diff --git a/Homework 1/2.2credit_card_data-headersSummer2018.txt b/Homework 1/2.2credit_card_data-headersSummer2018.txt new file mode 100644 index 0000000..453e4c7 --- /dev/null +++ b/Homework 1/2.2credit_card_data-headersSummer2018.txt @@ -0,0 +1,655 @@ +A1 A2 A3 A8 A9 A10 A11 A12 A14 A15 R1 +1 30.83 0 1.25 1 0 1 1 202 0 1 +0 58.67 4.46 3.04 1 0 6 1 43 560 1 +0 24.5 0.5 1.5 1 1 0 1 280 824 1 +1 27.83 1.54 3.75 1 0 5 0 100 3 1 +1 20.17 5.625 1.71 1 1 0 1 120 0 1 +1 32.08 4 2.5 1 1 0 0 360 0 1 +1 33.17 1.04 6.5 1 1 0 0 164 31285 1 +0 22.92 11.585 0.04 1 1 0 1 80 1349 1 +1 54.42 0.5 3.96 1 1 0 1 180 314 1 +1 42.5 4.915 3.165 1 1 0 0 52 1442 1 +1 22.08 0.83 2.165 0 1 0 0 128 0 1 +1 29.92 1.835 4.335 1 1 0 1 260 200 1 +0 38.25 6 1 1 1 0 0 0 0 1 +1 48.08 6.04 0.04 0 1 0 1 0 2690 1 +0 45.83 10.5 5 1 0 7 0 0 0 1 +1 36.67 4.415 0.25 1 0 10 0 320 0 1 +1 28.25 0.875 0.96 1 0 3 0 396 0 1 +0 23.25 5.875 3.17 1 0 10 1 120 245 1 +1 21.83 0.25 0.665 1 1 0 0 0 0 1 +0 19.17 8.585 0.75 1 0 7 1 96 0 1 +1 25 11.25 2.5 1 0 17 1 200 1208 1 +1 23.25 1 0.835 1 1 0 1 300 0 1 +0 47.75 8 7.875 1 0 6 0 0 1260 1 +0 27.42 14.5 3.085 1 0 1 1 120 11 1 +0 41.17 6.5 0.5 1 0 3 0 145 0 1 +0 15.83 0.585 1.5 1 0 2 1 100 0 1 +0 47 13 5.165 1 0 9 0 0 0 1 +1 56.58 18.5 15 1 0 17 0 0 0 1 +1 57.42 8.5 7 1 0 3 1 0 0 1 +1 42.08 1.04 5 1 0 6 0 500 10000 1 +1 29.25 14.79 5.04 1 0 5 0 168 0 1 +1 42 9.79 7.96 1 0 8 1 0 0 1 +1 49.5 7.585 7.585 1 0 15 0 0 5000 1 +0 36.75 5.125 5 1 1 0 0 0 4000 1 +0 22.58 10.75 0.415 1 0 5 0 0 560 1 +1 27.83 1.5 2 1 0 11 0 434 35 1 +1 27.25 1.585 1.835 1 0 12 0 583 713 1 +0 23 11.75 0.5 1 0 2 0 300 551 1 +1 27.75 0.585 0.25 1 0 2 1 260 500 1 +1 54.58 9.415 14.415 1 0 11 0 30 300 1 +1 34.17 9.17 4.5 1 0 12 0 0 221 1 +1 28.92 15 5.335 1 0 11 1 0 2283 1 +1 29.67 1.415 0.75 1 0 1 1 240 100 1 +1 39.58 13.915 8.625 1 0 6 0 70 0 1 +1 56.42 28 28.5 1 0 40 1 0 15 1 +1 54.33 6.75 2.625 1 0 11 0 0 284 1 +0 41 2.04 0.125 1 0 23 0 455 1236 1 +1 31.92 4.46 6.04 1 0 3 1 311 300 1 +1 41.5 1.54 3.5 0 1 0 1 216 0 1 +1 23.92 0.665 0.165 0 1 0 1 100 0 1 +0 25.75 0.5 0.875 1 1 0 0 491 0 1 +1 26 1 1.75 1 1 0 0 280 0 1 +1 37.42 2.04 0.04 1 1 0 0 400 5800 1 +1 34.92 2.5 0 1 1 0 0 239 200 1 +1 34.25 3 7.415 1 1 0 0 0 0 1 +1 23.33 11.625 0.835 1 1 0 0 160 300 1 +1 23.17 0 0.085 1 1 0 1 0 0 1 +1 44.33 0.5 5 1 1 0 0 320 0 1 +1 35.17 4.5 5.75 0 1 0 0 711 0 1 +1 43.25 3 6 1 0 11 1 80 0 1 +1 56.75 12.25 1.25 1 0 4 0 200 0 1 +1 31.67 16.165 3 1 0 9 1 250 730 1 +0 23.42 0.79 1.5 1 0 2 0 80 400 1 +0 20.42 0.835 1.585 1 0 1 1 0 0 1 +1 26.67 4.25 4.29 1 0 1 0 120 0 1 +1 34.17 1.54 1.54 1 0 1 0 520 50000 1 +0 36 1 2 1 0 11 1 0 456 1 +1 25.5 0.375 0.25 1 0 3 1 260 15108 1 +1 19.42 6.5 1.46 1 0 7 1 80 2954 1 +1 35.17 25.125 1.625 1 0 1 0 515 500 1 +1 32.33 7.5 1.585 1 1 0 0 420 0 0 +0 38.58 5 13.5 1 1 0 0 980 0 0 +1 44.25 0.5 10.75 1 1 0 1 400 0 0 +1 44.83 7 1.625 0 1 0 1 160 2 0 +1 20.67 5.29 0.375 1 0 1 1 160 0 0 +1 34.08 6.5 0.125 1 1 0 0 443 0 0 +0 19.17 0.585 0.585 1 1 0 0 160 0 0 +1 21.67 1.165 2.5 1 0 1 1 180 20 0 +1 21.5 9.75 0.25 1 1 0 1 140 0 0 +1 49.58 19 0 1 0 1 1 94 0 0 +0 27.67 1.5 2 1 1 0 1 368 0 0 +1 39.83 0.5 0.25 1 1 0 1 288 0 0 +1 27.25 0.625 0.455 1 1 0 0 200 0 0 +1 37.17 4 5 1 1 0 0 280 0 0 +1 25.67 2.21 4 1 1 0 1 188 0 0 +1 34 4.5 1 1 1 0 0 240 0 0 +0 49 1.5 0 1 1 0 0 100 27 0 +1 62.5 12.75 5 1 1 0 1 112 0 0 +1 31.42 15.5 0.5 1 1 0 1 120 0 0 +1 52.33 1.375 9.46 1 1 0 0 200 100 0 +1 28.75 1.5 1.5 1 1 0 0 0 225 0 +0 28.58 3.54 0.5 1 1 0 0 171 0 0 +1 23 0.625 0.125 1 1 0 1 180 1 0 +0 22.5 11 3 1 1 0 0 268 0 0 +0 28.5 1 1 1 0 2 0 167 500 0 +1 37.5 1.75 0.25 1 1 0 0 164 400 0 +1 35.25 16.5 4 1 1 0 1 80 0 0 +1 18.67 5 0.375 1 0 2 1 0 38 0 +1 25 12 2.25 1 0 2 0 120 5 0 +1 27.83 4 5.75 1 0 2 0 75 0 0 +1 54.83 15.5 0 1 0 20 1 152 130 0 +1 28.75 1.165 0.5 1 1 0 1 280 0 0 +0 25 11 4.5 1 1 0 1 120 0 0 +1 40.92 2.25 10 1 1 0 0 176 0 0 +0 19.75 0.75 0.795 1 0 5 0 140 5 0 +1 29.17 3.5 3.5 1 0 3 0 329 0 0 +0 24.5 1.04 0.5 1 0 3 1 180 147 0 +1 24.58 12.5 0.875 1 1 0 0 260 0 0 +0 33.75 0.75 1 1 0 3 0 212 0 0 +1 20.67 1.25 1.375 1 0 3 0 140 210 0 +0 25.42 1.125 1.29 1 0 2 1 200 0 0 +1 37.75 7 11.5 1 0 7 0 300 5 0 +1 52.5 6.5 6.29 1 0 15 1 0 11202 1 +1 57.83 7.04 14 1 0 6 0 360 1332 1 +0 20.75 10.335 0.335 1 0 1 0 80 50 1 +1 39.92 6.21 0.04 1 0 1 1 200 300 1 +1 25.67 12.5 1.21 1 0 67 0 140 258 1 +0 24.75 12.5 1.5 1 0 12 0 120 567 1 +0 44.17 6.665 7.375 1 0 3 0 0 0 1 +0 23.5 9 8.5 1 0 5 0 120 0 1 +1 34.92 5 7.5 1 0 6 0 0 1000 1 +1 47.67 2.5 2.5 1 0 12 0 410 2510 1 +1 22.75 11 2.5 1 0 7 0 100 809 1 +1 34.42 4.25 3.25 1 0 2 1 274 610 1 +0 28.42 3.5 0.835 1 1 0 1 280 0 1 +1 67.75 5.5 13 1 0 1 0 0 0 1 +1 20.42 1.835 2.25 1 0 1 1 100 150 1 +0 47.42 8 6.5 1 0 6 1 375 51100 1 +1 36.25 5 2.5 1 0 6 1 0 367 1 +1 32.67 5.5 5.5 1 0 12 0 408 1000 1 +1 48.58 6.5 6 1 1 0 0 350 0 1 +1 39.92 0.54 0.5 1 0 3 1 200 1000 1 +1 33.58 2.75 4.25 1 0 6 1 204 0 1 +0 18.83 9.5 1.625 1 0 6 0 40 600 1 +0 26.92 13.5 5 1 0 2 1 0 5000 1 +0 31.25 3.75 0.625 1 0 9 0 181 0 1 +0 56.5 16 0 1 0 15 1 0 247 1 +1 43 0.29 1.75 1 0 8 1 100 375 1 +1 22.33 11 2 1 0 1 1 80 278 1 +1 27.25 1.665 5.085 1 0 9 1 399 827 1 +1 32.83 2.5 2.75 1 0 6 1 160 2072 1 +1 23.25 1.5 2.375 1 0 3 0 0 582 1 +0 40.33 7.54 8 1 0 14 1 0 2300 1 +0 30.5 6.5 4 1 0 7 0 0 3065 1 +0 52.83 15 5.5 1 0 14 1 0 2200 1 +0 46.67 0.46 0.415 1 0 11 0 440 6 1 +0 58.33 10 4 1 0 14 1 0 1602 1 +1 37.33 6.5 4.25 1 0 12 0 93 0 1 +1 23.08 2.5 1.085 1 0 11 0 60 2184 1 +1 32.75 1.5 5.5 1 0 3 0 0 0 1 +0 21.67 11.5 0 1 0 11 0 0 0 1 +0 28.5 3.04 2.54 1 0 1 1 70 0 1 +0 68.67 15 0 1 0 14 1 0 3376 1 +1 28 2 4.165 1 0 2 0 181 0 1 +1 34.08 0.08 0.04 1 0 1 0 280 2000 1 +1 27.67 2 1 1 0 4 1 140 7544 1 +1 44 2 1.75 1 0 2 0 0 15 1 +1 25.08 1.71 1.665 1 0 1 0 395 20 1 +1 32 1.75 0.04 1 1 0 0 393 0 1 +0 60.58 16.5 11 1 1 0 0 21 10561 1 +0 40.83 10 1.75 1 1 0 1 29 837 1 +1 19.33 9.5 1 1 1 0 0 60 400 1 +0 32.33 0.54 0.04 1 1 0 1 440 11177 1 +1 36.67 3.25 9 1 1 0 0 102 639 1 +1 37.5 1.125 1.5 0 1 0 0 431 0 1 +0 25.08 2.54 0.25 1 1 0 0 370 0 1 +1 41.33 0 15 1 1 0 1 0 0 1 +1 56 12.5 8 1 1 0 0 24 2028 1 +0 49.83 13.585 8.5 1 1 0 0 0 0 1 +1 22.67 10.5 1.335 1 1 0 1 100 0 1 +1 27 1.5 0.375 1 1 0 0 260 1065 1 +1 25 12.5 3 1 1 0 0 20 0 1 +0 26.08 8.665 1.415 1 1 0 1 160 150 1 +0 18.42 9.25 1.21 1 0 4 1 60 540 1 +1 20.17 8.17 1.96 1 0 14 1 60 158 1 +1 47.67 0.29 15 1 0 20 1 0 15000 1 +0 21.25 2.335 0.5 1 0 4 1 80 0 1 +0 20.67 3 0.165 1 0 3 1 100 6 1 +0 57.08 19.5 5.5 1 0 7 1 0 3000 1 +0 22.42 5.665 2.585 1 0 7 1 129 3257 1 +1 48.75 8.5 12.5 1 0 9 1 181 1655 1 +1 40 6.5 3.5 1 0 1 1 0 500 1 +1 40.58 5 5 1 0 7 1 0 3065 1 +0 28.67 1.04 2.5 1 0 5 0 300 1430 1 +0 33.08 4.625 1.625 1 0 2 1 0 0 1 +1 21.33 10.5 3 1 1 0 0 0 0 1 +1 42 0.205 5.125 1 1 0 1 400 0 1 +1 41.75 0.96 2.5 1 1 0 1 510 600 1 +1 22.67 1.585 3.085 1 0 6 1 80 0 1 +1 34.5 4.04 8.5 1 0 7 0 195 0 1 +1 28.25 5.04 1.5 1 0 8 0 144 7 1 +1 33.17 3.165 3.165 1 0 3 0 380 0 1 +1 48.17 7.625 15.5 1 0 12 1 0 790 1 +1 27.58 2.04 2 1 0 3 0 370 560 1 +1 22.58 10.04 0.04 1 0 9 1 60 396 1 +0 24.08 0.5 1.25 1 0 1 1 0 678 1 +0 41.33 1 2.25 1 1 0 0 0 300 1 +0 20.75 10.25 0.71 1 0 2 0 49 0 1 +1 36.33 2.125 0.085 1 0 1 1 50 1187 1 +0 35.42 12 14 1 0 8 1 0 6590 1 +1 28.67 9.335 5.665 1 0 6 1 381 168 1 +1 35.17 2.5 4.5 1 0 7 1 150 1270 1 +1 39.5 4.25 6.5 1 0 16 1 117 1210 1 +1 39.33 5.875 10 1 0 14 0 399 0 1 +1 24.33 6.625 5.5 1 1 0 0 100 0 1 +1 60.08 14.5 18 1 0 15 0 0 1000 1 +1 23.08 11.5 3.5 1 0 9 1 56 742 1 +1 26.67 2.71 5.25 1 0 1 1 211 0 1 +1 48.17 3.5 3.5 1 1 0 1 230 0 1 +1 41.17 4.04 7 1 0 8 1 320 0 1 +1 55.92 11.5 5 1 0 5 1 0 8851 1 +1 53.92 9.625 8.665 1 0 5 1 0 0 1 +0 18.92 9.25 1 1 0 4 0 80 500 1 +0 50.08 12.54 2.29 1 0 3 0 156 0 1 +1 65.42 11 20 1 0 7 0 22 0 1 +0 17.58 9 1.375 1 1 0 0 0 0 1 +0 18.83 9.54 0.085 1 1 0 1 100 0 1 +0 37.75 5.5 0.125 1 1 0 0 228 0 1 +1 23.25 4 0.25 1 1 0 0 160 0 1 +1 18.08 5.5 0.5 1 1 0 1 80 0 1 +0 22.5 8.46 2.46 0 1 0 1 164 0 1 +1 19.67 0.375 2 1 0 2 0 80 0 1 +1 22.08 11 0.665 1 1 0 1 100 0 1 +1 25.17 3.5 0.625 1 0 7 1 0 7059 1 +0 47.42 3 13.875 1 0 2 0 519 1704 1 +1 33.5 1.75 4.5 1 0 4 0 253 857 1 +1 27.67 13.75 5.75 1 1 0 0 487 500 1 +0 58.42 21 10 1 0 13 1 0 6700 1 +0 20.67 1.835 2.085 1 0 5 1 220 2503 1 +1 26.17 0.25 0 1 1 0 0 0 0 1 +1 21.33 7.5 1.415 1 0 1 1 80 9800 1 +1 42.83 4.625 4.58 1 1 0 1 0 0 1 +1 38.17 10.125 2.5 1 0 6 1 520 196 1 +1 20.5 10 2.5 1 1 0 1 40 0 1 +1 48.25 25.085 1.75 1 0 3 1 120 14 1 +1 28.33 5 11 1 1 0 0 70 0 1 +1 18.5 2 1.5 1 0 2 1 120 300 1 +1 33.17 3.04 2.04 1 0 1 0 180 18027 1 +1 45 8.5 14 1 0 1 0 88 2000 1 +0 19.67 0.21 0.29 1 0 11 1 80 99 1 +1 21.83 11 0.29 1 0 6 1 121 0 1 +1 40.25 21.5 20 1 0 11 1 0 1200 1 +1 41.42 5 5 1 0 6 0 470 0 1 +0 17.83 11 1 1 0 11 1 0 3000 1 +1 23.17 11.125 0.46 1 0 1 1 100 0 1 +1 18.17 10.25 1.085 0 1 0 1 320 13 0 +1 20 11.045 2 0 1 0 0 136 0 0 +1 20 0 0.5 0 1 0 1 144 0 0 +0 20.75 9.54 0.04 0 1 0 1 200 1000 0 +0 24.5 1.75 0.165 0 1 0 1 132 0 0 +1 32.75 2.335 5.75 0 1 0 0 292 0 0 +0 52.17 0 0 0 1 0 1 0 0 0 +0 48.17 1.335 0.335 0 1 0 1 0 120 0 +0 20.42 10.5 0 0 1 0 0 154 32 0 +1 50.75 0.585 0 0 1 0 1 145 0 0 +1 17.08 0.085 0.04 0 1 0 1 140 722 0 +1 18.33 1.21 0 0 1 0 1 100 0 0 +0 32 6 1.25 0 1 0 1 272 0 0 +1 59.67 1.54 0.125 1 1 0 0 260 0 1 +1 18 0.165 0.21 0 1 0 1 200 40 1 +1 32.33 2.5 1.25 0 1 0 0 280 0 0 +1 18.08 6.75 0.04 0 1 0 1 140 0 0 +1 38.25 10.125 0.125 0 1 0 1 160 0 0 +1 30.67 2.5 2.25 0 1 0 0 340 0 0 +1 18.58 5.71 0.54 0 1 0 1 120 0 0 +0 19.17 5.415 0.29 0 1 0 1 80 484 0 +0 18.17 10 0.165 0 1 0 1 340 0 0 +1 16.25 0.835 0.085 1 1 0 1 200 0 0 +1 21.17 0.875 0.25 0 1 0 1 280 204 0 +1 23.92 0.585 0.125 0 1 0 1 240 1 0 +1 17.67 4.46 0.25 0 1 0 1 80 0 0 +0 16.5 1.25 0.25 0 0 1 1 108 98 0 +1 23.25 12.625 0.125 0 0 2 1 0 5552 0 +1 17.58 10 0.165 0 0 1 1 120 1 0 +1 29.5 0.58 0.29 0 0 1 1 340 2803 0 +1 18.83 0.415 0.165 0 0 1 1 200 1 0 +0 21.75 1.75 0 0 1 0 1 160 0 0 +1 23 0.75 0.5 0 1 0 0 320 0 0 +0 18.25 10 1 0 0 1 1 120 1 0 +1 25.42 0.54 0.165 0 0 1 1 272 444 0 +1 35.75 2.415 0.125 0 0 2 1 220 1 0 +0 16.08 0.335 0 0 0 1 1 160 126 0 +0 31.92 3.125 3.04 0 0 2 0 200 4 0 +1 69.17 9 4 0 0 1 1 70 6 0 +1 32.92 2.5 1.75 0 0 2 0 720 0 0 +1 16.33 2.75 0.665 0 0 1 1 80 21 0 +1 22.17 12.125 3.335 0 0 2 0 180 173 0 +0 57.58 2 6.5 0 0 1 1 0 10 0 +1 18.25 0.165 0.25 0 1 0 0 280 0 0 +1 23.42 1 0.5 0 1 0 0 280 0 0 +0 15.92 2.875 0.085 0 1 0 1 120 0 0 +0 24.75 13.665 1.5 0 1 0 1 280 1 0 +1 48.75 26.335 0 1 1 0 0 0 0 0 +1 23.5 2.75 4.5 0 1 0 1 160 25 0 +1 18.58 10.29 0.415 0 1 0 1 80 0 0 +1 27.75 1.29 0.25 0 1 0 0 140 0 0 +0 31.75 3 0 0 1 0 1 160 20 0 +0 24.83 4.5 1 0 1 0 0 360 6 0 +1 19 1.75 2.335 0 1 0 0 112 6 0 +0 16.33 0.21 0.125 0 1 0 1 200 1 0 +0 18.58 10 0.415 0 1 0 1 80 42 0 +1 16.25 0 0.25 0 1 0 1 60 0 0 +1 23 0.75 0.5 1 1 0 0 320 0 0 +1 21.17 0.25 0.25 0 1 0 1 280 204 0 +1 17.5 22 0 0 1 0 0 450 100000 1 +1 19.17 0 0 0 1 0 0 500 1 1 +1 36.75 0.125 1.5 0 1 0 0 232 113 1 +1 21.25 1.5 1.5 0 1 0 1 150 8 1 +0 18.08 0.375 10 0 1 0 0 300 0 1 +0 33.67 0.375 0.375 0 1 0 1 300 44 1 +1 48.58 0.205 0.25 1 0 11 1 380 2732 1 +1 33.67 1.25 1.165 0 1 0 1 120 0 0 +0 29.5 1.085 1 0 1 0 1 280 13 0 +1 30.17 1.085 0.04 0 1 0 1 170 179 0 +1 34.83 2.5 3 0 1 0 1 200 0 0 +0 33.25 2.5 2.5 0 1 0 0 0 2 0 +1 34.08 2.5 1 0 1 0 1 460 16 0 +0 25.25 12.5 1 0 1 0 0 180 1062 0 +1 34.75 2.5 0.5 0 1 0 1 348 0 0 +1 27.67 0.75 0.165 0 1 0 0 220 251 0 +1 47.33 6.5 1 0 1 0 0 0 228 0 +0 34.83 1.25 0.5 0 1 0 0 160 0 0 +0 33.25 3 2 0 1 0 1 180 0 0 +1 28 3 0.75 0 1 0 0 300 67 0 +0 39.08 4 3 0 1 0 1 480 0 0 +1 42.75 4.085 0.04 0 1 0 1 108 100 0 +1 26.92 2.25 0.5 0 1 0 0 640 4000 0 +1 33.75 2.75 0 0 1 0 1 180 0 0 +1 38.92 1.75 0.5 0 1 0 0 300 2 0 +1 62.75 7 0 0 1 0 1 0 12 0 +1 26.75 4.5 2.5 0 1 0 1 200 1210 0 +1 63.33 0.54 0.585 1 0 3 0 180 0 0 +1 27.83 1.5 2.25 0 0 1 0 100 3 0 +0 26.17 2 0 0 1 0 0 276 1 0 +1 22.17 0.585 0 0 1 0 1 100 0 0 +1 22.5 11.5 1.5 0 1 0 0 0 4000 0 +1 30.75 1.585 0.585 0 1 0 0 0 0 0 +1 36.67 2 0.25 0 1 0 0 221 0 0 +0 16 0.165 1 0 0 2 0 320 1 0 +1 41.17 1.335 0.165 0 1 0 1 168 0 0 +0 19.5 0.165 0.04 0 1 0 0 380 0 0 +1 32.42 3 0.165 0 1 0 0 120 0 0 +0 36.75 4.71 0 0 1 0 1 160 0 0 +0 30.25 5.5 5.5 0 1 0 0 100 0 0 +1 23.08 2.5 0.085 0 1 0 0 100 4208 0 +1 26.83 0.54 0 0 1 0 1 100 0 0 +1 16.92 0.335 0.29 0 1 0 1 200 0 0 +1 24.42 2 0.165 0 0 2 1 320 1300 0 +1 42.83 1.25 13.875 0 0 1 0 352 112 0 +0 22.75 6.165 0.165 0 1 0 1 220 1000 0 +1 39.42 1.71 0.165 0 1 0 1 400 0 0 +0 23.58 11.5 3 0 1 0 0 20 16 0 +1 21.42 0.75 0.75 0 1 0 0 132 2 0 +1 33 2.5 7 0 1 0 0 280 0 0 +1 26.33 13 0 0 1 0 0 140 1110 0 +0 45 4.585 1 0 1 0 0 240 0 0 +1 26.25 1.54 0.125 0 1 0 1 100 0 0 +0 20.83 0.5 1 0 1 0 1 260 0 0 +1 28.67 14.5 0.125 0 1 0 1 0 286 0 +1 20.67 0.835 2 0 1 0 0 240 0 0 +1 34.42 1.335 0.125 0 1 0 0 440 4500 0 +1 33.58 0.25 4 0 1 0 0 420 0 0 +1 43.17 5 2.25 0 1 0 0 141 0 0 +0 22.67 7 0.165 0 1 0 1 160 0 0 +0 24.33 2.5 4.5 0 1 0 1 200 456 0 +0 56.83 4.25 5 0 1 0 0 0 4 0 +1 22.08 11.46 1.585 0 1 0 0 100 1212 0 +1 34 5.5 1.5 0 1 0 0 60 0 0 +1 22.58 1.5 0.54 0 1 0 0 120 67 0 +1 21.17 0 0.5 0 1 0 0 0 0 0 +1 26.67 14.585 0 0 1 0 0 178 0 0 +1 22.92 0.17 0.085 0 1 0 1 0 0 0 +1 15.17 7 1 0 1 0 1 600 0 0 +1 39.92 5 0.21 0 1 0 1 550 0 0 +1 27.42 12.5 0.25 0 1 0 0 720 0 0 +1 24.75 0.54 1 0 1 0 0 120 1 0 +1 41.17 1.25 0.25 0 1 0 1 0 195 0 +0 33.08 1.625 0.54 0 1 0 0 0 0 0 +1 29.83 2.04 0.04 0 1 0 1 128 1 0 +0 23.58 0.585 0.125 0 1 0 1 120 87 0 +1 26.17 12.5 1.25 0 1 0 0 0 17 0 +1 31 2.085 0.085 0 1 0 1 300 0 0 +1 20.75 5.085 0.29 0 1 0 1 140 184 0 +1 28.92 0.375 0.29 0 1 0 1 220 140 0 +0 51.92 6.5 3.085 0 1 0 0 73 0 0 +0 22.67 0.335 0.75 0 1 0 1 160 0 0 +1 34 5.085 1.085 0 1 0 0 480 0 0 +0 69.5 6 0 0 1 0 1 0 0 0 +0 19.58 0.665 1 0 0 1 1 2000 2 0 +1 16 3.125 0.085 0 0 1 1 0 6 0 +1 17.08 0.25 0.335 0 0 4 1 160 8 0 +1 31.25 2.835 0 0 0 5 1 176 146 0 +1 25.17 3 1.25 0 0 1 1 0 22 0 +0 22.67 0.79 0.085 0 1 0 1 144 0 0 +1 40.58 1.5 0 0 1 0 1 300 0 0 +1 22.25 0.46 0.125 0 1 0 0 280 55 0 +0 22.25 1.25 3.25 0 1 0 1 280 0 0 +1 22.5 0.125 0.125 0 1 0 1 200 70 0 +1 23.58 1.79 0.54 0 1 0 0 136 1 0 +1 38.42 0.705 0.375 0 0 2 1 225 500 0 +0 26.58 2.54 0 0 1 0 0 180 60 0 +1 35 2.5 1 0 1 0 0 210 0 0 +1 20.42 1.085 1.5 0 1 0 1 108 7 0 +1 29.42 1.25 1.75 0 1 0 1 200 0 0 +1 26.17 0.835 1.165 0 1 0 1 100 0 0 +1 33.67 2.165 1.5 0 1 0 1 120 0 0 +1 24.58 1.25 0.25 0 1 0 1 110 0 0 +0 27.67 2.04 0.25 0 1 0 0 180 50 0 +1 37.5 0.835 0.04 0 1 0 1 120 5 0 +1 49.17 2.29 0.29 0 1 0 1 200 3 0 +1 33.58 0.335 0.085 0 1 0 1 180 0 0 +1 51.83 3 1.5 0 1 0 1 180 4 0 +1 22.92 3.165 0.165 0 1 0 1 160 1058 0 +1 21.83 1.54 0.085 0 1 0 0 356 0 0 +1 25.25 1 0.5 0 1 0 1 200 0 0 +1 58.58 2.71 2.415 0 1 0 0 320 0 0 +1 19 0 0 0 0 4 1 45 1 0 +1 19.58 0.585 0 0 0 3 1 350 769 0 +0 53.33 0.165 0 0 1 0 0 62 27 0 +0 27.17 1.25 0 0 0 1 1 92 300 0 +1 25.92 0.875 0.375 0 0 2 0 174 3 0 +1 23.08 0 1 0 0 11 1 0 0 0 +1 39.58 5 0 0 0 2 1 17 1 0 +1 30.58 2.71 0.125 0 1 0 0 80 0 0 +1 17.25 3 0.04 0 1 0 0 160 40 0 +0 17.67 0 0 0 1 0 1 86 0 0 +1 16.5 0.125 0.165 0 1 0 1 132 0 0 +0 27.33 1.665 0 0 1 0 1 340 1 0 +1 31.25 1.125 0 0 0 1 1 96 19 0 +1 20 7 0.5 0 1 0 1 0 0 0 +1 39.5 1.625 1.5 0 1 0 1 0 316 0 +1 36.5 4.25 3.5 0 1 0 1 454 50 0 +1 52.42 1.5 3.75 0 1 0 0 0 350 0 +1 36.17 18.125 0.085 0 1 0 1 320 3552 0 +1 29.67 0.75 0.04 0 1 0 1 240 0 0 +1 36.17 5.5 5 0 1 0 1 210 687 0 +1 25.67 0.29 1.5 0 1 0 0 160 0 0 +0 24.5 2.415 0 0 1 0 1 120 0 0 +1 24.08 0.875 0.085 0 0 4 1 254 1950 0 +1 21.92 0.5 0.125 0 1 0 1 360 0 0 +0 36.58 0.29 0 0 0 10 1 200 18 0 +0 23 1.835 0 0 0 1 1 200 53 0 +0 27.58 3 2.79 0 0 1 0 280 10 0 +1 31.08 3.085 2.5 0 0 2 0 160 41 0 +0 30.42 1.375 0.04 0 0 3 1 0 33 0 +1 22.08 2.335 0.75 0 1 0 1 180 0 0 +1 16.33 4.085 0.415 0 1 0 0 120 0 0 +0 21.92 11.665 0.085 0 1 0 1 320 5 0 +1 21.08 4.125 0.04 0 1 0 1 140 100 0 +1 17.42 6.5 0.125 0 1 0 1 60 100 0 +1 19.17 4 1 0 1 0 0 360 1000 0 +1 20.67 0.415 0.125 0 1 0 1 0 44 0 +1 26.75 2 0.75 0 1 0 0 80 0 0 +1 23.58 0.835 0.085 0 1 0 0 220 5 0 +1 39.17 2.5 10 0 1 0 0 200 0 0 +1 22.75 11.5 0.415 0 1 0 1 0 0 0 +0 16.92 0.5 0.165 0 0 6 0 240 35 0 +1 23.5 3.165 0.415 0 0 1 0 280 80 0 +0 17.33 9.5 1.75 0 0 10 0 0 10 0 +1 23.75 0.415 0.04 0 0 2 1 128 6 0 +1 34.67 1.08 1.165 0 1 0 1 28 0 0 +1 74.83 19 0.04 0 0 2 1 0 351 0 +1 28.17 0.125 0.085 0 1 0 1 216 2100 0 +1 24.5 13.335 0.04 0 1 0 0 120 475 0 +1 18.83 3.54 0 0 1 0 0 180 1 0 +0 47.25 0.75 2.75 1 0 1 1 333 892 1 +1 24.17 0.875 4.625 1 0 2 0 520 2000 1 +1 39.25 9.5 6.5 1 0 14 1 240 4607 1 +0 20.5 11.835 6 1 1 0 1 340 0 1 +0 18.83 4.415 3 1 1 0 1 240 0 1 +1 19.17 9.5 1.5 1 1 0 1 120 2206 1 +0 25 0.875 1.04 1 1 0 0 160 5860 1 +1 20.17 9.25 1.665 1 0 3 0 40 28 1 +1 25.75 0.5 1.46 1 0 5 0 312 0 1 +1 20.42 7 1.625 1 0 3 1 200 1391 1 +1 39 5 3.5 1 0 10 0 0 0 1 +0 64.08 0.165 0 1 0 1 1 232 100 1 +1 28.25 5.125 4.75 1 0 2 1 420 7 1 +0 28.75 3.75 1.085 1 0 1 0 371 0 1 +1 31.33 19.5 7 1 0 16 1 0 5000 1 +0 18.92 9 0.75 1 0 2 1 88 591 1 +0 24.75 3 1.835 1 0 19 1 0 500 1 +0 30.67 12 2 1 0 1 1 220 19 1 +1 21 4.79 2.25 1 0 1 0 80 300 1 +1 13.75 4 1.75 1 0 2 0 120 1000 1 +0 46 4 0 1 1 0 1 100 960 1 +0 44.33 0 2.5 1 1 0 1 0 0 1 +1 20.25 9.96 0 1 1 0 1 0 0 1 +1 22.67 2.54 2.585 1 1 0 1 0 0 1 +0 60.92 5 4 1 0 4 1 0 99 1 +1 16.08 0.75 1.75 1 0 5 0 352 690 1 +0 28.17 0.375 0.585 1 0 4 1 80 0 1 +1 39.17 1.71 0.125 1 0 5 0 480 0 1 +0 30 5.29 2.25 1 0 5 0 99 500 1 +1 22.83 3 1.29 1 0 1 1 260 800 1 +0 22.5 8.5 1.75 1 0 10 1 80 990 0 +0 28.58 1.665 2.415 1 1 0 0 440 0 0 +1 45.17 1.5 2.5 1 1 0 0 140 0 0 +1 41.58 1.75 0.21 1 1 0 1 160 0 0 +0 57.08 0.335 1 1 1 0 0 252 2197 0 +0 55.75 7.08 6.75 1 0 3 0 100 50 0 +1 43.25 25.21 0.21 1 0 1 1 760 90 0 +0 25.33 2.085 2.75 1 1 0 0 360 1 0 +0 24.58 0.67 1.75 1 1 0 1 400 0 0 +1 43.17 2.25 0.75 1 1 0 1 560 0 0 +1 40.92 0.835 0 1 1 0 1 130 1 0 +1 31.83 2.5 7.5 1 1 0 0 523 0 0 +0 33.92 1.585 0 1 1 0 1 320 0 0 +0 24.92 1.25 0 1 1 0 1 80 0 0 +1 35.25 3.165 3.75 1 1 0 0 680 0 0 +1 34.25 1.75 0.25 1 1 0 0 163 0 0 +1 80.25 5.5 0.54 1 1 0 1 0 340 0 +1 19.42 1.5 2 1 1 0 0 100 20 0 +1 42.75 3 1 1 1 0 1 0 200 0 +1 19.67 10 0.835 1 1 0 0 140 0 0 +1 36.33 3.79 1.165 1 1 0 0 200 0 0 +1 30.08 1.04 0.5 1 0 10 0 132 28 0 +1 44.25 11 1.5 1 1 0 1 0 0 0 +1 23.58 0.46 2.625 1 0 6 0 208 347 0 +1 23.92 1.5 1.875 1 0 6 1 200 327 1 +1 33.17 1 0.75 1 0 7 0 340 4071 1 +1 48.33 12 16 1 1 0 1 110 0 1 +1 76.75 22.29 12.75 1 0 1 0 0 109 1 +1 51.33 10 0 1 0 11 1 0 1249 1 +1 34.75 15 5.375 1 0 9 0 0 134 1 +1 38.58 3.335 4 1 0 14 1 383 1344 1 +0 22.42 11.25 0.75 1 0 4 1 0 321 1 +1 41.92 0.42 0.21 1 0 6 1 220 948 1 +1 29.58 4.5 7.5 1 0 2 0 330 0 1 +0 32.17 1.46 1.085 1 0 16 1 120 2079 1 +1 51.42 0.04 0.04 1 1 0 1 0 3000 1 +0 22.83 2.29 2.29 1 0 7 0 140 2384 1 +0 25 12.33 3.5 1 0 6 1 400 458 1 +1 26.75 1.125 1.25 1 1 0 1 0 5298 1 +1 23.33 1.5 1.415 1 1 0 1 422 200 1 +1 24.42 12.335 1.585 1 1 0 0 120 0 1 +1 42.17 5.04 12.75 1 1 0 0 92 0 1 +0 20.83 3 0.04 1 1 0 1 100 0 1 +1 23.08 11.5 2.125 1 0 11 0 290 284 1 +0 25.17 2.875 0.875 1 1 0 1 360 0 1 +1 43.08 0.375 0.375 1 0 8 0 300 162 1 +0 35.75 0.915 0.75 1 0 4 1 0 1583 1 +1 59.5 2.75 1.75 1 0 5 0 60 58 1 +1 21 3 1.085 1 0 8 0 160 1 1 +1 21.92 0.54 0.04 1 0 1 0 840 59 1 +0 65.17 14 0 1 0 11 0 0 1400 1 +0 20.33 10 1 1 0 4 1 50 1465 1 +1 32.25 0.165 3.25 1 0 1 0 432 8000 1 +1 30.17 0.5 1.75 1 0 11 1 32 540 1 +1 25.17 6 1 1 0 3 1 0 0 1 +1 39.17 1.625 1.5 1 0 10 1 186 4700 1 +1 39.08 6 1.29 1 0 5 0 108 1097 1 +1 31.67 0.83 1.335 1 0 8 0 303 3290 1 +1 41 0.04 0.04 0 0 1 1 560 0 1 +1 48.5 4.25 0.125 1 1 0 0 225 0 1 +1 32.67 9 5.25 1 1 0 0 154 0 1 +0 28.08 15 0 1 1 0 1 0 13212 1 +1 73.42 17.75 0 1 1 0 0 0 0 1 +1 64.08 20 17.5 1 0 9 0 0 1000 1 +1 51.58 15 8.5 1 0 9 1 0 0 1 +1 26.67 1.75 1 1 0 5 0 160 5777 1 +1 25.33 0.58 0.29 1 0 7 0 96 5124 1 +1 30.17 6.5 3.125 1 0 8 1 330 1200 1 +1 27 0.75 4.25 1 0 3 0 312 150 1 +1 34.17 5.25 0.085 0 1 0 0 290 6 1 +1 38.67 0.21 0.085 1 1 0 0 280 0 1 +1 25.75 0.75 0.25 1 1 0 1 349 23 1 +0 46.08 3 2.375 1 0 8 0 396 4159 1 +0 21.5 6 2.5 1 0 3 1 80 918 1 +1 20.5 2.415 2 1 0 11 0 200 3000 1 +0 29.5 0.46 0.54 1 0 4 1 380 500 1 +1 29.83 1.25 0.25 0 1 0 1 224 0 0 +1 20.08 0.25 0.125 0 1 0 1 200 0 0 +1 23.42 0.585 0.085 1 1 0 1 180 0 0 +0 29.58 1.75 1.25 0 1 0 0 280 0 0 +1 16.17 0.04 0.04 0 1 0 1 0 0 1 +1 32.33 3.5 0.5 0 1 0 0 232 0 0 +1 47.83 4.165 0.085 0 1 0 0 520 0 0 +1 20 1.25 0.125 0 1 0 1 140 4 0 +1 27.58 3.25 5.085 0 0 2 0 369 1 0 +1 22 0.79 0.29 0 0 1 1 420 283 0 +1 19.33 10.915 0.585 0 0 2 0 200 7 0 +0 38.33 4.415 0.125 0 1 0 1 160 0 0 +1 29.42 1.25 0.25 0 0 2 0 400 108 0 +1 22.67 0.75 1.585 0 0 1 0 400 9 0 +1 32.25 14 0 0 0 2 1 160 1 0 +1 29.58 4.75 2 0 0 1 0 460 68 0 +1 18.42 10.415 0.125 1 1 0 1 120 375 0 +1 22.17 2.25 0.125 0 1 0 1 160 10 0 +1 22.67 0.165 2.25 0 1 0 0 0 0 1 +1 18.83 0 0.665 0 1 0 1 160 1 0 +1 21.58 0.79 0.665 0 1 0 1 160 0 0 +1 23.75 12 2.085 0 1 0 1 80 0 0 +1 36.08 2.54 0 0 1 0 1 0 1000 0 +1 29.25 13 0.5 0 1 0 1 228 0 0 +0 19.58 0.665 1.665 0 1 0 1 220 5 0 +0 22.92 1.25 0.25 0 1 0 0 120 809 0 +0 27.25 0.29 0.125 0 0 1 0 272 108 0 +0 38.75 1.5 0 0 1 0 1 76 0 0 +1 32.42 2.165 0 0 1 0 1 120 0 0 +0 23.75 0.71 0.25 0 0 1 0 240 4 0 +1 18.17 2.46 0.96 0 0 2 0 160 587 0 +1 40.92 0.5 0.5 0 1 0 0 130 0 0 +1 19.5 9.585 0.79 0 1 0 1 80 350 0 +1 28.58 3.625 0.25 0 1 0 0 100 0 0 +1 35.58 0.75 1.5 0 1 0 0 231 0 0 +1 34.17 2.75 2.5 0 1 0 0 232 200 0 +1 31.58 0.75 3.5 0 1 0 0 320 0 0 +0 52.5 7 3 0 1 0 1 0 0 0 +1 36.17 0.42 0.29 0 1 0 0 309 2 0 +1 37.33 2.665 0.165 0 1 0 0 0 501 0 +0 20.83 8.5 0.165 0 1 0 1 0 351 0 +1 24.08 9 0.25 0 1 0 0 0 0 0 +1 25.58 0.335 3.5 0 1 0 0 340 0 0 +0 35.17 3.75 0 0 0 6 1 0 200 0 +1 48.08 3.75 1 0 1 0 1 100 2 0 +0 15.83 7.625 0.125 0 0 1 0 0 160 0 +0 22.5 0.415 0.335 0 1 0 0 144 0 0 +1 21.5 11.5 0.5 1 1 0 0 100 68 0 +0 23.58 0.83 0.415 0 0 1 0 200 11 0 +0 21.08 5 0 0 1 0 1 0 0 0 +1 25.67 3.25 2.29 0 0 1 0 416 21 0 +0 38.92 1.665 0.25 0 1 0 1 0 390 0 +0 15.75 0.375 1 0 1 0 1 120 18 0 +0 28.58 3.75 0.25 0 0 1 0 40 154 0 +1 22.25 9 0.085 0 1 0 1 0 0 0 +1 29.83 3.5 0.165 0 1 0 1 216 0 0 +0 23.5 1.5 0.875 0 1 0 0 160 0 0 +1 32.08 4 1.5 0 1 0 0 120 0 0 +1 31.08 1.5 0.04 0 1 0 1 160 0 0 +1 31.83 0.04 0.04 0 1 0 1 0 0 0 +0 21.75 11.75 0.25 0 1 0 0 180 0 0 +0 17.92 0.54 1.75 0 0 1 0 80 5 0 +1 30.33 0.5 0.085 0 1 0 0 252 0 0 +1 51.83 2.04 1.5 0 1 0 1 120 1 0 +1 47.17 5.835 5.5 0 1 0 1 465 150 0 +1 25.83 12.835 0.5 0 1 0 1 0 2 0 +0 50.25 0.835 0.5 0 1 0 0 240 117 0 +0 37.33 2.5 0.21 0 1 0 1 260 246 0 +0 41.58 1.04 0.665 0 1 0 1 240 237 0 +0 30.58 10.665 0.085 0 0 12 0 129 3 0 +1 19.42 7.25 0.04 0 0 1 1 100 1 0 +0 17.92 10.21 0 0 1 0 1 0 50 0 +0 20.08 1.25 0 0 1 0 1 0 0 0 +1 19.5 0.29 0.29 0 1 0 1 280 364 0 +1 27.83 1 3 0 1 0 1 176 537 0 +1 17.08 3.29 0.335 0 1 0 0 140 2 0 +1 36.42 0.75 0.585 0 1 0 1 240 3 0 +1 40.58 3.29 3.5 0 1 0 0 400 0 0 +1 21.08 10.085 1.25 0 1 0 1 260 0 0 +0 22.67 0.75 2 0 0 2 0 200 394 0 +0 25.25 13.5 2 0 0 1 0 200 1 0 +1 17.92 0.205 0.04 0 1 0 1 280 750 0 +1 35 3.375 8.29 0 1 0 0 0 0 0 diff --git a/Homework 1/2.2credit_card_dataSummer2018.txt b/Homework 1/2.2credit_card_dataSummer2018.txt new file mode 100644 index 0000000..9a8b0c9 --- /dev/null +++ b/Homework 1/2.2credit_card_dataSummer2018.txt @@ -0,0 +1,654 @@ +1 30.83 0 1.25 1 0 1 1 202 0 1 +0 58.67 4.46 3.04 1 0 6 1 43 560 1 +0 24.5 0.5 1.5 1 1 0 1 280 824 1 +1 27.83 1.54 3.75 1 0 5 0 100 3 1 +1 20.17 5.625 1.71 1 1 0 1 120 0 1 +1 32.08 4 2.5 1 1 0 0 360 0 1 +1 33.17 1.04 6.5 1 1 0 0 164 31285 1 +0 22.92 11.585 0.04 1 1 0 1 80 1349 1 +1 54.42 0.5 3.96 1 1 0 1 180 314 1 +1 42.5 4.915 3.165 1 1 0 0 52 1442 1 +1 22.08 0.83 2.165 0 1 0 0 128 0 1 +1 29.92 1.835 4.335 1 1 0 1 260 200 1 +0 38.25 6 1 1 1 0 0 0 0 1 +1 48.08 6.04 0.04 0 1 0 1 0 2690 1 +0 45.83 10.5 5 1 0 7 0 0 0 1 +1 36.67 4.415 0.25 1 0 10 0 320 0 1 +1 28.25 0.875 0.96 1 0 3 0 396 0 1 +0 23.25 5.875 3.17 1 0 10 1 120 245 1 +1 21.83 0.25 0.665 1 1 0 0 0 0 1 +0 19.17 8.585 0.75 1 0 7 1 96 0 1 +1 25 11.25 2.5 1 0 17 1 200 1208 1 +1 23.25 1 0.835 1 1 0 1 300 0 1 +0 47.75 8 7.875 1 0 6 0 0 1260 1 +0 27.42 14.5 3.085 1 0 1 1 120 11 1 +0 41.17 6.5 0.5 1 0 3 0 145 0 1 +0 15.83 0.585 1.5 1 0 2 1 100 0 1 +0 47 13 5.165 1 0 9 0 0 0 1 +1 56.58 18.5 15 1 0 17 0 0 0 1 +1 57.42 8.5 7 1 0 3 1 0 0 1 +1 42.08 1.04 5 1 0 6 0 500 10000 1 +1 29.25 14.79 5.04 1 0 5 0 168 0 1 +1 42 9.79 7.96 1 0 8 1 0 0 1 +1 49.5 7.585 7.585 1 0 15 0 0 5000 1 +0 36.75 5.125 5 1 1 0 0 0 4000 1 +0 22.58 10.75 0.415 1 0 5 0 0 560 1 +1 27.83 1.5 2 1 0 11 0 434 35 1 +1 27.25 1.585 1.835 1 0 12 0 583 713 1 +0 23 11.75 0.5 1 0 2 0 300 551 1 +1 27.75 0.585 0.25 1 0 2 1 260 500 1 +1 54.58 9.415 14.415 1 0 11 0 30 300 1 +1 34.17 9.17 4.5 1 0 12 0 0 221 1 +1 28.92 15 5.335 1 0 11 1 0 2283 1 +1 29.67 1.415 0.75 1 0 1 1 240 100 1 +1 39.58 13.915 8.625 1 0 6 0 70 0 1 +1 56.42 28 28.5 1 0 40 1 0 15 1 +1 54.33 6.75 2.625 1 0 11 0 0 284 1 +0 41 2.04 0.125 1 0 23 0 455 1236 1 +1 31.92 4.46 6.04 1 0 3 1 311 300 1 +1 41.5 1.54 3.5 0 1 0 1 216 0 1 +1 23.92 0.665 0.165 0 1 0 1 100 0 1 +0 25.75 0.5 0.875 1 1 0 0 491 0 1 +1 26 1 1.75 1 1 0 0 280 0 1 +1 37.42 2.04 0.04 1 1 0 0 400 5800 1 +1 34.92 2.5 0 1 1 0 0 239 200 1 +1 34.25 3 7.415 1 1 0 0 0 0 1 +1 23.33 11.625 0.835 1 1 0 0 160 300 1 +1 23.17 0 0.085 1 1 0 1 0 0 1 +1 44.33 0.5 5 1 1 0 0 320 0 1 +1 35.17 4.5 5.75 0 1 0 0 711 0 1 +1 43.25 3 6 1 0 11 1 80 0 1 +1 56.75 12.25 1.25 1 0 4 0 200 0 1 +1 31.67 16.165 3 1 0 9 1 250 730 1 +0 23.42 0.79 1.5 1 0 2 0 80 400 1 +0 20.42 0.835 1.585 1 0 1 1 0 0 1 +1 26.67 4.25 4.29 1 0 1 0 120 0 1 +1 34.17 1.54 1.54 1 0 1 0 520 50000 1 +0 36 1 2 1 0 11 1 0 456 1 +1 25.5 0.375 0.25 1 0 3 1 260 15108 1 +1 19.42 6.5 1.46 1 0 7 1 80 2954 1 +1 35.17 25.125 1.625 1 0 1 0 515 500 1 +1 32.33 7.5 1.585 1 1 0 0 420 0 0 +0 38.58 5 13.5 1 1 0 0 980 0 0 +1 44.25 0.5 10.75 1 1 0 1 400 0 0 +1 44.83 7 1.625 0 1 0 1 160 2 0 +1 20.67 5.29 0.375 1 0 1 1 160 0 0 +1 34.08 6.5 0.125 1 1 0 0 443 0 0 +0 19.17 0.585 0.585 1 1 0 0 160 0 0 +1 21.67 1.165 2.5 1 0 1 1 180 20 0 +1 21.5 9.75 0.25 1 1 0 1 140 0 0 +1 49.58 19 0 1 0 1 1 94 0 0 +0 27.67 1.5 2 1 1 0 1 368 0 0 +1 39.83 0.5 0.25 1 1 0 1 288 0 0 +1 27.25 0.625 0.455 1 1 0 0 200 0 0 +1 37.17 4 5 1 1 0 0 280 0 0 +1 25.67 2.21 4 1 1 0 1 188 0 0 +1 34 4.5 1 1 1 0 0 240 0 0 +0 49 1.5 0 1 1 0 0 100 27 0 +1 62.5 12.75 5 1 1 0 1 112 0 0 +1 31.42 15.5 0.5 1 1 0 1 120 0 0 +1 52.33 1.375 9.46 1 1 0 0 200 100 0 +1 28.75 1.5 1.5 1 1 0 0 0 225 0 +0 28.58 3.54 0.5 1 1 0 0 171 0 0 +1 23 0.625 0.125 1 1 0 1 180 1 0 +0 22.5 11 3 1 1 0 0 268 0 0 +0 28.5 1 1 1 0 2 0 167 500 0 +1 37.5 1.75 0.25 1 1 0 0 164 400 0 +1 35.25 16.5 4 1 1 0 1 80 0 0 +1 18.67 5 0.375 1 0 2 1 0 38 0 +1 25 12 2.25 1 0 2 0 120 5 0 +1 27.83 4 5.75 1 0 2 0 75 0 0 +1 54.83 15.5 0 1 0 20 1 152 130 0 +1 28.75 1.165 0.5 1 1 0 1 280 0 0 +0 25 11 4.5 1 1 0 1 120 0 0 +1 40.92 2.25 10 1 1 0 0 176 0 0 +0 19.75 0.75 0.795 1 0 5 0 140 5 0 +1 29.17 3.5 3.5 1 0 3 0 329 0 0 +0 24.5 1.04 0.5 1 0 3 1 180 147 0 +1 24.58 12.5 0.875 1 1 0 0 260 0 0 +0 33.75 0.75 1 1 0 3 0 212 0 0 +1 20.67 1.25 1.375 1 0 3 0 140 210 0 +0 25.42 1.125 1.29 1 0 2 1 200 0 0 +1 37.75 7 11.5 1 0 7 0 300 5 0 +1 52.5 6.5 6.29 1 0 15 1 0 11202 1 +1 57.83 7.04 14 1 0 6 0 360 1332 1 +0 20.75 10.335 0.335 1 0 1 0 80 50 1 +1 39.92 6.21 0.04 1 0 1 1 200 300 1 +1 25.67 12.5 1.21 1 0 67 0 140 258 1 +0 24.75 12.5 1.5 1 0 12 0 120 567 1 +0 44.17 6.665 7.375 1 0 3 0 0 0 1 +0 23.5 9 8.5 1 0 5 0 120 0 1 +1 34.92 5 7.5 1 0 6 0 0 1000 1 +1 47.67 2.5 2.5 1 0 12 0 410 2510 1 +1 22.75 11 2.5 1 0 7 0 100 809 1 +1 34.42 4.25 3.25 1 0 2 1 274 610 1 +0 28.42 3.5 0.835 1 1 0 1 280 0 1 +1 67.75 5.5 13 1 0 1 0 0 0 1 +1 20.42 1.835 2.25 1 0 1 1 100 150 1 +0 47.42 8 6.5 1 0 6 1 375 51100 1 +1 36.25 5 2.5 1 0 6 1 0 367 1 +1 32.67 5.5 5.5 1 0 12 0 408 1000 1 +1 48.58 6.5 6 1 1 0 0 350 0 1 +1 39.92 0.54 0.5 1 0 3 1 200 1000 1 +1 33.58 2.75 4.25 1 0 6 1 204 0 1 +0 18.83 9.5 1.625 1 0 6 0 40 600 1 +0 26.92 13.5 5 1 0 2 1 0 5000 1 +0 31.25 3.75 0.625 1 0 9 0 181 0 1 +0 56.5 16 0 1 0 15 1 0 247 1 +1 43 0.29 1.75 1 0 8 1 100 375 1 +1 22.33 11 2 1 0 1 1 80 278 1 +1 27.25 1.665 5.085 1 0 9 1 399 827 1 +1 32.83 2.5 2.75 1 0 6 1 160 2072 1 +1 23.25 1.5 2.375 1 0 3 0 0 582 1 +0 40.33 7.54 8 1 0 14 1 0 2300 1 +0 30.5 6.5 4 1 0 7 0 0 3065 1 +0 52.83 15 5.5 1 0 14 1 0 2200 1 +0 46.67 0.46 0.415 1 0 11 0 440 6 1 +0 58.33 10 4 1 0 14 1 0 1602 1 +1 37.33 6.5 4.25 1 0 12 0 93 0 1 +1 23.08 2.5 1.085 1 0 11 0 60 2184 1 +1 32.75 1.5 5.5 1 0 3 0 0 0 1 +0 21.67 11.5 0 1 0 11 0 0 0 1 +0 28.5 3.04 2.54 1 0 1 1 70 0 1 +0 68.67 15 0 1 0 14 1 0 3376 1 +1 28 2 4.165 1 0 2 0 181 0 1 +1 34.08 0.08 0.04 1 0 1 0 280 2000 1 +1 27.67 2 1 1 0 4 1 140 7544 1 +1 44 2 1.75 1 0 2 0 0 15 1 +1 25.08 1.71 1.665 1 0 1 0 395 20 1 +1 32 1.75 0.04 1 1 0 0 393 0 1 +0 60.58 16.5 11 1 1 0 0 21 10561 1 +0 40.83 10 1.75 1 1 0 1 29 837 1 +1 19.33 9.5 1 1 1 0 0 60 400 1 +0 32.33 0.54 0.04 1 1 0 1 440 11177 1 +1 36.67 3.25 9 1 1 0 0 102 639 1 +1 37.5 1.125 1.5 0 1 0 0 431 0 1 +0 25.08 2.54 0.25 1 1 0 0 370 0 1 +1 41.33 0 15 1 1 0 1 0 0 1 +1 56 12.5 8 1 1 0 0 24 2028 1 +0 49.83 13.585 8.5 1 1 0 0 0 0 1 +1 22.67 10.5 1.335 1 1 0 1 100 0 1 +1 27 1.5 0.375 1 1 0 0 260 1065 1 +1 25 12.5 3 1 1 0 0 20 0 1 +0 26.08 8.665 1.415 1 1 0 1 160 150 1 +0 18.42 9.25 1.21 1 0 4 1 60 540 1 +1 20.17 8.17 1.96 1 0 14 1 60 158 1 +1 47.67 0.29 15 1 0 20 1 0 15000 1 +0 21.25 2.335 0.5 1 0 4 1 80 0 1 +0 20.67 3 0.165 1 0 3 1 100 6 1 +0 57.08 19.5 5.5 1 0 7 1 0 3000 1 +0 22.42 5.665 2.585 1 0 7 1 129 3257 1 +1 48.75 8.5 12.5 1 0 9 1 181 1655 1 +1 40 6.5 3.5 1 0 1 1 0 500 1 +1 40.58 5 5 1 0 7 1 0 3065 1 +0 28.67 1.04 2.5 1 0 5 0 300 1430 1 +0 33.08 4.625 1.625 1 0 2 1 0 0 1 +1 21.33 10.5 3 1 1 0 0 0 0 1 +1 42 0.205 5.125 1 1 0 1 400 0 1 +1 41.75 0.96 2.5 1 1 0 1 510 600 1 +1 22.67 1.585 3.085 1 0 6 1 80 0 1 +1 34.5 4.04 8.5 1 0 7 0 195 0 1 +1 28.25 5.04 1.5 1 0 8 0 144 7 1 +1 33.17 3.165 3.165 1 0 3 0 380 0 1 +1 48.17 7.625 15.5 1 0 12 1 0 790 1 +1 27.58 2.04 2 1 0 3 0 370 560 1 +1 22.58 10.04 0.04 1 0 9 1 60 396 1 +0 24.08 0.5 1.25 1 0 1 1 0 678 1 +0 41.33 1 2.25 1 1 0 0 0 300 1 +0 20.75 10.25 0.71 1 0 2 0 49 0 1 +1 36.33 2.125 0.085 1 0 1 1 50 1187 1 +0 35.42 12 14 1 0 8 1 0 6590 1 +1 28.67 9.335 5.665 1 0 6 1 381 168 1 +1 35.17 2.5 4.5 1 0 7 1 150 1270 1 +1 39.5 4.25 6.5 1 0 16 1 117 1210 1 +1 39.33 5.875 10 1 0 14 0 399 0 1 +1 24.33 6.625 5.5 1 1 0 0 100 0 1 +1 60.08 14.5 18 1 0 15 0 0 1000 1 +1 23.08 11.5 3.5 1 0 9 1 56 742 1 +1 26.67 2.71 5.25 1 0 1 1 211 0 1 +1 48.17 3.5 3.5 1 1 0 1 230 0 1 +1 41.17 4.04 7 1 0 8 1 320 0 1 +1 55.92 11.5 5 1 0 5 1 0 8851 1 +1 53.92 9.625 8.665 1 0 5 1 0 0 1 +0 18.92 9.25 1 1 0 4 0 80 500 1 +0 50.08 12.54 2.29 1 0 3 0 156 0 1 +1 65.42 11 20 1 0 7 0 22 0 1 +0 17.58 9 1.375 1 1 0 0 0 0 1 +0 18.83 9.54 0.085 1 1 0 1 100 0 1 +0 37.75 5.5 0.125 1 1 0 0 228 0 1 +1 23.25 4 0.25 1 1 0 0 160 0 1 +1 18.08 5.5 0.5 1 1 0 1 80 0 1 +0 22.5 8.46 2.46 0 1 0 1 164 0 1 +1 19.67 0.375 2 1 0 2 0 80 0 1 +1 22.08 11 0.665 1 1 0 1 100 0 1 +1 25.17 3.5 0.625 1 0 7 1 0 7059 1 +0 47.42 3 13.875 1 0 2 0 519 1704 1 +1 33.5 1.75 4.5 1 0 4 0 253 857 1 +1 27.67 13.75 5.75 1 1 0 0 487 500 1 +0 58.42 21 10 1 0 13 1 0 6700 1 +0 20.67 1.835 2.085 1 0 5 1 220 2503 1 +1 26.17 0.25 0 1 1 0 0 0 0 1 +1 21.33 7.5 1.415 1 0 1 1 80 9800 1 +1 42.83 4.625 4.58 1 1 0 1 0 0 1 +1 38.17 10.125 2.5 1 0 6 1 520 196 1 +1 20.5 10 2.5 1 1 0 1 40 0 1 +1 48.25 25.085 1.75 1 0 3 1 120 14 1 +1 28.33 5 11 1 1 0 0 70 0 1 +1 18.5 2 1.5 1 0 2 1 120 300 1 +1 33.17 3.04 2.04 1 0 1 0 180 18027 1 +1 45 8.5 14 1 0 1 0 88 2000 1 +0 19.67 0.21 0.29 1 0 11 1 80 99 1 +1 21.83 11 0.29 1 0 6 1 121 0 1 +1 40.25 21.5 20 1 0 11 1 0 1200 1 +1 41.42 5 5 1 0 6 0 470 0 1 +0 17.83 11 1 1 0 11 1 0 3000 1 +1 23.17 11.125 0.46 1 0 1 1 100 0 1 +1 18.17 10.25 1.085 0 1 0 1 320 13 0 +1 20 11.045 2 0 1 0 0 136 0 0 +1 20 0 0.5 0 1 0 1 144 0 0 +0 20.75 9.54 0.04 0 1 0 1 200 1000 0 +0 24.5 1.75 0.165 0 1 0 1 132 0 0 +1 32.75 2.335 5.75 0 1 0 0 292 0 0 +0 52.17 0 0 0 1 0 1 0 0 0 +0 48.17 1.335 0.335 0 1 0 1 0 120 0 +0 20.42 10.5 0 0 1 0 0 154 32 0 +1 50.75 0.585 0 0 1 0 1 145 0 0 +1 17.08 0.085 0.04 0 1 0 1 140 722 0 +1 18.33 1.21 0 0 1 0 1 100 0 0 +0 32 6 1.25 0 1 0 1 272 0 0 +1 59.67 1.54 0.125 1 1 0 0 260 0 1 +1 18 0.165 0.21 0 1 0 1 200 40 1 +1 32.33 2.5 1.25 0 1 0 0 280 0 0 +1 18.08 6.75 0.04 0 1 0 1 140 0 0 +1 38.25 10.125 0.125 0 1 0 1 160 0 0 +1 30.67 2.5 2.25 0 1 0 0 340 0 0 +1 18.58 5.71 0.54 0 1 0 1 120 0 0 +0 19.17 5.415 0.29 0 1 0 1 80 484 0 +0 18.17 10 0.165 0 1 0 1 340 0 0 +1 16.25 0.835 0.085 1 1 0 1 200 0 0 +1 21.17 0.875 0.25 0 1 0 1 280 204 0 +1 23.92 0.585 0.125 0 1 0 1 240 1 0 +1 17.67 4.46 0.25 0 1 0 1 80 0 0 +0 16.5 1.25 0.25 0 0 1 1 108 98 0 +1 23.25 12.625 0.125 0 0 2 1 0 5552 0 +1 17.58 10 0.165 0 0 1 1 120 1 0 +1 29.5 0.58 0.29 0 0 1 1 340 2803 0 +1 18.83 0.415 0.165 0 0 1 1 200 1 0 +0 21.75 1.75 0 0 1 0 1 160 0 0 +1 23 0.75 0.5 0 1 0 0 320 0 0 +0 18.25 10 1 0 0 1 1 120 1 0 +1 25.42 0.54 0.165 0 0 1 1 272 444 0 +1 35.75 2.415 0.125 0 0 2 1 220 1 0 +0 16.08 0.335 0 0 0 1 1 160 126 0 +0 31.92 3.125 3.04 0 0 2 0 200 4 0 +1 69.17 9 4 0 0 1 1 70 6 0 +1 32.92 2.5 1.75 0 0 2 0 720 0 0 +1 16.33 2.75 0.665 0 0 1 1 80 21 0 +1 22.17 12.125 3.335 0 0 2 0 180 173 0 +0 57.58 2 6.5 0 0 1 1 0 10 0 +1 18.25 0.165 0.25 0 1 0 0 280 0 0 +1 23.42 1 0.5 0 1 0 0 280 0 0 +0 15.92 2.875 0.085 0 1 0 1 120 0 0 +0 24.75 13.665 1.5 0 1 0 1 280 1 0 +1 48.75 26.335 0 1 1 0 0 0 0 0 +1 23.5 2.75 4.5 0 1 0 1 160 25 0 +1 18.58 10.29 0.415 0 1 0 1 80 0 0 +1 27.75 1.29 0.25 0 1 0 0 140 0 0 +0 31.75 3 0 0 1 0 1 160 20 0 +0 24.83 4.5 1 0 1 0 0 360 6 0 +1 19 1.75 2.335 0 1 0 0 112 6 0 +0 16.33 0.21 0.125 0 1 0 1 200 1 0 +0 18.58 10 0.415 0 1 0 1 80 42 0 +1 16.25 0 0.25 0 1 0 1 60 0 0 +1 23 0.75 0.5 1 1 0 0 320 0 0 +1 21.17 0.25 0.25 0 1 0 1 280 204 0 +1 17.5 22 0 0 1 0 0 450 100000 1 +1 19.17 0 0 0 1 0 0 500 1 1 +1 36.75 0.125 1.5 0 1 0 0 232 113 1 +1 21.25 1.5 1.5 0 1 0 1 150 8 1 +0 18.08 0.375 10 0 1 0 0 300 0 1 +0 33.67 0.375 0.375 0 1 0 1 300 44 1 +1 48.58 0.205 0.25 1 0 11 1 380 2732 1 +1 33.67 1.25 1.165 0 1 0 1 120 0 0 +0 29.5 1.085 1 0 1 0 1 280 13 0 +1 30.17 1.085 0.04 0 1 0 1 170 179 0 +1 34.83 2.5 3 0 1 0 1 200 0 0 +0 33.25 2.5 2.5 0 1 0 0 0 2 0 +1 34.08 2.5 1 0 1 0 1 460 16 0 +0 25.25 12.5 1 0 1 0 0 180 1062 0 +1 34.75 2.5 0.5 0 1 0 1 348 0 0 +1 27.67 0.75 0.165 0 1 0 0 220 251 0 +1 47.33 6.5 1 0 1 0 0 0 228 0 +0 34.83 1.25 0.5 0 1 0 0 160 0 0 +0 33.25 3 2 0 1 0 1 180 0 0 +1 28 3 0.75 0 1 0 0 300 67 0 +0 39.08 4 3 0 1 0 1 480 0 0 +1 42.75 4.085 0.04 0 1 0 1 108 100 0 +1 26.92 2.25 0.5 0 1 0 0 640 4000 0 +1 33.75 2.75 0 0 1 0 1 180 0 0 +1 38.92 1.75 0.5 0 1 0 0 300 2 0 +1 62.75 7 0 0 1 0 1 0 12 0 +1 26.75 4.5 2.5 0 1 0 1 200 1210 0 +1 63.33 0.54 0.585 1 0 3 0 180 0 0 +1 27.83 1.5 2.25 0 0 1 0 100 3 0 +0 26.17 2 0 0 1 0 0 276 1 0 +1 22.17 0.585 0 0 1 0 1 100 0 0 +1 22.5 11.5 1.5 0 1 0 0 0 4000 0 +1 30.75 1.585 0.585 0 1 0 0 0 0 0 +1 36.67 2 0.25 0 1 0 0 221 0 0 +0 16 0.165 1 0 0 2 0 320 1 0 +1 41.17 1.335 0.165 