-
Notifications
You must be signed in to change notification settings - Fork 329
/
Copy pathRunONNXModel.py
executable file
·1048 lines (946 loc) · 38.1 KB
/
RunONNXModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
##################### RunONNXModel.py #########################################
#
# Copyright 2019-2023 The IBM Research Authors.
#
################################################################################
#
# This script is to run and debug an onnx model.
################################################################################
import os
import sys
import argparse
import onnx
import time
import signal
import subprocess
import numpy as np
import tempfile
import json
import importlib.util
import shlex
import shutil
from onnx import numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from collections import OrderedDict
def valid_onnx_input(fname):
valid_exts = ["onnx", "mlir", "onnxtext"]
ext = os.path.splitext(fname)[1][1:]
if ext not in valid_exts:
parser.error(
"Only accept an input model with one of extensions {}".format(valid_exts)
)
return fname
def check_positive(argname, value):
value = int(value)
if value <= 0:
parser.error("Value passed to {} must be positive".format(argname))
return value
def check_non_negative(argname, value):
value = int(value)
if value < 0:
parser.error("Value passed to {} must be non-negative".format(argname))
return value
# Command arguments.
parser = argparse.ArgumentParser()
parser.add_argument(
"--log-to-file",
action="store",
nargs="?",
const="compilation.log",
default=None,
help="Output compilation messages to file, default compilation.log.",
)
parser.add_argument(
"-m",
"--model",
type=lambda s: valid_onnx_input(s),
help="Path to an ONNX model (.onnx or .mlir).",
)
parser.add_argument(
"-c",
"--compile-args",
type=str,
default="",
help="Arguments passed directly to onnx-mlir command." " See bin/onnx-mlir --help.",
)
parser.add_argument(
"-C", "--compile-only", action="store_true", help="Only compile the input model."
)
parser.add_argument(
"--compile-using-input-shape",
action="store_true",
help="Compile the model by using the shape info getting from"
" the inputs in the reference folder set by --load-ref",
)
parser.add_argument("--print-input", action="store_true", help="Print out inputs.")
parser.add_argument(
"--print-output",
action="store_true",
help="Print out inference outputs produced by onnx-mlir.",
)
parser.add_argument(
"--print-signatures",
action="store_true",
help="Print out the input and output signatures of the model.",
)
parser.add_argument(
"--save-onnx",
metavar="PATH",
type=str,
help="File path to save the onnx model. Only effective if --verify=onnxruntime.",
)
parser.add_argument(
"--verify",
choices=["onnxruntime", "ref"],
help="Verify the output by using onnxruntime or reference"
" inputs/outputs. By default, no verification. When being"
" enabled, --verify-with-softmax or --verify-every-value"
" must be used to specify verification mode.",
)
parser.add_argument(
"--verify-all-ops",
action="store_true",
help="Verify all operation outputs when using onnxruntime.",
)
parser.add_argument(
"--verify-with-softmax",
metavar="AXIS_INDEX",
type=str,
default=None,
help="Verify the result obtained by applying softmax along with"
" specific axis. The axis can be specified"
" by --verify-with-softmax=<axis>.",
)
parser.add_argument(
"--verify-every-value",
action="store_true",
help="Verify every value of the output using atol and rtol.",
)
parser.add_argument(
"--rtol", type=str, default="0.05", help="Relative tolerance for verification."
)
parser.add_argument(
"--atol", type=str, default="0.01", help="Absolute tolerance for verification."
