNLcOdHCLQ+YJDtELkWz4UHxVAaukOLDnPMr3EmbD
K2OoZ8uMxOE0pbhyrxcrfvF66dlvMeJw+dbLpNdULPjcvlEKpXRxGPD8/PVx
BTNuE7b/ccRjcTCiNqueO8WMK4cen+N5Kw7nNI73mNYx4RuBf92s90uA1umv
b4WiGPEgD32PN1ck4EW7yEy8MT3u8OAMpe0tCXh9+nDkMDk9rj50vWAxWwIs
76pGH6+nw6k06iaPNEpA3PZDpxEFuj0+Sdjh0scnQ2jwMFPiJjmTJMyVBvn5
fT2Mu0Z6370nKAmfp74/kHc7jEv+etTfqi0JwqTvl4YuHsIb2jiNuKIlQa9r
4nZGMRWev6PyvSxNEno6S/J2gAqPkT8erfdEElrN2S7IDR7EzR/cbvbvkITI
juLQJdKD+NTFA1jHISkYGMrgG/GjwA+K/JS4eFsKfomn2cpk7ccXHQ53HsqV
gqeRm8kSBvvxviQxj9wyKfC9muMbu06G3985XdDVL/XvPDQjZ2JNtscjDcp5
gSvdMaQ46w8vWgZqaTiaX13iIECKU0WFjDswSsMkU/D+2o/78G3e2KJHHNKg
run/zeT2PnzC+pEhJi4N3ZzeL/6Q7cOfNH254WYsDYXr+Su1C7vovuNP6xdW
0iD9aPbFPa9ddHNjR2jHURpO5J1xSV7YQX6SnM3JPtKwNNjw+MnqX6SWYU1S
f0santFU017l2kZd598FMfdJg/uj0UNlzRtIdpPstsqINHxe1b1P7rKBUsMI
TxwnpSEzjjZiinQDnbhV9PHhb2m4rv/imZjuOvqPTwaYxx7aOZWvoZ+Ft1QV
GWWgpdz6htiXVWQp32ZuxyEDTZZiamJxq+hVDYnnFQEZGBGJy4lQXEXhHefv
tcrJQOHuNLvc7RXENGexbW0pA7WfnA9+tlpGQefimUIcZOA2ScAPDqplNLbW
LJ59WgZOlFocjKn/jQrIFR1nA2Sgvjrg9ITEb6QkwFZ38Y4MsDN/Zthl/YXs
Tny6mjYkA8fQUr00YRHVTTOl1Y7LAEU0Xah36wIS8DZ+PjEjA59nNnKvmi+g
+ZC6CdF1Gfi5PKpywHd+j08WILyIpPTPDxSa/kD9FasslIcmfHlf/x1N8n60
HeORhZ/aukaLx78jncf0fvtEZUFjmezko1/fEM3L8Fx9ZVl48bpSb/DoN/Rg
4DTZiI0s1LWYVPkUzqL9DpkcO06yYBO8LVRHnEXuXwfl+N1lwTTgXWzQ2gyS
/a1z2uOSLOj4yuuw6sygZtqjLX/SZaFR6uehU6tTaNZgIYpjVBYMs3aWkm9N
Iva3ZxNeTMoCzduna0NGk8hIczLZ8Lss9Ife2aChnkTP1T48CNmUBfbl5RTT
2C97fHIgFzIreMbqCwoWb6weZZUDGcrqhtLkCURDc2fxnqUcyEc43JXNGkMQ
S7sq5yAH4sw7CzLyY8j/QOzWOxc5EHznIFn+7hMa3rlCue0nB32t29/FdkdR
7pIbv8NtOXBS2g3UuziCFN8TrDm75eDXekdh/aMPyM34pUP5oBzw3FlkuWDx
Ad1rl3ExGpMDq6CqGw4kHxBJk7Dv5Xk5uKo+1VXiOLSXVx6SvDn43O8Moo4y
uthPVPKwJE/RuiQ0iE6kTL2+rysPknnpBL1vfSiR7mSzvKk82AZNNYkX9KE3
8R87Oq3lwdc0oIzsdB8Sjez+sO0qDwemqb4ET75Hvy9U/XKIkAc38upxqe+9
KOp4vBBXozyQPa/X6tXsRv4lJMds2+UhSG4mZrKnCzlRXJC+814eKnJIAqsc
u5DKS0e1w5PyoNehZJ58pXMvrwK0011/tfGnA330ybNWoVaAYiap2SrvDtTa
yupwgVEB7uqWVlZRdqDsQJKzCwIKsFqmHmio2Y7Mh95fHtNSAO9zki0sHW8R
LqkTfsRYAWo8jI9ZnXuLxKOqb1hZKUDYJKv3MvNbRK6Yl9TlqgCOjeQTKmdb
UdWdgMevoxRA9ITCG/sjLYjLinUgs00BpA1LOh68bEJURXEfP/YqwJrIYOMV
3ya0tp/kM/NHBShRSVA7J9aEesvnviV8U4AA4ar5wJzGPR7Ff//XN0YZlhpQ
OFP1biiVItjTWJ4uudeAznlJklczKMKnBUOmEocG5NCcS7XGrghkv9vsc7gb
kEJAHLPPMUVwe6zXkWlQj+b6HY6dMFIE5XP2O33Br9HgsffSGZaKsGxbpiZL
/Ro1XddWHHJQhBwCvTPKrEX35CTVTbwVYTvsuplmaw0ySd61RjcVweZG0HOT
Y9Wo3Dw3nLtXEVRqP+vIEV6ic9k2gd0fFIFBOtvH5HslEpun8bjyWRHobzro
3UyvRNmRIWbji4oQIRJ13XOrYo9PCUg62Tsvmleg2CpL3qzDSmBtFBt5rLMc
neKmqOMyVAKCL1uyV1YZ4vR8XdplrgR/04QukTiWoaGX/g9D7ZTA66Hn8VDO
MmRkNhE/5q4EM/enxgSzSpFyxCv7zGglyE8tHH7/7Dmi+e65ydmqBCb0mZo7
o0WoXZF/obNLCdIDRh6f8i9CEdeHJy4PKsGJGlU95UNFaJNTu+3TlBJ8FE5w
EdMo3MurDE5MGfns809RTUWvPKe6MjTjv7lMVh+hQNIbop16ymC9GqSXkfMI
SZtinJeJylDr/CmUxvQRKph7QvbppDIMnbxz9URRAUriuN5374oyyIounhC/
+BC5XVPw5ahVBjXx64ZihDx0p5q5KP+NMgy3rTIF/MlFTcur3yTeKcM16qn9
Oa9yEeeZShcYUYbZdz9/31XNRb0GSsddN5Sh/2BgwUOdHLTvf3lVQPTt6NeZ
wzlIiUkFlcirQFt4NHb1YDY6bXwkRJmgAtLhv+/WZGehxKjNl42aKjAHY4Gn
lbLQ941XMgPmKkBH27U065GJssZUhTZ9VWAlnGpUcvIeOvCIcEizSAWofdZj
ag6nI7kJTv3OchXgNZgzS6xKQ05H/kZa1apAZ3p4V8zpNFQd93r37DsV4DIu
Ih2tv4t8fNFy/DcV6L61dCr2euqeX1WIBh5tpad30KAKjAwJqUI5/tV2Ti0F
kfrzsjpJqMJYEJWC3noykiwksfwmrwrH9L5qJb9IRtHcjV1bmqqwqPTOeFwy
GRHINBp5nf/VHD2hv6SSUH6n5mOPLFVo+WH6Idg2EcV94Zq6W6AKJ/QZn4dw
JSK/tXWelmJVsB7wGq9ovoXUeQvv8tSrQq0uj77p2E007s90Y+Dzv/lkqV01
+RP28qrBk/irZ9uT4hArx7Qr4lMDu7DdgM3VGLQjVZ/jeVQNniqijIXUGDSj
lT6WJqMGYv4B3OoqMajcx9hqWV0NWJJren9di0bEpgqtx85qYEt+Y3aR/waK
dY8SYMhXgxl6Z2ZCdgQ6f8XpJF6oBs3bO99nLCKQTbLqPa9yNbAkUY56dDAC
Cb9eZHjb/G8+pfAl26Dr6A3dcdLL02pwtDGdnMU5fC8vAQp8v6xLJ19D2y9F
vkwLE+DU4MbBYpcw9LVzHxejFAEWfczrlkTCUMeXURtQIgD/QSFn9pGrKJ06
sTdDlwAOwRaKmctXkOLJjXpTNwK48rTJiqmGonMH2rNePSHAvluzi1p0wUiQ
brrNrpQA1TOWw40vL6GRI/uWt6oI8CzHcNXb6RLSklDRRW0EqBFhCdCsCELs
lk+WmmYIcO3uulaA18W9vBh0J1Hl3TgfiJpzYqBTAAMfRkJ69uEL6NKzhx7e
xzBo3WQg1WgNQJIVjSk0chh4xLx0GL4agNLbNueIGhgUOGi861/1Rz5L7rcH
nTCg7z6qUTjvh9gwg8nxTAxu9RHeEsjOoy6dM4fCHmKACU8+e9bui8KJ4Yp8
