This repository has been archived by the owner on Nov 25, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
367 lines (329 loc) · 18.1 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import numpy as np
import tensorflow as tf
from BasicRNNCell import _linear
## Setting initial states
def reset_neuron_states(batch, neurons):
# c = tf.random_normal([batch, neurons])
c = tf.zeros([batch, neurons])
# h = tf.random_normal([batch, neurons])
h = tf.zeros([batch, neurons])
states = tf.tuple(tensors=[c, h])
return states
def set_trainable_initial_states(modalities, data_next, batch_size, d_neurons, z_units, saved_initial_states=None):
out = {m: [] for m in modalities}
out_initial = {m: [] for m in modalities}
state = {m: [] for m in modalities}
z_prior_mean = {m: [] for m in modalities}
z_prior_var = {m: [] for m in modalities}
z_prior = {m: [] for m in modalities}
z_posterior_mean = {m: [] for m in modalities}
z_posterior_var = {m: [] for m in modalities}
z_posterior = {m: [] for m in modalities}
for m in modalities:
for l in range(len(d_neurons[m])): # For each layer
if l == 0: # Layer 0 has no neurons
# NB: data is only fed into the network if input_provide_data is True
if data_next is not None:
out[m].append(data_next[m + "_next"][:, 0, :])
else:
out[m].append(tf.zeros([batch_size, d_neurons[m][l]]))
out_initial[m].append(tf.zeros([batch_size, d_neurons[m][l]]))
state[m].append(tf.zeros([batch_size, d_neurons[m][l]]))
else:
out[m].append(tf.zeros([batch_size, d_neurons[m][l]]))
out_initial[m].append(tf.zeros([batch_size, d_neurons[m][l]]))
if saved_initial_states is None:
state[m].append(reset_neuron_states(batch_size, d_neurons[m][l])) # (c, h)
else:
state[m].append(saved_initial_states[l])
z_prior[m].append(tf.ones([batch_size, z_units[m][l]]))
z_prior_mean[m].append(tf.ones([batch_size, z_units[m][l]]))
z_prior_var[m].append(tf.ones([batch_size, z_units[m][l]]))
z_posterior[m].append(tf.ones([batch_size, z_units[m][l]]))
z_posterior_mean[m].append(tf.ones([batch_size, z_units[m][l]]))
z_posterior_var[m].append(tf.ones([batch_size, z_units[m][l]]))
print("set_trainable_initial_states: zeroed initial states")
return internal_states_dict(out=out, out_initial=out_initial, state=state,
z_prior_mean=z_prior_mean, z_prior_var=z_prior_var, z_prior=z_prior,
z_posterior_mean=z_posterior_mean, z_posterior_var=z_posterior_var, z_posterior=z_posterior)
# Stability hacks:
eps_minval = 1e-4
eps_maxval = 1e4
sigma_minval = 0.001
sigma_maxval = 10.0
sigma_func = lambda s: s # e.g. tf.tanh
def llog(x):
return tf.math.log(tf.clip_by_value(x, eps_minval, eps_maxval))
## Z calculations for Variational Bayes
def calculate_z_prior(idx_layer, prev_out, d_neurons, z_units, batch_size, z_activation_func, scope, limit_sigma=False, override_sigma=None, override_myu=None, override_epsilon=None):
with tf.compat.v1.variable_scope(scope):
if override_myu is not None:
myu = tf.fill([batch_size, z_units[idx_layer]], override_myu)
else:
myu = z_activation_func(_linear([prev_out], z_units[idx_layer], bias=True, scope_here='z_prior_myu'))
if override_sigma is not None:
s = tf.fill([batch_size, z_units[idx_layer]], override_sigma)
else:
s = tf.exp(_linear([prev_out], z_units[idx_layer], bias=True, scope_here='z_prior_sigma'))