)
lib_group = parser.add_mutually_exclusive_group()
lib_group.add_argument(
"--save-model",
metavar="PATH",
type=str,
help="Path to a folder to save the compiled model.",
)
lib_group.add_argument(
"--load-model",
metavar="PATH",
type=str,
help="Path to a folder to load a compiled model for "
"inference, and the ONNX model will not be re-compiled.",
)
lib_group.add_argument(
"--cache-model",
metavar="PATH",
type=str,
help="When finding a compiled model in given path, reuse it. "
"Otherwise, compile model and save it into the given path.",
)
parser.add_argument(
"-o",
"--default-model-name",
metavar="MODEL_NAME",
type=str,
default="model",
help="Change the default model name that is used for two generated files: "
" .so and .constants.bin. Default is model.",
)
parser.add_argument(
"--save-ref",
metavar="PATH",
type=str,
help="Path to a folder to save the inputs and outputs in protobuf.",
)
data_group = parser.add_mutually_exclusive_group()
data_group.add_argument(
"--load-ref",
metavar="PATH",
type=str,
help="Path to a folder containing reference inputs and outputs stored in protobuf."
" If --verify=ref, inputs and outputs are reference data for verification.",
)
data_group.add_argument(
"--inputs-from-arrays", help="List of numpy arrays used as inputs for inference."
)
data_group.add_argument(
"--load-ref-from-numpy",
metavar="PATH",
type=str,
help="Path to a python script that defines variables inputs and outputs that are a list of numpy arrays. "
" For example, inputs = [np.array([1], dtype=np.int64), np.array([2], dtype=np.float32]."
" Variable outputs can be omitted if --verify is not used.",
)
data_group.add_argument(
"--shape-info",
type=str,
help="Shape for each dynamic input of the model, e.g. 0:1x10x20,1:7x5x3. "
"Used to generate random inputs for the model if --load-ref is not set.",
)
parser.add_argument(
"--lower-bound",
type=str,
help="Lower bound values for each data type. Used inputs."
" E.g. --lower-bound=int64:-10,float32:-0.2,uint8:1."
" Supported types are bool, uint8, int8, uint16, int16, uint32, int32,"
" uint64, int64,float16, float32, float64.",
)
parser.add_argument(
"--upper-bound",
type=str,
help="Upper bound values for each data type. Used to generate random inputs."
" E.g. --upper-bound=int64:10,float32:0.2,uint8:9."
" Supported types are bool, uint8, int8, uint16, int16, uint32, int32,"
" uint64, int64, float16, float32, float64.",
)
parser.add_argument(
"-w",
"--warmup",
type=lambda s: check_non_negative("--warmup", s),
default=0,
help="The number of warmup inference runs.",
)
parser.add_argument(
"-n",
"--n-iteration",
type=lambda s: check_positive("--n-iteration", s),
default=1,
help="The number of inference runs excluding warmup.",
)
parser.add_argument(
"--seed",
type=str,
default="42",
help="seed to initialize the random num generator for inputs.",
)
args = parser.parse_args()
if args.verify and (args.verify_with_softmax is None) and (not args.verify_every_value):
raise RuntimeError(
"Choose verification mode: --verify-with-softmax or "
"--verify-every-value or both"
)
if args.verify_with_softmax is not None and (not args.verify):
raise RuntimeError("Must specify --verify to use --verify-with-softmax")
if args.verify_every_value and (not args.verify):
raise RuntimeError("Must specify --verify to use --verify-every-value")
if not os.environ.get("ONNX_MLIR_HOME", None):
raise RuntimeError(
"Environment variable ONNX_MLIR_HOME is not set, please set it to the path to "
"the HOME directory for onnx-mlir. The HOME directory for onnx-mlir refers to "
"the parent folder containing the bin, lib, etc sub-folders in which ONNX-MLIR "
"executables and libraries can be found, typically `onnx-mlir/build/Debug`"
)
if args.verify and args.verify.lower() == "onnxruntime":
if not args.model or (args.model and not args.model.endswith(".onnx")):
raise RuntimeError(
"Set input onnx model using argument --model when verifying using onnxruntime."
)
VERBOSE = os.environ.get("VERBOSE", False)
ONNX_MLIR_EXENAME = "onnx-mlir"
if sys.platform == "win32":
ONNX_MLIR_EXENAME = "onnx-mlir.exe"
ONNX_MLIR = os.path.join(os.environ["ONNX_MLIR_HOME"], "bin", ONNX_MLIR_EXENAME)
# Include runtime directory in python paths, so PyRuntime can be imported.
RUNTIME_DIR = os.path.join(os.environ["ONNX_MLIR_HOME"], "lib")
sys.path.append(RUNTIME_DIR)
try:
from PyRuntime import OMExecutionSession
except ImportError:
raise ImportError(
"Looks like you did not build the PyRuntime target, build it by running `make PyRuntime`."