RRg0qoj8HE/0RQsu1bEutRhcnjehi+bzRU2xYnJzIxgsh4wsqdz12cuLIIab
RlT5pRfyGqaK+MWKwPP7OS2na56Ib1K4OIkHwYufB7MDBT3R0A+NYTkRBLl5
2YbtbR5IfTdYPFARwVwYdwkDswdiEf4x8McSQYFanX1TjRtq8H8ntD8JgTw9
ea8oOoOkbb+Y6GcgoOwoppued0XZaP3izVwE31VSgjrvu6IrBwU62F4g8PMQ
8acmcUWE7GAfiYF/Ne1Q9EC/y15eHO7GPRM9dNYZVXUcfWnNgkPCz2M0R4pO
IdHn+MQ9bhxSv1aS5XidQnfvWB38IozDhWNl/cwSp1Cg0zV7TyUc0mt2baue
OyH5teHdqzY48Iqv61FGnkQlfP+O/xk4tFcn1y6yOyBuiqzzi7k47LvkNJRW
bo9uzr/IkHv277G3Rkqm2tQeeb38PP+6Bodih1x641g7JGasdLvvEw4et4dK
eOls9/IC7P8WEymUfRxZEJbnQ2kBdqfsDUXsrBGV1JVrDxgBhELOe09TWqMm
voMsb1j/HSf7kzY7q6yQLAUPTskLMEeoU6PgtEL0fQa3k6QBmPKFDMqXLFDP
2VyFR2YAZR6bg2FtZqiB2ORTaQXQKbX2lDfGDD1XmXzUYgvQbBr+Mc/ADCVR
87NPnQLIWjkWpNtLRNYlOTu8fgBmwS/O2r4z/S9vGIAhfVvBtJ0J+rT24G1G
EsD9VAemSi8j1PW5geRpKsAfSrOgWxRGqK5tQuVVBoBlghBXf54hys7gLfyQ
C5CZuNYbMWGAnNGDRKYXAFy7PYEUHvroW2S27c3+f+PXPWg+90oHjfjUJ2V+
ADhiIxZQ4qaDOo5/flc4+u/7g/vGaY/ooMKjPOjd1381x8/n/KHayLcri59y
BUC4e0mO31xrz686KJ9YsrxyQxOtMWX9uMakDl7zJ1S1xTXQ7N/XgrfZ1OFO
3eLBth/qaHhmzPEBpzrQKogwyBSqo1dVXL11guow9e7C98dS6uiyQ2b5lrw6
9FrRMAwDILL8+6EXrNQhsG/aRJERQ3Y3xoqQrTqonooAhhcEVObBPU7hqA5Z
TyKWJSwJyFnmAco4rQ4Emc+/GDPUUFNd3m6dvzpMmr57LCqvuudXHdioTFX1
RVVQ2Men1yiT1EGdyi2WMUsJDdf+KH1/Rx14M9/aMBKVkPQD8cmMdHWw0xxW
ZiFTQhNnijUkctShQDGjlNVLEeErpWTmz9XB5O1IcpG+AtqheRV5r/sf7693
027Scsj692bF6T51+MoZ/YbjlywqHlSdkRj6l88HS39QJotO3K/VaRhTh/if
jzWYlWXR66MNFNPz6tCdGSfoZCSz51cDmOL/suqqSKPLWm9jJKk1wLhN4kOs
tBQaEKGsXqfRgKRHI0db2iWROLX+9wYGDbiDdn5anJZEn953GFiwa0Ba0EEZ
x0wJpHaymzroqAb0Xinafsgtjv5cGkxo1NUAJ0IYXYjdUSRlmPz6k6EGnOej
NCAnOYpOc5otrJtqgMB5p+X+AlHUXddpJGmjAV+uX3MQ3xBBuWTN1PfcNKBp
dt9N4yfCe341ILf51MGR34LIIKEsJiBGA5Zsqmfz1QXR1RO+r24laACF3oRE
wKYAKpeS/Pb0tgZcVWk7oFMmgLj7nuh9SdeAUwyuPyeFBdBvlhwKk6caQGfw
dD2Lgx+lP7gVKfJOA3S5K0BOmhd1nzeu0OjRgKf3XxKFFngQqSb1tGO/BowW
RHuFhfAgr+korZRRDWBmTfFbuc+NQOwK2b55DfD68v2e4m/OPb+a8ITalySG
iQPNvfC6NnJIE06HrZiEfDmCuCLFSlfpNOHWn5dx/pFHkLn13AQdsybscK6k
lYsdQbUbLqDLpQmiRKHGnSA2lIjZ776Q0ARfUlIRRUFWpPxWPzTBRBO+nq1t
DSllQgNJovnO5prgbtXS+MGLCfmeoHinZK0JEZJ5wWxHmdDj1Wa2SUdNqN2m
ViLkMyI2QShX9P5XO/GH1eQz7PnVhNfXdQpkrtOjjTDFH5/jNEGhrrFTopMO
pRgxM1Tc0oTxyNrM6yl0SJptRTk2+d/95q41SY50yK2kNEr+nibIbsh5FHyl
RcNj4vwxTzUh6GJypqI2DapSFbCVbdeEfVt1dx/qUCPLA6RhFF2acPDr0Zbj
81To5/uJgk+9mmCu4okpJlMhUfeslahhTUjyeuztNnUQpd09kjg6qwmJPJdw
pRTKPb9aUDCakxX79AAKWqF9G3FACzyLpXgshA8gpobFBVsqLdDJuiZPO0aO
nsd1MUnRaIFIKk1hXQo5muOPc/7IrAVJFzbYfxwgRzZmB3YkhLTgw2WvcoE1
MqRSvC3/QVMLCgMvtoX/3YfKztrY7+hqweJlgys8r/chcb7ya0JGWtAo7pOZ
F7oPcad4dvtbakF5mxyz1b59iDR45CydqxY4baac3c9IsudXC04zmFtXnfyL
vdOuytCP0gLurbdK319tY1q7jI2+sVpQoluyKmuxjdVVnZu9e1MLNqJOBs8v
bGHPj4nIz6RqwRnb7/yZIltYCn1qV/gjLbjpRnbI7dkm5jjmT1LbpgWWb51N
Lv5cw4ZSe4S/dmoBp8Np54isNYxIPGZM9f5fnqWIUy+N1zCNN5PpNh+1AB4M
5l8pWcWEn5jJrX7TAg9DAhN/2Ar2n19tEJ/vieGkWcaWAqTOSFJrg+I99uvu
5r8xN8m4eCtabVARPqK+n/43Njk7U3aZURsGc3dMY3p/YQN2WbsdHNqQZPMS
1zb/hVXB4fSz4tpgXTvHcMzpJ3bt0I93D4y1wXfL0Y9eZwGTrx1NLTfThg++
cndufZ7HZjw7T7VZaYPXaRPywOB5zOBd0fqSozaQsLOQuJX/wBhifQVwH22I
7iVPtFX+/l/eMG2wLx0fcq+Zw/Ip1oLHbmrDFkGCx//yLGb9ckb7V5I2OJUY
v9cRm8Uoz36gI7+rDRTKbYxqH2cw79aqAvFsbSj7TOp3QXUGU4wM6Qsp0Qb6
qPDKloPTWBvpPjH2Xm3Yz//jYM7wJBZc9mtFYkAbMu6HatWlTmLizpP16sPa
4CLh+7jJahK73fjGyn1CGx7zlqGAoS+YXVjUtaqf2pDA12UmODmx51cHfAIl
huxpJ7Aff6k/WtPrgE3AzxwijGNZRdt5Hsw60HSNuJU3NIYRHRd8rhzRAQPh
8mZ3nzGsvLZ7fwGfDqScl7NXzv2EXQ65Lb0qowNsDRXOx9lHMZpNluhkcx3I
0B9dDNcbxkTyRA1OWetApzt/0JnNDxgYqx6SstMB1kuVWUbPPmD+OY6JHad0
IAvpxDMyfMCG9fPT9p3XgRe09g0yPwax/z2/helA818Zb/rxASw3Q+bJuVs6
4G0doULS3o/VaGl6Ysk6ELEUWZ0a3Y8NLFpKUN/VgS3aA7m7ev0YhWZQaUGW
DnB+Ep3BOvswrx91r8aKdMDcanqD/9N7TJFg1GHY+W+8nxdjnHh6MdMZx/gj
vTogeGTb++NgD+aWeM5ktl8HXMNpZPV8erB7U0l94aM6MGZDGcqa142RJHwc
efVdBxrb8F/knF17fnXhWVTD8E2+d1jH2JkfIgd1oeVgXvkd3Q7s642gotVD
ujC1SM8i9Lsd25aJPfeGThfsmjQE3mW2Y1JRRcsn2HSBKkbwkPFGG5YiubJ1
R0QX+kerJN6+eos5Xr12aL+OLjgTd5pKPVswS1a6bgEDXZilSljX4W3BDEqy
bmma6EKzXOGNmcFmTPFzDcN1a11o+/uFQlGrGaPD19hIz+qCj2DopTLxN3v7
VxceJqtZLxU0Yk07HkIk0bpwnGFV86hYI1aVujnDE68L9liPUMtCA1YiGf0Y
T/zHV7kqoljWgN0/8fDY1TRdSDv0szMOa8Au1H2W2XmsC0OxpxQ8a+ow0SuW
