-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfeature_extraction_utils.py
110 lines (93 loc) · 4.38 KB
/
feature_extraction_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import time, queue, sys, datetime, json, math, scipy, pywt, time
import pandas as pd
import numpy as np
from statistics import mode
from scipy import stats
from sklearn import preprocessing
from collections import defaultdict, Counter
from scipy.special import expit
#================================================================================================
# Feature Extraction from Physiological Signals
#================================================================================================
def calculate_entropy(list_values):
counter_values = Counter(list_values).most_common()
probabilities = [elem[1]/len(list_values) for elem in counter_values]
entropy=scipy.stats.entropy(probabilities)
return entropy
def calculate_statistics(list_values):
n5 = np.nanpercentile(list_values, 5)
n25 = np.nanpercentile(list_values, 25)
n75 = np.nanpercentile(list_values, 75)
n95 = np.nanpercentile(list_values, 95)
median = np.nanpercentile(list_values, 50)
mean = np.nanmean(list_values)
std = np.nanstd(list_values)
var = np.nanvar(list_values)
rms = np.nanmean(np.sqrt(list_values**2))
return [n5, n25, n75, n95, median, mean, std, var, rms]
def calculate_crossings(list_values):
zero_crossing_indices = np.nonzero(np.diff(np.array(list_values)> 0))[0]
no_zero_crossings = len(zero_crossing_indices)
mean_crossing_indices = np.nonzero(np.diff(np.array(list_values) > np.nanmean(list_values)))[0]
no_mean_crossings = len(mean_crossing_indices)
return [no_zero_crossings, no_mean_crossings]
def get_features(list_values):
list_values = list_values[0,:]
entropy = calculate_entropy(list_values)
crossings = calculate_crossings(list_values)
statistics = calculate_statistics(list_values)
return [entropy] + crossings + statistics
#================================================================================================
#================================================================================================
# EDA Feature Extraction (Wavelet Features)
#================================================================================================
def extract_eda_features(raw_eda):
features =[]
EDA = raw_eda
list_coeff = pywt.wavedec(EDA, 'db4', level=3)
for coeff in list_coeff:
features += get_features(coeff)
return features
#================================================================================================
#================================================================================================
# RESP BELT Feature Extraction (Wavelet Features)
#================================================================================================
def extract_resp_belt_features(raw_data):
features =[]
resp_belt = raw_data
list_coeff = pywt.wavedec(resp_belt, 'db4', level=3)
for coeff in list_coeff:
features += get_features(coeff)
return features
#================================================================================================
#================================================================================================
# EEG Feature Extraction (Wavelet Features)
#================================================================================================
def eeg_features(raw_data):
ch = 0
features= []
def calculate_entropy(list_values):
counter_values = Counter(list_values).most_common()
probabilities = [elem[1]/len(list_values) for elem in counter_values]
entropy=scipy.stats.entropy(probabilities)
return entropy
def calculate_statistics(list_values):
median = np.nanpercentile(list_values, 50)
mean = np.nanmean(list_values)
std = np.nanstd(list_values)
var = np.nanvar(list_values)
rms = np.nanmean(np.sqrt(list_values**2))
return [median, mean, std, var, rms]
def get_features(list_values):
# list_values = list_values[0,:]
entropy = calculate_entropy(list_values)
statistics = calculate_statistics(list_values)
return [entropy] + statistics
for i in range(raw_data.shape[0]):
ch_data = raw_data[i]
list_coeff = pywt.wavedec(ch_data, 'db4', level=5)
for coeff in list_coeff:
features += get_features(coeff)
ch = ch+1
return features
#=================================================================================================