0 1 0 1 168 0 0 +0 19.5 0.165 0.04 0 1 0 0 380 0 0 +1 32.42 3 0.165 0 1 0 0 120 0 0 +0 36.75 4.71 0 0 1 0 1 160 0 0 +0 30.25 5.5 5.5 0 1 0 0 100 0 0 +1 23.08 2.5 0.085 0 1 0 0 100 4208 0 +1 26.83 0.54 0 0 1 0 1 100 0 0 +1 16.92 0.335 0.29 0 1 0 1 200 0 0 +1 24.42 2 0.165 0 0 2 1 320 1300 0 +1 42.83 1.25 13.875 0 0 1 0 352 112 0 +0 22.75 6.165 0.165 0 1 0 1 220 1000 0 +1 39.42 1.71 0.165 0 1 0 1 400 0 0 +0 23.58 11.5 3 0 1 0 0 20 16 0 +1 21.42 0.75 0.75 0 1 0 0 132 2 0 +1 33 2.5 7 0 1 0 0 280 0 0 +1 26.33 13 0 0 1 0 0 140 1110 0 +0 45 4.585 1 0 1 0 0 240 0 0 +1 26.25 1.54 0.125 0 1 0 1 100 0 0 +0 20.83 0.5 1 0 1 0 1 260 0 0 +1 28.67 14.5 0.125 0 1 0 1 0 286 0 +1 20.67 0.835 2 0 1 0 0 240 0 0 +1 34.42 1.335 0.125 0 1 0 0 440 4500 0 +1 33.58 0.25 4 0 1 0 0 420 0 0 +1 43.17 5 2.25 0 1 0 0 141 0 0 +0 22.67 7 0.165 0 1 0 1 160 0 0 +0 24.33 2.5 4.5 0 1 0 1 200 456 0 +0 56.83 4.25 5 0 1 0 0 0 4 0 +1 22.08 11.46 1.585 0 1 0 0 100 1212 0 +1 34 5.5 1.5 0 1 0 0 60 0 0 +1 22.58 1.5 0.54 0 1 0 0 120 67 0 +1 21.17 0 0.5 0 1 0 0 0 0 0 +1 26.67 14.585 0 0 1 0 0 178 0 0 +1 22.92 0.17 0.085 0 1 0 1 0 0 0 +1 15.17 7 1 0 1 0 1 600 0 0 +1 39.92 5 0.21 0 1 0 1 550 0 0 +1 27.42 12.5 0.25 0 1 0 0 720 0 0 +1 24.75 0.54 1 0 1 0 0 120 1 0 +1 41.17 1.25 0.25 0 1 0 1 0 195 0 +0 33.08 1.625 0.54 0 1 0 0 0 0 0 +1 29.83 2.04 0.04 0 1 0 1 128 1 0 +0 23.58 0.585 0.125 0 1 0 1 120 87 0 +1 26.17 12.5 1.25 0 1 0 0 0 17 0 +1 31 2.085 0.085 0 1 0 1 300 0 0 +1 20.75 5.085 0.29 0 1 0 1 140 184 0 +1 28.92 0.375 0.29 0 1 0 1 220 140 0 +0 51.92 6.5 3.085 0 1 0 0 73 0 0 +0 22.67 0.335 0.75 0 1 0 1 160 0 0 +1 34 5.085 1.085 0 1 0 0 480 0 0 +0 69.5 6 0 0 1 0 1 0 0 0 +0 19.58 0.665 1 0 0 1 1 2000 2 0 +1 16 3.125 0.085 0 0 1 1 0 6 0 +1 17.08 0.25 0.335 0 0 4 1 160 8 0 +1 31.25 2.835 0 0 0 5 1 176 146 0 +1 25.17 3 1.25 0 0 1 1 0 22 0 +0 22.67 0.79 0.085 0 1 0 1 144 0 0 +1 40.58 1.5 0 0 1 0 1 300 0 0 +1 22.25 0.46 0.125 0 1 0 0 280 55 0 +0 22.25 1.25 3.25 0 1 0 1 280 0 0 +1 22.5 0.125 0.125 0 1 0 1 200 70 0 +1 23.58 1.79 0.54 0 1 0 0 136 1 0 +1 38.42 0.705 0.375 0 0 2 1 225 500 0 +0 26.58 2.54 0 0 1 0 0 180 60 0 +1 35 2.5 1 0 1 0 0 210 0 0 +1 20.42 1.085 1.5 0 1 0 1 108 7 0 +1 29.42 1.25 1.75 0 1 0 1 200 0 0 +1 26.17 0.835 1.165 0 1 0 1 100 0 0 +1 33.67 2.165 1.5 0 1 0 1 120 0 0 +1 24.58 1.25 0.25 0 1 0 1 110 0 0 +0 27.67 2.04 0.25 0 1 0 0 180 50 0 +1 37.5 0.835 0.04 0 1 0 1 120 5 0 +1 49.17 2.29 0.29 0 1 0 1 200 3 0 +1 33.58 0.335 0.085 0 1 0 1 180 0 0 +1 51.83 3 1.5 0 1 0 1 180 4 0 +1 22.92 3.165 0.165 0 1 0 1 160 1058 0 +1 21.83 1.54 0.085 0 1 0 0 356 0 0 +1 25.25 1 0.5 0 1 0 1 200 0 0 +1 58.58 2.71 2.415 0 1 0 0 320 0 0 +1 19 0 0 0 0 4 1 45 1 0 +1 19.58 0.585 0 0 0 3 1 350 769 0 +0 53.33 0.165 0 0 1 0 0 62 27 0 +0 27.17 1.25 0 0 0 1 1 92 300 0 +1 25.92 0.875 0.375 0 0 2 0 174 3 0 +1 23.08 0 1 0 0 11 1 0 0 0 +1 39.58 5 0 0 0 2 1 17 1 0 +1 30.58 2.71 0.125 0 1 0 0 80 0 0 +1 17.25 3 0.04 0 1 0 0 160 40 0 +0 17.67 0 0 0 1 0 1 86 0 0 +1 16.5 0.125 0.165 0 1 0 1 132 0 0 +0 27.33 1.665 0 0 1 0 1 340 1 0 +1 31.25 1.125 0 0 0 1 1 96 19 0 +1 20 7 0.5 0 1 0 1 0 0 0 +1 39.5 1.625 1.5 0 1 0 1 0 316 0 +1 36.5 4.25 3.5 0 1 0 1 454 50 0 +1 52.42 1.5 3.75 0 1 0 0 0 350 0 +1 36.17 18.125 0.085 0 1 0 1 320 3552 0 +1 29.67 0.75 0.04 0 1 0 1 240 0 0 +1 36.17 5.5 5 0 1 0 1 210 687 0 +1 25.67 0.29 1.5 0 1 0 0 160 0 0 +0 24.5 2.415 0 0 1 0 1 120 0 0 +1 24.08 0.875 0.085 0 0 4 1 254 1950 0 +1 21.92 0.5 0.125 0 1 0 1 360 0 0 +0 36.58 0.29 0 0 0 10 1 200 18 0 +0 23 1.835 0 0 0 1 1 200 53 0 +0 27.58 3 2.79 0 0 1 0 280 10 0 +1 31.08 3.085 2.5 0 0 2 0 160 41 0 +0 30.42 1.375 0.04 0 0 3 1 0 33 0 +1 22.08 2.335 0.75 0 1 0 1 180 0 0 +1 16.33 4.085 0.415 0 1 0 0 120 0 0 +0 21.92 11.665 0.085 0 1 0 1 320 5 0 +1 21.08 4.125 0.04 0 1 0 1 140 100 0 +1 17.42 6.5 0.125 0 1 0 1 60 100 0 +1 19.17 4 1 0 1 0 0 360 1000 0 +1 20.67 0.415 0.125 0 1 0 1 0 44 0 +1 26.75 2 0.75 0 1 0 0 80 0 0 +1 23.58 0.835 0.085 0 1 0 0 220 5 0 +1 39.17 2.5 10 0 1 0 0 200 0 0 +1 22.75 11.5 0.415 0 1 0 1 0 0 0 +0 16.92 0.5 0.165 0 0 6 0 240 35 0 +1 23.5 3.165 0.415 0 0 1 0 280 80 0 +0 17.33 9.5 1.75 0 0 10 0 0 10 0 +1 23.75 0.415 0.04 0 0 2 1 128 6 0 +1 34.67 1.08 1.165 0 1 0 1 28 0 0 +1 74.83 19 0.04 0 0 2 1 0 351 0 +1 28.17 0.125 0.085 0 1 0 1 216 2100 0 +1 24.5 13.335 0.04 0 1 0 0 120 475 0 +1 18.83 3.54 0 0 1 0 0 180 1 0 +0 47.25 0.75 2.75 1 0 1 1 333 892 1 +1 24.17 0.875 4.625 1 0 2 0 520 2000 1 +1 39.25 9.5 6.5 1 0 14 1 240 4607 1 +0 20.5 11.835 6 1 1 0 1 340 0 1 +0 18.83 4.415 3 1 1 0 1 240 0 1 +1 19.17 9.5 1.5 1 1 0 1 120 2206 1 +0 25 0.875 1.04 1 1 0 0 160 5860 1 +1 20.17 9.25 1.665 1 0 3 0 40 28 1 +1 25.75 0.5 1.46 1 0 5 0 312 0 1 +1 20.42 7 1.625 1 0 3 1 200 1391 1 +1 39 5 3.5 1 0 10 0 0 0 1 +0 64.08 0.165 0 1 0 1 1 232 100 1 +1 28.25 5.125 4.75 1 0 2 1 420 7 1 +0 28.75 3.75 1.085 1 0 1 0 371 0 1 +1 31.33 19.5 7 1 0 16 1 0 5000 1 +0 18.92 9 0.75 1 0 2 1 88 591 1 +0 24.75 3 1.835 1 0 19 1 0 500 1 +0 30.67 12 2 1 0 1 1 220 19 1 +1 21 4.79 2.25 1 0 1 0 80 300 1 +1 13.75 4 1.75 1 0 2 0 120 1000 1 +0 46 4 0 1 1 0 1 100 960 1 +0 44.33 0 2.5 1 1 0 1 0 0 1 +1 20.25 9.96 0 1 1 0 1 0 0 1 +1 22.67 2.54 2.585 1 1 0 1 0 0 1 +0 60.92 5 4 1 0 4 1 0 99 1 +1 16.08 0.75 1.75 1 0 5 0 352 690 1 +0 28.17 0.375 0.585 1 0 4 1 80 0 1 +1 39.17 1.71 0.125 1 0 5 0 480 0 1 +0 30 5.29 2.25 1 0 5 0 99 500 1 +1 22.83 3 1.29 1 0 1 1 260 800 1 +0 22.5 8.5 1.75 1 0 10 1 80 990 0 +0 28.58 1.665 2.415 1 1 0 0 440 0 0 +1 45.17 1.5 2.5 1 1 0 0 140 0 0 +1 41.58 1.75 0.21 1 1 0 1 160 0 0 +0 57.08 0.335 1 1 1 0 0 252 2197 0 +0 55.75 7.08 6.75 1 0 3 0 100 50 0 +1 43.25 25.21 0.21 1 0 1 1 760 90 0 +0 25.33 2.085 2.75 1 1 0 0 360 1 0 +0 24.58 0.67 1.75 1 1 0 1 400 0 0 +1 43.17 2.25 0.75 1 1 0 1 560 0 0 +1 40.92 0.835 0 1 1 0 1 130 1 0 +1 31.83 2.5 7.5 1 1 0 0 523 0 0 +0 33.92 1.585 0 1 1 0 1 320 0 0 +0 24.92 1.25 0 1 1 0 1 80 0 0 +1 35.25 3.165 3.75 1 1 0 0 680 0 0 +1 34.25 1.75 0.25 1 1 0 0 163 0 0 +1 80.25 5.5 0.54 1 1 0 1 0 340 0 +1 19.42 1.5 2 1 1 0 0 100 20 0 +1 42.75 3 1 1 1 0 1 0 200 0 +1 19.67 10 0.835 1 1 0 0 140 0 0 +1 36.33 3.79 1.165 1 1 0 0 200 0 0 +1 30.08 1.04 0.5 1 0 10 0 132 28 0 +1 44.25 11 1.5 1 1 0 1 0 0 0 +1 23.58 0.46 2.625 1 0 6 0 208 347 0 +1 23.92 1.5 1.875 1 0 6 1 200 327 1 +1 33.17 1 0.75 1 0 7 0 340 4071 1 +1 48.33 12 16 1 1 0 1 110 0 1 +1 76.75 22.29 12.75 1 0 1 0 0 109 1 +1 51.33 10 0 1 0 11 1 0 1249 1 +1 34.75 15 5.375 1 0 9 0 0 134 1 +1 38.58 3.335 4 1 0 14 1 383 1344 1 +0 22.42 11.25 0.75 1 0 4 1 0 321 1 +1 41.92 0.42 0.21 1 0 6 1 220 948 1 +1 29.58 4.5 7.5 1 0 2 0 330 0 1 +0 32.17 1.46 1.085 1 0 16 1 120 2079 1 +1 51.42 0.04 0.04 1 1 0 1 0 3000 1 +0 22.83 2.29 2.29 1 0 7 0 140 2384 1 +0 25 12.33 3.5 1 0 6 1 400 458 1 +1 26.75 1.125 1.25 1 1 0 1 0 5298 1 +1 23.33 1.5 1.415 1 1 0 1 422 200 1 +1 24.42 12.335 1.585 1 1 0 0 120 0 1 +1 42.17 5.04 12.75 1 1 0 0 92 0 1 +0 20.83 3 0.04 1 1 0 1 100 0 1 +1 23.08 11.5 2.125 1 0 11 0 290 284 1 +0 25.17 2.875 0.875 1 1 0 1 360 0 1 +1 43.08 0.375 0.375 1 0 8 0 300 162 1 +0 35.75 0.915 0.75 1 0 4 1 0 1583 1 +1 59.5 2.75 1.75 1 0 5 0 60 58 1 +1 21 3 1.085 1 0 8 0 160 1 1 +1 21.92 0.54 0.04 1 0 1 0 840 59 1 +0 65.17 14 0 1 0 11 0 0 1400 1 +0 20.33 10 1 1 0 4 1 50 1465 1 +1 32.25 0.165 3.25 1 0 1 0 432 8000 1 +1 30.17 0.5 1.75 1 0 11 1 32 540 1 +1 25.17 6 1 1 0 3 1 0 0 1 +1 39.17 1.625 1.5 1 0 10 1 186 4700 1 +1 39.08 6 1.29 1 0 5 0 108 1097 1 +1 31.67 0.83 1.335 1 0 8 0 303 3290 1 +1 41 0.04 0.04 0 0 1 1 560 0 1 +1 48.5 4.25 0.125 1 1 0 0 225 0 1 +1 32.67 9 5.25 1 1 0 0 154 0 1 +0 28.08 15 0 1 1 0 1 0 13212 1 +1 73.42 17.75 0 1 1 0 0 0 0 1 +1 64.08 20 17.5 1 0 9 0 0 1000 1 +1 51.58 15 8.5 1 0 9 1 0 0 1 +1 26.67 1.75 1 1 0 5 0 160 5777 1 +1 25.33 0.58 0.29 1 0 7 0 96 5124 1 +1 30.17 6.5 3.125 1 0 8 1 330 1200 1 +1 27 0.75 4.25 1 0 3 0 312 150 1 +1 34.17 5.25 0.085 0 1 0 0 290 6 1 +1 38.67 0.21 0.085 1 1 0 0 280 0 1 +1 25.75 0.75 0.25 1 1 0 1 349 23 1 +0 46.08 3 2.375 1 0 8 0 396 4159 1 +0 21.5 6 2.5 1 0 3 1 80 918 1 +1 20.5 2.415 2 1 0 11 0 200 3000 1 +0 29.5 0.46 0.54 1 0 4 1 380 500 1 +1 29.83 1.25 0.25 0 1 0 1 224 0 0 +1 20.08 0.25 0.125 0 1 0 1 200 0 0 +1 23.42 0.585 0.085 1 1 0 1 180 0 0 +0 29.58 1.75 1.25 0 1 0 0 280 0 0 +1 16.17 0.04 0.04 0 1 0 1 0 0 1 +1 32.33 3.5 0.5 0 1 0 0 232 0 0 +1 47.83 4.165 0.085 0 1 0 0 520 0 0 +1 20 1.25 0.125 0 1 0 1 140 4 0 +1 27.58 3.25 5.085 0 0 2 0 369 1 0 +1 22 0.79 0.29 0 0 1 1 420 283 0 +1 19.33 10.915 0.585 0 0 2 0 200 7 0 +0 38.33 4.415 0.125 0 1 0 1 160 0 0 +1 29.42 1.25 0.25 0 0 2 0 400 108 0 +1 22.67 0.75 1.585 0 0 1 0 400 9 0 +1 32.25 14 0 0 0 2 1 160 1 0 +1 29.58 4.75 2 0 0 1 0 460 68 0 +1 18.42 10.415 0.125 1 1 0 1 120 375 0 +1 22.17 2.25 0.125 0 1 0 1 160 10 0 +1 22.67 0.165 2.25 0 1 0 0 0 0 1 +1 18.83 0 0.665 0 1 0 1 160 1 0 +1 21.58 0.79 0.665 0 1 0 1 160 0 0 +1 23.75 12 2.085 0 1 0 1 80 0 0 +1 36.08 2.54 0 0 1 0 1 0 1000 0 +1 29.25 13 0.5 0 1 0 1 228 0 0 +0 19.58 0.665 1.665 0 1 0 1 220 5 0 +0 22.92 1.25 0.25 0 1 0 0 120 809 0 +0 27.25 0.29 0.125 0 0 1 0 272 108 0 +0 38.75 1.5 0 0 1 0 1 76 0 0 +1 32.42 2.165 0 0 1 0 1 120 0 0 +0 23.75 0.71 0.25 0 0 1 0 240 4 0 +1 18.17 2.46 0.96 0 0 2 0 160 587 0 +1 40.92 0.5 0.5 0 1 0 0 130 0 0 +1 19.5 9.585 0.79 0 1 0 1 80 350 0 +1 28.58 3.625 0.25 0 1 0 0 100 0 0 +1 35.58 0.75 1.5 0 1 0 0 231 0 0 +1 34.17 2.75 2.5 0 1 0 0 232 200 0 +1 31.58 0.75 3.5 0 1 0 0 320 0 0 +0 52.5 7 3 0 1 0 1 0 0 0 +1 36.17 0.42 0.29 0 1 0 0 309 2 0 +1 37.33 2.665 0.165 0 1 0 0 0 501 0 +0 20.83 8.5 0.165 0 1 0 1 0 351 0 +1 24.08 9 0.25 0 1 0 0 0 0 0 +1 25.58 0.335 3.5 0 1 0 0 340 0 0 +0 35.17 3.75 0 0 0 6 1 0 200 0 +1 48.08 3.75 1 0 1 0 1 100 2 0 +0 15.83 7.625 0.125 0 0 1 0 0 160 0 +0 22.5 0.415 0.335 0 1 0 0 144 0 0 +1 21.5 11.5 0.5 1 1 0 0 100 68 0 +0 23.58 0.83 0.415 0 0 1 0 200 11 0 +0 21.08 5 0 0 1 0 1 0 0 0 +1 25.67 3.25 2.29 0 0 1 0 416 21 0 +0 38.92 1.665 0.25 0 1 0 1 0 390 0 +0 15.75 0.375 1 0 1 0 1 120 18 0 +0 28.58 3.75 0.25 0 0 1 0 40 154 0 +1 22.25 9 0.085 0 1 0 1 0 0 0 +1 29.83 3.5 0.165 0 1 0 1 216 0 0 +0 23.5 1.5 0.875 0 1 0 0 160 0 0 +1 32.08 4 1.5 0 1 0 0 120 0 0 +1 31.08 1.5 0.04 0 1 0 1 160 0 0 +1 31.83 0.04 0.04 0 1 0 1 0 0 0 +0 21.75 11.75 0.25 0 1 0 0 180 0 0 +0 17.92 0.54 1.75 0 0 1 0 80 5 0 +1 30.33 0.5 0.085 0 1 0 0 252 0 0 +1 51.83 2.04 1.5 0 1 0 1 120 1 0 +1 47.17 5.835 5.5 0 1 0 1 465 150 0 +1 25.83 12.835 0.5 0 1 0 1 0 2 0 +0 50.25 0.835 0.5 0 1 0 0 240 117 0 +0 37.33 2.5 0.21 0 1 0 1 260 246 0 +0 41.58 1.04 0.665 0 1 0 1 240 237 0 +0 30.58 10.665 0.085 0 0 12 0 129 3 0 +1 19.42 7.25 0.04 0 0 1 1 100 1 0 +0 17.92 10.21 0 0 1 0 1 0 50 0 +0 20.08 1.25 0 0 1 0 1 0 0 0 +1 19.5 0.29 0.29 0 1 0 1 280 364 0 +1 27.83 1 3 0 1 0 1 176 537 0 +1 17.08 3.29 0.335 0 1 0 0 140 2 0 +1 36.42 0.75 0.585 0 1 0 1 240 3 0 +1 40.58 3.29 3.5 0 1 0 0 400 0 0 +1 21.08 10.085 1.25 0 1 0 1 260 0 0 +0 22.67 0.75 2 0 0 2 0 200 394 0 +0 25.25 13.5 2 0 0 1 0 200 1 0 +1 17.92 0.205 0.04 0 1 0 1 280 750 0 +1 35 3.375 8.29 0 1 0 0 0 0 0 diff --git a/Homework 1/3.1credit_card_data-headersSummer2018.txt b/Homework 1/3.1credit_card_data-headersSummer2018.txt new file mode 100644 index 0000000..453e4c7 --- /dev/null +++ b/Homework 1/3.1credit_card_data-headersSummer2018.txt @@ -0,0 +1,655 @@ +A1 A2 A3 A8 A9 A10 A11 A12 A14 A15 R1 +1 30.83 0 1.25 1 0 1 1 202 0 1 +0 58.67 4.46 3.04 1 0 6 1 43 560 1 +0 24.5 0.5 1.5 1 1 0 1 280 824 1 +1 27.83 1.54 3.75 1 0 5 0 100 3 1 +1 20.17 5.625 1.71 1 1 0 1 120 0 1 +1 32.08 4 2.5 1 1 0 0 360 0 1 +1 33.17 1.04 6.5 1 1 0 0 164 31285 1 +0 22.92 11.585 0.04 1 1 0 1 80 1349 1 +1 54.42 0.5 3.96 1 1 0 1 180 314 1 +1 42.5 4.915 3.165 1 1 0 0 52 1442 1 +1 22.08 0.83 2.165 0 1 0 0 128 0 1 +1 29.92 1.835 4.335 1 1 0 1 260 200 1 +0 38.25 6 1 1 1 0 0 0 0 1 +1 48.08 6.04 0.04 0 1 0 1 0 2690 1 +0 45.83 10.5 5 1 0 7 0 0 0 1 +1 36.67 4.415 0.25 1 0 10 0 320 0 1 +1 28.25 0.875 0.96 1 0 3 0 396 0 1 +0 23.25 5.875 3.17 1 0 10 1 120 245 1 +1 21.83 0.25 0.665 1 1 0 0 0 0 1 +0 19.17 8.585 0.75 1 0 7 1 96 0 1 +1 25 11.25 2.5 1 0 17 1 200 1208 1 +1 23.25 1 0.835 1 1 0 1 300 0 1 +0 47.75 8 7.875 1 0 6 0 0 1260 1 +0 27.42 14.5 3.085 1 0 1 1 120 11 1 +0 41.17 6.5 0.5 1 0 3 0 145 0 1 +0 15.83 0.585 1.5 1 0 2 1 100 0 1 +0 47 13 5.165 1 0 9 0 0 0 1 +1 56.58 18.5 15 1 0 17 0 0 0 1 +1 57.42 8.5 7 1 0 3 1 0 0 1 +1 42.08 1.04 5 1 0 6 0 500 10000 1 +1 29.25 14.79 5.04 1 0 5 0 168 0 1 +1 42 9.79 7.96 1 0 8 1 0 0 1 +1 49.5 7.585 7.585 1 0 15 0 0 5000 1 +0 36.75 5.125 5 1 1 0 0 0 4000 1 +0 22.58 10.75 0.415 1 0 5 0 0 560 1 +1 27.83 1.5 2 1 0 11 0 434 35 1 +1 27.25 1.585 1.835 1 0 12 0 583 713 1 +0 23 11.75 0.5 1 0 2 0 300 551 1 +1 27.75 0.585 0.25 1 0 2 1 260 500 1 +1 54.58 9.415 14.415 1 0 11 0 30 300 1 +1 34.17 9.17 4.5 1 0 12 0 0 221 1 +1 28.92 15 5.335 1 0 11 1 0 2283 1 +1 29.67 1.415 0.75 1 0 1 1 240 100 1 +1 39.58 13.915 8.625 1 0 6 0 70 0 1 +1 56.42 28 28.5 1 0 40 1 0 15 1 +1 54.33 6.75 2.625 1 0 11 0 0 284 1 +0 41 2.04 0.125 1 0 23 0 455 1236 1 +1 31.92 4.46 6.04 1 0 3 1 311 300 1 +1 41.5 1.54 3.5 0 1 0 1 216 0 1 +1 23.92 0.665 0.165 0 1 0 1 100 0 1 +0 25.75 0.5 0.875 1 1 0 0 491 0 1 +1 26 1 1.75 1 1 0 0 280 0 1 +1 37.42 2.04 0.04 1 1 0 0 400 5800 1 +1 34.92 2.5 0 1 1 0 0 239 200 1 +1 34.25 3 7.415 1 1 0 0 0 0 1 +1 23.33 11.625 0.835 1 1 0 0 160 300 1 +1 23.17 0 0.085 1 1 0 1 0 0 1 +1 44.33 0.5 5 1 1 0 0 320 0 1 +1 35.17 4.5 5.75 0 1 0 0 711 0 1 +1 43.25 3 6 1 0 11 1 80 0 1 +1 56.75 12.25 1.25 1 0 4 0 200 0 1 +1 31.67 16.165 3 1 0 9 1 250 730 1 +0 23.42 0.79 1.5 1 0 2 0 80 400 1 +0 20.42 0.835 1.585 1 0 1 1 0 0 1 +1 26.67 4.25 4.29 1 0 1 0 120 0 1 +1 34.17 1.54 1.54 1 0 1 0 520 50000 1 +0 36 1 2 1 0 11 1 0 456 1 +1 25.5 0.375 0.25 1 0 3 1 260 15108 1 +1 19.42 6.5 1.46 1 0 7 1 80 2954 1 +1 35.17 25.125 1.625 1 0 1 0 515 500 1 +1 32.33 7.5 1.585 1 1 0 0 420 0 0 +0 38.58 5 13.5 1 1 0 0 980 0 0 +1 44.25 0.5 10.75 1 1 0 1 400 0 0 +1 44.83 7 1.625 0 1 0 1 160 2 0 +1 20.67 5.29 0.375 1 0 1 1 160 0 0 +1 34.08 6.5 0.125 1 1 0 0 443 0 0 +0 19.17 0.585 0.585 1 1 0 0 160 0 0 +1 21.67 1.165 2.5 1 0 1 1 180 20 0 +1 21.5 9.75 0.25 1 1 0 1 140 0 0 +1 49.58 19 0 1 0 1 1 94 0 0 +0 27.67 1.5 2 1 1 0 1 368 0 0 +1 39.83 0.5 0.25 1 1 0 1 288 0 0 +1 27.25 0.625 0.455 1 1 0 0 200 0 0 +1 37.17 4 5 1 1 0 0 280 0 0 +1 25.67 2.21 4 1 1 0 1 188 0 0 +1 34 4.5 1 1 1 0 0 240 0 0 +0 49 1.5 0 1 1 0 0 100 27 0 +1 62.5 12.75 5 1 1 0 1 112 0 0 +1 31.42 15.5 0.5 1 1 0 1 120 0 0 +1 52.33 1.375 9.46 1 1 0 0 200 100 0 +1 28.75 1.5 1.5 1 1 0 0 0 225 0 +0 28.58 3.54 0.5 1 1 0 0 171 0 0 +1 23 0.625 0.125 1 1 0 1 180 1 0 +0 22.5 11 3 1 1 0 0 268 0 0 +0 28.5 1 1 1 0 2 0 167 500 0 +1 37.5 1.75 0.25 1 1 0 0 164 400 0 +1 35.25 16.5 4 1 1 0 1 80 0 0 +1 18.67 5 0.375 1 0 2 1 0 38 0 +1 25 12 2.25 1 0 2 0 120 5 0 +1 27.83 4 5.75 1 0 2 0 75 0 0 +1 54.83 15.5 0 1 0 20 1 152 130 0 +1 28.75 1.165 0.5 1 1 0 1 280 0 0 +0 25 11 4.5 1 1 0 1 120 0 0 +1 40.92 2.25 10 1 1 0 0 176 0 0 +0 19.75 0.75 0.795 1 0 5 0 140 5 0 +1 29.17 3.5 3.5 1 0 3 0 329 0 0 +0 24.5 1.04 0.5 1 0 3 1 180 147 0 +1 24.58 12.5 0.875 1 1 0 0 260 0 0 +0 33.75 0.75 1 1 0 3 0 212 0 0 +1 20.67 1.25 1.375 1 0 3 0 140 210 0 +0 25.42 1.125 1.29 1 0 2 1 200 0 0 +1 37.75 7 11.5 1 0 7 0 300 5 0 +1 52.5 6.5 6.29 1 0 15 1 0 11202 1 +1 57.83 7.04 14 1 0 6 0 360 1332 1 +0 20.75 10.335 0.335 1 0 1 0 80 50 1 +1 39.92 6.21 0.04 1 0 1 1 200 300 1 +1 25.67 12.5 1.21 1 0 67 0 140 258 1 +0 24.75 12.5 1.5 1 0 12 0 120 567 1 +0 44.17 6.665 7.375 1 0 3 0 0 0 1 +0 23.5 9 8.5 1 0 5 0 120 0 1 +1 34.92 5 7.5 1 0 6 0 0 1000 1 +1 47.67 2.5 2.5 1 0 12 0 410 2510 1 +1 22.75 11 2.5 1 0 7 0 100 809 1 +1 34.42 4.25 3.25 1 0 2 1 274 610 1 +0 28.42 3.5 0.835 1 1 0 1 280 0 1 +1 67.75 5.5 13 1 0 1 0 0 0 1 +1 20.42 1.835 2.25 1 0 1 1 100 150 1 +0 47.42 8 6.5 1 0 6 1 375 51100 1 +1 36.25 5 2.5 1 0 6 1 0 367 1 +1 32.67 5.5 5.5 1 0 12 0 408 1000 1 +1 48.58 6.5 6 1 1 0 0 350 0 1 +1 39.92 0.54 0.5 1 0 3 1 200 1000 1 +1 33.58 2.75 4.25 1 0 6 1 204 0 1 +0 18.83 9.5 1.625 1 0 6 0 40 600 1 +0 26.92 13.5 5 1 0 2 1 0 5000 1 +0 31.25 3.75 0.625 1 0 9 0 181 0 1 +0 56.5 16 0 1 0 15 1 0 247 1 +1 43 0.29 1.75 1 0 8 1 100 375 1 +1 22.33 11 2 1 0 1 1 80 278 1 +1 27.25 1.665 5.085 1 0 9 1 399 827 1 +1 32.83 2.5 2.75 1 0 6 1 160 2072 1 +1 23.25 1.5 2.375 1 0 3 0 0 582 1 +0 40.33 7.54 8 1 0 14 1 0 2300 1 +0 30.5 6.5 4 1 0 7 0 0 3065 1 +0 52.83 15 5.5 1 0 14 1 0 2200 1 +0 46.67 0.46 0.415 1 0 11 0 440 6 1 +0 58.33 10 4 1 0 14 1 0 1602 1 +1 37.33 6.5 4.25 1 0 12 0 93 0 1 +1 23.08 2.5 1.085 1 0 11 0 60 2184 1 +1 32.75 1.5 5.5 1 0 3 0 0 0 1 +0 21.67 11.5 0 1 0 11 0 0 0 1 +0 28.5 3.04 2.54 1 0 1 1 70 0 1 +0 68.67 15 0 1 0 14 1 0 3376 1 +1 28 2 4.165 1 0 2 0 181 0 1 +1 34.08 0.08 0.04 1 0 1 0 280 2000 1 +1 27.67 2 1 1 0 4 1 140 7544 1 +1 44 2 1.75 1 0 2 0 0 15 1 +1 25.08 1.71 1.665 1 0 1 0 395 20 1 +1 32 1.75 0.04 1 1 0 0 393 0 1 +0 60.58 16.5 11 1 1 0 0 21 10561 1 +0 40.83 10 1.75 1 1 0 1 29 837 1 +1 19.33 9.5 1 1 1 0 0 60 400 1 +0 32.33 0.54 0.04 1 1 0 1 440 11177 1 +1 36.67 3.25 9 1 1 0 0 102 639 1 +1 37.5 1.125 1.5 0 1 0 0 431 0 1 +0 25.08 2.54 0.25 1 1 0 0 370 0 1 +1 41.33 0 15 1 1 0 1 0 0 1 +1 56 12.5 8 1 1 0 0 24 2028 1 +0 49.83 13.585 8.5 1 1 0 0 0 0 1 +1 22.67 10.5 1.335 1 1 0 1 100 0 1 +1 27 1.5 0.375 1 1 0 0 260 1065 1 +1 25 12.5 3 1 1 0 0 20 0 1 +0 26.08 8.665 1.415 1 1 0 1 160 150 1 +0 18.42 9.25 1.21 1 0 4 1 60 540 1 +1 20.17 8.17 1.96 1 0 14 1 60 158 1 +1 47.67 0.29 15 1 0 20 1 0 15000 1 +0 21.25 2.335 0.5 1 0 4 1 80 0 1 +0 20.67 3 0.165 1 0 3 1 100 6 1 +0 57.08 19.5 5.5 1 0 7 1 0 3000 1 +0 22.42 5.665 2.585 1 0 7 1 129 3257 1 +1 48.75 