aLtdFyj7Ry/oXq/BuFm+7nJ06wIhvuNOHH8Nxlx8vlGtTxe85JeGBN9UY6Tj
N7VCRnSheunDL03KamwUazf4810X9Ifvp5fnVO351QNVqpB3TH8rsZt/seMb
1Hrw4nTVdvLhSiziTicbG50eTHHu+rM2VGAhEvYjSkx6EHEoefOZfwXm5hjk
eJFTDwwGGkU2x8ox9ddlLmvievCkaaLmdd0LbOWyiO+KsR5cF5SMnikqxcxp
P4h2m+mBt9PNrm/+pVhJTtSXR1Z6YL9p3PtMtRTzaJ02t3fUg7DZeHDueI59
ps1XaPLSg8CmTxPPpkqw3f+/rurBXzMjq62fRVhHLu/WrTg9+J0ouVHRXIiJ
KvS+cL+lBx5y/kZuZwqxyLdXvTST9UBONi6beLAQg/nxsbUMPYgp7bF+Yf4M
q1TIbHB8qgeloxwBlstPsJy2I1HH2v/5oHvc3u72CNuxa0fkXXqQVsz9gI3z
EeawELQ+3qsHRy8Lubn0FmAsDMNuScN6sHHxz/hntQIs3j7VcHNWD/iH/ypy
cj/c86sP1Lvr5V7X8rCgRQb6twf0IeL2YzvSw3nYUFhT+wMqfbBtOvcwpzsX
k2P0Cw+m0YdVXqaaw7dzsUWl98sSLPqgUWHWqs6Wi7lcuzWUIqQPNlsyr95L
5WAmTIfuO2vpw0fmsN0x0mxs6j5xU1RPH9Y+lKo4ZmdhIUJ3rJcM9cE9gTSR
E8vCHity01+20AeH1q/BhpczMVJb6ag7zvpQQDEStk15f2//6sNh/p794JGO
GQmnd92M0If+gPNLXBTp2NfiMTGraH3g0fRIGK1Mw+gazkx/uaUPIYauT2yP
pGEek0F2W1n60B5m20PxPRXjEsnUknytD6wpG05hL1Ow8pIvOSsN//J9Nzp5
5EIKZqAsvFvdrA+RE8uvb8ilYIH6Ja90O/VhkevpzMeyZKzXs1Hy1Kg+XOHq
6KaqScIink+zpWzqg8n0Pa3zS4kYu4pYoN1ffeDt+agk/Spxz7cBMNYfCX6Q
nIiN960nFFEaQHNe7dtL7ImY8upBsresBtCdyJ/zN/smNq8iubCpYAAt1953
TD+Pw5yeL+kzqBoALekqaiLGYf3CpQViyAD0EzDDhV+xWDWjvJO9jgGENr//
y6kci0UvqPTXWhuA2rmW9TP90ZhQjvarqxcNgKXpL8uGehSWxkrBkhZiAAv3
GUVqVyL3/BoAz5bEz8ncSGwl2FD8yw0D6GswztRmjMSaLM2yNdIMQFRZTaB0
5Tp2gtIxkvyVAXjAOnno1DWs7wr3JNdrA3hGmk5+ruAapr36GSk2GkDTRd46
ZfdrmPik88aZdgOIMerK1/0Vhm3VuHm2fTSAxyp08WTUYVjauQCzuD8GQObP
bnms5fKeL0Porkqja4TL2FWHdapaUkP4tUM0otsNwc7oBzfPUxnC1mBHkBEK
weQFwpRMOAzBieNqnlLnJez9UBwXPcEQ9n+U0zzEfxEr1PU5/xU3hKeub2WU
PwRiUVXElgpNQ3AodKmyTgjECBnM3naGhvAlg0Hn5PYFrMAxuzbPzhCYl0vS
DKYDsJCpMnvFS4Zw6ZrrNtWEH2ZtdaeEMtQQ9ony/yDL89vzZwgXEgrf4QF+
2MwjwrOr0YbwjPuD6o2f5zGiZ+uftruGkCTjpPbt0HlM6PfHdPtKQ3j+cfEA
bbcPRuJSuyBRbQjhFlyc1zx8sJH+LHWSOkNo6OPLUaD0wRIrXL7lt/y7v+BL
oZWuN/YnaEF5ccAQcoRvxJIOeGI9uyTDYcuGcPxWxus6AXfsqe/XYxbrhtCv
58kU0+eGRXxpuSq0ZQgbORFEu3C3Pb9G8F3OTuY8txum+iZWpIPUCGTadKX2
T5/F8qOYLjIyGEGH34kx9soz2KXDoiwF0kbgeoTf9UHEaUza64Z7h/y//rli
hU+E09hcx0ztorIRyGUW3mZcc8Fsoh+6KKkbQcyO29Gzni6YEplAaZuZEbxM
sxXSOuWMrW5wGf3wM4LjhwdOHr7ohBUeD82mvWgEGvF/uUIxJ+x05affciFG
oP6sILJyv9OeXyNYvRBxPT36JDbgfy/98nUjSLzy+86a2EnsxSLb7OEUIwg4
/FyOLMwROz/FGC5dYQSfn4RnJ3jbYaKa/oOWr4xAv0edIEdvh03k9Ileem0E
wZG1qpyVthjx5O2exhYjeEQqW1pAZotJjdBwWQwZwVpqqJRQ0XFsoedg1YV1
I2iaXGBRVLTC8iXdqTO2jGBJwvcK97zlnk9jGLTqnbyXZYl1Gtwgp6A0hjsj
VufGGC2xZy37LdLYjOHwwP7bDPssMPea3YVqFWMgUYp6NXLADLOjW5l+hxmD
stbXhZBOImbgOjf2Sd0Ynv6lfjCdRMTEad937egbQ/DxgjoKfiL20zm3SMPO
GE6oituFJJlggVTa3h3BxmCJxtuj/Az3fBlDed/HRy5/DDCbcgnH+XBjOJ7a
+qvopQGmcoLFmCbOGJoYAvx79hlg26Wz4ub3jOEbFNoE5+th121j5z/WGMOh
6vIjSzw6WEDxlanv9cYQnm3vITygjZ0m8/+09cYYTPw2O0/FaGM6RfadXJ3G
oHPo58jQmhZGtU+i8NQnY7hp3K5oP6aJJT7u8fy2bQwiEuxiW4Pqe75MILmM
eDDjkTrmZ15lT01uAjobE3FPHNQxi+0HhhKHTSDgrm5u0gxgLES/Y+e5TIBi
6avZazLAMteZfmxgJhDBfh8/2UTAVnTERt6omwABy6yJPEPAjFLx9pvaJvBQ
9xdrHzUB25b3eCRobAJsU2vNXbZqmINfvQvRwQTuZexvnSdVxdgX3D89CjaB
18SvnzqjlPb8mUCN4W5ONpcSFixWn9YfYwIpvdu8v04qYh/PMlntpv3r9xKT
itNVwNIm67qsX5pAVKogjzkuh+ld+/Zsvs4EVs4lURBaZLENHqbY8FYT+PKo
uVDCRBY77uiuUzxoAvLFN6+OuslgLMOM9eQrJvC5bjGu5YoU1hqIMu9tmQAf
CS8H/UvJ/87HJKYwiZ+0NdaRxAKZ3UNkyEzhYPwWp9mKBDZoXqfkyGAK41Z9
AjKh4lhKl9vzcmlTYCQb6ZFsOYrt6CYkLCqbAq/fK1pVpqOYW1Oph6i6KbSW
KPgdcBPFCC//CN43MwW7W3KBTlwi2NSD+PTrfqagHTkQUV0jiJlwlAa+DjYF
toqvLu4Sgnt+TGHLfmB2ZEAAq7ozaLEebgo2MhmN33MFsPhYbhrPZFMYtMt2
2k7jx+QDnoebl5tC7tTC84fFvFjW4sDJ+FpTcPa075Ug8GKU7puE1mZTEOqZ
NLmdzoN9ctRYVxk0Bd+faiPNC1xYhO6AJ9+aKRyY39n8Ncy+t3+IcG4u8/f2
9hFMPIsm2YCMCNYD4p4p3kewVDY53whqIrT8LHAPYGbDPA5fFtvgIALzrYK1
6QxmLPfy5OpDASIIyp5bjYlhwkZ+6DVaHCNCUTjtQkUkI2bQwWxTokoEoUV/
i908+v/mAyLcWbooc/MgPRauclnAUYMIfOli58ab6bDqx5OLVAZEuEblzpj4
hRYTu1ESecaWCDM8lc/4ew5hzmvMZkyniED79nvdiDM1luF6mbPJjQh/bIhD
dympMCot/RdcQUT4mcKnmBFFseeXCA8v0e1/ZnUAC+ZnMbh0gwi33hkKx2qQ
Yz9Ivk4MpP7jy/Pi8FIkw1Id/Ffts4hQfJWM2kiPFIMqMqqvD4kQvXEj/aXr
PizlnKDcr3IiqEXyLK1c2yWgd+W6QbVECMp++Ozm1l/C/+ZrIALJ6q08W+O/
hDlhbYfdN0T4sq2UwBS9TSCMu0Ye7ifCAp9MqubQJiHxTlQxxyQR4iUtaotd
