-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph-future-standing-eckmeir.py
92 lines (63 loc) · 3.03 KB
/
graph-future-standing-eckmeir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from src.future_ipr import OilWell
from src.ipr import eq
import matplotlib.pyplot as plt
def separate_line():
print()
# Let's test on creating our first performance
reservoir_pressure = 1224.9
production_data = OilWell(reservoir_pressure)
production_data.water_cut = 0.3
production_data.future_water_cut = 0.3
production_data.production_change = 0.2
production_data.future_p_res = reservoir_pressure * (1 - production_data.production_change)
# Add several data on the production instance
production_cases = [
{ "q": 1361, "p": 680.5 },
]
for data in production_cases:
production_data.data.append(data)
# Using Eckmeir Equation for calculating
## max flow rate using single data
eckmeir_data = production_data.data[-1]
# Acquire several properties for production
j_present = round(production_data.calculate_present_pi("eckmeir", eckmeir_data), 2)
q_max = round(production_data.calculate_q_max("eckmeir_present", reservoir_pressure, eckmeir_data), 2)
j_future = round(production_data.calculate_future_pi("eckmeir", eckmeir_data), 2)
future_p_res = production_data.future_p_res
future_q = round(production_data.calculate_future_q("eckmeir", eckmeir_data), 2)
future_data = {
"q": future_q,
"p": production_data.data[-1]["p"]
}
future_q_max = round(production_data.calculate_q_max("eckmeir_future", future_p_res, future_data), 2)
iter = 12
eckmeir_graph = production_data.get_production_graph("eckmeir", q_max, iter, reservoir_pressure, eckmeir_data)
flowrate_x = [data["q"] for data in eckmeir_graph]
pressure_y = [data["p"] for data in eckmeir_graph]
plt.plot(flowrate_x, pressure_y, linestyle="dashed", linewidth=.75)
plt.scatter(flowrate_x, pressure_y, label="Eckmeir (current)")
plt.scatter(
[data["q"] for data in production_data.data],
[data["p"] for data in production_data.data],
label="Production data"
)
eckmeir_future_graph = production_data.get_production_graph("eckmeir", future_q_max, iter, future_p_res, future_data)
flowrate_x_1 = [data["q"] for data in eckmeir_future_graph]
pressure_y_1 = [data["p"] for data in eckmeir_future_graph]
plt.plot(flowrate_x_1, pressure_y_1, linestyle="dashed", linewidth=.75)
plt.scatter(flowrate_x_1, pressure_y_1, label="Eckmeir (3 years later)")
# ====================================================
future_q_max = round(production_data.calculate_q_max("standing", future_p_res, future_data), 2)
standing_future_graph = production_data.get_production_graph("standing", future_q_max, iter, future_p_res, future_data)
flowrate_x_1 = [data["q"] for data in standing_future_graph]
pressure_y_1 = [data["p"] for data in standing_future_graph]
plt.plot(flowrate_x_1, pressure_y_1, linestyle="dashed", linewidth=.75)
plt.scatter(flowrate_x_1, pressure_y_1, label="Standing (3 years later)")
plt.scatter(future_data["q"], future_data["p"], label="Future production data")
plt.xlim(0, q_max + 1000)
plt.ylim(0, reservoir_pressure + 1000)
plt.title("Future Production Performance of Oil Well\nUsing Eckmeir Equation")
plt.xlabel('Flow rate (stbd)')
plt.ylabel('Pressure (psia)')
plt.legend()
plt.show()