if limit_sigma:
sigma = tf.clip_by_value(sigma_func(s), sigma_minval, sigma_maxval)
else:
sigma = s
if override_epsilon is not None:
eps_gaussian = tf.fill([batch_size, z_units[idx_layer]], override_epsilon)
else:
eps_gaussian = tf.random.normal([batch_size, z_units[idx_layer]])
z = tf.add(myu, tf.multiply(sigma, eps_gaussian))
return z, myu, sigma
# source here is expected to be a learned array (nLayers * nUnits)
# NB: there are two zsrc layers per z layer, first half for myu and second half for sigma
def calculate_z_posterior(idx_layer, prev_out, source, d_neurons, z_units, batch_size, z_activation_func, scope, limit_sigma=False, override_sigma=None, override_myu=None, override_epsilon=None, source_extend=True):
with tf.compat.v1.variable_scope(scope):
if source_extend:
source_extended = _linear([source[:, :z_units[idx_layer]]], z_units[idx_layer]*2, bias=True, scope_here='z_posterior_from_src')
else:
source_extended = source[:, :z_units[idx_layer]*2]
if override_myu is not None:
myu = tf.fill([batch_size, z_units[idx_layer]], override_myu)
else:
if prev_out is not None:
myu = z_activation_func(_linear([prev_out], z_units[idx_layer], bias=False, scope_here='z_posterior_myu') + source_extended[:, z_units[idx_layer]:])
else:
myu = z_activation_func(source_extended[:, z_units[idx_layer]:])
if override_sigma is not None:
s = tf.fill([batch_size, z_units[idx_layer]], override_sigma)
else:
if prev_out is not None:
s = tf.exp(_linear([prev_out], z_units[idx_layer], bias=False, scope_here='z_posterior_sigma') + source_extended[:, :z_units[idx_layer]])
else:
s = tf.exp(source_extended[:, :z_units[idx_layer]])
if limit_sigma:
sigma = tf.clip_by_value(sigma_func(s), sigma_minval, sigma_maxval)
else:
sigma = s
if override_epsilon is not None:
eps_gaussian = tf.fill([batch_size, z_units[idx_layer]], override_epsilon)
else:
eps_gaussian = tf.random.normal([batch_size, z_units[idx_layer]])
z = tf.add(myu, tf.multiply(sigma, eps_gaussian))
return z, myu, sigma
# Softmax functions
def softmax(traj, sm_sigma=0.025, sm_minVal=-1.0, sm_maxVal=1.0, softmax_quant=10):
references = np.linspace(sm_minVal, sm_maxVal, softmax_quant)
smVal = np.zeros((traj.shape[0],traj.shape[1]*softmax_quant))
for idxStep in range(traj.shape[0]):
for idxJnt in range(traj.shape[1]):
val = np.zeros((1,softmax_quant))
sumVal = 0
for idxRef in range(softmax_quant):
val[0,idxRef] = np.power((references[idxRef] - traj[idxStep,idxJnt]),2)
val[0,idxRef] = np.exp(-val[0,idxRef] / sm_sigma)
sumVal = sumVal + val[0,idxRef]
for idxRef in range(softmax_quant):
val[0,idxRef] = val[0,idxRef] / sumVal
smVal[idxStep,idxJnt*10:(idxJnt+1)*10] = val[0,:]
return smVal
def unsoftmax(smVal, sm_minVal=-1.0, sm_maxVal=1.0, softmax_quant=10):
references = np.linspace(sm_minVal, sm_maxVal, softmax_quant)
analogJnt = 0
analog = np.zeros((smVal.shape[0],smVal.shape[1]//softmax_quant))
for idxJnt in range(0,smVal.shape[1],softmax_quant):
analog[:,analogJnt] = np.matmul(smVal[:,idxJnt:idxJnt+softmax_quant], np.transpose(references))
analogJnt = analogJnt + 1
return analog
def tf_unsoftmax(smVal, sm_minVal=-1.0, sm_maxVal=1.0, softmax_quant=10):
references = tf.convert_to_tensor(value=np.linspace(sm_minVal, sm_maxVal, softmax_quant), dtype=tf.float32)