1wnTRo8+HP1FhG1SXn9R6dX/xiMxg60uk5UYpWXCzZq5ozq0ZvDb5Ifweadf
hONif4n3ecxA/nm7crTCEoE3nT7ot5QZ1CY8Kxw8MP9fP5iB0RFednLlb4Sy
QNXWLKIZTPBzzlzKmCGETJssrDiZgYEs16UioymClqULk+F5MxCyej9Krzb5
X3+YGcwPRLr+vjlBOPTmolrONTMIyqS/FHZygjAoE++8ftsMZLdmq2bdxgjZ
k7Xu/s/NwDm7yk2RfnjPhxnkPppjCxwaJLgnL/gudZv9+33eJUNl/QQ5Le4g
zwUzCBhk/lvB3bvHaw4dH3tP4YWdhL8rJldnqc1hRj94XMKlg/Cc6Wz4srg5
1LxcTpgjtOzxmQO7cpf0pY9NBBf5q5G7xubAX/91vyhbI+FE5XNtOqI57I4l
bMiNNRDslCfJ+czNYTrkZgh1XgOBSNCO0rA2h0MVKyoMMg0Eghb1jcgT5iB9
o2jsbGEdgcXybjT1OXPYH1vxiTeyZs+HOTgl97FqNFcR2v1L4lgTzeH0jmGp
pkglYcPvvC55kjnI2jz9uvC5giDsJ0e2nGwOm1yNtFfSKwgRvi+Du++ag+tz
phYt2goC8q53j8w2h3sWN6o5ycsJ5Wd6dJeLzWHd40bhfdayPX/mkGqR/fGu
xnPCA9slsp4uc6CJ+54VmFBE+O99Ogvw82h775HwkBCIS12OoraAdcvGdd6X
eQSdPuPdmAgLOMXwJmVk6DbhFS+VXxeFJeyLm7gao3CFQFM73WYabgnGA4cj
WDk8CQcYT9IyUFjBbi2f0I0mawKfzMU5txgraPil9eaVtyaB637xwx1Sa+g7
PKKjkCRDeN103XwgyhrqLtr9Mq/jIiDFoK9z+47DPsdo+V9PqQh8h/5/fY5D
OVu4TKosGeGLLzVFUvBxWH1Qf1bPeENN9CyBPeTvcXjqbEM+/WpKjfg0nj7v
og3M78iP9lX1qZ1QF4psvmQD5ZdeXBgJ7FPzHn69MR1iA2/e2xV1KPSp/bce
NtB7JOwhd817tWZns+LiaBtILSxy6W3sVVPmYDGsTreBQfNxJfXdLjXe+OyI
9zU28LqniKhA2aYmKaC88fu1DUx/VtJNePH2v/EabCDNNXJUyuWtmt3cPovj
zTagNJWpdr22VS1F6zTfWKcNXPJnFK4Mb1Gj/CtaNzdmA9ZzbXxb8EaNJaVR
hmrCBnwVD90X+9ukJnTM7uGxSRswOD/Lql/dpKZhGxfvM2MDftamK9pKTWqX
KxbsVhZtYJhK4Mu0WqNarFFUN/MvG8i3/1Qht9uglv6VW0Np2QZkT5mfP/6m
Qa2Snng0eN0GQq7HjTGZNKg1P567f2/TBhQDy9seMzWo9ePX6F5v2cDnchVu
mqp6tcmhIxHjf23AJsCx21avXu2nd9n67q4N7Iu35JcaqVP7P2JY1yM=
"]]},
Annotation[#, "Charting`Private`Tag$57467#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVV3c8198XNssoyVa27L23z3m/3/ZOyE6IjIzIiCShskllkxAyIgmZSbYk
MrL3Jl8z4uf3132d1znnuc957n2dew+7rbvhLQI8PDwjQjy8/69/kHJSfDwS
aIppmqCM7MelfNe+s65IAiIH26oPO/pxKlZzvb/9SUDSorH0H9kALsmPIany
PxIg8ygtVIwdwEFpELfrAimcj1ZNVcv9hVtWZIgwu0IGJPfGNz+t/cIldpSt
qd0kA7ojn9IbMoO4xbnZCvbfZGAzvazi2DOIi2PSxgZ7yMF4VJhnnXwYJ184
m/eV/Bx8vsQVUGA9jJuVCSIr1zgHe3ZG3q3lwzjZa2U/or6cgy3J1zbYjRHc
5DN6G7TyPBxvNoUstf/Gie7NBBanX4AqilcHX1bGcSOhDyZTRi7AOYE4+crr
Ezj0GTnHV3JKuFfqOOLfMoFbpcsNK9OghArRMGrNa5M4EB/SifpCCT/UZ432
cFM42oOcY4IpSmh+VNib+2AKt9zg+d7/hBL2nATMrWuncIm65DSOihch918Y
Hp7SNG7xtvJvpPIinGnxlIrUnsHViZBHV/VfBH+NOoELCTO4hN1BZZH/LkId
6bry1+EZnGKoZzaTKBVoz789+OU6i4vLzHHaK6AChZN3E7LZczjZX2T7RenU
kGb4eoJWfxG3S96Q+6GeGgKKljkkPyziKhCvazUT1NCm/KdZgHEJJ1r8u6SV
nQYmg5bQzuUlHG9o0a3pXBqIqsbU+nJXcPPVNtRL32gg5vU3sybGVVzOBk3T
xgINMOrIjf+KXcWxWTxg+sdHCykrJD6ZIWs4enG9n/QltCCQaGE28ngD1+9I
8IjlOy10LvqH0hNv4hLSK4W5NmmhIZqbLURzE0dByhohLk4HC2+df4r+2sSd
mdwA3Uo66G6pWXp78ge3Gx1fElJPD9OdxeWkydu4imZVy2cT9GC5XzR1879t
3N2DA9I4PAb4MdWZ5qq/g1u3t72VjjLAeD1t8Odzu7h5BQmmqm8MsPPe6kQy
fQ+X47nQXr/AAIvOT+7RndnH2b5N9W0hYQScdHPclsc+bpyK6GefFiP4a6oj
X3QOcANL/c/WehjhQG4rdIL5EJfA+kxme4MRtlvFeypeHeIMjJXm/lJegsct
3RzD1Ee4rsZcILl2Cdze1cgrUf/DfX3ls8cxeAkiVWqtvoqc4CpUGW6ZTlwG
wj9ubC928KFQr79T+PgyTCZhrm4oAWRdjxMnZmYC33Lv+3lxBBDtRIJXbs4E
U0JERTpihOAQvZ9C/osJ7kTsTgiGEoHlywr86W0moP4usVo5SgSGmR63q6iZ
oXtZ+tUvaWLAlS1K3brKDIuqiZ+2N4iBYWCot76LGZ5NNiWH+ZwFivFEmRcr
zNA6J3jlxehZIFowyHAhY4FGs9JNfxUS+LPf5sKgwQLmE9dJ5xlJoYOp+szd
ZhZwsl2IVBklgwf2yYpcNazg80t7N66VArzvGL85HGIFTjFOQVv9C+Dsc5Gs
b48VNnafiOQPXwCBr19dGi6xwVPHqx8m71MCwy9FOVdTNiCOm1Gvz7sIz0dS
XAcd2eC9tYAZ585FoJjYz0R92SBJ4Xr8tgoVEC1WnGF8yQaUN5Uydxep4M+B
YH/LTzbwZGB7pYzRgOtxxFmxGTYoH1x2ak+ngUWCJfm0LTbA+Cn4/x7QwDh5
7uu7F9kh5AzRsesnWuhgZnZn1WcHIad65Qfq9PAGOU/m38EOgya+0QfNl4CA
teH7y2F2MDmYXgyVvwy2Rx4vKhbZQdWH9YLYh8vA9qmfbfMMB/Sf4x6kfscE
GYJpMo4YB+g2ihVyV7LAManev1BDDlDjNPUcUWYFq4WTL9k3OSB7Gw+IOliB
KdtOb/whByhVu8pse7FBCr3ALeNaDshvsLTKfs0Of7dH+b06OUD1xzP/wE12
MOuL2Ywb4YDAp6InX4ADGKK3Arr2OcBFs1Dm/RwHvCCoScCkOGG+MJz2O3IF
4tY0GsVKOKE+5vlxsSYPbHb8DdOv4wRSYpvSunIe0M8v0r7TxQmmdno+H5l5
gcKOcjB/mRPIRmKDHx3wQuTQ4BorzxXgzpquTWjnh+WPzz4oSV+BpPMvxJdQ
AdB6ruBvoXoFRs2Xmr3rBYBEL5Pold0VyJGUwBnXCkJ4s8NliqwrEBzOu+Ha
LwzzWQxTAqVX4FOWp3qajQioBnXkadZfgbPS92nNN0SASE5YPGz0ymk/vrJs
GiEKISU7GkcMXBC600B1qVEMHiSH+izHc8GEJWONuJckGAjzyxtkcwFj6CT+