8.5 12.5 1 0 9 1 181 1655 1 +1 40 6.5 3.5 1 0 1 1 0 500 1 +1 40.58 5 5 1 0 7 1 0 3065 1 +0 28.67 1.04 2.5 1 0 5 0 300 1430 1 +0 33.08 4.625 1.625 1 0 2 1 0 0 1 +1 21.33 10.5 3 1 1 0 0 0 0 1 +1 42 0.205 5.125 1 1 0 1 400 0 1 +1 41.75 0.96 2.5 1 1 0 1 510 600 1 +1 22.67 1.585 3.085 1 0 6 1 80 0 1 +1 34.5 4.04 8.5 1 0 7 0 195 0 1 +1 28.25 5.04 1.5 1 0 8 0 144 7 1 +1 33.17 3.165 3.165 1 0 3 0 380 0 1 +1 48.17 7.625 15.5 1 0 12 1 0 790 1 +1 27.58 2.04 2 1 0 3 0 370 560 1 +1 22.58 10.04 0.04 1 0 9 1 60 396 1 +0 24.08 0.5 1.25 1 0 1 1 0 678 1 +0 41.33 1 2.25 1 1 0 0 0 300 1 +0 20.75 10.25 0.71 1 0 2 0 49 0 1 +1 36.33 2.125 0.085 1 0 1 1 50 1187 1 +0 35.42 12 14 1 0 8 1 0 6590 1 +1 28.67 9.335 5.665 1 0 6 1 381 168 1 +1 35.17 2.5 4.5 1 0 7 1 150 1270 1 +1 39.5 4.25 6.5 1 0 16 1 117 1210 1 +1 39.33 5.875 10 1 0 14 0 399 0 1 +1 24.33 6.625 5.5 1 1 0 0 100 0 1 +1 60.08 14.5 18 1 0 15 0 0 1000 1 +1 23.08 11.5 3.5 1 0 9 1 56 742 1 +1 26.67 2.71 5.25 1 0 1 1 211 0 1 +1 48.17 3.5 3.5 1 1 0 1 230 0 1 +1 41.17 4.04 7 1 0 8 1 320 0 1 +1 55.92 11.5 5 1 0 5 1 0 8851 1 +1 53.92 9.625 8.665 1 0 5 1 0 0 1 +0 18.92 9.25 1 1 0 4 0 80 500 1 +0 50.08 12.54 2.29 1 0 3 0 156 0 1 +1 65.42 11 20 1 0 7 0 22 0 1 +0 17.58 9 1.375 1 1 0 0 0 0 1 +0 18.83 9.54 0.085 1 1 0 1 100 0 1 +0 37.75 5.5 0.125 1 1 0 0 228 0 1 +1 23.25 4 0.25 1 1 0 0 160 0 1 +1 18.08 5.5 0.5 1 1 0 1 80 0 1 +0 22.5 8.46 2.46 0 1 0 1 164 0 1 +1 19.67 0.375 2 1 0 2 0 80 0 1 +1 22.08 11 0.665 1 1 0 1 100 0 1 +1 25.17 3.5 0.625 1 0 7 1 0 7059 1 +0 47.42 3 13.875 1 0 2 0 519 1704 1 +1 33.5 1.75 4.5 1 0 4 0 253 857 1 +1 27.67 13.75 5.75 1 1 0 0 487 500 1 +0 58.42 21 10 1 0 13 1 0 6700 1 +0 20.67 1.835 2.085 1 0 5 1 220 2503 1 +1 26.17 0.25 0 1 1 0 0 0 0 1 +1 21.33 7.5 1.415 1 0 1 1 80 9800 1 +1 42.83 4.625 4.58 1 1 0 1 0 0 1 +1 38.17 10.125 2.5 1 0 6 1 520 196 1 +1 20.5 10 2.5 1 1 0 1 40 0 1 +1 48.25 25.085 1.75 1 0 3 1 120 14 1 +1 28.33 5 11 1 1 0 0 70 0 1 +1 18.5 2 1.5 1 0 2 1 120 300 1 +1 33.17 3.04 2.04 1 0 1 0 180 18027 1 +1 45 8.5 14 1 0 1 0 88 2000 1 +0 19.67 0.21 0.29 1 0 11 1 80 99 1 +1 21.83 11 0.29 1 0 6 1 121 0 1 +1 40.25 21.5 20 1 0 11 1 0 1200 1 +1 41.42 5 5 1 0 6 0 470 0 1 +0 17.83 11 1 1 0 11 1 0 3000 1 +1 23.17 11.125 0.46 1 0 1 1 100 0 1 +1 18.17 10.25 1.085 0 1 0 1 320 13 0 +1 20 11.045 2 0 1 0 0 136 0 0 +1 20 0 0.5 0 1 0 1 144 0 0 +0 20.75 9.54 0.04 0 1 0 1 200 1000 0 +0 24.5 1.75 0.165 0 1 0 1 132 0 0 +1 32.75 2.335 5.75 0 1 0 0 292 0 0 +0 52.17 0 0 0 1 0 1 0 0 0 +0 48.17 1.335 0.335 0 1 0 1 0 120 0 +0 20.42 10.5 0 0 1 0 0 154 32 0 +1 50.75 0.585 0 0 1 0 1 145 0 0 +1 17.08 0.085 0.04 0 1 0 1 140 722 0 +1 18.33 1.21 0 0 1 0 1 100 0 0 +0 32 6 1.25 0 1 0 1 272 0 0 +1 59.67 1.54 0.125 1 1 0 0 260 0 1 +1 18 0.165 0.21 0 1 0 1 200 40 1 +1 32.33 2.5 1.25 0 1 0 0 280 0 0 +1 18.08 6.75 0.04 0 1 0 1 140 0 0 +1 38.25 10.125 0.125 0 1 0 1 160 0 0 +1 30.67 2.5 2.25 0 1 0 0 340 0 0 +1 18.58 5.71 0.54 0 1 0 1 120 0 0 +0 19.17 5.415 0.29 0 1 0 1 80 484 0 +0 18.17 10 0.165 0 1 0 1 340 0 0 +1 16.25 0.835 0.085 1 1 0 1 200 0 0 +1 21.17 0.875 0.25 0 1 0 1 280 204 0 +1 23.92 0.585 0.125 0 1 0 1 240 1 0 +1 17.67 4.46 0.25 0 1 0 1 80 0 0 +0 16.5 1.25 0.25 0 0 1 1 108 98 0 +1 23.25 12.625 0.125 0 0 2 1 0 5552 0 +1 17.58 10 0.165 0 0 1 1 120 1 0 +1 29.5 0.58 0.29 0 0 1 1 340 2803 0 +1 18.83 0.415 0.165 0 0 1 1 200 1 0 +0 21.75 1.75 0 0 1 0 1 160 0 0 +1 23 0.75 0.5 0 1 0 0 320 0 0 +0 18.25 10 1 0 0 1 1 120 1 0 +1 25.42 0.54 0.165 0 0 1 1 272 444 0 +1 35.75 2.415 0.125 0 0 2 1 220 1 0 +0 16.08 0.335 0 0 0 1 1 160 126 0 +0 31.92 3.125 3.04 0 0 2 0 200 4 0 +1 69.17 9 4 0 0 1 1 70 6 0 +1 32.92 2.5 1.75 0 0 2 0 720 0 0 +1 16.33 2.75 0.665 0 0 1 1 80 21 0 +1 22.17 12.125 3.335 0 0 2 0 180 173 0 +0 57.58 2 6.5 0 0 1 1 0 10 0 +1 18.25 0.165 0.25 0 1 0 0 280 0 0 +1 23.42 1 0.5 0 1 0 0 280 0 0 +0 15.92 2.875 0.085 0 1 0 1 120 0 0 +0 24.75 13.665 1.5 0 1 0 1 280 1 0 +1 48.75 26.335 0 1 1 0 0 0 0 0 +1 23.5 2.75 4.5 0 1 0 1 160 25 0 +1 18.58 10.29 0.415 0 1 0 1 80 0 0 +1 27.75 1.29 0.25 0 1 0 0 140 0 0 +0 31.75 3 0 0 1 0 1 160 20 0 +0 24.83 4.5 1 0 1 0 0 360 6 0 +1 19 1.75 2.335 0 1 0 0 112 6 0 +0 16.33 0.21 0.125 0 1 0 1 200 1 0 +0 18.58 10 0.415 0 1 0 1 80 42 0 +1 16.25 0 0.25 0 1 0 1 60 0 0 +1 23 0.75 0.5 1 1 0 0 320 0 0 +1 21.17 0.25 0.25 0 1 0 1 280 204 0 +1 17.5 22 0 0 1 0 0 450 100000 1 +1 19.17 0 0 0 1 0 0 500 1 1 +1 36.75 0.125 1.5 0 1 0 0 232 113 1 +1 21.25 1.5 1.5 0 1 0 1 150 8 1 +0 18.08 0.375 10 0 1 0 0 300 0 1 +0 33.67 0.375 0.375 0 1 0 1 300 44 1 +1 48.58 0.205 0.25 1 0 11 1 380 2732 1 +1 33.67 1.25 1.165 0 1 0 1 120 0 0 +0 29.5 1.085 1 0 1 0 1 280 13 0 +1 30.17 1.085 0.04 0 1 0 1 170 179 0 +1 34.83 2.5 3 0 1 0 1 200 0 0 +0 33.25 2.5 2.5 0 1 0 0 0 2 0 +1 34.08 2.5 1 0 1 0 1 460 16 0 +0 25.25 12.5 1 0 1 0 0 180 1062 0 +1 34.75 2.5 0.5 0 1 0 1 348 0 0 +1 27.67 0.75 0.165 0 1 0 0 220 251 0 +1 47.33 6.5 1 0 1 0 0 0 228 0 +0 34.83 1.25 0.5 0 1 0 0 160 0 0 +0 33.25 3 2 0 1 0 1 180 0 0 +1 28 3 0.75 0 1 0 0 300 67 0 +0 39.08 4 3 0 1 0 1 480 0 0 +1 42.75 4.085 0.04 0 1 0 1 108 100 0 +1 26.92 2.25 0.5 0 1 0 0 640 4000 0 +1 33.75 2.75 0 0 1 0 1 180 0 0 +1 38.92 1.75 0.5 0 1 0 0 300 2 0 +1 62.75 7 0 0 1 0 1 0 12 0 +1 26.75 4.5 2.5 0 1 0 1 200 1210 0 +1 63.33 0.54 0.585 1 0 3 0 180 0 0 +1 27.83 1.5 2.25 0 0 1 0 100 3 0 +0 26.17 2 0 0 1 0 0 276 1 0 +1 22.17 0.585 0 0 1 0 1 100 0 0 +1 22.5 11.5 1.5 0 1 0 0 0 4000 0 +1 30.75 1.585 0.585 0 1 0 0 0 0 0 +1 36.67 2 0.25 0 1 0 0 221 0 0 +0 16 0.165 1 0 0 2 0 320 1 0 +1 41.17 1.335 0.165 0 1 0 1 168 0 0 +0 19.5 0.165 0.04 0 1 0 0 380 0 0 +1 32.42 3 0.165 0 1 0 0 120 0 0 +0 36.75 4.71 0 0 1 0 1 160 0 0 +0 30.25 5.5 5.5 0 1 0 0 100 0 0 +1 23.08 2.5 0.085 0 1 0 0 100 4208 0 +1 26.83 0.54 0 0 1 0 1 100 0 0 +1 16.92 0.335 0.29 0 1 0 1 200 0 0 +1 24.42 2 0.165 0 0 2 1 320 1300 0 +1 42.83 1.25 13.875 0 0 1 0 352 112 0 +0 22.75 6.165 0.165 0 1 0 1 220 1000 0 +1 39.42 1.71 0.165 0 1 0 1 400 0 0 +0 23.58 11.5 3 0 1 0 0 20 16 0 +1 21.42 0.75 0.75 0 1 0 0 132 2 0 +1 33 2.5 7 0 1 0 0 280 0 0 +1 26.33 13 0 0 1 0 0 140 1110 0 +0 45 4.585 1 0 1 0 0 240 0 0 +1 26.25 1.54 0.125 0 1 0 1 100 0 0 +0 20.83 0.5 1 0 1 0 1 260 0 0 +1 28.67 14.5 0.125 0 1 0 1 0 286 0 +1 20.67 0.835 2 0 1 0 0 240 0 0 +1 34.42 1.335 0.125 0 1 0 0 440 4500 0 +1 33.58 0.25 4 0 1 0 0 420 0 0 +1 43.17 5 2.25 0 1 0 0 141 0 0 +0 22.67 7 0.165 0 1 0 1 160 0 0 +0 24.33 2.5 4.5 0 1 0 1 200 456 0 +0 56.83 4.25 5 0 1 0 0 0 4 0 +1 22.08 11.46 1.585 0 1 0 0 100 1212 0 +1 34 5.5 1.5 0 1 0 0 60 0 0 +1 22.58 1.5 0.54 0 1 0 0 120 67 0 +1 21.17 0 0.5 0 1 0 0 0 0 0 +1 26.67 14.585 0 0 1 0 0 178 0 0 +1 22.92 0.17 0.085 0 1 0 1 0 0 0 +1 15.17 7 1 0 1 0 1 600 0 0 +1 39.92 5 0.21 0 1 0 1 550 0 0 +1 27.42 12.5 0.25 0 1 0 0 720 0 0 +1 24.75 0.54 1 0 1 0 0 120 1 0 +1 41.17 1.25 0.25 0 1 0 1 0 195 0 +0 33.08 1.625 0.54 0 1 0 0 0 0 0 +1 29.83 2.04 0.04 0 1 0 1 128 1 0 +0 23.58 0.585 0.125 0 1 0 1 120 87 0 +1 26.17 12.5 1.25 0 1 0 0 0 17 0 +1 31 2.085 0.085 0 1 0 1 300 0 0 +1 20.75 5.085 0.29 0 1 0 1 140 184 0 +1 28.92 0.375 0.29 0 1 0 1 220 140 0 +0 51.92 6.5 3.085 0 1 0 0 73 0 0 +0 22.67 0.335 0.75 0 1 0 1 160 0 0 +1 34 5.085 1.085 0 1 0 0 480 0 0 +0 69.5 6 0 0 1 0 1 0 0 0 +0 19.58 0.665 1 0 0 1 1 2000 2 0 +1 16 3.125 0.085 0 0 1 1 0 6 0 +1 17.08 0.25 0.335 0 0 4 1 160 8 0 +1 31.25 2.835 0 0 0 5 1 176 146 0 +1 25.17 3 1.25 0 0 1 1 0 22 0 +0 22.67 0.79 0.085 0 1 0 1 144 0 0 +1 40.58 1.5 0 0 1 0 1 300 0 0 +1 22.25 0.46 0.125 0 1 0 0 280 55 0 +0 22.25 1.25 3.25 0 1 0 1 280 0 0 +1 22.5 0.125 0.125 0 1 0 1 200 70 0 +1 23.58 1.79 0.54 0 1 0 0 136 1 0 +1 38.42 0.705 0.375 0 0 2 1 225 500 0 +0 26.58 2.54 0 0 1 0 0 180 60 0 +1 35 2.5 1 0 1 0 0 210 0 0 +1 20.42 1.085 1.5 0 1 0 1 108 7 0 +1 29.42 1.25 1.75 0 1 0 1 200 0 0 +1 26.17 0.835 1.165 0 1 0 1 100 0 0 +1 33.67 2.165 1.5 0 1 0 1 120 0 0 +1 24.58 1.25 0.25 0 1 0 1 110 0 0 +0 27.67 2.04 0.25 0 1 0 0 180 50 0 +1 37.5 0.835 0.04 0 1 0 1 120 5 0 +1 49.17 2.29 0.29 0 1 0 1 200 3 0 +1 33.58 0.335 0.085 0 1 0 1 180 0 0 +1 51.83 3 1.5 0 1 0 1 180 4 0 +1 22.92 3.165 0.165 0 1 0 1 160 1058 0 +1 21.83 1.54 0.085 0 1 0 0 356 0 0 +1 25.25 1 0.5 0 1 0 1 200 0 0 +1 58.58 2.71 2.415 0 1 0 0 320 0 0 +1 19 0 0 0 0 4 1 45 1 0 +1 19.58 0.585 0 0 0 3 1 350 769 0 +0 53.33 0.165 0 0 1 0 0 62 27 0 +0 27.17 1.25 0 0 0 1 1 92 300 0 +1 25.92 0.875 0.375 0 0 2 0 174 3 0 +1 23.08 0 1 0 0 11 1 0 0 0 +1 39.58 5 0 0 0 2 1 17 1 0 +1 30.58 2.71 0.125 0 1 0 0 80 0 0 +1 17.25 3 0.04 0 1 0 0 160 40 0 +0 17.67 0 0 0 1 0 1 86 0 0 +1 16.5 0.125 0.165 0 1 0 1 132 0 0 +0 27.33 1.665 0 0 1 0 1 340 1 0 +1 31.25 1.125 0 0 0 1 1 96 19 0 +1 20 7 0.5 0 1 0 1 0 0 0 +1 39.5 1.625 1.5 0 1 0 1 0 316 0 +1 36.5 4.25 3.5 0 1 0 1 454 50 0 +1 52.42 1.5 3.75 0 1 0 0 0 350 0 +1 36.17 18.125 0.085 0 1 0 1 320 3552 0 +1 29.67 0.75 0.04 0 1 0 1 240 0 0 +1 36.17 5.5 5 0 1 0 1 210 687 0 +1 25.67 0.29 1.5 0 1 0 0 160 0 0 +0 24.5 2.415 0 0 1 0 1 120 0 0 +1 24.08 0.875 0.085 0 0 4 1 254 1950 0 +1 21.92 0.5 0.125 0 1 0 1 360 0 0 +0 36.58 0.29 0 0 0 10 1 200 18 0 +0 23 1.835 0 0 0 1 1 200 53 0 +0 27.58 3 2.79 0 0 1 0 280 10 0 +1 31.08 3.085 2.5 0 0 2 0 160 41 0 +0 30.42 1.375 0.04 0 0 3 1 0 33 0 +1 22.08 2.335 0.75 0 1 0 1 180 0 0 +1 16.33 4.085 0.415 0 1 0 0 120 0 0 +0 21.92 11.665 0.085 0 1 0 1 320 5 0 +1 21.08 4.125 0.04 0 1 0 1 140 100 0 +1 17.42 6.5 0.125 0 1 0 1 60 100 0 +1 19.17 4 1 0 1 0 0 360 1000 0 +1 20.67 0.415 0.125 0 1 0 1 0 44 0 +1 26.75 2 0.75 0 1 0 0 80 0 0 +1 23.58 0.835 0.085 0 1 0 0 220 5 0 +1 39.17 2.5 10 0 1 0 0 200 0 0 +1 22.75 11.5 0.415 0 1 0 1 0 0 0 +0 16.92 0.5 0.165 0 0 6 0 240 35 0 +1 23.5 3.165 0.415 0 0 1 0 280 80 0 +0 17.33 9.5 1.75 0 0 10 0 0 10 0 +1 23.75 0.415 0.04 0 0 2 1 128 6 0 +1 34.67 1.08 1.165 0 1 0 1 28 0 0 +1 74.83 19 0.04 0 0 2 1 0 351 0 +1 28.17 0.125 0.085 0 1 0 1 216 2100 0 +1 24.5 13.335 0.04 0 1 0 0 120 475 0 +1 18.83 3.54 0 0 1 0 0 180 1 0 +0 47.25 0.75 2.75 1 0 1 1 333 892 1 +1 24.17 0.875 4.625 1 0 2 0 520 2000 1 +1 39.25 9.5 6.5 1 0 14 1 240 4607 1 +0 20.5 11.835 6 1 1 0 1 340 0 1 +0 18.83 4.415 3 1 1 0 1 240 0 1 +1 19.17 9.5 1.5 1 1 0 1 120 2206 1 +0 25 0.875 1.04 1 1 0 0 160 5860 1 +1 20.17 9.25 1.665 1 0 3 0 40 28 1 +1 25.75 0.5 1.46 1 0 5 0 312 0 1 +1 20.42 7 1.625 1 0 3 1 200 1391 1 +1 39 5 3.5 1 0 10 0 0 0 1 +0 64.08 0.165 0 1 0 1 1 232 100 1 +1 28.25 5.125 4.75 1 0 2 1 420 7 1 +0 28.75 3.75 1.085 1 0 1 0 371 0 1 +1 31.33 19.5 7 1 0 16 1 0 5000 1 +0 18.92 9 0.75 1 0 2 1 88 591 1 +0 24.75 3 1.835 1 0 19 1 0 500 1 +0 30.67 12 2 1 0 1 1 220 19 1 +1 21 4.79 2.25 1 0 1 0 80 300 1 +1 13.75 4 1.75 1 0 2 0 120 1000 1 +0 46 4 0 1 1 0 1 100 960 1 +0 44.33 0 2.5 1 1 0 1 0 0 1 +1 20.25 9.96 0 1 1 0 1 0 0 1 +1 22.67 2.54 2.585 1 1 0 1 0 0 1 +0 60.92 5 4 1 0 4 1 0 99 1 +1 16.08 0.75 1.75 1 0 5 0 352 690 1 +0 28.17 0.375 0.585 1 0 4 1 80 0 1 +1 39.17 1.71 0.125 1 0 5 0 480 0 1 +0 30 5.29 2.25 1 0 5 0 99 500 1 +1 22.83 3 1.29 1 0 1 1 260 800 1 +0 22.5 8.5 1.75 1 0 10 1 80 990 0 +0 28.58 1.665 2.415 1 1 0 0 440 0 0 +1 45.17 1.5 2.5 1 1 0 0 140 0 0 +1 41.58 1.75 0.21 1 1 0 1 160 0 0 +0 57.08 0.335 1 1 1 0 0 252 2197 0 +0 55.75 7.08 6.75 1 0 3 0 100 50 0 +1 43.25 25.21 0.21 1 0 1 1 760 90 0 +0 25.33 2.085 2.75 1 1 0 0 360 1 0 +0 24.58 0.67 1.75 1 1 0 1 400 0 0 +1 43.17 2.25 0.75 1 1 0 1 560 0 0 +1 40.92 0.835 0 1 1 0 1 130 1 0 +1 31.83 2.5 7.5 1 1 0 0 523 0 0 +0 33.92 1.585 0 1 1 0 1 320 0 0 +0 24.92 1.25 0 1 1 0 1 80 0 0 +1 35.25 3.165 3.75 1 1 0 0 680 0 0 +1 34.25 1.75 0.25 1 1 0 0 163 0 0 +1 80.25 5.5 0.54 1 1 0 1 0 340 0 +1 19.42 1.5 2 1 1 0 0 100 20 0 +1 42.75 3 1 1 1 0 1 0 200 0 +1 19.67 10 0.835 1 1 0 0 140 0 0 +1 36.33 3.79 1.165 1 1 0 0 200 0 0 +1 30.08 1.04 0.5 1 0 10 0 132 28 0 +1 44.25 11 1.5 1 1 0 1 0 0 0 +1 23.58 0.46 2.625 1 0 6 0 208 347 0 +1 23.92 1.5 1.875 1 0 6 1 200 327 1 +1 33.17 1 0.75 1 0 7 0 340 4071 1 +1 48.33 12 16 1 1 0 1 110 0 1 +1 76.75 22.29 12.75 1 0 1 0 0 109 1 +1 51.33 10 0 1 0 11 1 0 1249 1 +1 34.75 15 5.375 1 0 9 0 0 134 1 +1 38.58 3.335 4 1 0 14 1 383 1344 1 +0 22.42 11.25 0.75 1 0 4 1 0 321 1 +1 41.92 0.42 0.21 1 0 6 1 220 948 1 +1 29.58 4.5 7.5 1 0 2 0 330 0 1 +0 32.17 1.46 1.085 1 0 16 1 120 2079 1 +1 51.42 0.04 0.04 1 1 0 1 0 3000 1 +0 22.83 2.29 2.29 1 0 7 0 140 2384 1 +0 25 12.33 3.5 1 0 6 1 400 458 1 +1 26.75 1.125 1.25 1 1 0 1 0 5298 1 +1 23.33 1.5 1.415 1 1 0 1 422 200 1 +1 24.42 12.335 1.585 1 1 0 0 120 0 1 +1 42.17 5.04 12.75 1 1 0 0 92 0 1 +0 20.83 3 0.04 1 1 0 1 100 0 1 +1 23.08 11.5 2.125 1 0 11 0 290 284 1 +0 25.17 2.875 0.875 1 1 0 1 360 0 1 +1 43.08 0.375 0.375 1 0 8 0 300 162 1 +0 35.75 0.915 0.75 1 0 4 1 0 1583 1 +1 59.5 2.75 1.75 1 0 5 0 60 58 1 +1 21 3 1.085 1 0 8 0 160 1 1 +1 21.92 0.54 0.04 1 0 1 0 840 59 1 +0 65.17 14 0 1 0 11 0 0 1400 1 +0 20.33 10 1 1 0 4 1 50 1465 1 +1 32.25 0.165 3.25 1 0 1 0 432 8000 1 +1 30.17 0.5 1.75 1 0 11 1 32 540 1 +1 25.17 6 1 1 0 3 1 0 0 1 +1 39.17 1.625 1.5 1 0 10 1 186 4700 1 +1 39.08 6 1.29 1 0 5 0 108 1097 1 +1 31.67 0.83 1.335 1 0 8 0 303 3290 1 +1 41 0.04 0.04 0 0 1 1 560 0 1 +1 48.5 4.25 0.125 1 1 0 0 225 0 1 +1 32.67 9 5.25 1 1 0 0 154 0 1 +0 28.08 15 0 1 1 0 1 0 13212 1 +1 73.42 17.75 0 1 1 0 0 0 0 1 +1 64.08 20 17.5 1 0 9 0 0 1000 1 +1 51.58 15 8.5 1 0 9 1 0 0 1 +1 26.67 1.75 1 1 0 5 0 160 5777 1 +1 25.33 0.58 0.29 1 0 7 0 96 5124 1 +1 30.17 6.5 3.125 1 0 8 1 330 1200 1 +1 27 0.75 4.25 1 0 3 0 312 150 1 +1 34.17 5.25 0.085 0 1 0 0 290 6 1 +1 38.67 0.21 0.085 1 1 0 0 280 0 1 +1 25.75 0.75 0.25 1 1 0 1 349 23 1 +0 46.08 3 2.375 1 0 8 0 396 4159 1 +0 21.5 6 2.5 1 0 3 1 80 918 1 +1 20.5 2.415 2 1 0 11 0 200 3000 1 +0 29.5 0.46 0.54 1 0 4 1 380 500 1 +1 29.83 1.25 0.25 0 1 0 1 224 0 0 +1 20.08 0.25 0.125 0 1 0 1 200 0 0 +1 23.42 0.585 0.085 1 1 0 1 180 0 0 +0 29.58 1.75 1.25 0 1 0 0 280 0 0 +1 16.17 0.04 0.04 0 1 0 1 0 0 1 +1 32.33 3.5 0.5 0 1 0 0 232 0 0 +1 47.83 4.165 0.085 0 1 0 0 520 0 0 +1 20 1.25 0.125 0 1 0 1 140 4 0 +1 27.58 3.25 5.085 0 0 2 0 369 1 0 +1 22 0.79 0.29 0 0 1 1 420 283 0 +1 19.33 10.915 0.585 0 0 2 0 200 7 0 +0 38.33 4.415 0.125 0 1 0 1 160 0 0 +1 29.42 1.25 0.25 0 0 2 0 400 108 0 +1 22.67 0.75 1.585 0 0 1 0 400 9 0 +1 32.25 14 0 0 0 2 1 160 1 0 +1 29.58 4.75 2 0 0 1 0 460 68 0 +1 18.42 10.415 0.125 1 1 0 1 120 375 0 +1 22.17 2.25 0.125 0 1 0 1 160 10 0 +1 22.67 0.165 2.25 0 1 0 0 0 0 1 +1 18.83 0 0.665 0 1 0 1 160 1 0 +1 21.58 0.79 0.665 0 1 0 1 160 0 0 +1 23.75 12 2.085 0 1 0 1 80 0 0 +1 36.08 2.54 0 0 1 0 1 0 1000 0 +1 29.25 13 0.5 0 1 0 1 228 0 0 +0 19.58 0.665 1.665 0 1 0 1 220 5 0 +0 22.92 1.25 0.25 0 1 0 0 120 809 0 +0 27.25 0.29 0.125 0 0 1 0 272 108 0 +0 38.75 1.5 0 0 1 0 1 76 0 0 +1 32.42 2.165 0 0 1 0 1 120 0 0 +0 23.75 0.71 0.25 0 0 1 0 240 4 0 +1 18.17 2.46 0.96 0 0 2 0 160 587 0 +1 40.92 0.5 0.5 0 1 0 0 130 0 0 +1 19.5 9.585 0.79 0 1 0 1 80 350 0 +1 28.58 3.625 0.25 0 1 0 0 100 0 0 +1 35.58 0.75 1.5 0 1 0 0 231 0 0 +1 34.17 2.75 2.5 0 1 0 0 232 200 0 +1 31.58 0.75 3.5 0 1 0 0 320 0 0 +0 52.5 7 3 0 1 0 1 0 0 0 +1 36.17 0.42 0.29 0 1 0 0 309 2 0 +1 37.33 2.665 0.165 0 1 0 0 0 501 0 +0 20.83 8.5 0.165 0 1 0 1 0 351 0 +1 24.08 9 0.25 0 1 0 0 0 0 0 +1 25.58 0.335 3.5 0 1 0 0 340 0 0 +0 35.17 3.75 0 0 0 6 1 0 200 0 +1 48.08 3.75 1 0 1 0 1 100 2 0 +0 15.83 7.625 0.125 0 0 1 0 0 160 0 +0 22.5 0.415 0.335 0 1 0 0 144 0 0 +1 21.5 11.5 0.5 1 1 0 0 100 68 0 +0 23.58 0.83 0.415 0 0 1 0 200 11 0 +0 21.08 5 0 0 1 0 1 0 0 0 +1 25.67 3.25 2.29 0 0 1 0 416 21 0 +0 38.92 1.665 0.25 0 1 0 1 0 390 0 +0 15.75 0.375 1 0 1 0 1 120 18 0 +0 28.58 3.75 0.25 0 0 1 0 40 154 0 +1 22.25 9 0.085 0 1 0 1 0 0 0 +1 29.83 3.5 0.165 0 1 0 1 216 0 0 +0 23.5 1.5 0.875 0 1 0 0 160 0 0 +1 32.08 4 1.5 0 1 0 0 120 0 0 +1 31.08 1.5 0.04 0 1 0 1 160 0 0 +1 31.83 0.04 0.04 0 1 0 1 0 0 0 +0 21.75 11.75 0.25 0 1 0 0 180 0 0 +0 17.92 0.54 1.75 0 0 1 0 80 5 0 +1 30.33 0.5 0.085 0 1 0 0 252 0 0 +1 51.83 2.04 1.5 0 1 0 1 120 1 0 +1 47.17 5.835 5.5 0 1 0 1 465 150 0 +1 25.83 12.835 0.5 0 1 0 1 0 2 0 +0 50.25 0.835 0.5 0 1 0 0 240 117 0 +0 37.33 2.5 0.21 0 1 0 1 260 246 0 +0 41.58 1.04 0.665 0 1 0 1 240 237 0 +0 30.58 10.665 0.085 0 0 12 0 129 3 0 +1 19.42 7.25 0.04 0 0 1 1 100 1 0 +0 17.92 10.21 0 0 1 0 1 0 50 0 +0 20.08 1.25 0 0 1 0 1 0 0 0 +1 19.5 0.29 0.29 0 1 0 1 280 364 0 +1 27.83 1 3 0 1 0 1 176 537 0 +1 17.08 3.29 0.335 0 1 0 0 140 2 0 +1 36.42 0.75 0.585 0 1 0 1 240 3 0 +1 40.58 3.29 3.5 0 1 0 0 400 0 0 +1 21.08 10.085 1.25 0 1 0 1 260 0 0 +0 22.67 0.75 2 0 0 2 0 200 394 0 +0 25.25 13.5 2 0 0 1 0 200 1 0 +1 17.92 0.205 0.04 0 1 0 1 280 750 0 +1 35 3.375 8.29 0 1 0 0 0 0 0 diff --git a/Homework 1/3.1credit_card_dataSummer2018.txt b/Homework 1/3.1credit_card_dataSummer2018.txt new file mode 100644 index 0000000..9a8b0c9 --- /dev/null +++ b/Homework 1/3.1credit_card_dataSummer2018.txt @@ -0,0 +1,654 @@ +1 30.83 0 1.25 1 0 1 1 202 0 1 +0 58.67 4.46 3.04 1 0 6 1 43 560 1 +0 24.5 0.5 1.5 1 1 0 1 280 824 1 +1 27.83 1.54 3.75 1 0 5 0 100 3 1 +1 20.17 5.625 1.71 1 1 0 1 120 0 1 +1 32.08 4 2.5 1 1 0 0 360 0 1 +1 33.17 1.04 6.5 1 1 0 0 164 31285 1 +0 22.92 11.585 0.04 1 1 0 1 80 1349 1 +1 54.42 0.5 3.96 1 1 0 1 180 314 1 +1 42.5 4.915 3.165 1 1 0 0 52 1442 1 +1 22.08 0.83 2.165 0 1 0 0 128 0 1 +1 29.92 1.835 4.335 1 1 0 1 260 200 1 +0 38.25 6 1 1 1 0 0 0 0 1 +1 48.08 6.04 0.04 0 1 0 1 0 2690 1 +0 45.83 10.5 5 1 0 7 0 0 0 1 +1 36.67 4.415 0.25 1 0 10 0 320 0 1 +1 28.25 0.875 0.96 1 0 3 0 396 0 1 +0 23.25 5.875 3.17 1 0 10 1 120 245 1 +1 21.83 0.25 0.665 1 1 0 0 0 0 1 +0 19.17 8.585 0.75 1 0 7 1 96 0 1 +1 25 11.25 2.5 1 0 17 1 200 1208 1 +1 23.25 1 0.835 1 1 0 1 300 0 1 +0 47.75 8 7.875 1 0 6 0 0 1260 1 +0 27.42 14.5 3.085 1 0 1 1 120 11 1 +0 41.17 6.5 0.5 1 0 3 0 145 0 1 +0 15.83 0.585 1.5 1 0 2 1 100 0 1 +0 47 13 5.165 1 0 9 0 0 0 1 +1 56.58 18.5 15 1 0 17 0 0 0 1 +1 57.42 8.5 7 1 0 3 1 0 0 1 +1 42.08 1.04 5 1 0 6 0 500 10000 1 +1 29.25 14.79 5.04 1 0 5 0 168 0 1 +1 42 9.79 7.96 1 0 8 1 0 0 1 +1 49.5 7.585 7.585 1 0 15 0 0 5000 1 +0 36.75 5.125 5 1 1 0 0 0 4000 1 +0 22.58 10.75 0.415 1 0 5 0 0 560 1 +1 27.83 1.5 2 1 0 11 0 434 35 1 +1 27.25 1.585 1.835 1 0 12 0 583 713 1 +0 23 11.75 0.5 1 0 2 0 300 551 1 +1 27.75 0.585 0.25 1 0 2 1 260 500 1 +1 54.58 9.415 14.415 1 0 11 0 30 300 1 +1 34.17 9.17 4.5 1 0 12 0 0 221 1 +1 28.92 15 5.335 1 0 11 1 0 2283 1 +1 29.67 1.415 0.75 1 0 1 1 240 100 1 +1 39.58 13.915 8.625 1 0 6 0 70 0 1 +1 56.42 28 28.5 1 0 40 1 0 15 1 +1 54.33 6.75 2.625 1 0 11 0 0 284 1 +0 41 2.04 0.125 1 0 23 0 455 1236 1 +1 31.92 4.46 6.04 1 0 3 1 311 300 1 +1 41.5 1.54 3.5 0 1 0 1 216 0 1 +1 23.92 0.665 0.165 0 1 0 1 100 0 1 +0 25.75 0.5 0.875 1 1 0 0 491 0 1 +1 26 1 1.75 1 1 0 0 280 0 1 +1 37.42 2.04 0.04 1 1 0 0 400 5800 1 +1 34.92 2.5 0 1 1 0 0 239 200 1 +1 34.25 3 7.415 1 1 0 0 0 0 1 +1 23.33 11.625 0.835 1 1 0 0 160 300 1 +1 23.17 0 0.085 1 1 0 1 0 0 1 +1 44.33 0.5 5 1 1 0 0 320 0 1 +1 35.17 4.5 5.75 0 1 0 0 711 0 1 +1 43.25 3 6 1 0 11 1 80 0 1 +1 56.75 12.25 1.25 1 0 4 0 200 0 1 +1 31.67 16.165 3 1 0 9 1 250 730 1 +0 23.42 0.79 1.5 1 0 2 0 80 400 1 +0 20.42 0.835 1.585 1 0 1 1 0 0 1 +1 26.67 4.25 4.29 1 0 1 0 120 0 1 +1 34.17 1.54 1.54 1 0 1 0 520 50000 1 +0 36 1 2 1 0 11 1 0 456 1 +1 25.5 0.375 0.25 1 0 3 1 260 15108 1 +1 19.42 6.5 1.46 1 0 7 1 80 2954 1 +1 35.17 25.125 1.625 1 0 1 0 515 500 1 +1 32.33 7.5 1.585 1 1 0 0 420 0 0 +0 38.58 5 13.5 1 1 0 0 980 0 0 +1 44.25 0.5 10.75 1 1 0 1 400 0 0 +1 44.83 7 1.625 0 1 0 1 160 2 0 +1 20.67 5.29 0.375 1 0 1 1 160 0 0 +1 34.08 6.5 0.125 1 1 0 0 443 0 0 +0 19.17 0.585 0.585 1 1 0 0 160 0 0 +1 21.67 1.165 2.5 1 0 1 1 180 20 0 +1 21.5 9.75 0.25 1 1 0 1 140 0 0 +1 49.58 19 0 1 0 1 1 94 0 0 +0 27.67 1.5 2 1 1 0 1 368 0 0 +1 39.83 0.5 0.25 1 1 0 1 288 0 0 +1 27.25 0.625 0.455 1 1 0 0 200 0 0 +1 37.17 4 5 1 1 0 0 280 0 0 +1 25.67 2.21 4 1 1 0 1 188 0 0 +1 34 4.5 1 1 1 0 0 240 0 0 +0 49 1.5 0 1 1 0 0 100 27 0 +1 62.5 12.75 5 1 1 0 1 112 0 0 +1 31.42 15.5 0.5 1 1 0 1 120 0 0 +1 52.33 1.375 9.46 1 1 0 0 200 100 0 +1 28.75 1.5 1.5 1 1 0 0 0 225 0 +0 28.58 3.54 0.5 1 1 0 0 171 0 0 +1 23 0.625 0.125 1 1 0 1 180 1 0 +0 22.5 11 3 1 1 0 0 268 0 0 +0 28.5 1 1 1 0 2 0 167 500 0 +1 37.5 1.75 0.25 1 1 0 0 164 400 0 +1 35.25 16.5 4 1 1 0 1 80 0 0 +1 18.67 5 0.375 1 0 2 1 0 38 0 +1 25 12 2.25 1 0 2 0 120 5 0 +1 27.83 4 5.75 1 0 2 0 75 0 0 +1 54.83 15.5 0 1 0 20 1 152 130 0 +1 28.75 1.165 0.5 1 1 0 1 280 0 0 +0 25 11 4.5 1 1 0 1 120 0 0 +1 40.92 2.25 10 1 1 0 0 176 0 0 +0 19.75 0.75 0.795 1 0 5 0 140 5 0 +1 29.17 3.5 3.5 1 0 3 0 329 0 0 +0 24.5 1.04 0.5 1 0 3 1 180 147 0 +1 24.58 12.5 0.875 1 1 0 0 260 0 0 +0 33.75 0.75 1 1 0 3 0 212 0 0 +1 20.67 1.25 1.375 1 0 3 0 140 210 0 +0 25.42 1.125 1.29 1 0 2 1 200 0 0 +1 37.75 7 11.5 1 0 7 0 300 5 0 +1 52.5 6.5 6.29 1 0 15 1 0 11202 1 +1 57.83 7.04 14 1 0 6 0 360 1332 1 +0 20.75 10.335 0.335 1 0 1 0 80 50 1 +1 39.92 6.21 0.04 1 0 1 1 200 300 1 +1 25.67 12.5 1.21 1 0 67 0 140 258 1 +0 24.75 12.5 1.5 1 0 12 0 120 567 1 +0 44.17 6.665 7.375 1 0 3 0 0 0 1 +0 23.5 9 8.5 1 0 5 0 120 0 1 +1 34.92 5 7.5 1 0 6 0 0 1000 1 +1 47.67 2.5 2.5 1 0 12 0 410 2510 1 +1 22.75 11 2.5 1 0 7 0 100 809 1 +1 34.42 4.25 3.25 1 0 2 1 274 610 1 +0 28.42 3.5 0.835 1 1 0 1 280 0 1 +1 67.75 5.5 13 1 0 1 0 0 0 1 +1 20.42 1.835 2.25 1 0 1 1 100 150 1 +0 47.42 8 6.5 1 0 6 1 375 51100 1 +1 36.25 5 2.5 1 0 6 1 0 367 1 +1 32.67 5.5 5.5 1 0 12 0 408 1000 1 +1 48.58 6.5 6 1 1 0 0 350 0 1 +1 39.92 0.54 0.5 1 0 3 1 200 1000 1 +1 33.58 2.75 4.25 1 0 6 1 204 0 1 +0 18.83 9.5 1.625 1 0 6 0 40 600 1 +0 26.92 13.5 5 1 0 2 1 0 5000 1 +0 31.25 3.75 0.625 1 0 9 0 181 0 1 +0 56.5 16 0 1 0 15 1 0 247 1 +1 43 0.29 1.75 1 0 8 1 100 375 1 +1 22.33 11 2 1 0 1 1 80 278 1 +1 27.25 1.665 5.085 1 0 9 1 399 827 1 +1 32.83 2.5 2.75 1 0 6 1 160 2072 1 +1 23.25 1.5 2.375 1 0 3 0 0 582 1 +0 40.33 7.54 8 1 0 14 1 0 2300 1 +0 30.5 6.5 4 1 0 7 0 0 3065 1 +0 52.83 15 5.5 1 0 14 1 0 2200 1 +0 46.67 0.46 0.415 1 0 11 0 440 6 1 +0 58.33 10 4 1 0 14 1 0 1602 1 +1 37.33 6.5 4.25 1 0 12 0 93 0 1 +1 23.08 2.5 1.085 1 0 11 0 60 2184 1 +1 32.75 1.5 5.5 1 0 3 0 0 0 1 +0 21.67 11.5 0 1 0 11 0 0 0 1 +0 28.5 3.04 2.54 1 0 1 1 70 0 1 +0 68.67 15 0 1 0 14 1 0 3376 1 +1 28 2 4.165 1 0 2 0 181 0 1 +1 34.08 0.08 0.04 1 0 1 0 280 2000 1 +1 27.67 2 1 1 0 4 1 140 7544 1 +1 44 2 1.75 1 0 2 0 0 15 1 +1 25.08 1.71 1.665 1 0 1 0 395 20 1 +1 32 1.75 0.04 1 1 0 0 393 0 1 +0 60.58 16.5 11 1 1 0 0 21 10561 1 +0 40.83 10 1.75 1 1 0 1 29 837 1 +1 19.33 9.5 1 1 1 0 0 60 400 1 +0 32.33 0.54 0.04 1 1 0 1 440 11177 1 +1 36.67 3.25 9 1 1 0 0 102 639 1 +1 37.5 1.125 1.5 0 1 0 0 431 0 1 +0 25.08 2.54 0.25 1 1 0 0 370 0 1 +1 41.33 0 15 1 1 0 1 0 0 1 +1 56 12.5 8 1 1 0 0 24 2028 1 +0 49.83 13.585 8.5 1 1 0 0 0 0 1 +1 22.67 10.5 1.335 1 1 0 1 100 0 1 +1 27 1.5 0.375 1 1 0 0 260 1065 1 +1 25 12.5 3 1 1 0 0 20 0 1 +0 26.08 8.665 1.415 1 1 0 1 160 150 1 +0 18.42 9.25 1.21 1 0 4 1 60 540 1 +1 20.17 8.17 1.96 1 0 14 1 60 158 1 +1 47.67 0.29 15 1 0 20 1 0 15000 1 +0 21.25 2.335 0.5 1 0 4 1 80 0 1 +0 20.67 3 0.165 1 0 3 1 100 6 1 +0 57.08 19.5 5.5 1 0 7 1 0 3000 1 +0 22.42 5.665 2.585 1 0 7 1 129 3257 1 +1 48.75 8.5 12.5 1 0 9 1 181 1655 1 +1 40 6.5 3.5 1 0 1 1 0 500 1 +1 40.58 5 5 1 0 7 1 0 3065 1 +0 28.67 1.04 2.5 1 0 5 0 300 1430 1 +0 33.08 4.625 1.625 1 0 2 1 0 0 1 +1 21.33 10.5 3 1 1 0 0 0 0 1 +1 42 0.205 5.125 1 1 0 1 400 0 1 +1 41.75 0.96 2.5 1 1 0 1 510 600 1 +1 22.67 1.585 3.085 1 0 6 1 80 0 1 +1 34.5 4.04 8.5 1 0 7 0 195 0 1 +1 28.25 5.04 1.5 1 0 8 0 144 7 1 +1 33.17 3.165 3.165 1 0 3 0 380 0 1 +1 48.17 7.625 15.5 1 0 12 1 0 790 1 +1 27.58 2.04 2 1 0 3 0 370 560 1 +1 22.58 10.04 0.04 1 0 9 1 60 396 1 +0 24.08 0.5 1.25 1 0 1 1 0 678 1 +0 41.33 1 2.25 1 1 0 0 0 300 1 +0 20.75 10.25 0.71 1 0 2 0 49 0 1 +1 36.33 2.125 0.085 1 0 1 1 50 1187 1 +0 35.42 12 14 1 0 8 1 0 6590 1 +1 28.67 9.335 5.665 1 0 6 1 381 168 1 +1 35.17 2.5 4.5 1 0 7 1 150 1270 1 +1 39.5 4.25 6.5 1 0 16 1 117 1210 1 +1 39.33 5.875 10 1 0 14 0 399 0 1 +1 24.33 6.625 5.5 1 1 0 0 100 0 1 +1 60.08 14.5 18 1 0 15 0 0 1000 1 +1 23.08 11.5 3.5 1 0 9 1 56 742 1 +1 26.67 2.71 5.25 1 0 1 1 211 0 1 +1 48.17 3.5 3.5 1 1 0 1 230 0 1 +1 41.17 4.04 7 1 0 8 1 320 0 1 +1 55.92 11.5 5 1 0 5 1 0 8851 1 +1 53.92 9.625 8.665 1 0 5 1 0 0 1 +0 18.92 9.25 1 1 0 4 0 80 500 1 +0 50.08 12.54 2.29 1 0 3 0 156 0 1 +1 65.42 11 20 1 0 7 0 22 0 1 +0 17.58 9 1.375 1 1 0 0 0 0 1 +0 18.83 9.54 0.085 1 1 0 1 100 0 1 +0 37.75 5.5 0.125 1 1 0 0 228 0 1 +1 23.25 4 0.25 1 1 0 0 160 0 1 +1 18.08 5.5 0.5 1 1 0 1 80 0 1 +0 22.5 8.46 2.46 0 1 0 1 164 0 1 +1 19.67 0.375 2 1 0 2 0 80 0 1 +1 22.08 11 0.665 1 1 0 1 100 0 1 +1 25.17 3.5 0.625 1 0 7 1 0 7059 1 +0 47.42 3 13.875 1 0 2 0 519 1704 1 +1 33.5 1.75 4.5 1 0 4 0 253 857 1 +1 27.67 13.75 5.75 1 1 0 0 487 500 1 +0 58.42 21 10 1 0 13 1 0 6700 1 +0 20.67 1.835 2.085 1 0 5 1 220 2503 1 +1 26.17 0.25 0 1 1 0 0 0 0 1 +1 21.33 7.5 1.415 1 0 1 1 80 9800 1 +1 42.83 4.625 4.58 1 1 0 1 0 0 1 +1 38.17 10.125 2.5 1 0 6 1 520 196 1 +1 20.5 10 2.5 1 1 0 1 40 0 1 +1 48.25 25.085 1.75 1 0 3 1 120 14 1 +1 28.33 5 11 1 1 0 0 70 0 1 +1 18.5 2 1.5 1 0 2 1 120 300 1 +1 33.17 3.04 2.04 1 0 1 0 180 18027 1 +1 45 8.5 14 1 0 1 0 88 2000 1 +0 19.67 0.21 0.29 1 0 11 1 80 99 1 +1 21.83 11 0.29 1 0 6 1 121 0 1 +1 40.25 21.5 20 1 0 11 1 0 1200 1 +1 41.42 5 5 1 0 6 0 470 0 1 +0 17.83 11 1 1 0 11 1 0 3000 1 +1 23.17 11.125 0.46 1 0 1 1 100 0 1 +1 18.17 10.25 1.085 0 1 0 1 320 13 0 +1 20 11.045 2 0 1 0 0 136 0 0 +1 20 0 0.5 0 1 0 1 144 0 0 +0 20.75 9.54 0.04 0 1 0 1 200 1000 0 +0 24.5 1.75 0.165 0 1 0 1 132 0 0 +1 32.75 2.335 5.75 0 1 0 0 292 0 0 +0 52.17 0 0 0 1 0 1 0 0 0 +0 48.17 1.335 0.335 0 1 0 1 0 120 0 +0 20.42 10.5 0 0 1 0 0 154 32 0 +1 50.75 0.585 0 0 1 0 1 145 0 0 +1 17.08 0.085 0.04 0 1 0 1 140 722 0 +1 18.33 1.21 0 0 1 0 1 100 0 0 +0 32 6 1.25 0 1 0 1 272 0 0 +1 59.67 1.54 0.125 1 1 0 0 260 0 1 +1 18 0.165 0.21 0 1 0 1 200 40 1 +1 32.33 2.5 1.25 0 1 0 0 280 0 0 +1 18.08 6.75 0.04 0 1 0 1 140 0 0 +1 38.25 10.125 0.125 0 1 0 1 160 0 0 +1 30.67 2.5 2.25 0 1 0 0 340 0 0 +1 18.58 5.71 0.54 0 1 0 1 120 0 0 +0 19.17 5.415 0.29 0 1 0 1 80 484 0 +0 18.17 10 0.165 0 1 0 1 340 0 0 +1 16.25 0.835 0.085 1 1 0 1 200 0 0 +1 21.17 0.875 0.25 0 1 0 1 280 204 0 +1 23.92 0.585 0.125 0 1 0 1 240 1 0 +1 17.67 4.46 0.25 0 1 0 1 80 0 0 +0 16.5 1.25 0.25 0 0 1 1 108 98 0 +1 23.25 12.625 0.125 0 0 2 1 0 5552 0 +1 17.58 10 0.165 0 0 1 1 120 1 0 +1 29.5 0.58 0.29 0 0 1 1 340 2803 0 +1 18.83 0.415 0.165 0 0 1 1 200 1 0 +0 21.75 1.75 0 0 1 0 1 160 0 0 +1 23 0.75 0.5 0 1 0 0 320 0 0 +0 18.25 10 1 0 0 1 1 120 1 0 +1 25.42 0.54 0.165 0 0 1 1 272 444 0 +1 35.75 2.415 0.125 0 0 2 1 220 1 0 +0 16.08 0.335 0 0 0 1 1 160 126 0 +0 31.92 3.125 3.04 0 0 2 0 200 4 0 +1 69.17 9 4 0 0 1 1 70 6 0 +1 32.92 2.5 1.75 0 0 2 0 720 0 0 +1 16.33 2.75 0.665 0 0 1 1 80 21 0 +1 22.17 12.125 3.335 0 0 2 0 180 173 0 +0 57.58 2 6.5 0 0 1 1 0 10 0 +1 18.25 0.165 0.25 0 1 0 0 280 0 0 +1 23.42 1 0.5 0 1 0 0 280 0 0 +0 15.92 2.875 0.085 0 1 0 1 120 0 0 +0 24.75 13.665 1.5 0 1 0 1 280 1 0 +1 48.75 26.335 0 1 1 0 0 0 0 0 +1 23.5 2.75 4.5 0 1 0 1 160 25 0 +1 18.58 10.29 0.415 0 1 0 1 80 0 0 +1 27.75 1.29 0.25 0 1 0 0 140 0 0 +0 31.75 3 0 0 1 0 1 160 20 0 +0 24.83 4.5 1 0 1 0 0 360 6 0 +1 19 1.75 2.335 0 1 0 0 112 6 0 +0 16.33 0.21 0.125 0 1 0 1 200 1 0 +0 18.58 10 0.415 0 1 0 1 80 42 0 +1 16.25 0 0.25 0 1 0 1 60 0 0 +1 23 0.75 0.5 1 1 0 0 320 0 0 +1 21.17 0.25 0.25 0 1 0 1 280 204 0 +1 17.5 22 0 0 1 0 0 450 100000 1 +1 19.17 0 0 0 1 0 0 500 1 1 +1 36.75 0.125 1.5 0 1 0 0 232 113 1 +1 21.25 1.5 1.5 0 1 0 1 150 8 1 +0 18.08 0.375 10 0 1 0 0 300 0 1 +0 33.67 0.375 0.375 0 1 0 1 300 44 1 +1 48.58 0.205 0.25 1 0 11 1 380 2732 1 +1 33.67 1.25 1.165 0 1 0 1 120 0 0 +0 29.5 1.085 1 0 1 0 1 280 13 0 +1 30.17 1.085 0.04 0 1 0 1 170 179 0 +1 34.83 2.5 3 0 1 0 1 200 0 0 +0 33.25 2.5 2.5 0 1 0 0 0 2 0 +1 34.08 2.5 1 0 1 0 1 460 16 0 +0 25.25 12.5 1 0 1 0 0 180 1062 0 +1 34.75 2.5 0.5 0 1 0 1 348 0 0 +1 27.67 0.75 0.165 0 1 0 0 220 251 0 +1 47.33 6.5 1 0 1 0 0 0 228 0 +0 34.83 1.25 0.5 0 1 0 0 160 0 0 +0 33.25 3 2 0 1 0 1 180 0 0 +1 28 3 0.75 0 1 0 0 300 67 0 +0 39.08 4 3 0 1 0 1 480 0 0 +1 42.75 4.085 0.04 0 1 0 1 108 100 0 +1 26.92 2.25 0.5 0 1 0 0 640 4000 0 +1 33.75 2.75 0 0 1 0 1 180 0 0 +1 38.92 1.75 0.5 0 1 0 0 300 2 0 +1 62.75 7 0 0 1 0 1 0 12 0 +1 26.75 4.5 2.5 0 1 0 1 200 1210 0 +1 63.33 0.54 0.585 1 0 3 0 180 0 0 +1 27.83 1.5 2.25 0 0 1 0 100 3 0 +0 26.17 2 0 0 1 0 0 276 1 0 +1 22.17 0.585 0 0 1 0 1 100 0 0 +1 22.5 11.5 1.5 0 1 0 0 0 4000 0 +1 30.75 1.585 0.585 0 1 0 0 0 0 0 +1 36.67 2 0.25 0 1 0 0 221 0 0 +0 16 0.165 1 0 0 2 0 320 1 0 +1 41.17 1.335 0.165 0 1 0 1 168 0 0 +0 19.5 0.165 0.04 0 1 0 0 380 0 0 +1 32.42 3 0.165 0 1 0 0 120 0 0 +0 36.75 4.71 0 0 1 0 1 160 0 0 +0 30.25 5.5 5.5 0 1 0 0 100 0 0 +1 23.08 2.5 0.085 0 1 0 0 100 4208 0 +1 26.83 0.54 0 0 1 0 1 100 0 0 +1 16.92 0.335 0.29 0 1 0 1 200 0 0 +1 24.42 2 0.165 0 0 2 1 320 1300 0 +1 42.83 1.25 13.875 0 0 1 0 352 112 0 +0 22.75 6.165 0.165 0 1 0 1 220 1000 0 +1 39.42 1.71 0.165 0 1 0 1 400 0 0 +0 23.58 11.5 3 0 1 0 0 20 16 0 +1 21.42 0.75 0.75 0 1 0 0 132 2 0 +1 33 2.5 7 0 1 0 0 280 0 0 +1 26.33 13 0 0 1 0 0 140 1110 0 +0 45 4.585 1 0 1 0 0 240 0 0 +1 26.25 1.54 0.125 0 1 0 1 100 0 0 +0 20.83 0.5 1 0 1 0 1 260 0 0 +1 28.67 14.5 0.125 0 1 0 1 0 286 0 +1 20.67 0.835 2 0 1 0 0 240 0 0 +1 34.42 1.335 0.125 0 1 0 0 440 4500 0 +1 33.58 0.25 4 0 1 0 0 420 0 0 +1 43.17 5 2.25 0 1 0 0 141 0 0 +0 22.67 7 0.165 0 1 0 1 160 0 0 +0 24.33 2.5 4.5 0 1 0 1 200 456 0 +0 56.83 4.25 5 0 1 0 0 0 4 0 +1 22.08 11.46 1.585 0 1 0 0 100 1212 0 +1 34 5.5 1.5 0 1 0 0 60 0 0 +1 22.58 1.5 0.54 0 1 0 0 120 67 0 +1 21.17 0 0.5 0 1 0 0 0 0 0 +1 26.67 14.585 0 0 1 0 0 178 0 0 +1 22.92 0.17 0.085 0 1 0 1 0 0 0 +1 15.17 7 1 0 1 0 1 600 0 0 +1 39.92 5 0.21 0 1 0 1 550 0 0 +1 27.42 12.5 0.25 0 1 0 0 720 0 0 +1 24.75 0.54 1 0 1 0 0 120 1 0 +1 41.17 1.25 0.25 0 1 0 1 0 195 0 +0 33.08 1.625 0.54 0 1 0 0 0 0 0 +1 29.83 2.04 0.04 0 1 0 1 128 1 0 +0 23.58 0.585 0.125 0 1 0 1 120 87 0 +1 26.17 12.5 1.25 0 1 0 0 0 17 0 +1 31 2.085 0.085 0 1 0 1 300 0 0 +1 20.75 5.085 0.29 0 1 0 1 140 184 0 +1 28.92 0.375 0.29 0 1 0 1 220 140 0 +0 51.92 6.5 3.085 0 1 0 0 73 0 0 +0 22.67 0.335 0.75 0 1 0 1 160 0 0 +1 34 5.085 1.085 0 1 0 0 480 0 0 +0 69.5 6 0 0 1 0 1 0 0 0 +0 19.58 0.665 1 0 0 1 1 2000 2 0 +1 16 3.125 0.085 0 0 1 1 0 6 0 +1 17.08 0.25 0.335 0 0 4 1 160 8 0 +1 31.25 2.835 0 0 0 5 1 176 146 0 +1 25.17 3 1.25 0 0 1 1 0 22 0 +0 22.67 0.79 0.085 0 1 0 1 144 0 0 +1 40.58 1.5 0 0 1 0 1 300 0 0 +1 22.25 0.46 0.125 0 1 0 0 280 55 0 +0 22.25 1.25 3.25 0 1 0 1 280 0 0 +1 22.5 0.125 0.125 0 1 0 1 200 70 0 +1 23.58 1.79 0.54 0 1 0 0 136 1 0 +1 38.42 0.705 0.375 0 0 2 1 225 500 0 +0 26.58 2.54 0 0 1 0 0 180 60 0 +1 35 2.5 1 0 1 0 0 210 0 0 +1 20.42 1.085 1.5 0 1 0 1 108 7 0 +1 29.42 1.25 1.75 0 1 0 1 200 0 0 +1 26.17 0.835 1.165 0 1 0 1 100 0 0 +1 33.67 2.165 1.5 0 1 0 1 120 0 0 +1 24.58 1.25 0.25 0 1 0 1 110 0 0 +0 27.67 2.04 0.25 0 1 0 0 180 50 0 +1 37.5 0.835 0.04 0 1 0 1 120 5 0 +1 49.17 2.29 0.29 0 1 0 1 200 3 0 +1 33.58 0.335 0.085 0 1 0 1 180 0 0 +1 51.83 3 1.5 0 1 0 1 180 4 0 +1 22.92 3.165 0.165 0 1 0 1 160 1058 0 +1 21.83 1.54 0.085 0 1 0 0 356 0 0 +1 25.25 1 0.5 0 1 0 1 200 0 0 +1 58.58 2.71 2.415 0 1 0 0 320 0 0 +1 19 0 0 0 0 4 1 45 1 0 +1 19.58 0.585 0 0 0 3 1 350 769 0 +0 53.33 0.165 0 0 1 0 0 62 27 0 +0 27.17 1.25 0 0 0 1 1 92 300 0 +1 25.92 0.875 0.375 0 0 2 0 174 3 0 +1 23.08 0 1 0 0 11 1 0 0 0 +1 39.58 5 0 0 0 2 1 17 1 0 +1 30.58 2.71 0.125 0 1 0 0 80 0 0 +1 17.25 3 0.04 0 1 0 0 160 40 0 +0 17.67 0 0 0 1 0 1 86 0 0 +1 16.5 0.125 0.165 0 1 0 1 132 0 0 +0 27.33 1.665 0 0 1 0 1 340 1 0 +1 31.25 1.125 0 0 0 1 1 96 19 0 +1 20 7 0.5 0 1 0 1 0 0 0 +1 39.5 1.625 1.5 0 1 0 1 0 316 0 +1 36.5 4.25 3.5 0 1 0 1 454 50 0 +1 52.42 1.5 3.75 0 1 0 0 0 350 0 +1 36.17 18.125 0.085 0 1 0 1 320 3552 0 +1 29.67 0.75 0.04 0 1 0 1 240 0 0 +1 36.17 5.5 5 0 1 0 1 210 687 0 +1 25.67 0.29 1.5 0 1 0 0 160 0 0 +0 24.5 2.415 0 0 1 0 1 120 0 0 +1 24.08 0.875 0.085 0 0 4 1 254 1950 0 +1 21.92 0.5 0.125 0 1 0 1 360 0 0 +0 36.58 0.29 0 0 0 10 1 200 18 0 +0 23 1.835 0 0 0 1 1 200 53 0 +0 27.58 3 2.79 0 0 1 0 280 10 0 +1 31.08 3.085 2.5 0 0 2 0 160 41 0 +0 30.42 1.375 0.04 0 0 3 1 0 33 0 +1 22.08 2.335 0.75 0 1 0 1 180 0 0 +1 16.33 4.085 0.415 0 1 0 0 120 0 0 +0 21.92 11.665 0.085 0 1 0 1 320 5 0 +1 21.08 4.125 0.04 0 1 0 1 140 100 0 +1 17.42 6.5 0.125 0 1 0 1 60 100 0 +1 19.17 4 1 0 1 0 0 360 1000 0 +1 20.67 0.415 0.125 0 1 0 1 0 44 0 +1 26.75 2 0.75 0 1 0 0 80 0 0 +1 23.58 0.835 0.085 0 1 0 0 220 5 0 +1 39.17 2.5 10 0 1 0 0 200 0 0 +1 22.75 11.5 0.415 0 1 0 1 0 0 0 +0 16.92 0.5 0.165 0 0 6 0 240 35 0 +1 23.5 3.165 0.415 0 0 1 0 280 80 0 +0 17.33 9.5 1.75 0 0 10 0 0 10 0 +1 23.75 0.415 0.04 0 0 2 1 128 6 0 +1 34.67 1.08 1.165 0 1 0 1 28 0 0 +1 74.83 19 0.04 0 0 2 1 0 351 0 +1 28.17 0.125 0.085 0 1 0 1 216 2100 0 +1 24.5 13.335 0.04 0 1 0 0 120 475 0 +1 18.83 3.54 0 0 1 0 0 180 1 0 +0 47.25 0.75 2.75 1 0 1 1 333 892 1 +1 24.17 0.875 4.625 1 0 2 0 520 2000 1 +1 39.25 9.5 6.5 1 0 14 1 240 4607 1 +0 20.5 11.835 6 1 1 0 1 340 0 1 +0 18.83 4.415 3 1 1 0 1 240 0 1 +1 19.17 9.5 1.5 1 1 0 1 120 2206 1 +0 25 0.875 1.04 1 1 0 0 160 5860 1 +1 20.17 9.25 1.665 1 0 3 0 40 28 1 +1 25.75 0.5 1.46 1 0 5 0 312 0 1 +1 20.42 7 1.625 1 0 3 1 200 1391 1 +1 39 5 3.5 1 0 10 0 0 0 1 +0 64.08 0.165 0 1 0 1 1 232 100 1 +1 28.25 5.125 4.75 1 0 2 1 420 7 1 +0 28.75 3.75 1.085 1 0 1 0 371 0 1 +1 31.33 19.5 7 1 0 16 1 0 5000 1 +0 18.92 9 0.75 1 0 2 1 88 591 1 +0 24.75 3 1.835 1 0 19 1 0 500 1 +0 30.67 12 2 1 0 1 1 220 19 1 +1 21 4.79 2.25 1 0 1 0 80 300 1 +1 13.75 4 1.75 1 0 2 0 120 1000 1 +0 46 4 0 1 1 0 1 100 960 1 +0 44.33 0 2.5 1 1 0 1 0 0 1 +1 20.25 9.96 0 1 1 0 1 0 0 1 +1 22.67 2.54 2.585 1 1 0 1 0 0 1 +0 60.92 5 4 1 0 4 1 0 99 1 +1 16.08 0.75 1.75 1 0 5 0 352 690 1 +0 28.17 0.375 0.585 1 0 4 1 80 0 1 +1 39.17 1.71 0.125 1 0 5 0 480 0 1 +0 30 5.29 2.25 1 0 5 0 99 500 1 +1 22.83 3 1.29 1 0 1 1 260 800 1 +0 22.5 8.5 1.75 1 0 10 1 80 990 0 +0 28.58 1.665 2.415 1 1 0 0 440 0 0 +1 45.17 1.5 2.5 1 1 0 0 140 0 0 +1 41.58 1.75 0.21 1 1 0 1 160 0 0 +0 57.08 0.335 1 1 1 0 0 252 2197 0 +0 55.75 7.08 6.75 1 0 3 0 100 50 0 +1 43.25 25.21 0.21 1 0 1 1 760 90 0 +0 25.33 2.085 2.75 1 1 0 0 360 1 0 +0 24.58 0.67 1.75 1 1 0 1 400 0 0 +1 43.17 2.25 0.75 1 1 0 1 560 0 0 +1 40.92 0.835 0 1 1 0 1 130 1 0 +1 31.83 2.5 7.5 1 1 0 0 523 0 0 +0 33.92 1.585 0 1 1 0 1 320 0 0 +0 24.92 1.25 0 1 1 0 1 80 0 0 +1 35.25 3.165 3.75 1 1 0 0 680 0 0 +1 34.25 1.75 0.25 1 1 0 0 163 0 0 +1 80.25 5.5 0.54 1 1 0 1 0 340 0 +1 19.42 1.5 2 1 1 0 0 100 20 0 +1 42.75 3 1 1 1 0 1 0 200 0 +1 19.67 10 0.835 1 1 0 0 140 0 0 +1 36.33 3.79 1.165 1 1 0 0 200 0 0 +1 30.08 1.04 0.5 1 0 10 0 132 28 0 +1 44.25 11 1.5 1 1 0 1 0 0 0 +1 23.58 0.46 2.625 1 0 6 0 208 347 0 +1 23.92 1.5 1.875 1 0 6 1 200 327 1 +1 33.17 1 0.75 1 0 7 0 340 4071 1 +1 48.33 12 16 1 1 0 1 110 0 1 +1 76.75 22.29 12.75 1 0 1 0 0 109 1 +1 51.33 10 0 1 0 11 1 0 1249 1 +1 34.75 15 5.375 1 0 9 0 0 134 1 +1 38.58 3.335 4 1 0 14 1 383 1344 1 +0 22.42 11.25 0.75 1 0 4 1 0 321 1 +1 41.92 0.42 0.21 1 0 6 1 220 948 1 +1 29.58 4.5 7.5 1 0 2 0 330 0 1 +0 