"You may need to set ONNX_MLIR_HOME to `onnx-mlir/build/Debug` since `make PyRuntime` outputs to `build/Debug` by default"
)
# A type mapping from MLIR to Numpy.
MLIR_TYPE_TO_NP_TYPE = {
"f64": np.dtype("float64"),
"f32": np.dtype("float32"),
"f16": np.dtype("float16"),
"i64": np.dtype("int64"),
"i32": np.dtype("int32"),
"i16": np.dtype("int16"),
"i8": np.dtype("int8"),
"ui64": np.dtype("uint64"),
"ui32": np.dtype("uint32"),
"ui16": np.dtype("uint16"),
"ui8": np.dtype("uint8"),
"i1": np.dtype("bool"),
"string": np.dtype("str_"),
}
# Default lower bound for generating random inputs.
DEFAULT_LB = {
"float64": -0.1,
"float32": -0.1,
"float16": -0.1,
"int64": -10,
"int32": -10,
"int16": -10,
"int8": -10,
"uint64": 0,
"uint32": 0,
"uint16": 0,
"uint8": 0,
# For some reason, random.uniform with lb/ub to 0/1 resulted in 1 only.
"bool": -10, # treated as int32
}
# Default upper bound for generating random inputs.
DEFAULT_UB = {
"float64": 0.1,
"float32": 0.1,
"float16": 0.1,
"int64": 10,
"int32": 10,
"int16": 10,
"int8": 10,
"uint64": 10,
"uint32": 10,
"uint16": 10,
"uint8": 10,
# For some reason, random.uniform with lb/ub to 0/1 resulted in 1 only.
"bool": 9, # treated as int32
}
def ordinal(n):
suffix = ["th", "st", "nd", "rd", "th"][min(n % 10, 4)]
if 11 <= (n % 100) <= 13:
suffix = "th"
return str(n) + suffix
def softmax(x):
return np.exp(x) / np.sum(
np.exp(x), axis=int(args.verify_with_softmax), keepdims=True
)
def execute_commands(cmds):
if VERBOSE:
print(cmds)
out = subprocess.Popen(cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = out.communicate()
msg = stderr.decode("utf-8") + stdout.decode("utf-8")
if out.returncode == -signal.SIGSEGV:
return (False, "Segfault")
if out.returncode != 0:
return (False, msg)
return (True, msg)
def extend_model_output(model, intermediate_outputs):
# Run shape inference to make sure we have valid tensor value infos for all
# intermediate tensors available
model = onnx.shape_inference.infer_shapes(model)
value_infos = {vi.name: vi for vi in model.graph.value_info}
graph_inputs = {vi.name: vi for vi in model.graph.input}
graph_outputs = {vi.name: vi for vi in model.graph.output}
# Retrieve tensor value info for each intermediate output
new_outputs = []
for name in intermediate_outputs:
if name in value_infos:
new_outputs.append(value_infos[name])
elif name in graph_inputs:
new_outputs.append(graph_inputs[name])
elif name in graph_outputs:
new_outputs.append(graph_outputs[name])
else:
raise RuntimeError(f"Unable to find value infor for {name}")
# Clear old graph outputs and replace by new set of intermediate outputs
while len(model.graph.output):
model.graph.output.pop()
model.graph.output.extend(new_outputs)
return model
def get_names_in_signature(signature):
names = []