+JAkXGn+/u9jOReYrMj8iQEp6Fq9FPboJxeMDqr3CNBJAxOUPWeg5YbkPyxr
j3/LwGa/yfUgLm7QcDR1izaUha9OR5dmpbihqKbee7dTFlyfq2eXmnDDxnhE
AMM3Ofg8P/ZeLYkb/Aiv1RANK0BMwGPvonxu4B7ZOPawVwRbSj5ZqmpuIF7N
8crbUgQyee+GsWFu6NuXJntLrwzm0WQ93pd5QCLq19WfKMCBhMxKdgYPlL7j
1do9QaGrbbSEpJQHDi7L/ym7gUGWVchdtwYeYMasXM2aMNB40n0gN8kDbVSv
aRIjVCBpxI7kBzsv/POVtx+TUgNXd9IuaXFewH9VFXI5Tw2AqDQ2DeWFusqv
PqkM6rAo9Jfuth0v/CqoEo0j0gCZR3FcJzm8cF6S7DD3QBPI6KSX7D/ywvup
LSmtB1owXvi7qKOFF6h/Fz14QagN4f3cki/necEzuGDWlEEHfvHUoUK8fPCH
SlqGz14P7vUs3bB4xwdL5fha19qvwrwONV5BDR80ftOsGWQ2BJNOxazddj4Q
+aqmu+1lCNJtsZPxi3xwb+cvDy3XNdhtkrrZxsUP1M4114dTjcABbuDTSfFD
56HGY/xjI/hV//S1nQo/JPehAUS2xlD5+ffUsS0//BgSUmsQMQGfj49spbJO
4x9TBVycuQ7zEu8IHpfyw43gKEoGY1MwKe/P7q3nB+EU5LJ6uylIl/LMuIzx
w1pSHZlmlRns5nfbZV8SAPz+dr2L5Rbgk8Z468ILAcjr//Q84oINzF/CiK1y
BEBBLTnkqaUNmCS75hZ+EAC+pr7so0IbkH7ZMKfaJwD05yj17XVuwm7sLYfA
C4Iwe6+ClzDbFhwoYs90sAgCqv8j7PGhLfyKqsqjFz61hT+HfzKxg8pn5Avl
OoLw5O19Kksqe/B9XOa49EwQ3vUxzkVm3oJF/N9nZZIFoUu1bSztrAOYBhPl
h+YLwk75wKUCTweQfXB9kbVVEKrGtZ6PaDvCvs+/2yZEQpBsvZtRz+gEfs6a
zs1BQhD7nMCCjesOWGY5kJjFCsGPHJmp3ro7gPx6nLeeKQQfTblnC83cgAyt
n2ZsEoKT5io71lR3SGOUsPAgFAbwcLjxgNMTgvUNDohphEHXlyHz7gNPuBV2
51XqFWGodhvwUx32BOE/b39+UxWGB8dGPEUv70JjG5MO81NhWPJIq8jm84ac
Y7nl8iRhuFxvlpX/3BueSV5/qlEgDOOEAfLTJ95gmBX/1atDGHoaNbZYJ+7B
rO8ZpY5zIrAV9n6PtcYXSHk2hXzjRcBdzl1kZS0A1i3Pd53LFoHtIF1erUeB
0JfA75xdLgJ41XO1NfQPIO3YPq/7pwhwmUmepdYLAvoV1wtU5KJwgUCBHvUM
BrLwgHFLalEoKbg1wdsWDEdsEcVvL4vCeW3CRxNsj2DS5K22kqAoWCszPZoZ
fAQFX6ae3NYVha3j7/H2Vo8hzWrT5IOxKJSSN0zNNz+GmP1jrmMrUYhqZyeJ
FgyFu8JMX5+7iQL1iwdCXkRhoJBigtcQKwqsDB/YD76HQ7dnpx9tnyi8dGme
spqKAPEDwni5EVH4Xqqfee9OJLwMViywmj7FJ7xL5HYUCdaxxcO5W6Jgb4eR
KXNGw2ZRrLw0tRj8co06c+llLBhJthmaXxYDIrGtP/7McVD9Gc8liFMMGgjI
25M84yCkwzP1m4QYTGeP61OyxgPN4rUjEyMx8Mqb112PTQA/9yiaAEsxGN1X
7N7cTICx3a+CmfZi4EFjHbF17TnkEUtbLXiLAXmV43UWtkSQ4WSo930hBk18
GIVe3wswtx59mPRLDKRdi49j8pOhfo4mqXZcDILz74nii6QA5x3d95PzYuD2
p9RRrioFVgPqJ3n3Tvk3N/HL/Ew97fdZSDW9OByvu/sxCGXANNuw2RirOHBa
Nyg4dWaAWv7Fu/i84kD222Tl2DUTKD6FZGvKioNFoMYDVqssyOq3JxwxFQcp
k0Pipw2vgcgy/fKxjTi4reAdNjFlg9PMgASHkzhk0O8hSwHZIL6lZu/sLw5X
f1IQ88Eb+HqBr+Vvsjg0lq9ZpUzlwILWWvjl3+LgHfP5yCMhHy61OkZ/mBYH
vbQbYSTkBaCDTT/XXhaHJTszgu2wAnivMJgVcCAO7veKzHdCCuG+YFPNb3oJ
0POa+/NfShEU5Ss0ebFKwLq/8ZlAnmKYuFLZSs4jAZVVx6KfK4tBhfldv4K0
BJRaf6V8MVYCFBQv1lONJODFA4oTtrfvASIu7EhYSgBRWSb+mYP34HUm4rDT
TgKGJpSdg3XKYOg4iOTorgSksMxdNt4vg+yN2xyW8RIwa0oQa2//AaR/KJow
9UjAysRw3OiLSrit+8myYkACTCv8q7iIP0Fqu5idzpgE6LZS5b/0+QR4X7g9
Alcl4Gw8zfnLNlXQUU4ZMUomCefexQsv6tXAkXBknDeVJPgb89/J760BkXfE
r85dkoT8b5Ihq0afIfHN3zeKfJJQKqKVIn6rFqwTZ+vS1CXBK23fgyuvHuIo
b3yV1JcEuD3wzlOpAZqjhju6TCQBqyySLx5sAN6wnsGjW5Jw91t38suIRti6
V/XHMlQSnqn8CD8eaYLw61FczE2SwPr5w2J2z1fwKsUTMGuXhL4jSX9d5Raw
OXtP9MUPSRhyYqk2fN8Ccp+sFM5PS0JGblp6Vuo3WKUTufqPQAqChvbGG+Pa
YNjtjYkcuRQke4edfKRph2/f6C3vUUvBz6WjSa/Udsj0wXNc45QCStOKt+Fl
HWD460fgmIoU/DvENpvxuwEnrBbCqCsFjfG56VXp3SAYXvPE2FgKHviz6u8r
9gCx9JuE7ltSUMuylJsV9h2qXnjn14VLge/4LOsPth/AbEzfn94mBcyGQnv0
Cv1AVhw5PNwrBU+kXcvO5/fDLhHeBO2wFLAlDWJX6Qegt2JxKXpJCrgXiK5u
Hw1ACE3NyQMyaWAJ0dhinB8Ed1dh4hoqaXBrM4xYdRgCy6/ZZLuXpCF1P+nE
b3kIpLwjad0EpEGPu+LK4cEwLP60FLDWkQbRx1Fz1xVHYUDgh2iKkTQIoDd/
FfaPwpfHqtK/LKWB2+n8ExmPMUiVEEb07pziGVg1q5SNg97zExPlGGno72kU
SC6ZhArD7BCWXmnQHdmfXaicAfdMU5+eQWnIXH9Qrn5pFvhXKZyDJqTh8yJZ
bcbDWcgMC7g6vi4NZonn3psbzEFElRFbxnkZEE2jqRQmXwBVYnIaPVoZeHhZ
Kt/l4QLgGTadPWaSgcN71Ek7OwvgsyK0YSUoA8ycM4Gsy4twk+VsPbO2DHAk
KxJwbC4Dk0tdWbehDJiyEB5c9luBX5+8ch+Yn/pZfpi3EqyCztXJqDEnGXDU
V/VzYlsD2dBqi/SnMkA9yubgGrQBFMsuB0zfZIC3OyzZz2kL2qU51rq6ZeCv
VhP5s29bEPp4aDJwQAYUf09Oe3L9BwdMqm2jszJg1KwVsbX4H8zqs7xKI5SF
ZBdevOYnO5CZ1h+hQy4LYuUvk/O3d8B8KSLoiEoW1Cl0VD/Z7UJvyN4tS47T
f2rcDH2gxh58/tgryYTIQmzYOMO80AH4EDzh7dKQBSR3Xc64+ABE9ZWYAg1k
4Z5j/Lq2yF/IWywgHL0hCxU6dWuECoeQcPlxX2qQLPjTtBzSe/2D24+kPC7X
ygJ+q1Svihw+8qKGtjinWRby1ltUe2PwkS//7SwJnf6LW+3vYGfm8REmh0o7
GDnls2xn+jyZAOnVkrl+a18WRMU1W7noiJB/j+kT109k4fkoC7bvT4Tw1+31
+p6Vg5tj7lW1E0RIqEiVVgSdHNwLYS5Hy4gRGRo55VJJObhocObzjTtnEXtd
xgBZRbnTvrX3fGzqLBIXfvCpCZODvkzn4SxTEmR5v1qs31AOlBTDbLh0SZGM
MXmuAw858NGnY/K6Ro6ceat4DiuWA77rJlWGkxcQiUkmza4KOdAlul4ajKNE
bBj/hRnXysFlRxYH+zhKpCay7sSxUw4YvvaIbEpfRNw8lP+LWpIDV3kxOHpF
haQWsIjS/ZEDDYLZyqRtKqRt+vTV2ZeDzUf9tETXqBEO44b5srPy4DJc8c+F
lgYZkIORX1zycKIWXf2sjBYh8GKjtxGSh+NCrdBcZjpEuAjPaElSHsLk7dbH
IumQpyxN3YeYPMzRV0p+d6NHFAnRJjbb0/y4Hb8lfUYkpwvLd86QB3KhFUXn
Z8xI5BTz7Ks8efhEr97mwseC3N3dY20pkQdvdB7/ZxcLgrAVvWJtkAd5NalA
igtsyLgXzZP+CfnT+UDc7YYPO9LydP0L/qI8cG+4xRIPsCNF6W3HwpvyEDVg
bFsixYHcbw30eYanAAY6dZKS/zgQ+stzt5TZFSDSeuqlYd4V5Fik4bULnwKk
3X3QoEfHhcyrJI8liSnA+z53vqKnXEiFm67xf4gCvI113K/35kYMvnxUybdV
ANta8ZkmF14kwimckypHATLkZda4pwURzyCbG7giBaAvJiLfDhJCTJ/Lp7pW
KEDO58Yz9KzCCHfdOlXrVwX45m818NZJBGmmvE4QOKcA9uX408S0Ykghl5hy
wZoCkFt/oe3xFEMS5Mnv/9pRgBpRqebYXjHExr7hj+gZRfA5/LvMnyiOHH3i
mZrjVgT+v/64f5KSyEwXPjO1iCKcKzB60pUtiXRM/TYFGUWg3O422KKSQpLJ
43pT1BVhaF6+3fuvFCJ9Y79B/7YilEcLJnUtyCDuZ9ozqgsU4b+FWbkHGorI
Fcq5NvMyRZBPFE/ZHFRERhjx/zusUoTp1c3XSs5KiIqQnLpy2+l+W0c0ma+U
kUtGBRtf5hVBW2QlKjESkO9WLYz264pQdGut4OkEIKGOUxjxriK48Mvv80gh
yMZ9xiR1YiVYuj1kEzGHIF9fP4MuTiWAuqDXgxYY4v8u1/mOgBJ068jbM9dj
iPDHpkQKCSVg6id3uM6hgiS3HSwaoEpQ5v5JsXdTBXHbcIofsFGCi58uih7k
qSEMSlrT4+lKkMpXQXD8SAvpVnM4F5yrBDLFo/fekWgjIQYh0uzFSsBgZPzv
TII2smZXE2FXqwRXsrJ1Top0kC8R/BKLI0rgSRqbG0asj/gmqlk9m1aCKVmT
DPE3+ohghu0T/mUlYFNpjcXnMEBelaX8dj1QgpSAzFdvWw0Q1yGy0D+nczP+
/sFDSR5DhH2auySBVRl2m0naQx4bIr9W0CEJHmUQq7ie83bKEEFO7gv6SCsD
cU7Zz5Q31xA67pX+v0bK8O7zOIs8zhhp9OrkIkpQhr3djzeyxk0RUbMpPc0U
ZRiyyRhadTRDMpX3fGOylWGMX1lSbNsMCSLl7GD4oAyLGVKdM7QWiGLmfTeh
fmVYW3O62//QCikKjXt1d1QZvrzbedXEYY1cds5r/DSrDN2F0C3Zbo38leyj
QneUQYf6JVEQpQ1S1cH3yYQOB5TcEgj3w5sI73vcZCoLDq7e6SH+OXETefXC
mHSKGweETalKr1BbxMfmkYWLDA6Ckqs/JVLYIZK7QycPTXEgvNh5ubrJHill
Px2XUnDw/HP4oVzWbYTlbIbnejYOCsS1Zx14nZCY1Q8pEu9wcKLs8jz8gxPi
+mlite4zDtg+1rNN9jkj/Loy8X2jOPCLl7YYk7mDpIjr1tDP4aBqys//4fAd
hJTBbsZyDQf9mRntr4PckMXpGKmFfzh4tkIo9/GnO3JN8b/VBxcA1nTsowuM
PREykaBHWdQAn0wLxl599ES+sJPSNdMD6NjnYyn0dxHxs6w4EjaAbgu8b6TT
d5GLfVrxCaIAfyYeyi3EeyPfHbOl3l4FkHaP6WN18kMaDb64VRoDpO4Mmv5Y
80Pey02/bTED2DSibzS+548kkHNcmr0J0Nw3LUgbfR8xKX19zHYXgJjbW0pi
KhBRT2qSEfUBkH+ToKoc9ACRfTTlgbsPcL478sprliCE8Rr7jFUIwHrx7MdP
Tg+R0d2s1pQEgDmHVY4s2kdI90QjXuFLgIBdx/zYu4+Q+rZJueoUAJehgE7/
H4+QzBS2osFsAMYGi5tOL0IQW+WsOJoPAL3a+dh/0qHIUlimWcxPAKpsu3XP
lSfIiFtDQvogQBG/FtfbO0+RjusTnUW/AYolZ5Kzt54iRXysyp0zp/WBiSQf
cQTi0Z3BQbINkBMR+VhcLwq5WVlvQb8P8GTTpM9oMQoxzBxP5D465Z8uxtkY
Fo1IeLKcVSVCYFSbh6CmIwbZpclYeUSDAMvYCX1uQxyy8K/uSjwDAhv0prWT
l+KRofkxqywmBKTrk65R+MUj1VXMvfVXENhl7WB1lk1AAi3TKw4lEcAzEX5p
2fccIcxJe3DPGIFJsUqzpnuvEPMnY8XKZghcE6TUXVt9hZQ7s4yftUIgm6+u
1dchCbEVy1JOsUcAbSWfHrJJRr7Uvzmp90Kga8ToupB3KnIpe1bkqS8C7/5p
JRafpCJ3w7hsrgYgYLd+EX87Og1h13nbOBOCQBGDgOa5D+lI8HDhI5IEBC7S
VTqEUmYhQ7UrZT9enNYzgecuYJuFiGYJTqckI6f3gQ27+zELmXQoQYVeI+By
608a3s3XCG67jNDwPQKsYQ7vqLqzkWOK6rDUHgTcrJ/Ny+DnISZbBx/t+xA4
68bSzOaZh5QMyM8L/UJgp/9NJzaTh1in1ao1jiHgXvrpokPPW6SOr/Hs3CoC
c4bByO2mAoTmPL5sySYCC5qmrXdUChHXTeS27zYCVF8+EF3oKESYPjW3kR4h
oKf8XMB87B0SqNL6TJgcBXau7/jJXCVIPw9JzR4FCpqheNfwGkoQQXLN5UYq
FFzUGzLuWZQioz86tK5dQiEscsdlVu89onCjh9yPD4Vw2+dKazllyF//gegm
dRSqsy4ohL+tQES0n9eNaqMw48H6sYjxI2LPdHVtTx+F2w3hV7RjPiI99V06
wqYoLNetbHA/rESyCb+Sp95GwYFrPmY1uAoZ7H+kUOmKQmpu2nk7kmrkXB7O
5YcHCvOteOWtCdWIj8bnjrP+KJRRULSlva9BtKLLn3k/Q+ECft3oNao65KG1
R3VsNArP3USn6D7UIRUiwkuF8Si0VT+5YXS9HmHpK9CYSkZBUPevfVRhA7JF
9/qsXiEK0wmDM9S4JiQ5KzaMpxMF863+wDc+X5EeT92P6HcUOrcSXo0ufEUI
MPI5q58orCjMCTyzaEFc58JVEn+jQOSD+XppfUOAP4gQfxUFH67f/kwabci9
QwUJpk0U1r/uajzsaUMKuw5sZbZRCO46Ju283o7QuN/7cucIBZ64ejNrrw5k
8YPro5FzGPxu6SXT7+1CmMP4y3YoMZCQoVr94d6NGJosTlLSYnDmg4ZyO1UP
UrtvB+rMGOAifSxt7b4jcUoWJx+EMHhkjUpWM/xAZFs1H0TrYfCpEA+j0epH
+hN4c2wNMSC5ypEzV96PeFif7ZQxwaD6N6/FAPMAkr/zlWHaCgOPsL8rCn8H
EIYrUCF9BwP7/+qkHXsGkYoNlt/knhj8rNF0dNEcQgw+/8Of8saA98mq/Oq3
IeSp4Wf9yMDT/e9npr5qH0b2g6VXJiJP8SrKpig2fiOJOrRUH2MxWAhPIPV4
OIqIMmzLRjzHIP5janQt1Rhyu7QsXDIVgycSlsFG6DgyNCbI8awQA4cqoZp0
u0mkSp7TTLwdgy15klJXhRnE6AxB8NluDH4YUW1NZMwgmz8m80Z7MWgZuCJr
QjSL8DplbIcPYZDgcVx3b2AWSXrFGPd7AYOdbEbL8vh5RNJuv/L9CgbPmyb3