32.17 1.46 1.085 1 0 16 1 120 2079 1 +1 51.42 0.04 0.04 1 1 0 1 0 3000 1 +0 22.83 2.29 2.29 1 0 7 0 140 2384 1 +0 25 12.33 3.5 1 0 6 1 400 458 1 +1 26.75 1.125 1.25 1 1 0 1 0 5298 1 +1 23.33 1.5 1.415 1 1 0 1 422 200 1 +1 24.42 12.335 1.585 1 1 0 0 120 0 1 +1 42.17 5.04 12.75 1 1 0 0 92 0 1 +0 20.83 3 0.04 1 1 0 1 100 0 1 +1 23.08 11.5 2.125 1 0 11 0 290 284 1 +0 25.17 2.875 0.875 1 1 0 1 360 0 1 +1 43.08 0.375 0.375 1 0 8 0 300 162 1 +0 35.75 0.915 0.75 1 0 4 1 0 1583 1 +1 59.5 2.75 1.75 1 0 5 0 60 58 1 +1 21 3 1.085 1 0 8 0 160 1 1 +1 21.92 0.54 0.04 1 0 1 0 840 59 1 +0 65.17 14 0 1 0 11 0 0 1400 1 +0 20.33 10 1 1 0 4 1 50 1465 1 +1 32.25 0.165 3.25 1 0 1 0 432 8000 1 +1 30.17 0.5 1.75 1 0 11 1 32 540 1 +1 25.17 6 1 1 0 3 1 0 0 1 +1 39.17 1.625 1.5 1 0 10 1 186 4700 1 +1 39.08 6 1.29 1 0 5 0 108 1097 1 +1 31.67 0.83 1.335 1 0 8 0 303 3290 1 +1 41 0.04 0.04 0 0 1 1 560 0 1 +1 48.5 4.25 0.125 1 1 0 0 225 0 1 +1 32.67 9 5.25 1 1 0 0 154 0 1 +0 28.08 15 0 1 1 0 1 0 13212 1 +1 73.42 17.75 0 1 1 0 0 0 0 1 +1 64.08 20 17.5 1 0 9 0 0 1000 1 +1 51.58 15 8.5 1 0 9 1 0 0 1 +1 26.67 1.75 1 1 0 5 0 160 5777 1 +1 25.33 0.58 0.29 1 0 7 0 96 5124 1 +1 30.17 6.5 3.125 1 0 8 1 330 1200 1 +1 27 0.75 4.25 1 0 3 0 312 150 1 +1 34.17 5.25 0.085 0 1 0 0 290 6 1 +1 38.67 0.21 0.085 1 1 0 0 280 0 1 +1 25.75 0.75 0.25 1 1 0 1 349 23 1 +0 46.08 3 2.375 1 0 8 0 396 4159 1 +0 21.5 6 2.5 1 0 3 1 80 918 1 +1 20.5 2.415 2 1 0 11 0 200 3000 1 +0 29.5 0.46 0.54 1 0 4 1 380 500 1 +1 29.83 1.25 0.25 0 1 0 1 224 0 0 +1 20.08 0.25 0.125 0 1 0 1 200 0 0 +1 23.42 0.585 0.085 1 1 0 1 180 0 0 +0 29.58 1.75 1.25 0 1 0 0 280 0 0 +1 16.17 0.04 0.04 0 1 0 1 0 0 1 +1 32.33 3.5 0.5 0 1 0 0 232 0 0 +1 47.83 4.165 0.085 0 1 0 0 520 0 0 +1 20 1.25 0.125 0 1 0 1 140 4 0 +1 27.58 3.25 5.085 0 0 2 0 369 1 0 +1 22 0.79 0.29 0 0 1 1 420 283 0 +1 19.33 10.915 0.585 0 0 2 0 200 7 0 +0 38.33 4.415 0.125 0 1 0 1 160 0 0 +1 29.42 1.25 0.25 0 0 2 0 400 108 0 +1 22.67 0.75 1.585 0 0 1 0 400 9 0 +1 32.25 14 0 0 0 2 1 160 1 0 +1 29.58 4.75 2 0 0 1 0 460 68 0 +1 18.42 10.415 0.125 1 1 0 1 120 375 0 +1 22.17 2.25 0.125 0 1 0 1 160 10 0 +1 22.67 0.165 2.25 0 1 0 0 0 0 1 +1 18.83 0 0.665 0 1 0 1 160 1 0 +1 21.58 0.79 0.665 0 1 0 1 160 0 0 +1 23.75 12 2.085 0 1 0 1 80 0 0 +1 36.08 2.54 0 0 1 0 1 0 1000 0 +1 29.25 13 0.5 0 1 0 1 228 0 0 +0 19.58 0.665 1.665 0 1 0 1 220 5 0 +0 22.92 1.25 0.25 0 1 0 0 120 809 0 +0 27.25 0.29 0.125 0 0 1 0 272 108 0 +0 38.75 1.5 0 0 1 0 1 76 0 0 +1 32.42 2.165 0 0 1 0 1 120 0 0 +0 23.75 0.71 0.25 0 0 1 0 240 4 0 +1 18.17 2.46 0.96 0 0 2 0 160 587 0 +1 40.92 0.5 0.5 0 1 0 0 130 0 0 +1 19.5 9.585 0.79 0 1 0 1 80 350 0 +1 28.58 3.625 0.25 0 1 0 0 100 0 0 +1 35.58 0.75 1.5 0 1 0 0 231 0 0 +1 34.17 2.75 2.5 0 1 0 0 232 200 0 +1 31.58 0.75 3.5 0 1 0 0 320 0 0 +0 52.5 7 3 0 1 0 1 0 0 0 +1 36.17 0.42 0.29 0 1 0 0 309 2 0 +1 37.33 2.665 0.165 0 1 0 0 0 501 0 +0 20.83 8.5 0.165 0 1 0 1 0 351 0 +1 24.08 9 0.25 0 1 0 0 0 0 0 +1 25.58 0.335 3.5 0 1 0 0 340 0 0 +0 35.17 3.75 0 0 0 6 1 0 200 0 +1 48.08 3.75 1 0 1 0 1 100 2 0 +0 15.83 7.625 0.125 0 0 1 0 0 160 0 +0 22.5 0.415 0.335 0 1 0 0 144 0 0 +1 21.5 11.5 0.5 1 1 0 0 100 68 0 +0 23.58 0.83 0.415 0 0 1 0 200 11 0 +0 21.08 5 0 0 1 0 1 0 0 0 +1 25.67 3.25 2.29 0 0 1 0 416 21 0 +0 38.92 1.665 0.25 0 1 0 1 0 390 0 +0 15.75 0.375 1 0 1 0 1 120 18 0 +0 28.58 3.75 0.25 0 0 1 0 40 154 0 +1 22.25 9 0.085 0 1 0 1 0 0 0 +1 29.83 3.5 0.165 0 1 0 1 216 0 0 +0 23.5 1.5 0.875 0 1 0 0 160 0 0 +1 32.08 4 1.5 0 1 0 0 120 0 0 +1 31.08 1.5 0.04 0 1 0 1 160 0 0 +1 31.83 0.04 0.04 0 1 0 1 0 0 0 +0 21.75 11.75 0.25 0 1 0 0 180 0 0 +0 17.92 0.54 1.75 0 0 1 0 80 5 0 +1 30.33 0.5 0.085 0 1 0 0 252 0 0 +1 51.83 2.04 1.5 0 1 0 1 120 1 0 +1 47.17 5.835 5.5 0 1 0 1 465 150 0 +1 25.83 12.835 0.5 0 1 0 1 0 2 0 +0 50.25 0.835 0.5 0 1 0 0 240 117 0 +0 37.33 2.5 0.21 0 1 0 1 260 246 0 +0 41.58 1.04 0.665 0 1 0 1 240 237 0 +0 30.58 10.665 0.085 0 0 12 0 129 3 0 +1 19.42 7.25 0.04 0 0 1 1 100 1 0 +0 17.92 10.21 0 0 1 0 1 0 50 0 +0 20.08 1.25 0 0 1 0 1 0 0 0 +1 19.5 0.29 0.29 0 1 0 1 280 364 0 +1 27.83 1 3 0 1 0 1 176 537 0 +1 17.08 3.29 0.335 0 1 0 0 140 2 0 +1 36.42 0.75 0.585 0 1 0 1 240 3 0 +1 40.58 3.29 3.5 0 1 0 0 400 0 0 +1 21.08 10.085 1.25 0 1 0 1 260 0 0 +0 22.67 0.75 2 0 0 2 0 200 394 0 +0 25.25 13.5 2 0 0 1 0 200 1 0 +1 17.92 0.205 0.04 0 1 0 1 280 750 0 +1 35 3.375 8.29 0 1 0 0 0 0 0 diff --git a/Homework 1/HW1_backup b/Homework 1/HW1_backup new file mode 100644 index 0000000..333ef7c --- /dev/null +++ b/Homework 1/HW1_backup @@ -0,0 +1,60 @@ +# Homework 1 notes + +check knn vs. true classification error for 2.2.3 +3.1, 3.2 + +may have to refigure out code to extact classification accuracy +rather than just reporting MAE and MSE + +also notice that MAE is the same for k = (58, 30, 20, 10) + +check documentation to see what the output of train.kknn is + - minimal mean absolute error + - minimal mean squared error + + + + + + # set up list of possible K values from 1 to 100 by 3 +possible_k <- as.list(seq(from = 1, to = 100, by = 3)) + +# set up a blank list to put accuracy values into +test_accuracy <- list() + +# fit a model for each possible value of K and extract the accuracy from each model +for (i in seq_along(possible_k)) { + + k = possible_k[[i]] + + knn_fit <- kknn( + response_y ~ ., + train = train, + test = test, + # valid = validation$response_y, + k = k, + scale = T) + + fitted <- fitted(knn_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% + cbind(., test$response_y) %>% + mutate(acc = value == test$response_y) + + test_accuracy[[i]] <- mean(fitted$acc) + +} + +# put the K and test accuracy lists into dataframes +k_df <- reduce(possible_k, rbind.data.frame) +test_acc_df <- reduce(test_accuracy, rbind.data.frame) + +# find the best K associated with the highest accuracy +(performance_test <- cbind(k_df, test_acc_df) %>% + rename( + 'knn_error' = !!names(.[2]), + 'knn_k' = !!names(.[1]) + ) %>% + filter(knn_error == max(knn_error)) %>% + arrange(., knn_k) %>% + .[1,]) diff --git a/Homework 1/Homework1_isye6501.Rmd b/Homework 1/Homework1_isye6501.Rmd new file mode 100644 index 0000000..fa378d8 --- /dev/null +++ b/Homework 1/Homework1_isye6501.Rmd @@ -0,0 +1,565 @@ +--- +title: 'Homework #1: ISYE6501' +author: "Zach Olivier" +date: "5/15/2018" +output: html_document +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +``` +
+ +## Question 2.1 + +Question: + +Describe a situation or problem from your job, everyday life, current events, etc., for which a classification model would be appropriate. List some (up to 5) predictors that you might use. + +
+ +Answer: + +One example I am excited about is an attempt to build a classification model to determine whether a person will purchase a certain product or not, say a new car. + +Based on a list of attributes, a classification model could sort customers into groups of 'most likely will purchase' and 'most likely will not purchase' with high accuracy. This would help optimize our marketing budget by only targeting customers who are the most likely to purchase. + +Predictors I would use for this model: + + - Household Income + - Location + - Have they purchased a car before + - Time since last vehicle purchase + - Type of vehicle last purchased + +
+ +## Question 2.2.1 + +The files credit_card_data.txt (without headers) and credit_card_data-headers.txt (with headers) contain a data set with 654 data points, 6 continuous and 4 binary predictor variables. It has credit card applications data with a binary response variable (last column) indicating if the application was positive or negative. The data set is the “Credit Approval Data Set” from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/data sets/Credit+Approval) without the categorical variables and without data points that have missing values. + +
+ +Question: + +Using the support vector machine function ksvm contained in the R package kernlab, find a good classifier for this data. + +Show the equation of your classifier, and how well it classifies the data points in the full data set. +(Don’t worry about test/validation data yet; we’ll cover that topic soon.) + +
+ +Answer: + +First we read in the data and load the needed packages for this analysis. Then, we quickly look at +the data and see if it matches the course description. + +Our problem is classifying the data based on the 11th column - which I relabeled as response_y for +clarity. + +I also established a baseline accuracy that our model based classifiers should beat easily. My naive classifier will pick '1' as the answer for every value in the training set. + +In this case my naive classifier will accurately classify ~45% of the observations in the training set. + +Our proposed SVM and KNN models should aim to beat this baseline accuracy measure. + +
+ + +```{r credit svm} + +# set up directory and packages +setwd('~/Desktop/GTX/Homework 1/') + +# load packages +pacman::p_load(tidyverse, kernlab, caret, kknn, modelr) + +# get data and format +credit_df <- read.table('2.2credit_card_data-headersSummer2018.txt',header = T) %>% + as_tibble() %>% + dplyr::rename(., 'response_y' = R1) + +# data summary +str(credit_df) + +# investigate class imbalance - this is our 'baseline' accuracy +mean(credit_df$response_y == 1) + +# baseline error +(baseline <- 1 - mean(credit_df$response_y == 1)) + +``` + +Answer: + +The following code sets up the Support Vector Machine algorithm using the kernlab package in R. + +The ksvm function is supplied with a formula to model the response_y binary variable based on all +remaining predictors in the data set. The scaled argument is set to TRUE - the function will automatically scale the predictor data. Type is 'C-svc' to indicate we are using this function for +classification. Finally, the kernal is set to 'vanilladot' which initializes a linear decision boundary. + +I then set up a for loop to pass my model different regularization (C - Cost) parameters and then +extract each model's accuracy. The model with the highest training set accuracy based on values of +C will be selected as my 'best' model. **(Note: training set accuracy is not a valid measure of model performance!)** + +Here are the results: + +**The best tuned model with C = 95.45 achieved 95% training set accuracy. This outperforms the naive classifer baseline accuracy greatly** + +However, this does not indicate we have a good model. We may have modeled our training set real and random effects accurately - but our model will likely not generalize well to new data. There is a high likelihood that we have over fit this model to the training set. + +
+ +The formula for the best tuned linear decision boundary is: + + y = + + **(-36.5 x A2) + (-8.36 x A3) + (54.2 x A8) + (48.6 x A9) + (-17.5 x A1) + (-22.6 x A10) + (14.5 x A11) +** + **(-22.1 x A12) + (-56.4 x A14) + (50.2 x A15) + (-.778)** + + + +
+ + + +``` {r linear kernal} + +# set seed +set.seed(2) + +# data frame of model parameters +model_param <- data.frame( + type = 'C-svc', + kernal = 'vanilladot', + cross = 5, + scaled = T, + stringsAsFactors = F +) + + +# set up a list of possible C values: choose C from .5 to 100 by .05 +# - will build a model for each C and determine the 'best' C based on accuracy +# originally tried values .05 to 200 - shortened to run for homework +cost_list <- as.list(seq(from = 50, to = 100, by = .05)) + +# set up a list to put the error metrics of each model into +error_list <- list() + + +# cost loop - for each value of cost - fit a model - extract accuracy - put into error list +for (i in seq_along(cost_list)) { + + c <- cost_list[[i]] + + set.seed(2) + + # fit ksvm model based on model parameters + ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = model_param$scaled , + type = model_param$type, + kernal = model_param$kernal, + C = c, + cross = model_param$cross + ) + + error_list[[i]] = ksvm_fit@error +} + + +# reduce list of errors and cost parameters into a column in a data frame +error_df <- reduce(error_list, rbind.data.frame) +cost_df <- reduce(cost_list, rbind.data.frame) + +# performance measures - put list of errors and costs next to each other to find highest accuracy +performance_train <- cbind(error_df, cost_df) %>% + rename( + 'svm_error' = !!names(.[1]), + 'svm_cost' = !!names(.[2]) + ) %>% + mutate(svm_accuracy = 1-svm_error) %>% + filter(svm_error == min(svm_error)) %>% + arrange(., svm_cost) %>% + .[1,] + + +# fit model with our best C determined by training error +svm_bestfit <- ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = model_param$scaled , + type = model_param$type, + kernal = model_param$kernal, + C = performance_train$svm_cost, + cross = model_param$cross + ) + +## extracting the model formula + +# calculate a1...am the coefficients for each predictor! +svm_formula <- colSums(svm_bestfit@xmatrix[[1]] * svm_bestfit@coef[[1]]) %>% + as.data.frame() %>% + rownames_to_column('predictor') %>% + rbind(., data.frame(predictor ='z.Intercept', . = svm_bestfit@b)) %>% + spread(., key = predictor, value = .) %>% + as_tibble() + +# print results +performance_train +svm_bestfit +svm_formula + + +``` + +
+ +## Question 2.2.2 + +Question: + +You are welcome, but not required, to try other (nonlinear) kernels as well; we’re not covering them in this course, but they can sometimes be useful and might provide better predictions than vanilladot. + +
+ +Answer: + +Here is my experimentation with a non-linear kernal within a SVM model. I applied the same steps to hone in on a value of C that minimizes training set error. + +**The radial SVM model achieves a training set error of less than 4% with our best tuned Cost parameter.** + +As mentioned above - we are likely to have over fit to the training data. Training data should not be used to define the performance of our models. + +Cross Validation is a better measure of real test set performance. Even though our flexible radial model achieves less than 4% error on the training set, the cross validation error is almost 19%. + + +```{r credit svm radial} + +# set up list of possible cost values +# originally tried values .05 to 200 - shortened to run for homework +cost_list <- as.list(seq(from = 130, to = 175, by = .05)) + +# set up empty list to put error results for each cost into +error_list <- list() + +# fit a radial svm for every value of cost...extract error to compare +for (i in seq_along(cost_list)) { + + c <- cost_list[[i]] + + set.seed(2) + + # fit ksvm model + ksvm_fit <- ksvm( + response_y ~ ., # formula + data = credit_df, # training data + scaled = T, # scale predictors + type = 'C-svc', # svm for classification + kernal = 'rbfdot', # radial decision boundary + C = c, # set C to the input value from for loop + cross = 10, # implement 10 fold cross validation + kpar = 'automatic') # automatically detect best parameters for radial kernal + + error_list[[i]] = ksvm_fit@error +} + +# collapse lists to data frames +error_df <- reduce(error_list, rbind.data.frame) +cost_df <- reduce(cost_list, rbind.data.frame) + +# find the optimal value of Cost - cost value with lowest error +performance_train <- cbind(error_df, cost_df) %>% + rename( + 'svm_error' = !!names(.[1]), + 'svm_cost' = !!names(.[2]) + ) %>% + filter(svm_error == min(svm_error)) %>% + arrange(., svm_cost) %>% + .[1,] + + +# fit model with our best C determined by training error +svm_bestfit <- ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = T, + type = 'C-svc', + kernal = 'rbfdot', + C = performance_train$svm_cost, + cross = 10, + kpar = 'automatic' + ) + + +# look at the results of our model +svm_bestfit@error +svm_bestfit@cross + + +``` + +
+ +## Question 2.2.3 + +Question: + +Using the k-nearest-neighbors classification function kknn contained in the R kknn package, suggest a good value of k, and show how well it classifies that data points in the full data set. Don’t forget to scale the data (scale=TRUE in kknn). + +
+ + +Answer: + +Here we apply Leave One Out Cross Validation (LOOCV) to the credit dataset in order to find the optimal K for our KNN model. To do this, I implement the train.kknn function to cycle through possible values of K and determine the best value based on LOOCV error. Variables are scaled within the algorithm by setting scale = True. The kmax arguement is upper bound of K values we would like to consider for the model. + +**In this implementation we find that the optimal K is 58.** + +Using this optimal K value, we fit a KNN model to the entire training set to determine accuracy. + +**The accuracy of the K = 58 KNN model is ~88%** + +Note: Using this model to predict back onto the training set will give misleading results. Smaller values for K will actually predict better on the training set. However, this will not generalize to an independent or new dataset. K = 1 may perform perfectly on the training set but K = 58 will likely generalize better to other datasets. + + +```{r credit knn} + +set.seed(2) + +# set up train.kknn to find the optimal k using leave one out classification +(knn_fit_LOOCV <- train.kknn( + response_y ~ ., + data = credit_df, + # test = credit_df, + kmax = 100, + # kcv = 10, + scale = T) +) + +# apply optimal K to the original training dataset +knn_fit <- kknn( + response_y ~ ., + train = credit_df, + test = credit_df, + k = 58, + scale = T) + +# accuracy measures +fitted <- fitted(knn_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% # round to 1 if prob > .5, 0 otherwise + cbind(., credit_df$response_y) %>% + mutate(acc = value == credit_df$response_y) # if prediction == actual then True, else False + +# percetage accuracy of the model +(test_accuracy <- mean(fitted$acc)) + + + + +``` + + +
