The data frame cleanNormalized
returned by script run_analysis.R
contains following fields:
Field no. | Field name | Type | Description |
---|---|---|---|
1 | "tBodyAcc-mean()-X" | numeric | mean value of tBodyAcc on X-axis |
2 | "tBodyAcc-mean()-Y" | numeric | mean value of tBodyAcc on Y-axis |
3 | "tBodyAcc-mean()-Z" | numeric | mean value of tBodyAcc on Z-axis |
4 | "tBodyAcc-std()-X" | numeric | std.dev. value of tBodyAcc on X-axis |
5 | "tBodyAcc-std()-Y" | numeric | std.dev. value of tBodyAcc on Y-axis |
6 | "tBodyAcc-std()-Z" | numeric | std.dev. value of tBodyAcc on Z-axis |
7 | "tGravityAcc-mean()-X" | numeric | mean value of tGravityAcc on X-axis |
8 | "tGravityAcc-mean()-Y" | numeric | mean value of tGravityAcc on Y-axis |
9 | "tGravityAcc-mean()-Z" | numeric | mean value of tGravityAcc on Z-axis |
10 | "tGravityAcc-std()-X" | numeric | std.dev. value of tGravityAcc on X-axis |
11 | "tGravityAcc-std()-Y" | numeric | std.dev. value of tGravityAcc on Y-axis |
12 | "tGravityAcc-std()-Z" | numeric | std.dev. value of tGravityAcc on Z-axis |
13 | "tBodyAccJerk-mean()-X" | numeric | mean value of tBodyAccJerk on X-axis |
14 | "tBodyAccJerk-mean()-Y" | numeric | mean value of tBodyAccJerk on Y-axis |
15 | "tBodyAccJerk-mean()-Z" | numeric | mean value of tBodyAccJerk on Z-axis |
16 | "tBodyAccJerk-std()-X" | numeric | std.dev. value of tBodyAccJerk on X-axis |
17 | "tBodyAccJerk-std()-Y" | numeric | std.dev. value of tBodyAccJerk on Y-axis |
18 | "tBodyAccJerk-std()-Z" | numeric | std.dev. value of tBodyAccJerk on Z-axis |
19 | "tBodyGyro-mean()-X" | numeric | mean value of tBodyGyro on X-axis |
20 | "tBodyGyro-mean()-Y" | numeric | mean value of tBodyGyro on Y-axis |
21 | "tBodyGyro-mean()-Z" | numeric | mean value of tBodyGyro on Z-axis |
22 | "tBodyGyro-std()-X" | numeric | std.dev. value of tBodyGyro on X-axis |
23 | "tBodyGyro-std()-Y" | numeric | std.dev. value of tBodyGyro on Y-axis |
24 | "tBodyGyro-std()-Z" | numeric | std.dev. value of tBodyGyro on Z-axis |
25 | "tBodyGyroJerk-mean()-X" | numeric | mean value of tBodyGyroJerk on X-axis |
26 | "tBodyGyroJerk-mean()-Y" | numeric | mean value of tBodyGyroJerk on Y-axis |
27 | "tBodyGyroJerk-mean()-Z" | numeric | mean value of tBodyGyroJerk on Z-axis |
28 | "tBodyGyroJerk-std()-X" | numeric | std.dev. value of tBodyGyroJerk on X-axis |
29 | "tBodyGyroJerk-std()-Y" | numeric | std.dev. value of tBodyGyroJerk on Y-axis |
30 | "tBodyGyroJerk-std()-Z" | numeric | std.dev. value of tBodyGyroJerk on Z-axis |
31 | "tBodyAccMag-mean()" | numeric | mean value of tBodyAccMag |
32 | "tBodyAccMag-std()" | numeric | std.dev. value of tBodyAccMag |
33 | "tGravityAccMag-mean()" | numeric | mean value of tGravityAccMag |
34 | "tGravityAccMag-std()" | numeric | std.dev. value of tGravityAccMag |
35 | "tBodyAccJerkMag-mean()" | numeric | mean value of tBodyAccJerkMag |
36 | "tBodyAccJerkMag-std()" | numeric | std.dev. value of tBodyAccJerkMag |
37 | "tBodyGyroMag-mean()" | numeric | mean value of tBodyGyroMag |
38 | "tBodyGyroMag-std()" | numeric | std.dev. value of tBodyGyroMag |
39 | "tBodyGyroJerkMag-mean()" | numeric | mean value of tBodyGyroJerkMag |
