-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanny_edge_detector.py
138 lines (109 loc) · 4.63 KB
/
canny_edge_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
from scipy import ndimage
from scipy.ndimage.filters import convolve
from scipy import misc
import numpy as np
class CannyEdgeDetector:
def __init__(self, image, sigma=1, kernel_size=5, weak_pixel=75, strong_pixel=255, lowthreshold=0.05,
highthreshold=0.15):
self.image = image
self.imgs_final = []
self.img_smoothed = None
self.gradientMat = None
self.thetaMat = None
self.nonMaxImg = None
self.thresholdImg = None
self.weak_pixel = weak_pixel
self.strong_pixel = strong_pixel
self.sigma = sigma
self.kernel_size = kernel_size
self.lowThreshold = lowthreshold
self.highThreshold = highthreshold
return
def gaussian_kernel(self, size, sigma=1):
size = int(size) // 2
x, y = np.mgrid[-size:size + 1, -size:size + 1]
normal = 1 / (2.0 * np.pi * sigma ** 2)
g = np.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2))) * normal
return g
def sobel_filters(self, img):
Kx = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], np.float32)
Ky = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], np.float32)
Ix = ndimage.filters.convolve(img, Kx)
Iy = ndimage.filters.convolve(img, Ky)
G = np.hypot(Ix, Iy)
G = G / G.max() * 255
theta = np.arctan2(Iy, Ix)
return (G, theta)
def non_max_suppression(self, img, D):
M, N = img.shape
Z = np.zeros((M, N), dtype=np.int32)
angle = D * 180. / np.pi
angle[angle < 0] += 180
for i in range(1, M - 1):
for j in range(1, N - 1):
try:
q = 255
r = 255
# angle 0
if (0 <= angle[i, j] < 22.5) or (157.5 <= angle[i, j] <= 180):
q = img[i, j + 1]
r = img[i, j - 1]
# angle 45
elif (22.5 <= angle[i, j] < 67.5):
q = img[i + 1, j - 1]
r = img[i - 1, j + 1]
# angle 90
elif (67.5 <= angle[i, j] < 112.5):
q = img[i + 1, j]
r = img[i - 1, j]
# angle 135
elif (112.5 <= angle[i, j] < 157.5):
q = img[i - 1, j - 1]
r = img[i + 1, j + 1]
if (img[i, j] >= q) and (img[i, j] >= r):
Z[i, j] = img[i, j]
else:
Z[i, j] = 0
except IndexError as e:
pass
return Z
def threshold(self, img):
highThreshold = img.max() * self.highThreshold;
lowThreshold = highThreshold * self.lowThreshold;
M, N = img.shape
res = np.zeros((M, N), dtype=np.int32)
weak = np.int32(self.weak_pixel)
strong = np.int32(self.strong_pixel)
strong_i, strong_j = np.where(img >= highThreshold)
zeros_i, zeros_j = np.where(img < lowThreshold)
weak_i, weak_j = np.where((img <= highThreshold) & (img >= lowThreshold))
res[strong_i, strong_j] = strong
res[weak_i, weak_j] = weak
return (res)
def hysteresis(self, img):
M, N = img.shape
weak = self.weak_pixel
strong = self.strong_pixel
for i in range(1, M - 1):
for j in range(1, N - 1):
if (img[i, j] == weak):
try:
if ((img[i + 1, j - 1] == strong) or (img[i + 1, j] == strong) or (img[i + 1, j + 1] == strong)
or (img[i, j - 1] == strong) or (img[i, j + 1] == strong)
or (img[i - 1, j - 1] == strong) or (img[i - 1, j] == strong) or (
img[i - 1, j + 1] == strong)):
img[i, j] = strong
else:
img[i, j] = 0
except IndexError as e:
pass
return img
def detect(self):
self.img_smoothed = convolve(self.image, self.gaussian_kernel(self.kernel_size, self.sigma))
self.gradientMat, self.thetaMat = self.sobel_filters(self.img_smoothed)
self.nonMaxImg = self.non_max_suppression(self.gradientMat, self.thetaMat)
self.thresholdImg = self.threshold(self.nonMaxImg)
img_final = self.hysteresis(self.thresholdImg)
self.imgs_final = img_final
return img_final