7pxZQHqFB8fCNjCg5DSQCX+wgJB8SxQQ3cOARfrz5L+7i4jf9oXW0DMqQDss
1uMRuIzQNK6vmZGpQDyFVLcP8QryPrKbRoRCBTTyBEvR+BVkkSPSdphWBS4c
/N28VbaKmF49cyzEpQKsvH9WH9JuIHIlR5KDmAr4O0w7piltIeWOphbH6iow
550yfPxmCxFkr3jEpaMCgkax37LO/YewJLr0eBmpwIFS0fbA7H8Iwf0RR8pb
KoBFsX/1L99BAiSkY2ScTvE0uE20BHeR7dX4Cus7KuAapN7Ymr+LzN/QxC++
pwJHdqQlxIV7SKdqVYpmuAoMRQpPa3w/QFROqJs8IlQg9CXhH1mbv0h9lfvC
qxgVyDsTTmS6/Rd5L8AjOf9SBfYy3l514T5CEi++7A55qwInKQItOx+OEasx
L7zaNhUIL1ZawmEE6K+X37lnulQghHXGY6SAADUwENAl+6ECDZfOCldSEaJo
83Sy6bAKKLGMWtqvEKLcBVcldpZUIKZpiOliDTGaaVtsxrSuAjU3bAn4JM+g
DEykwdiWCpDvm89vvD+DksU2dsX/VYFzC02+reVn0Q1vEQdhclUIf9LobT5M
it4WjowyvqAKrB1f23KcydDphfnyQGpV6EvL62I7IUP7zTNOOi6rQueXM+q7
YufQKjif7CioCm3Kxu68TRToo3MrnVm6qvDzzhv+H9pUqGTt75cVV1XBqPWl
e897KnTepetmm7EqSOjnDBzQU6NancV7G1aqcG/j7lPyNWqUKsKDE+emCn81
r1I++ECLfpW7uW5499QfscetI0CH+ixdrXbwUYXnL8+GlOXSob81JPRjglSB
Jbw2yS+bHs05u3t/LEYVqKySydLrGFGTT/OqfxJU4ZA1dbtR+xJK4jhISfxK
FXYdSmt2Ry+hd75V5QlmqgIPv4zoKAkTKh0W0BdQqgokSYFsIU9Z0DYCfP5L
varA3PawhpqJA71f/mdbqF8VNLUb81iCOVBB2+kGZEgVOP0t5gznOdD4pmZj
p0lV+EM9c9+xmhM1Dw5/VLWpCrxdpF+zArjQc6K+Ol3bquBxJ0vFaIsLrZ9w
pJ/cVwUlYV+nJBdulAOnWXwWXw3a7t9uJHfgQVf+kQ+bXFQDsnhjdgjkQzOK
j94406oBwW62BAMpP2pgteYWxKgGiPPPqMMkfrSitocoj10NlvTeTfN8EUAD
A+JFd8TUYJUmt+CMojBKcUD39LmhGpwxco4w2hBDed7wat00UYNyjtdUX7XF
UdCVPydirgbMhloxlIXiqNdrq7iOm2rw8jERpaOrBDqkmZOE76kG3lodvFdI
pdA//300/+6tBkRIzvLze1IoWUYrU7qfGtxJCVaXmJVClbaWs2SD1YDiz31Z
4TZpNDtFrMA9Vg3imki7bhTJop9VMBel52qQ/uqg/IWAHNq/biRE/koNqA6C
JCyL5dCzmF9ZXoYalOxf0OitkkddV+qrx4rVgJ1K8XBoUxGVVtTp0O5Sg4xF
htfIAaD681ZRjL1qwHZZIq/LAEFvx7nrLfxUg/b/Kt9dLkTQ1NmEvpDfp/Uw
fXbkt0VRvOjhkerlU7yaokPaJQxllFlJe7KuBmjIQ9ZOfRVUfOrI2nhLDaRo
Q3MTqlTQW1JsM5sHp/yY+ecfx6miHWMOKzyk6qBM+PIvr4U6OvPEr3jnnDpE
H9I/KPipjh6JRbg3U6pDK/mWdZKeBioSXvyfNYM6bOeotv2nrYkmCm8fvuBR
B9RI3eWigzZq9fDROSI1dej7bn2Bj8oANaKn7OHUUgeyieNNPlcDVKs0IxbT
UwezixyOnG0GqPTEZ6rHJuqQSIpGC4ZfRSlxuwwEjurQwmdPPnb5GnpmMHSE
3UUd6G++U5wPv4YeuVGnIe7q0JMwm6S+fQ1dyhBlfeSrDuzT+PXqv4zQL8fO
XHhP1UGsjvBjY5UJWvXyYJ41Sh2YX2tonZO9jpYKP83HxanD9a8+Tew119E0
61yBh0nqwP3pu9bSN1P0Xv2E2HH+KT+qOt5PRBYob5CR8lG7OoSt5X3zobRB
WehmTi73qMMmrbVGkLMNSlvi2aTQpw7r55GhoG82KMF4jErAiDo4BCe/fxV6
E/2t1K71d/kUf3nhotslO7Rv4Pq5SxvqYPzxsURImB3adme+W+4/dXA1mWDb
2LJDK9IJr/ofqkMeB/NNkgF7NOaf0vV9cg3oa7dlqP3kgIa+6GJgoNQAmpYl
TQYZRzRAyGJEhkYDfLITRXDVjuhtKz8rXyYNOKs/xiv47TaK1JXb7QpqgCI+
L5EBkQu6Hcjjsa2rAeaDl6k/UHqghhcGeXuuakBD/sT3JnsPtPR1+NRbYw2g
ftTQ+rTGA3X+NmdoYaUBqxsNeXYunujEhRypL66neFtetsYzd1HF7GvrqR4a
4Hx1+lBQzQtNkSR8e89bA3Y6Xl0le+eFGpnZMvAFaoDH3bd9eAHeaEc222Fs
pAaI4B8dUUv5oLxSvR+cYjVA4W/ggF6BDxrW+tAVe64B/dZzz5dZfVFYHR/b
TdGAtxd8531o/NBKqfRGq0IN4CZpCTBguo++bmMMF2jXgMHRs2rWH4LQY/N2
ZeJuDbi/5K7IaPQQtVzz2xvv1YB27Qv3WPYfonRUQ7cThjTghXlEOHduMBpl
8VL7YEEDSk54zVLOhaDLa6pEP1c0QDynL4XJJQRVD96pLdo49QfECMZ0hqAE
uUbCNnsawNe6eP52wmPUb53qYusZTTC3kNVlkwtDfwV/ac8i04TY/jAR1fww
VIL6bsh9Ck04fxbLfc8Yjq7L/PhPiE4TmtmStCIJn6B2j2J/JXJpQpy/ml/x
9lNUj+Zcmq2KJsi/q3S/ZxqNzqYZHPBqaIKhvYQ5x0Y0GsD1wmRDWxPODicn
DTyNQfOlWS4GXtOECOPnqdEtsSiBmWj4C1tNGA0yKSOWiEeTprxnLBw0gZJg
Q8k0Mh4Vca4GDmdNcKEQrveYi0ctA9DDEk9NUODaUGHITEAr04082oI1oaIs
94UOXyKqw53cHROqCZllJSVDcYnoTMkYv/FTTdg/Yjrv/zcRpWx0mJuK1YR2
45sp7P0vUOdpP/PDDE2YeVaKame/Qpl50lWE6zShIUvpZ2xFKlpROvV6u1ET
SEaKE2bRNFRLlvuk5qsmJD0e4qTtT0N9NEur1bs0IZVGZFzlJB3tdWkSvvlb
E8ICfFvVlLJQh23iKJ4JTRBIuDxeGZeF/gvUWlqb1oQvF46I+ueyUP6Yn2/u
L5/qR3NdVPbFazT0/RxD4oEm+Pj9fZ1D+ga9JMfvY/5PE5xPhxU/lzdoWZPb
TzZ8Lbg4lLyIfX+DjvftRReTaEFU/hWLxbQcVHaHlLCVXgs+jutXxV/NQ1fl
hNcOpLSAs3m63Ja/ELV5v6FJJa8FqtYt0U61hehP7rI8fmUtCGCUI8m6+g6t
oZa0sVDTAoOChYCZsCL06Zrcz1oTLYho3SbqpS9Fj+wORQbMtWDvou+SZUsp
6j5SG7VmrQWywkk5ZgrvUZNWnBqL42n8z4PvT7feo1yvVasf+mqBp+/4y0f+
5WgS/Vm6pAAt4M2dfPdmshw9F9N29/1DLSjmddsi1vqAbt/XFpx6ogUkuz3v
6zgr0C9GVzPRJC1o+IwcuGx/RK1JrMKIq7Wg2e639FX6GrQviGWaue60vr+t
lAQFNajqzoSydJMW9Ppa0E4pfUYFp233Hdq1wEmkkdvTsxY9/HzbpW1YCyZi
u27N4jegbuL8bZNjWvD6quEeRWkDOp2/cuVgSguc+wtL8EQb0Y4XbuN8y1pw
r3DXtH2+EU1y974a+VcLiDJTs5Zdv6Dn5qVK3hxrQfa/7fj+n1/Qh5Z7ZLUE