# analogJnt = 0
# smValShape = np.shape(smVal)
# analog = list(np.zeros((smValShape[0],smValShape[1]//softmax_quant)))
analog = []
for idxJnt in range(0,20,softmax_quant):
analog.append(tf.matmul(smVal[:,idxJnt:idxJnt+softmax_quant], tf.transpose(a=tf.expand_dims(references,0))))
return tf.transpose(a=tf.squeeze(tf.convert_to_tensor(value=analog, dtype=tf.float32)))
# LeCun (1989)
def extended_hyperbolic(input_matrix):
return tf.multiply(1.7159, tf.tanh(tf.multiply((tf.divide(2.0, 3.0)), input_matrix)))
def data_mask(motor_data, skip_ahead=None):
# Input: seq, step, dim
return tf.sign(tf.reduce_max(input_tensor=tf.abs(motor_data[:, skip_ahead:, :]), axis=2)) # seq, step
def dropout_mask(dims):
return tf.cast(tf.random.uniform(dims, dtype=tf.int32, minval=0, maxval=2), dtype=tf.float32)
def windowed_mask(dims, start=[0,1], end=[-1,None], invert=False, end_zeropad=True):
zeros = tf.zeros(dims, dtype=tf.float32)
ones = tf.ones(dims, dtype=tf.float32)
if not invert:
wmask = tf.concat([ones[:, start[0]:start[1]], zeros[:, start[1]:end[0]], ones[:, end[0]:end[1]]], axis=1)
else:
wmask = tf.concat([zeros[:, start[0]:start[1]], ones[:, start[1]:end[0]], zeros[:, end[0]:end[1]]], axis=1)
if np.shape(wmask)[1] != dims[1]:
end_pad = dims[1] - np.shape(wmask)[1]
if end_zeropad:
wmask = tf.concat([wmask, zeros[:, :end_pad]], axis=1)
else:
wmask = tf.concat([wmask, ones[:, :end_pad]], axis=1)
return wmask
def windowed_dmask(end_dmask, dims, start=[0,1], end=[-1,None], end_zeropad=True): # dims should be [seq, steps, dims]
zeros = tf.zeros(dims)
ones = tf.ones(dims)
goal = tf.cast(tf.expand_dims(tf.reshape(tf.tile(tf.constant(end_dmask), [dims[0]]), [dims[0], dims[2]]), axis=1), tf.float32)
dmask = tf.concat([ones[:, start[0]:start[1], :], zeros[:, start[1]:end[0], :], goal[:, end[0]:end[1], :]], axis=1)
if np.shape(dmask)[1] < dims[1]:
end_pad = dims[1] - np.shape(dmask)[1]
if end_zeropad:
dmask = tf.concat([dmask, zeros[:, :end_pad, :]], axis=1)
else:
dmask = tf.concat([dmask, ones[:, :end_pad, :]], axis=1)
return dmask
# For reducing motor trajectories
def td_reduce(src, mask=None, dmask=None):
if dmask is not None: # apply a granular mask (per channel per timestep)
src = tf.multiply(src, dmask)
td = tf.reduce_sum(input_tensor=src, axis=2) # seq, step
if mask is not None: # apply a basic mask (per timestep)
td = tf.multiply(td, mask)
return tf.reduce_sum(input_tensor=td), td
## Loss functions
# Deprecated windowed_l2_loss
def windowed_l2_loss(xtarget, xprediction, dims, start=[0,1], end=[-1,None], dim_mask=[None,None], get_least_loss=False, return_td=False):
target = []
prediction = []
for n in range(dims[0]):
target.append(tf_unsoftmax(xtarget[n, :, :], sm_minVal=0.0, sm_maxVal=1.0, softmax_quant=10))
prediction.append(tf_unsoftmax(xprediction[n, :, :], sm_minVal=0, sm_maxVal=1, softmax_quant=10))
target = tf.convert_to_tensor(value=target, dtype=tf.float32)
prediction = tf.convert_to_tensor(value=prediction, dtype=tf.float32)
if not get_least_loss:
# Starting loss
loss = tf.nn.l2_loss(target[:,start[0]:start[1],dim_mask[0]:dim_mask[1]] - prediction[:,start[0]:start[1],dim_mask[0]:dim_mask[1]])
# Ending loss
loss += tf.nn.l2_loss(target[:,end[0]:end[1],dim_mask[0]:dim_mask[1]] - prediction[:,end[0]:end[1],dim_mask[0]:dim_mask[1]])
return loss
else:
# Starting loss
start_loss = tf.math.squared_difference(target[:,start[0]:start[1],dim_mask[0]:dim_mask[1]], prediction[:,start[0]:start[1],dim_mask[0]:dim_mask[1]])
# Ending loss
end_loss = tf.math.squared_difference(target[:,end[0]:end[1],dim_mask[0]:dim_mask[1]], prediction[:,end[0]:end[1],dim_mask[0]:dim_mask[1]])
if return_td:
target_shape = tf.shape(input=target)
fill_len = target_shape[1] - (tf.shape(input=start_loss)[1]+tf.shape(input=end_loss)[1])
loss = tf.cond(pred=tf.greater(fill_len, 0), true_fn=lambda: tf.concat([start_loss, tf.zeros([target_shape[0], fill_len, target_shape[2]], dtype=tf.float32), end_loss], axis=1), false_fn=lambda: tf.concat([start_loss, end_loss], axis=1))
else:
loss = tf.concat([start_loss, end_loss], axis=1)
idx = tf.argmin(input=loss, axis=1)
if return_td:
return tf.reduce_sum(input_tensor=loss), idx, tf.reduce_sum(input_tensor=tf.gather(loss, idx)), tf.reduce_sum(input_tensor=loss, axis=2)
else:
return tf.reduce_sum(input_tensor=loss), idx, tf.reduce_sum(input_tensor=tf.gather(loss, idx))
def cross_entropy_with_mask(target, prediction, mask=None, dmask=None):
ce_elem = tf.multiply(tf.negative(target), llog(prediction)) # seq, step, dim*quant_level
return td_reduce(ce_elem, mask, dmask)
def l2_norm_with_mask(target, output, mask=None, dmask=None):
diff = tf.math.squared_difference(target, output) # seq, step, dim*quant_level
return td_reduce(diff, mask, dmask)
def l1_norm_with_mask(target, output, mask=None, dmask=None):
diff = tf.abs(target - output)
return td_reduce(diff, mask, dmask)
def kld_with_mask(target, prediction, mask=None, dmask=None): # seq, step, dim*quant_level
kl_elem = tf.multiply(target, llog(tf.divide(target, prediction))) # seq, step, dim*quant_level
return td_reduce(kl_elem, mask, dmask)
def vb_kld(posterior_m, posterior_v, prior_m, prior_v, mask=None, step_multiplier=None, final_divider=None):
kl = (1.0 + llog(tf.square(posterior_v))
- llog(tf.square(prior_v))
+ tf.divide((tf.negative(tf.square(posterior_m)) - tf.square(posterior_v) + tf.multiply(2.0, tf.multiply(posterior_m, prior_m)) - tf.square(prior_m)), tf.square(prior_v))
)
kl_sum_transpose = tf.transpose(a=tf.reduce_sum(input_tensor=kl, axis=2), perm=[1, 0]) #[seq, step]
if mask is not None:
kl_sum_transpose = tf.multiply(kl_sum_transpose, mask)
if step_multiplier is not None:
kl_sum_tm = tf.multiply(kl_sum_transpose, step_multiplier)
else:
kl_sum_tm = kl_sum_transpose
if final_divider != 1 and final_divider != 0:
return tf.divide(tf.reduce_sum(input_tensor=kl_sum_tm), final_divider), tf.divide(kl_sum_tm, final_divider)
else:
return tf.reduce_sum(input_tensor=kl_sum_tm), kl_sum_tm
# KLD between prior and posterior per layer
def seq_kld_with_mask(source, mask, z_units, modality):
kld = [0.0]
# Motor: [step, seq, dim]
for i in range(1, len(z_units)):
kld.append(vb_kld(source["z_posterior_mean"][modality][i], source["z_posterior_var"][modality][i], source["z_prior_mean"][modality][i], source["z_prior_var"][modality][i], mask, final_divider=z_units[i]))
return kld
def vb_kld_with_mask(source, mask, z_units, modality, ugaussian_prior=None, ugaussian_prior_by_t=None, ugaussian_weight=None, kld_weight=None, seq_kld_weight_by_t=False):
kld = [(tf.constant(0.0), tf.constant(0.0))]
# Motor: [step, seq, dim]
for i in range(1, len(z_units)):
if not seq_kld_weight_by_t:
step_multiplier = None
elif ugaussian_prior_by_t is None:
pshape = tf.shape(input=source["z_prior_mean"][modality][i])
step_multiplier = tf.fill([pshape[0]], kld_weight[i-1])
qm = source["z_posterior_mean"][modality][i]
qv = source["z_posterior_var"][modality][i]
if ugaussian_prior is not None and ugaussian_prior[i] == False:
pshape = tf.shape(input=source["z_prior_mean"][modality][i])
pm = tf.fill(pshape, 0.0)
pv = tf.fill(pshape, 1.0)
elif ugaussian_prior_by_t is not None:
pshape = tf.shape(input=source["z_prior_mean"][modality][i])
pm = tf.concat([source["z_prior_mean"][modality][i][:ugaussian_prior_by_t[0], :, :], tf.fill([ugaussian_prior_by_t[1]-ugaussian_prior_by_t[0], pshape[1], pshape[2]], 0.0), source["z_prior_mean"][modality][i][ugaussian_prior_by_t[1]:, :, :]], axis=0)
pv = tf.concat([source["z_prior_var"][modality][i][:ugaussian_prior_by_t[0], :, :], tf.fill([ugaussian_prior_by_t[1]-ugaussian_prior_by_t[0], pshape[1], pshape[2]], 1.0), source["z_prior_var"][modality][i][ugaussian_prior_by_t[1]:, :, :]], axis=0)
step_multiplier = tf.concat([[tf.constant(ugaussian_weight)], tf.fill([pshape[0]-1], kld_weight[i-1])], axis=0)
else:
pm = source["z_prior_mean"][modality][i]
pv = source["z_prior_var"][modality][i]
kld.append(vb_kld(qm, qv, pm, pv, mask, step_multiplier, final_divider=z_units[i]))
return kld
## State dictionary must be consistent
def internal_states_dict(t_step=0, out=None, out_initial=None, state=None,
z_prior_mean=None, z_prior_var=None, z_prior=None,
z_posterior_mean=None, z_posterior_var=None, z_posterior=None):
states = dict()
states['t_step'] = t_step
states['out'] = out
states['out_initial'] = out_initial
states['state'] = state
states['z_prior_mean'] = z_prior_mean
states['z_prior_var'] = z_prior_var
states['z_prior'] = z_prior
states['z_posterior_mean'] = z_posterior_mean
states['z_posterior_var'] = z_posterior_var
states['z_posterior'] = z_posterior
# Debugging
# import inspect
# import pprint
# print("internal_states_dict (caller: %s):" % (inspect.getouterframes(inspect.currentframe(), 2)[1][3]))
# pp = pprint.PrettyPrinter()
# pp.pprint(out)
return states
def update_internal_states_dict(previous_states, t_step=None, out=None, out_initial=None, state=None,
z_prior_mean=None, z_prior_var=None, z_prior=None,
z_posterior_mean=None, z_posterior_var=None, z_posterior=None):
states = previous_states
if t_step is not None:
states['t_step'] = t_step
if out is not None:
states['out'] = out
if out_initial is not None:
states['out_initial'] = out_initial
if state is not None:
states['state'] = state
if z_prior_mean is not None:
states['z_prior_mean'] = z_prior_mean
if z_prior_var is not None:
states['z_prior_var'] = z_prior_var
if z_prior is not None:
states['z_prior'] = z_prior
if z_posterior_mean is not None:
states['z_posterior_mean'] = z_posterior_mean
if z_posterior_var is not None:
states['z_posterior_var'] = z_posterior_var
if z_posterior is not None:
states['z_posterior'] = z_posterior
# Debugging
# import inspect
# import pprint
# print("update_internal_states_dict (caller: %s):" % (inspect.getouterframes(inspect.currentframe(), 2)[1][3]))
# pp = pprint.PrettyPrinter()
# pp.pprint(out)
return states