40 | "tBodyGyroJerkMag-std()" | numeric | std.dev. value of tBodyGyroJerkMag |
41 | "fBodyAcc-mean()-X" | numeric | mean value of fBodyAcc on X-axis |
42 | "fBodyAcc-mean()-Y" | numeric | mean value of fBodyAcc on Y-axis |
43 | "fBodyAcc-mean()-Z" | numeric | mean value of fBodyAcc on Z-axis |
44 | "fBodyAcc-std()-X" | numeric | std.dev. value of fBodyAcc on X-axis |
45 | "fBodyAcc-std()-Y" | numeric | std.dev. value of fBodyAcc on Y-axis |
46 | "fBodyAcc-std()-Z" | numeric | std.dev. value of fBodyAcc on Z-axis |
47 | "fBodyAccJerk-mean()-X" | numeric | mean value of fBodyAccJerk on X-axis |
48 | "fBodyAccJerk-mean()-Y" | numeric | mean value of fBodyAccJerk on Y-axis |
49 | "fBodyAccJerk-mean()-Z" | numeric | mean value of fBodyAccJerk on Z-axis |
50 | "fBodyAccJerk-std()-X" | numeric | std.dev. value of fBodyAccJerk on X-axis |
51 | "fBodyAccJerk-std()-Y" | numeric | std.dev. value of fBodyAccJerk on Y-axis |
52 | "fBodyAccJerk-std()-Z" | numeric | std.dev. value of fBodyAccJerk on Z-axis |
53 | "fBodyGyro-mean()-X" | numeric | mean value of fBodyGyro on X-axis |
54 | "fBodyGyro-mean()-Y" | numeric | mean value of fBodyGyro on Y-axis |
55 | "fBodyGyro-mean()-Z" | numeric | mean value of fBodyGyro on Z-axis |
56 | "fBodyGyro-std()-X" | numeric | std.dev. value of fBodyGyro on X-axis |
57 | "fBodyGyro-std()-Y" | numeric | std.dev. value of fBodyGyro on Y-axis |
58 | "fBodyGyro-std()-Z" | numeric | std.dev. value of fBodyGyro on Z-axis |
59 | "fBodyAccMag-mean()" | numeric | mean value of fBodyAccMag |
60 | "fBodyAccMag-std()" | numeric | std.dev. value of fBodyAccMag |
61 | "fBodyBodyAccJerkMag-mean()" | numeric | mean value of fBodyBodyAccJerkMag |
62 | "fBodyBodyAccJerkMag-std()" | numeric | std.dev. value of fBodyBodyAccJerkMag |
63 | "fBodyBodyGyroMag-mean()" | numeric | mean value of fBodyBodyGyroMag |
64 | "fBodyBodyGyroMag-std()" | numeric | std.dev. value of fBodyBodyGyroMag |
65 | "fBodyBodyGyroJerkMag-mean()" | numeric | mean value of fBodyBodyGyroJerkMag |
66 | "fBodyBodyGyroJerkMag-std()" | numeric | std.dev. value of fBodyBodyGyroJerkMag |
67 | "Activity" | factor | A factor with following possible values: LAYING, SITTING, STANDING, WALKING, WALKING_DOWNSTAIRS, WALKING_UPSTAIRS |
68 | "Subject" | integer | Number of a subject |
None of the fields contains NA data.
The cleanNormalized
data is obtained from Samsung sensors data by performing of following operations:
-
mean()- and std()- related columns are extracted from test/X_test.txt file, then the data is joined with the activity data from test/y_test.txt and then with activity code descriptions from activity_labels.txt. Aftrewards a Subject column is added from test/subject_test.txt data.
-
the same procedure is repeated for train/X_train.txt, train/y_train.txt and train/subject_train.txt
-
data frames obtaind in the steps 1 and 2 are concatenated.
-
the concatenated data is groupped by Activity and Subject and mean values are calculated for the numerical columns (the means are represented by columns 1-66 of
cleanNormalized
.
You can find more details about columns 1-66 in the file features_info.txt
in the source Samsung dataset.