-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpeakerIdentification.py
147 lines (123 loc) · 4.96 KB
/
SpeakerIdentification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import pickle
import warnings
import numpy as np
from sklearn import preprocessing
from scipy.io.wavfile import read
import python_speech_features as mfcc
from sklearn.mixture import GaussianMixture
from pydub import AudioSegment
import pyaudio
import os
import wave
# import sys
# sys.path.append('C:\\ffmpeg\\bin')
warnings.filterwarnings("ignore")
class VoiceRecognition():
def __init__(self, audio, name):
self.audio = audio
self.name = name
def register_audio(self):
audio_file = AudioSegment.from_file(self.audio, format='aac')
for count in range(5):
OUTPUT_FILENAME = self.name + "-sample" + str(count) + ".wav"
audio_file.export(f"voice recognition\\training_set\\{OUTPUT_FILENAME}", format='wav')
trainedfilelist = open("voice recognition\\training_set_addition.txt", 'a')
trainedfilelist.write(OUTPUT_FILENAME + "\n")
result = self.train_model()
if result:
return self.name
else:
return 0
def calculate_delta(self, array):
rows, cols = array.shape
print(rows)
print(cols)
deltas = np.zeros((rows, 20))
N = 2
for i in range(rows):
index = []
j = 1
while j <= N:
if i - j < 0:
first = 0
else:
first = i - j
if i + j > rows - 1:
second = rows - 1
else:
second = i + j
index.append((second, first))
j += 1
deltas[i] = (array[index[0][0]] - array[index[0][1]] + (2 * (array[index[1][0]] - array[index[1][1]]))) / 10
return deltas
def extract_features(self, audio, rate):
mfcc_feature = mfcc.mfcc(audio, rate, 0.025, 0.01, 20, nfft=1200, appendEnergy=True)
mfcc_feature = preprocessing.scale(mfcc_feature)
print(mfcc_feature)
delta = self.calculate_delta(mfcc_feature)
combined = np.hstack((mfcc_feature, delta))
return combined
def train_model(self):
source = "voice recognition\\training_set\\"
dest = "voice recognition\\trained_models\\"
train_file = "voice recognition\\training_set_addition.txt"
file_paths = open(train_file, 'r')
count = 1
features = np.asarray(())
print(file_paths)
for path in file_paths:
path = path.strip()
print(path)
sr, audio = read(source + path)
print(sr)
vector = self.extract_features(audio, sr)
if features.size == 0:
features = vector
else:
features = np.vstack((features, vector))
if count == 5:
gmm = GaussianMixture(n_components=6, max_iter=200, covariance_type='diag', n_init=3)
gmm.fit(features)
# dumping the trained gaussian model
picklefile = path.split("-")[0] + ".gmm"
pickle.dump(gmm, open(dest + picklefile, 'wb'))
print('+ modeling completed for speaker:', picklefile, " with data point = ", features.shape)
features = np.asarray(())
count = 0
count = count + 1
return 1
def test_model(self):
OUTPUT_FILENAME = "sample.wav"
audio_file = AudioSegment.from_file(self.audio, format='aac')
audio_file.export(f"voice recognition\\testing_set\\{OUTPUT_FILENAME}", format='wav')
trainedfilelist = open("voice recognition\\testing_set_addition.txt", 'a')
trainedfilelist.write(OUTPUT_FILENAME + "\n")
source = "voice recognition\\testing_set\\"
modelpath = "voice recognition\\trained_models\\"
test_file = "voice recognition\\testing_set_addition.txt"
file_paths = open(test_file, 'r')
gmm_files = [os.path.join(modelpath, fname) for fname in
os.listdir(modelpath) if fname.endswith('.gmm')]
# Load the Gaussian gender Models
models = [pickle.load(open(fname, 'rb')) for fname in gmm_files]
speakers = [fname.split("\\")[-1].split(".gmm")[0] for fname
in gmm_files]
# Read the test directory and get the list of test audio files
for path in file_paths:
path = path.strip()
print(path)
sr, audio = read(source + path)
vector = self.extract_features(audio, sr)
log_likelihood = np.zeros(len(models))
for i in range(len(models)):
gmm = models[i] # checking with each model one by one
scores = np.array(gmm.score(vector))
log_likelihood[i] = scores.sum()
winner = np.argmax(log_likelihood)
print("\t detected as - ", speakers[winner])
if speakers[winner]:
return 1
else:
return 0
# return spakers[winner]