2iDv9rHln2Iz6qB5/+sqmTbs/FQJAbqvqCRnsIzeZW0In19b2Z9rQX/8imS+
qHhqt5SHNJzpQIvU3TxncNqQwC3z6npMBxpeZdDyEdMG7W91r8sZOlHFFNo7
5trawBJgGb4i1YXmWWXWvjHXhuxCpSGKxB40uOcRpY+1Nrxj+rduK/EdtcDZ
22vYakNF60bfzsB3lJKd79yakzYUUHSSxyT0ogGz5RbS/tqQrzd7t3j3B2pi
/KKU5IE2kESVfNA06kNFv/kS/g7WBhmJBPaeD33o/FvFdw+fasMAyfknn/x+
ogYu3/62vdKGT6u/OUUvD6BcW8PJFpXaoNfC3RHbNYTi2dWuCdVow7/a4Pw+
3WF05GcGglevDZyrei2ffgyjcR/tlnJaTvPDI08yp0bQv35rsuv92iCrbWMX
wDmG9i99j2oc0oYR/G24+XkMLTUvn0wYPbXJCsJvmIyj9oq+T2VmtcHOgRuZ
fzGBfj/BGwr+TxsuPK4mCmCZQgs9ZgSu7WnD64JSlc++U2joVMtDrkNtIF0S
4u/um0LlmyN4Ogh0QEMghjoqZhrNCafxpabSgY66mQ9RzLOo/3leujxRHXBQ
pBf4l72Airo+ceqQ1AGuuDtXyngX0cWO+dp1WR2wlWj4z6xsETV9mmsng+hA
xFsu9+7OJVSGkLOs7aoO0CUTxPLyrKLrN0OI1ox1YGA9wfvOt1U0r3Hq+kVz
HfgulUYg67SG0gVlHZvZ6sDUYJppSfU6urPPrLNyVweamj4/kPq6iRZdf5B5
wVcH5GLvZlFx/kHtK0e3JAJ0QEvMapwk9A/a75WaHPhYBwLJFQM8dLbQD+sM
C+cTdYB53Gzv2f5/qLOun7x4kg4cqJ7bjHTaRjmKBqNN0nSAOGiw9/zYNprg
9FIyM0cHYk110Y7OHdRzljpE9KMO8Kq4ZH5r30N5Ma8Bo2odeDISFuBgsI9O
vu7j9a/TgbEHwnV4I/uowY34700tOtDPyG94e/cAFRmhYL72SwdoM3IMto2P
0HlZNw/fkVO97sjeNt49QjNedTenjutAMuYzjKb8QymMo5xn53UACWgrpF47
Rte+k1bd29OB/MObFm6TeFiOsBN5yqEOfH4umr+Lw8cso9us6090oLNzli7t
NT7WpfWE+CyJLrwpuhXh5kKAvWshupbEoAvyC4d6CZeIMNsr9nm1TLoguR7n
bBtFhF163HwwyaYLMbJyap/wiLEICMni49MFyu3FAt4/xJjT55O1Gjld+GBB
JtmzdRYzp9ye61TShVEyjbo5XxJM69bi2CiiCwWPnt6eOiHBBC/86D7W1IU4
wYihFgYybNM2uxg114Xql3rnmTzOYVOfXuZes9aFmoejygIU57G+c5Hp9ra6
4MToFVJQeh77UOkVHe6sC+TO9y7BPwrMh0z1Tsd9XbCO8ip4PE2JOd6Qu/U7
SBfOH98mvQEXMdMKIavVEF2Y/0jpq5J1EZOzptOliNSFv4cjbBYOVNhR2YKg
YaouiFt4GROfp8Eem0WsDn/WhW7V+Yb07/SYd0nQ7HKDLlTcvPYEz4gBsyf0
Gj1s1oWxW29/YL8ZMLViiy7mrlM9EnauF20xYmT4QkU3R3Uh5BL94W81JuzQ
mD3n7qQu0OtmGtPPMmGrhbRpj2d14WvE0eO6UGas2+g4Mnf11N+RP/GylwWL
y//usnR0yvcmrZtJBxv26F+z3V88PSgUMCz+yMOO3TWssiAn1gPa5eMHTE/Y
sWtHWdpC5/WAcXZTVViHA6MzuCvgyawHhFx0b0o2ObH0PZqVfSU94MHcwh1K
eLBtNf6RZkQP8AS9bAX4eDGdl7j2GFU96Ondob+Tx4sdSTq/vaKrB2/GfPdT
8vkwy7sNdgaWejAsmDl/qVsAq2jqN7xsowdOv6Su4KwEsXMXl5F5Oz0QOr/J
r78piH0upWELdNGD8vSLz9xZhbFLa06jb+/rgUpd5mLlVVHsruLDzrtBeqDv
kaphnCeKdUQm1iiF6EFcL9X7wiNR7D5/Q9LPZ3rwtFfEJqNEDBt2pDE+SdID
G/MljhJeCSxpur7b5JMebL2vs1EIksY2xfpr2T/rAVtvXPX0ljSm8Wjp3Wq9
Hjiw47ksOMlg+6w0ESHfTuNzKyTkb8hi162c1EoG9KAq8gHzndvyWElRkJT/
sB4Iar8xuPVHHjtz9PyKypge/Ed4yezKAwWsMqWeYGRWDzhfCE+JpitidEPU
DcTbeiA1j2ny4+MwNx6+kt49Pdhgoyr69xqHffNRTk89PD2PqfZpUk7AfGid
AsQI9cHb5zM9dxdgA4b1MlZU+sBiuU3gLoFiid2331eI6kPl/EFJlrUq1k52
mPFDUh+q1P9Q7/5SxY7Vo6PXZfWB4PJfnz9X1bDbX8qceRF9uCfcdHrW6pji
p79X0q7qw+qh/5XvbpqY53YUdbWxPnTqEniTHmtieWKsBL/M9GHMZbnPOU4L
oyzCJi7Y6sNHRmeF5XptbDYrKvnxXX3gO8mMmFfRwxjHWZ5m+ejDVVaeyJsb
epje5TKfuvv6cD/wEpqero9VvRi4theiDwGUe7sDIQZYVAQLhctzfbjrWWik
RWiISXq/DzGs0AfLkzFbcw9jzKkM9XSv0ocDyrVE1iVjLGO9/0ZUrT4kSqsE
RNubYCROB4rfvupD2pxiRabddWzUCt2TG9AH0tbFdZNQM+xiav+cybA+PKQe
zmWgMcfUhhz6vcb0wWLywgeit+bYe8PIsuK5Uz0TXqe/+WWBhar3u7Dvnuab
mw6S3rDGqkMdzJX/6kPKyGgzL9kNbL1pX8PiWB/KmeUsz1XfwAQzKJ5rERrA
IS0arhBvg71kkPAIJTcAx8CTXi5qW8z5fCD//mUDWP/tHvvi8S1MtsA4fYbZ
AGzZz6sVb9/CzqiKUH5nNYBghodd9LcdsOzA6Z1cTgMgotXxpDNxxEZWNJqu
CRiANhfLCzYDJyz/CYckTsgAYoZLXkgMOGE+nEd5/CIGwECaE0Vg5YxRWZRG
4UsYwC+lQxmKey6YVgetaam8AdTpLTiEtN3BGBw2OlIUDQBfPRaf8ZYbNo/f
rhSubAA+2r6GC0TuWIhcIKcVagCpuOCXMjweWE3+9DqZlsHp+0d4JSbME+N/
UhrmYGYA8k/upwyme2P7HM/2r1oYQKHeg3MI2T3sW72ti5KVAUS04CZm/e5h
tru0V2luGsD0Y/keMisfLOVWINOX2wZQ0CFYyoP6YbfxTWKLnQ0AZxXmUNPk
h0mnixAku57iB61ZrGL+WF//9IK7hwEQho4/vGVwHyNT0fzA7GcA8RwhNkhk
IDY0wcFNet8A+MyeDdiwP8DyAo6StgNO9ZF+pfyy5gGGfigN6nxoAC1roUqh
u0HYfQ46Lf8nBoAXGZ95pTMYW8Gbmex/aQDqK+lHLV8eY7/oz+ZVJhlAmIju
ah5vKNYoLOCSlGIAfnJ81i/iQrGXll47FhkGYLhyYN3iEIZBFSHZTK4BBJ0x
480XeoLxf+f5/vWtAVAr41Pw5z7BaOe1E/MKDKDH3MODhvUptkydyOJcfFp/
Vl620aVnWKL7FYk/Faf6Y8G96yKRWFC4xn5fpQGsLNMQsNZGYk7prnUVVQag
1G96h0M7ClPurFD3qzUA7snc2DHPaGyRW9XypNkAOi995+2dicXouAttPvQZ
AJnAcGjImwTsf5VXKyA=
"]]},
Annotation[#, "Charting`Private`Tag$57467#2"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{3., 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[