You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
'''directory setup'''
data_dir = os.path.join(root_path, 'data')
model_dir = os.path.join(root_path, 'models')
tmp_dir = os.path.join(root_path, 'notebooks', 'tmp')
gqn_dataset_path = os.path.join(data_dir, 'gqn-dataset')
# dataset flags
# dataset_name = 'jaco' # one of the GQN dataset names
# dataset_name = 'rooms_ring_camera' # one of the GQN dataset names
# dataset_name = 'rooms_free_camera_no_object_rotations' # one of the GQN dataset names
# dataset_name = 'rooms_free_camera_with_object_rotations' # one of the GQN dataset names
dataset_name = 'shepard_metzler_5_parts'#'shepard_metzler_5_parts' # one of the GQN dataset names
# dataset_name = 'shepard_metzler_7_parts' # one of the GQN dataset names
data_path = os.path.join(gqn_dataset_path, dataset_name)
print("Data path: %s" % (data_path, ))
# model flags
model_name = 'gqn'#'gqn8'
# model_name = 'gqn12'
gqn_model_path = os.path.join(model_dir, dataset_name)
model_path = os.path.join(gqn_model_path, model_name)
print("Model path: %s" % (model_path, ))
# tmp
notebook_name = 'view_interpolation'
notebook_tmp_path = os.path.join(tmp_dir, notebook_name)
os.makedirs(notebook_tmp_path, exist_ok=True)
print("Tmp path: %s" % (notebook_tmp_path, ))
Data path: E:\Desktop\tf-gqn-master\tf-gqn-master\data\gqn-dataset\shepard_metzler_5_parts
Model path: E:\Desktop\tf-gqn-master\tf-gqn-master\models\shepard_metzler_5_parts\gqn
Tmp path: E:\Desktop\tf-gqn-master\tf-gqn-master\notebooks\tmp\view_interpolation
'''data reader setup'''
mode = tf.estimator.ModeKeys.EVAL
ctx_size=5 # needs to be the same as the context size defined in gqn_config.json in the model_path
batch_size=1 # should be kept at 1
dataset = gqn_input_fn(
dataset_name=dataset_name, root=gqn_dataset_path, mode=mode,
context_size=ctx_size, batch_size=batch_size, num_epochs=1,
num_threads=4, buffer_size=1)
iterator = dataset.make_initializable_iterator()
data = iterator.get_next()
'''video predictor & session setup'''
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # run on CPU only, adjust to GPU id for speedup
#os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
predictor = GqnViewPredictor(model_path)
sess = predictor.sess
sess.run(iterator.initializer)
print("Loop completed.")
I use view interpolation notebook to load
shepard_metzler_5_parts
, But I can't get a correct result.This is my result:
Here is my process:
['C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\python36.zip', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\DLLs', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\lib', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew', '', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\lib\site-packages', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\lib\site-packages\win32', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\lib\site-packages\win32\lib', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\lib\site-packages\Pythonwin', 'C:\Users\lenovo\AppData\Local\conda\conda\envs\tensorflownew\lib\site-packages\IPython\extensions', 'C:\Users\lenovo\.ipython', 'E:\Desktop\tf-gqn-master\tf-gqn-master']
Data path: E:\Desktop\tf-gqn-master\tf-gqn-master\data\gqn-dataset\shepard_metzler_5_parts
Model path: E:\Desktop\tf-gqn-master\tf-gqn-master\models\shepard_metzler_5_parts\gqn
Tmp path: E:\Desktop\tf-gqn-master\tf-gqn-master\notebooks\tmp\view_interpolation
>>> Instantiated GQN:
enc_r Tensor("GQN/Sum:0", shape=(1, 1, 1, 256), dtype=float32)
canvas_0 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_1 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_1:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_2 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_2:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_3 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_3:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_4 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_4:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_5 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_5:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_6 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_6:0", shape=(1, 64, 64, 256), dtype=float32)
canvas_7 Tensor("GQN/GQN_RNN/Generator/LSTM_gen/add_7:0", shape=(1, 64, 64, 256), dtype=float32)
mu_target Tensor("GQN/eta_g/BiasAdd:0", shape=(1, 64, 64, 3), dtype=float32)
INFO:tensorflow:Restoring parameters from E:\Desktop\tf-gqn-master\tf-gqn-master\models\shepard_metzler_5_parts\gqn\model.ckpt-0
>>> Restored parameters from: E:\Desktop\tf-gqn-master\tf-gqn-master\models\shepard_metzler_5_parts\gqn\model.ckpt-0
Loop completed.
Loop completed.
>>> Context frames: (1, 5, 64, 64, 3)
>>> Context poses: (1, 5, 7)
>>> Target frame: (1, 64, 64, 3)
>>> Target pose: (1, 7)
>>> Rendering interpolation trajectory for 40 query poses...
10 / 40 frames rendered.
20 / 40 frames rendered.
30 / 40 frames rendered.
40 / 40 frames rendered.
The text was updated successfully, but these errors were encountered: