-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN_Dog_Cat.py
77 lines (62 loc) · 2.83 KB
/
CNN_Dog_Cat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
""" This classifies a picture of cat or dog with a very high accuracy. I have used Keras and tensorflow libraries for making the neural network.
It is using max-pooling for making the neural netwrok more robust. I am also flattening the image for more efficiency.
Created on Tue Apr 17 17:42:40 2018
@author: Diwesh
"""
#importing the libraries and packages
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Convolution2D
from keras.layers import Flatten
from keras.layers import MaxPooling2D
#initialize the CNN
classifier= Sequential()
#start the convolution
classifier.add(Convolution2D(32, 3, 3, input_shape=(64,64,3), activation='relu'))
# pooling
classifier.add(MaxPooling2D(pool_size=(2,2), ))
#Flatten
classifier.add(Flatten())
#Full connection
classifier.add(Dense(128, activation='relu'))
#the output layer
classifier.add(Dense(1, activation='sigmoid'))
#compiling the CNN
classifier.compile(optimizer='adam', loss= 'binary_crossentropy', metrics=['accuracy'])
#fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'D:\Study Material\Deep_Learning_A_Z\Convolutional_Neural_Networks\dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'D:\Study Material\Deep_Learning_A_Z\Convolutional_Neural_Networks\dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
classifier.fit_generator(
training_set,
steps_per_epoch=8000/32,
epochs=25,
validation_data=test_set,
validation_steps=2000/32)
#making a new predition
import numpy as np
import keras.preprocessing.image
test_image= image.load_img('D:\Study Material\Deep_Learning_A_Z\Convolutional_Neural_Networks\dataset\single_prediction\cat_or_god_1.jpg', target_size=(64,64))
test_image= image.img_to_array(test_image)
test_image= np.expand_dims(test_image, axis=0)
result= classifier.predict(test_image)
training_set.class_indices
if result[0][0]==1:
prediction='dog'
else:
prediction='cat'