+ +## Question 3.1 + +Question: + +Using the same data set (credit_card_data.txt or credit_card_data-headers.txt) as in Question 2.2, +use the ksvm or kknn function to find a good classifier: + +(a) using cross-validation (do this for the k-nearest-neighbors model; SVM is optional) +(b) splitting the data into training, validation, and test data sets (pick either KNN or SVM; the other +is optional). + +
+ +Answer: (a) + +The kknn package provides a function 'train.kknn' which will search for the best value of K based on cross validation error. I specified kcv = 10 to run a 10-fold cross validation on the full credit dataset. + +The train.kknn function will run the 10-fold cross validation and extract the K (nearest neighbor parameter K, not cross validation fold k) with the minimial error. + +Based on the results the optimal **K is 58 and results in around 10% mean squared error** + +I also provide the results for K = 30, 20, and 10 to illustrate that the accuracy improvement for using K = 58 is not that much smaller than using less neighbors. + +Note: Using this model to predict back onto the training set will give misleading results. Smaller values for K will actually predict better on the training set. However, this will not generalize to an independent or new dataset. K = 1 may perform perfectly on the training set but K = 58 will likely generalize better to other datasets. + +Cross validation is a better estimate of test set error and we should trust those results more than accuracy or error on the training set. + +
+ +```{r credit knn cv} + +set.seed(4) + +# from documentation - k fold cross validation needs kcv arguement +# kcv = Number of partitions for k-fold cross validation. + + +# find best value of K by cross validation - what is the estimated test accuracy? +knn_fit <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 60, # search K values up to 600 + kcv = 10, # base accuarcy on 10-fold cross validation + scale = T) + +summary(knn_fit) + + + +# fit a model with less that the optimal K and compare accuracy +# K lower than our best fit should give inferior results +knn_fit2 <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 30, + kcv = 10, + scale = T) + +# mean squared error +summary(knn_fit2) + + +# fit a model with less that the optimal K and compare accuracy +# K lower than our best fit should give inferior results +knn_fit3 <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 20, + kcv = 10, + scale = T) + +# mean squared error +summary(knn_fit3) + + +# fit a model with less that the optimal K and compare accuracy +# K lower than our best fit should give inferior results +knn_fit4 <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 10, + kcv = 10, + scale = T) + +# mean squared error +summary(knn_fit4) + + + + +``` + + +Answer: (b) + +I will use the caret package to split our data set into training, test, and validation data sets. **I will portion the available data 60% training, 20% test, and 20% validation.** + +We train the model on the training data set, measure accuracy and tune parameters using the test set. Once we think we have a good model, we will re-train the model on the entire training and test sets, then calculate accuracy for our best model using the validation data set. + +
+ +```{r credit knn splits} + +set.seed(2) + +# develop the training and holdout partition +partition <- createDataPartition(credit_df$response_y, p = .6, + list = F) +# develop the training set +train <- credit_df[partition,] + +# develop the holdout set +holdout <- credit_df[-partition,] + +# develop the split of the holdout data into test and validation +partition_valid <- createDataPartition(holdout$response_y, p = .5, + list = F) +# split holdout into test +test <- holdout[partition_valid, ] + +# split holdout in validation +validation <- holdout[-partition_valid, ] + +# check splits +nrow(train)/nrow(credit_df); nrow(test)/nrow(credit_df); nrow(validation)/nrow(credit_df) + +``` + +Answer: (b) + +Here we determine the best value of K by training our KNN model on the training data set, and measuring accuracy on the test data set. Based on this method the K value that produced the maximum accuracy on the test data set is **K = 40, with accuracy of ~88%**. + +Now that we have our optimal value of K based on our test data set - we will apply this model to the final holdout data in the validation set. We do this to get an unbiased view of how our model will perform on new data. + +**The KNN model with K = 40 achieves ~85% accuracy on the validation dataset.** This means we should expect our classifier to accurately predict 85% of new 'unseen' data into the correct category. + + + +``` {r knn train test valid} + +# set up list of possible K values from 1 to 100 by 3 +possible_k <- as.list(seq(from = 1, to = 100, by = 3)) + +# set up a blank list to put accuracy values into +test_accuracy <- list() + +# fit a model for each possible value of K and extract the accuracy from each model +for (i in seq_along(possible_k)) { + + k = possible_k[[i]] + + knn_fit <- kknn( + response_y ~ ., + train = train, + test = test, + # valid = validation$response_y, + k = k, + scale = T) + + fitted <- fitted(knn_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% + cbind(., test$response_y) %>% + mutate(acc = value == test$response_y) + + test_accuracy[[i]] <- mean(fitted$acc) + +} + +# put the K and test accuracy lists into dataframes +k_df <- reduce(possible_k, rbind.data.frame) +test_acc_df <- reduce(test_accuracy, rbind.data.frame) + +# find the best K associated with the highest accuracy +(performance_test <- cbind(k_df, test_acc_df) %>% + rename( + 'knn_error' = !!names(.[2]), + 'knn_k' = !!names(.[1]) + ) %>% + filter(knn_error == max(knn_error)) %>% + arrange(., knn_k) %>% + .[1,]) + +# fit the best model on the training + testing data - find accuracy on the validation set +knn_best_fit <- kknn( + response_y ~ ., + train = rbind(train, test), # combine train to be train + test datasets + test = validation, + k = performance_test$knn_k, # best value of K found from test set accuracy + scale = T) + +# view the validation set accuracy +best_fitted <- fitted(knn_best_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% # kknn outputs a score for each value + cbind(., validation$response_y) %>% + mutate(acc = value == validation$response_y) + +# accuracy of our best fit knn model on the validation dataset +(valid_accuracy <- mean(best_fitted$acc)) + + +``` diff --git a/Homework 1/Homework1_script.R b/Homework 1/Homework1_script.R new file mode 100644 index 0000000..3b2515e --- /dev/null +++ b/Homework 1/Homework1_script.R @@ -0,0 +1,375 @@ + +# Homework #1 ISYE6501 ------------------------------------------------------------------------ + + +# code from the first homework is below +# document is meant to supplement pdf report +# please refer to the pdf report for offical answers, descriptions, and commentary +# this document is provided to make replicating code easier for homework grader +# http://html2pdf.com + + +# workflow ------------------------------------------------------------------------------------ + +# set up directory and packages +setwd('~/Desktop/GTX/Homework 1/') + +# load packages +pacman::p_load(tidyverse, kernlab, caret, kknn, modelr) + + + +# get data ------------------------------------------------------------------------------------ + +# get data and format +credit_df <- read.table('2.2credit_card_data-headersSummer2018.txt',header = T) %>% + as_tibble() %>% + dplyr::rename(., 'response_y' = R1) + +# data summary +str(credit_df) + +# get data and format +credit_df <- read.table('2.2credit_card_data-headersSummer2018.txt',header = T) %>% + as_tibble() %>% + dplyr::rename(., 'response_y' = R1) + +# data summary +str(credit_df) + + + + +# linear svm ---------------------------------------------------------------------------------- + +# set seed +set.seed(2) + +# data frame of model parameters +model_param <- data.frame( + type = 'C-svc', + kernal = 'vanilladot', + cross = 5, + scaled = T, + stringsAsFactors = F +) + + +# set up a list of possible C values: choose C from .5 to 100 by .05 +# - will build a model for each C and determine the 'best' C based on accuracy +cost_list <- as.list(seq(from = 0.5, to = 100, by = .05)) + +# set up a list to put the error metrics of each model into +error_list <- list() + + +# cost loop - for each value of cost - fit a model - extract accuracy - put into error list +for (i in seq_along(cost_list)) { + + c <- cost_list[[i]] + + set.seed(2) + + # fit ksvm model based on model parameters + ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = model_param$scaled , + type = model_param$type, + kernal = model_param$kernal, + C = c, + cross = model_param$cross + ) + + error_list[[i]] = ksvm_fit@error +} + + +# reduce list of errors and cost parameters into a column in a data frame +error_df <- reduce(error_list, rbind.data.frame) +cost_df <- reduce(cost_list, rbind.data.frame) + +# performance measures - put list of errors and costs next to each other to find highest accuracy +performance_train <- cbind(error_df, cost_df) %>% + rename( + 'svm_error' = !!names(.[1]), + 'svm_cost' = !!names(.[2]) + ) %>% + mutate(svm_accuracy = 1-svm_error) %>% + filter(svm_error == min(svm_error)) %>% + arrange(., svm_cost) %>% + .[1,] + + +# fit model with our best C determined by training error +svm_bestfit <- ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = model_param$scaled , + type = model_param$type, + kernal = model_param$kernal, + C = performance_train$svm_cost, + cross = model_param$cross +) + +## extracting the model formula + +# calculate a1...am the coefficients for each predictor! +svm_formula <- colSums(svm_bestfit@xmatrix[[1]] * svm_bestfit@coef[[1]]) %>% + as.data.frame() %>% + rownames_to_column('predictor') %>% + rbind(., data.frame(predictor ='z.Intercept', . = svm_bestfit@b)) %>% + spread(., key = predictor, value = .) %>% + as_tibble() + +# print results +performance_train +svm_bestfit +svm_formula + + + +# flexible svm -------------------------------------------------------------------------------- + +# set up list of possible cost values +cost_list <- as.list(seq(from = 0.5, to = 200, by = .05)) + +# set up empty list to put error results for each cost into +error_list <- list() + +# fit a radial svm for every value of cost...extract error to compare +for (i in seq_along(cost_list)) { + + c <- cost_list[[i]] + + set.seed(2) + + # fit ksvm model + ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = T, + type = 'C-svc', + kernal = 'rbfdot', + C = c, + cross = 10, + kpar = 'automatic') + + error_list[[i]] = ksvm_fit@error +} + +# collapse lists to data frames +error_df <- reduce(error_list, rbind.data.frame) +cost_df <- reduce(cost_list, rbind.data.frame) + +# find the optimal value of Cost - cost value with lowest error +performance_train <- cbind(error_df, cost_df) %>% + rename( + 'svm_error' = !!names(.[1]), + 'svm_cost' = !!names(.[2]) + ) %>% + filter(svm_error == min(svm_error)) %>% + arrange(., svm_cost) %>% + .[1,] + + +# fit model with our best C determined by training error +svm_bestfit <- ksvm_fit <- ksvm( + response_y ~ ., + data = credit_df, + scaled = T, + type = 'C-svc', + kernal = 'rbfdot', + C = performance_train$svm_cost, + cross = 10, + kpar = 'automatic' +) + + +# look at the results of our model +svm_bestfit@error +svm_bestfit@cross + + + +# knn first attempt --------------------------------------------------------------------------- + +set.seed(2) + +# set up train.kknn to find the optimal k using leave one out classification +(knn_fit_LOOCV <- train.kknn( + response_y ~ ., + data = credit_df, + # test = credit_df, + kmax = 100, + # kcv = 10, + scale = T) +) + +# apply optimal K to the original training dataset +knn_fit <- kknn( + response_y ~ ., + train = credit_df, + test = credit_df, + k = 58, + scale = T) + +# accuracy measures +fitted <- fitted(knn_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% # round to 1 if prob > .5, 0 otherwise + cbind(., credit_df$response_y) %>% + mutate(acc = value == credit_df$response_y) # if prediction == actual then True, else False + +# percetage accuracy of the model +(test_accuracy <- mean(fitted$acc)) + + + +# knn cross validation ------------------------------------------------------------------------ + +set.seed(4) + +# from documentation - k fold cross validation needs kcv arguement +# kcv = Number of partitions for k-fold cross validation. + + +# find best value of K by cross validation - what is the estimated test accuracy? +knn_fit <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 60, # search K values up to 600 + kcv = 10, # base accuarcy on 10-fold cross validation + scale = T) + +summary(knn_fit) + + + +# fit a model with less that the optimal K and compare accuracy +# K lower than our best fit should give inferior results +knn_fit2 <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 30, + kcv = 10, + scale = T) + +# mean squared error +summary(knn_fit2) + + +# fit a model with less that the optimal K and compare accuracy +# K lower than our best fit should give inferior results +knn_fit3 <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 20, + kcv = 10, + scale = T) + +# mean squared error +summary(knn_fit3) + + +# fit a model with less that the optimal K and compare accuracy +# K lower than our best fit should give inferior results +knn_fit4 <- train.kknn(response_y ~ ., + data = credit_df, + kmax = 10, + kcv = 10, + scale = T) + +# mean squared error +summary(knn_fit4) + + + +# knn train, test, validation ----------------------------------------------------------------- + +set.seed(2) + +# develop the training and holdout partition +partition <- createDataPartition(credit_df$response_y, p = .6, + list = F) +# develop the training set +train <- credit_df[partition,] + +# develop the holdout set +holdout <- credit_df[-partition,] + +# develop the split of the holdout data into test and validation +partition_valid <- createDataPartition(holdout$response_y, p = .5, + list = F) +# split holdout into test +test <- holdout[partition_valid, ] + +# split holdout in validation +validation <- holdout[-partition_valid, ] + +# check splits +dim(train);dim(test);dim(validation) + + + + + + +# set up list of possible K values from 1 to 100 by 3 +possible_k <- as.list(seq(from = 1, to = 100, by = 3)) + +# set up a blank list to put accuracy values into +test_accuracy <- list() + +# fit a model for each possible value of K and extract the accuracy from each model +for (i in seq_along(possible_k)) { + + k = possible_k[[i]] + + knn_fit <- kknn( + response_y ~ ., + train = train, + test = test, + # valid = validation$response_y, + k = k, + scale = T) + + fitted <- fitted(knn_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% + cbind(., test$response_y) %>% + mutate(acc = value == test$response_y) + + test_accuracy[[i]] <- mean(fitted$acc) + +} + +# put the K and test accuracy lists into dataframes +k_df <- reduce(possible_k, rbind.data.frame) +test_acc_df <- reduce(test_accuracy, rbind.data.frame) + +# find the best K associated with the highest accuracy +(performance_test <- cbind(k_df, test_acc_df) %>% + rename( + 'knn_error' = !!names(.[2]), + 'knn_k' = !!names(.[1]) + ) %>% + filter(knn_error == max(knn_error)) %>% + arrange(., knn_k) %>% + .[1,]) + +# fit the best model on the training + testing data - find accuracy on the validation set +knn_best_fit <- kknn( + response_y ~ ., + train = rbind(train, test), # combine train to be train + test datasets + test = validation, + k = performance_test$knn_k, # best value of K found from test set accuracy + scale = T) + +# view the validation set accuracy +best_fitted <- fitted(knn_best_fit) %>% + as_tibble() %>% + mutate(value = ifelse(value > .5, 1, 0)) %>% # kknn outputs a score for each value + cbind(., validation$response_y) %>% + mutate(acc = value == validation$response_y) + +# accuracy of our best fit knn model on the validation dataset +(valid_accuracy <- mean(best_fitted$acc)) + diff --git a/Homework 1/RworkshopAdapted.pdf b/Homework 1/RworkshopAdapted.pdf new file mode 100644 index 0000000..a97776f Binary files /dev/null and b/Homework 1/RworkshopAdapted.pdf differ diff --git a/Homework 1/Short-refcard.pdf b/Homework 1/Short-refcard.pdf new file mode 100644 index 0000000..e475660 Binary files /dev/null and b/Homework 1/Short-refcard.pdf differ diff --git a/Homework 1/homework1_isye6501-2.pdf b/Homework 1/homework1_isye6501-2.pdf new file mode 100644 index 0000000..70e256e Binary files /dev/null and b/Homework 1/homework1_isye6501-2.pdf differ diff --git a/Homework 1/homework1_isye6501.html b/Homework 1/homework1_isye6501.html new file mode 100644 index 0000000..4ff15b0 --- /dev/null +++ b/Homework 1/homework1_isye6501.html @@ -0,0 +1,657 @@ + + + + + + + + + + + + + + +Homework #1: ISYE6501 + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + +


+
+

Question 2.1

+

Question:

+

Describe a situation or problem from your job, everyday life, current events, etc., for which a classification model would be appropriate. List some (up to 5) predictors that you might use.

+


+

Answer:

+

One example I am excited about is an attempt to build a classification model to determine whether a person will purchase a certain product or not, say a new car.

+

Based on a list of attributes, a classification model could sort customers into groups of ‘most likely will purchase’ and ‘most likely will not purchase’ with high accuracy. This would help optimize our marketing budget by only targeting customers who are the most likely to purchase.

+

Predictors I would use for this model:

+
    - Household Income
+    - Location 
+    - Have they purchased a car before 
+    - Time since last vehicle purchase
+    - Type of vehicle last purchased
+    
+


+
+
+

Question 2.2.1

+

The files credit_card_data.txt (without headers) and credit_card_data-headers.txt (with headers) contain a data set with 654 data points, 6 continuous and 4 binary predictor variables. It has credit card applications data with a binary response variable (last column) indicating if the application was positive or negative. The data set is the “Credit Approval Data Set” from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/data sets/Credit+Approval) without the categorical variables and without data points that have missing values.

+


+

Question:

+

Using the support vector machine function ksvm contained in the R package kernlab, find a good classifier for this data.

+

Show the equation of your classifier, and how well it classifies the data points in the full data set. (Don’t worry about test/validation data yet; we’ll cover that topic soon.)

+


+

Answer:

+

First we read in the data and load the needed packages for this analysis. Then, we quickly look at the data and see if it matches the course description.

+

Our problem is classifying the data based on the 11th column - which I relabeled as response_y for clarity.

+

I also established a baseline accuracy that our model based classifiers should beat easily. My naive classifier will pick ‘1’ as the answer for every value in the training set.

+

In this case my naive classifier will accurately classify ~45% of the observations in the training set.

+

Our proposed SVM and KNN models should aim to beat this baseline accuracy measure.

+


+
# set up directory and packages
+setwd('~/Desktop/GTX/Homework 1/')
+
+# load packages
+pacman::p_load(tidyverse, kernlab, caret, kknn, modelr)
+
+# get data and format
+credit_df <- read.table('2.2credit_card_data-headersSummer2018.txt',header = T) %>% 
+        as_tibble() %>% 
+        dplyr::rename(., 'response_y' = R1)
+
+# data summary
+str(credit_df)
+
## Classes 'tbl_df', 'tbl' and 'data.frame':    654 obs. of  11 variables:
+##  $ A1        : int  1 0 0 1 1 1 1 0 1 1 ...
+##  $ A2        : num  30.8 58.7 24.5 27.8 20.2 ...
+##  $ A3        : num  0 4.46 0.5 1.54 5.62 ...
+##  $ A8        : num  1.25 3.04 1.5 3.75 1.71 ...
+##  $ A9        : int  1 1 1 1 1 1 1 1 1 1 ...
+##  $ A10       : int  0 0 1 0 1 1 1 1 1 1 ...
+##  $ A11       : int  1 6 0 5 0 0 0 0 0 0 ...
+##  $ A12       : int  1 1 1 0 1 0 0 1 1 0 ...
+##  $ A14       : int  202 43 280 100 120 360 164 80 180 52 ...
+##  $ A15       : int  0 560 824 3 0 0 31285 1349 314 1442 ...
+##  $ response_y: int  1 1 1 1 1 1 1 1 1 1 ...
+
# investigate class imbalance - this is our 'baseline' accuracy
+mean(credit_df$response_y == 1)
+
## [1] 0.4525994
+
# baseline error
+(baseline <- 1 - mean(credit_df$response_y == 1))
+
## [1] 0.5474006
+

Answer:

+

The following code sets up the Support Vector Machine algorithm using the kernlab package in R.

+

The ksvm function is supplied with a formula to model the response_y binary variable based on all remaining predictors in the data set. The scaled argument is set to TRUE - the function will automatically scale the predictor data. Type is ‘C-svc’ to indicate we are using this function for classification. Finally, the kernal is set to ‘vanilladot’ which initializes a linear decision boundary.

+

I then set up a for loop to pass my model different regularization (C - Cost) parameters and then extract each model’s accuracy. The model with the highest training set accuracy based on values of C will be selected as my ‘best’ model. (Note: training set accuracy is not a valid measure of model performance!)

+

Here are the results:

+

The best tuned model with C = 95.45 achieved 95% training set accuracy. This outperforms the naive classifer baseline accuracy greatly

+

However, this does not indicate we have a good model. We may have modeled our training set real and random effects accurately - but our model will likely not generalize well to new data. There is a high likelihood that we have over fit this model to the training set.

+


+

The formula for the best tuned linear decision boundary is:

+

y =

+

(-36.5 x A2) + (-8.36 x A3) + (54.2 x A8) + (48.6 x A9) + (-17.5 x A1) + (-22.6 x A10) + (14.5 x A11) + (-22.1 x A12) + (-56.4 x A14) + (50.2 x A15) + (-.778)

+


+
# set seed 
+set.seed(2)
+
+# data frame of model parameters
+model_param <- data.frame(
+        type = 'C-svc',
+        kernal = 'vanilladot',
+        cross = 5,
+        scaled = T, 
+        stringsAsFactors = F
+)
+
+
+# set up a list of possible C values: choose C from .5 to 100 by .05
+# - will build a model for each C and determine the 'best' C based on accuracy 
+# originally tried values .05 to 200 - shortened to run for homework
+cost_list <- as.list(seq(from = 50, to = 100, by = .05))
+
+# set up a list to put the error metrics of each model into
+error_list <- list()
+
+
+# cost loop - for each value of cost - fit a model - extract accuracy - put into error list
+for (i in seq_along(cost_list)) {
+        
+        c <- cost_list[[i]]
+        
+        set.seed(2)
+        
+        # fit ksvm model based on model parameters
+        ksvm_fit <- ksvm(
+                response_y ~ ., 
+                data = credit_df, 
+                scaled = model_param$scaled ,
+                type = model_param$type,
+                kernal = model_param$kernal,
+                C = c,
+                cross = model_param$cross
+        )
+        
+        error_list[[i]] = ksvm_fit@error
+}
+
+
+# reduce list of errors and cost parameters into a column in a data frame
+error_df <- reduce(error_list, rbind.data.frame) 
+cost_df <- reduce(cost_list, rbind.data.frame) 
+
+# performance measures - put list of errors and costs next to each other to find highest accuracy
+performance_train <- cbind(error_df, cost_df) %>% 
+        rename(
+                'svm_error' = !!names(.[1]),
+                'svm_cost' =  !!names(.[2])
+        ) %>% 
+        mutate(svm_accuracy = 1-svm_error) %>% 
+        filter(svm_error == min(svm_error)) %>% 
+        arrange(., svm_cost) %>% 
+        .[1,]
+
+
+# fit model with our best C determined by training error
+svm_bestfit <- ksvm_fit <- ksvm(
+                response_y ~ ., 
+                data = credit_df, 
+                scaled = model_param$scaled ,
+                type = model_param$type,
+                kernal = model_param$kernal,
+                C = performance_train$svm_cost,
+                cross = model_param$cross
+        )
+
+## extracting the model formula
+
+# calculate a1...am the coefficients for each predictor!
+svm_formula <- colSums(svm_bestfit@xmatrix[[1]] * svm_bestfit@coef[[1]]) %>%
+                as.data.frame() %>% 
+                rownames_to_column('predictor') %>% 
+                rbind(., data.frame(predictor ='z.Intercept', . = svm_bestfit@b)) %>% 
+                spread(., key = predictor, value = .) %>% 
+                as_tibble()
+
+# print results
+performance_train
+
##    svm_error svm_cost svm_accuracy
+## 1 0.04740061    90.35    0.9525994
+
svm_bestfit
+
## Support Vector Machine object of class "ksvm" 
+## 
+## SV type: C-svc  (classification) 
+##  parameter : cost C = 90.35 
+## 
+## Gaussian Radial Basis kernel function. 
+##  Hyperparameter : sigma =  0.0945349772139391 
+## 
+## Number of Support Vectors : 245 
+## 
+## Objective Function Value : -8315.259 
+## Training error : 0.047401 
+## Cross validation error : 0.198802
+
svm_formula
+
## # A tibble: 1 x 11
+##      A1   A10   A11   A12   A14   A15    A2    A3    A8    A9 z.Intercept
+## * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>       <dbl>
+## 1 -17.5 -22.6  14.5 -22.1 -56.4  50.2 -36.5 -8.36  54.2  48.6      -0.778
+


+
+
+

Question 2.2.2

+

Question:

+

You are welcome, but not required, to try other (nonlinear) kernels as well; we’re not covering them in this course, but they can sometimes be useful and might provide better predictions than vanilladot.

+


+

Answer:

+

Here is my experimentation with a non-linear kernal within a SVM model. I applied the same steps to hone in on a value of C that minimizes training set error.

+

The radial SVM model achieves a training set error of less than 4% with our best tuned Cost parameter.

+

As mentioned above - we are likely to have over fit to the training data. Training data should not be used to define the performance of our models.

+

Cross Validation is a better measure of real test set performance. Even though our flexible radial model achieves less than 4% error on the training set, the cross validation error is almost 19%.

+
# set up list of possible cost values
+# originally tried values .05 to 200 - shortened to run for homework
+cost_list <- as.list(seq(from = 130, to = 175, by = .05))
+
+# set up empty list to put error results for each cost into
+error_list <- list()
+
+# fit a radial svm for every value of cost...extract error to compare
+for (i in seq_along(cost_list)) {
+        
+        c <- cost_list[[i]]
+        
+        set.seed(2)
+        
+        # fit ksvm model
+        ksvm_fit <- ksvm(
+                response_y ~ ., # formula
+                data = credit_df, # training data
+                scaled = T, # scale predictors
+                type = 'C-svc', # svm for classification
+                kernal = 'rbfdot', # radial decision boundary
+                C = c, # set C to the input value from for loop
+                cross = 10, # implement 10 fold cross validation
+                kpar = 'automatic') # automatically detect best parameters for radial kernal
+        
+        error_list[[i]] = ksvm_fit@error
+}
+
+# collapse lists to data frames
+error_df <- reduce(error_list, rbind.data.frame) 
+cost_df <- reduce(cost_list, rbind.data.frame) 
+
+# find the optimal value of Cost - cost value with lowest error
+performance_train <- cbind(error_df, cost_df) %>% 
+        rename(
+                'svm_error' = !!names(.[1]),
+                'svm_cost' =  !!names(.[2])
+        ) %>% 
+        filter(svm_error == min(svm_error)) %>% 
+        arrange(., svm_cost) %>% 
+        .[1,]
+
+
+# fit model with our best C determined by training error
+svm_bestfit <- ksvm_fit <- ksvm(
+                response_y ~ ., 
+                data = credit_df, 
+                scaled = T,
+                type = 'C-svc',
+                kernal = 'rbfdot',
+                C = performance_train$svm_cost,
+                cross = 10,
+                kpar = 'automatic'
+        )
+
+
+# look at the results of our model
+svm_bestfit@error
+
## [1] 0.03975535
+
svm_bestfit@cross
+
## [1] 0.1943823
+


+
+
+

Question 2.2.3

+

Question:

+

Using the k-nearest-neighbors classification function kknn contained in the R kknn package, suggest a good value of k, and show how well it classifies that data points in the full data set. Don’t forget to scale the data (scale=TRUE in kknn).

+


+

Answer:

+

Here we apply Leave One Out Cross Validation (LOOCV) to the credit dataset in order to find the optimal K for our KNN model. To do this, I implement the train.kknn function to cycle through possible values of K and determine the best value based on LOOCV error. Variables are scaled within the algorithm by setting scale = True. The kmax arguement is upper bound of K values we would like to consider for the model.

+

In this implementation we find that the optimal K is 58.

+

Using this optimal K value, we fit a KNN model to the entire training set to determine accuracy.

+

The accuracy of the K = 58 KNN model is ~88%

+

Note: Using this model to predict back onto the training set will give misleading results. Smaller values for K will actually predict better on the training set. However, this will not generalize to an independent or new dataset. K = 1 may perform perfectly on the training set but K = 58 will likely generalize better to other datasets.

+
set.seed(2)
+        
+# set up train.kknn to find the optimal k using leave one out classification
+(knn_fit_LOOCV <- train.kknn(
+        response_y ~ ., 
+        data = credit_df,
+        # test = credit_df,
+        kmax = 100,
+        # kcv = 10,
+        scale = T)
+)
+
## 
+## Call:
+## train.kknn(formula = response_y ~ ., data = credit_df, kmax = 100,     scale = T)
+## 
+## Type of response variable: continuous
+## minimal mean absolute error: 0.1850153
+## Minimal mean squared error: 0.1073792
+## Best kernel: optimal
+## Best k: 58
+
# apply optimal K to the original training dataset
+knn_fit <- kknn(
+        response_y ~ ., 
+        train = credit_df,
+        test = credit_df,
+        k = 58,
+        scale = T)
+        
+# accuracy measures
+fitted <- fitted(knn_fit) %>%
+     as_tibble() %>%
+     mutate(value = ifelse(value > .5, 1, 0)) %>% # round to 1 if prob > .5, 0 otherwise
+     cbind(., credit_df$response_y) %>% 
+     mutate(acc = value == credit_df$response_y) # if prediction == actual then True, else False
+
+# percetage accuracy of the model
+(test_accuracy <- mean(fitted$acc))
+
## [1] 0.8776758
+


+
+
+

Question 3.1

+

Question:

+

Using the same data set (credit_card_data.txt or credit_card_data-headers.txt) as in Question 2.2, use the ksvm or kknn function to find a good classifier:

+
    +
  1. using cross-validation (do this for the k-nearest-neighbors model; SVM is optional)
  2. +
  3. splitting the data into training, validation, and test data sets (pick either KNN or SVM; the other is optional).
  4. +
+


+

Answer: (a)

+

The kknn package provides a function ‘train.kknn’ which will search for the best value of K based on cross validation error. I specified kcv = 10 to run a 10-fold cross validation on the full credit dataset.

+

The train.kknn function will run the 10-fold cross validation and extract the K (nearest neighbor parameter K, not cross validation fold k) with the minimial error.

+

Based on the results the optimal K is 58 and results in around 10% mean squared error

+

I also provide the results for K = 30, 20, and 10 to illustrate that the accuracy improvement for using K = 58 is not that much smaller than using less neighbors.

+

Note: Using this model to predict back onto the training set will give misleading results. Smaller values for K will actually predict better on the training set. However, this will not generalize to an independent or new dataset. K = 1 may perform perfectly on the training set but K = 58 will likely generalize better to other datasets.

+

Cross validation is a better estimate of test set error and we should trust those results more than accuracy or error on the training set.

+


+
set.seed(4)
+
+# from documentation - k fold cross validation needs kcv arguement
+# kcv = Number of partitions for k-fold cross validation.
+
+        
+# find best value of K by cross validation - what is the estimated test accuracy?
+knn_fit <- train.kknn(response_y ~ ., 
+                data = credit_df,
+                kmax = 60, # search K values up to 600
+                kcv = 10, # base accuarcy on 10-fold cross validation
+                scale = T)
+
+summary(knn_fit)
+
## 
+## Call:
+## train.kknn(formula = response_y ~ ., data = credit_df, kmax = 60,     scale = T, kcv = 10)
+## 
+## Type of response variable: continuous
+## minimal mean absolute error: 0.1850153
+## Minimal mean squared error: 0.1073792
+## Best kernel: optimal
+## Best k: 58
+
# fit a model with less that the optimal K and compare accuracy
+# K lower than our best fit should give inferior results
+knn_fit2 <- train.kknn(response_y ~ ., 
+                data = credit_df,
+                kmax = 30,
+                kcv = 10,
+                scale = T)
+
+# mean squared error        
+summary(knn_fit2)
+
## 
+## Call:
+## train.kknn(formula = response_y ~ ., data = credit_df, kmax = 30,     scale = T, kcv = 10)
+## 
+## Type of response variable: continuous
+## minimal mean absolute error: 0.1850153
+## Minimal mean squared error: 0.1081193
+## Best kernel: optimal
+## Best k: 30
+
# fit a model with less that the optimal K and compare accuracy
+# K lower than our best fit should give inferior results
+knn_fit3 <- train.kknn(response_y ~ ., 
+                data = credit_df,
+                kmax = 20,
+                kcv = 10,
+                scale = T)
+
+# mean squared error        
+summary(knn_fit3)
+
## 
+## Call:
+## train.kknn(formula = response_y ~ ., data = credit_df, kmax = 20,     scale = T, kcv = 10)
+## 
+## Type of response variable: continuous
+## minimal mean absolute error: 0.1850153
+## Minimal mean squared error: 0.1099495
+## Best kernel: optimal
+## Best k: 20
+
# fit a model with less that the optimal K and compare accuracy
+# K lower than our best fit should give inferior results
+knn_fit4 <- train.kknn(response_y ~ ., 
+                data = credit_df,
+                kmax = 10,
+                kcv = 10,
+                scale = T)
+
+# mean squared error        
+summary(knn_fit4)
+
## 
+## Call:
+## train.kknn(formula = response_y ~ ., data = credit_df, kmax = 10,     scale = T, kcv = 10)
+## 
+## Type of response variable: continuous
+## minimal mean absolute error: 0.1850153
+## Minimal mean squared error: 0.1148192
+## Best kernel: optimal
+## Best k: 10
+

Answer: (b)

+

I will use the caret package to split our data set into training, test, and validation data sets. I will portion the available data 60% training, 20% test, and 20% validation.

+

We train the model on the training data set, measure accuracy and tune parameters using the test set. Once we think we have a good model, we will re-train the model on the entire training and test sets, then calculate accuracy for our best model using the validation data set.

+


+
set.seed(2)
+
+# develop the training and holdout partition
+partition <- createDataPartition(credit_df$response_y, p = .6,
+                                 list = F)
+# develop the training set
+train <- credit_df[partition,]
+
+# develop the holdout set
+holdout <- credit_df[-partition,]
+
+# develop the split of the holdout data into test and validation
+partition_valid <- createDataPartition(holdout$response_y, p = .5,
+                                       list = F)
+# split holdout into test
+test <- holdout[partition_valid, ]
+
+# split holdout in validation
+validation <- holdout[-partition_valid, ]
+
+# check splits
+nrow(train)/nrow(credit_df); nrow(test)/nrow(credit_df); nrow(validation)/nrow(credit_df)
+
## [1] 0.6009174
+
## [1] 0.2003058
+
## [1] 0.1987768
+

Answer: (b)

+

Here we determine the best value of K by training our KNN model on the training data set, and measuring accuracy on the test data set. Based on this method the K value that produced the maximum accuracy on the test data set is K = 40, with accuracy of ~88%.

+

Now that we have our optimal value of K based on our test data set - we will apply this model to the final holdout data in the validation set. We do this to get an unbiased view of how our model will perform on new data.

+

The KNN model with K = 40 achieves ~85% accuracy on the validation dataset. This means we should expect our classifier to accurately predict 85% of new ‘unseen’ data into the correct category.

+
# set up list of possible K values from 1 to 100 by 3
+possible_k <- as.list(seq(from = 1, to = 100, by = 3))
+
+# set up a blank list to put accuracy values into
+test_accuracy <- list()
+
+# fit a model for each possible value of K and extract the accuracy from each model
+for (i in seq_along(possible_k)) {
+        
+        k = possible_k[[i]]
+        
+        knn_fit <- kknn(
+                response_y ~ ., 
+                train = train,
+                test = test,
+                # valid = validation$response_y,
+                k = k,
+                scale = T)
+        
+        fitted <- fitted(knn_fit) %>%
+             as_tibble() %>%
+             mutate(value = ifelse(value > .5, 1, 0)) %>% 
+             cbind(., test$response_y) %>% 
+             mutate(acc = value == test$response_y)
+
+        test_accuracy[[i]] <- mean(fitted$acc)
+        
+}
+
+# put the K and test accuracy lists into dataframes
+k_df <- reduce(possible_k, rbind.data.frame) 
+test_acc_df <- reduce(test_accuracy, rbind.data.frame)
+
+# find the best K associated with the highest accuracy
+(performance_test <- cbind(k_df, test_acc_df) %>% 
+        rename(
+                'knn_error' = !!names(.[2]),
+                'knn_k' =  !!names(.[1])
+        ) %>% 
+        filter(knn_error == max(knn_error)) %>% 
+        arrange(., knn_k) %>% 
+        .[1,])
+
##   knn_k knn_error
+## 1    40 0.8778626
+
# fit the best model on the training + testing data - find accuracy on the validation set
+knn_best_fit <-  kknn(
+                response_y ~ ., 
+                train = rbind(train, test), # combine train to be train + test datasets
+                test = validation,
+                k = performance_test$knn_k, # best value of K found from test set accuracy
+                scale = T)
+
+# view the validation set accuracy
+best_fitted <- fitted(knn_best_fit) %>%
+             as_tibble() %>%
+             mutate(value = ifelse(value > .5, 1, 0)) %>% # kknn outputs a score for each value
+             cbind(., validation$response_y) %>% 
+             mutate(acc = value == validation$response_y)
+
+# accuracy of our best fit knn model on the validation dataset
+(valid_accuracy <- mean(best_fitted$acc))
+
## [1] 0.8538462
+
+ + + + +
+ + + + + + + + diff --git a/Homework 1/homework1_isye6501_answers_only.pdf b/Homework 1/homework1_isye6501_answers_only.pdf new file mode 100644 index 0000000..1ed727b Binary files /dev/null and b/Homework 1/homework1_isye6501_answers_only.pdf differ diff --git a/Homework 1/week_1_hw-summer2018.pdf b/Homework 1/week_1_hw-summer2018.pdf new file mode 100644 index 0000000..598db8b Binary files /dev/null and b/Homework 1/week_1_hw-summer2018.pdf differ