# Load the input signature.
signature_dict = json.loads(signature)
for sig in signature_dict:
names.append(sig["name"])
return names
def read_input_from_refs(num_inputs, load_ref):
print("Reading inputs from {} ...".format(load_ref))
i = 0
inputs = []
if args.load_ref:
for i in range(num_inputs):
input_file = load_ref + "/input_{}.pb".format(i)
input_ts = onnx.TensorProto()
with open(input_file, "rb") as f:
input_ts.ParseFromString(f.read())
input_np = numpy_helper.to_array(input_ts)
inputs += [input_np]
i += 1
elif args.load_ref_from_numpy:
spec = importlib.util.spec_from_file_location("om_load_ref", load_ref)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
inputs = module.inputs
for i in range(len(inputs)):
input_np = inputs[i]
print(
" - {} input: [{}x{}]".format(
ordinal(i + 1),
"x".join([str(i) for i in input_np.shape]),
input_np.dtype,
)
)
print(" done.\n")
return inputs
def read_output_from_refs(num_outputs, load_ref):
print("Reading reference outputs from {} ...".format(load_ref))
reference_output = []
if args.load_ref:
for i in range(num_outputs):
output_file = load_ref + "/output_{}.pb".format(i)
output_ts = onnx.TensorProto()
with open(output_file, "rb") as f:
output_ts.ParseFromString(f.read())
output_np = numpy_helper.to_array(output_ts)
reference_output += [output_np]
elif args.load_ref_from_numpy:
spec = importlib.util.spec_from_file_location("om_load_ref_output", load_ref)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
reference_output = module.outputs
for i in range(len(reference_output)):
output_np = reference_output[i]
print(
" - {} output: [{}x{}]".format(
ordinal(i + 1),
"x".join([str(i) for i in output_np.shape]),
output_np.dtype,
)
)
print(" done.\n")
return reference_output
def generate_random_input(input_signature, input_shapes):
# Numpy expect an int, tolerate int/float strings.
curr_seed = int(float(args.seed))
print("Generating random inputs using seed", curr_seed, "...")
# Generate random data as input.
inputs = []
# Load the input signature.
signature = json.loads(input_signature)
np.random.seed(curr_seed)
for i, sig in enumerate(signature):
# Get shape.
explicit_shape = []
for d, dim in enumerate(sig["dims"]):
if dim >= 0:
explicit_shape.append(dim)
continue
if i in input_shapes:
if d < len(input_shapes[i]):
explicit_shape.append(input_shapes[i][d])
else:
print(
"The {} dim".format(ordinal(d + 1)),
"of the {} input is unknown.".format(ordinal(i + 1)),
"Use --shape-info to set.",
)
print(" - The input signature: ", sig)
exit(1)
else:
print(
"The shape of the {} input".format(ordinal(i + 1)),
"is unknown. Use --shape-info to set.",
)
print(" - The input signature: ", sig)
exit(1)
# Get element type.
elem_type = sig["type"]
np_elem_type = MLIR_TYPE_TO_NP_TYPE[elem_type]
# Set a range for random values.
custom_lb = {}
custom_ub = {}
# Get user's range if any.
if args.lower_bound:
for type_lbs in args.lower_bound.strip().split(","):
type_lb = type_lbs.split(":")
assert not (type_lb[0] in custom_lb), "Duplicate types"
custom_lb[type_lb[0]] = type_lb[1]
if args.upper_bound:
for type_ubs in args.upper_bound.strip().split(","):
type_ub = type_ubs.split(":")
assert not (type_ub[0] in custom_ub), "Duplicate types"
custom_ub[type_ub[0]] = type_ub[1]
DEFAULT_LB.update(custom_lb)
DEFAULT_UB.update(custom_ub)
lb = ub = 0
random_element_type = np_elem_type
if np.issubdtype(np_elem_type, np.dtype(bool).type):
# For some reason, random.uniform with lb/ub to 0/1 resulted in 1 only.
lb = int(DEFAULT_LB["bool"])
ub = int(DEFAULT_UB["bool"])
random_element_type = np.dtype("int32")
elif np.issubdtype(np_elem_type, np.uint8):
lb = int(DEFAULT_LB["uint8"])
ub = int(DEFAULT_UB["uint8"])
elif np.issubdtype(np_elem_type, np.uint16):
lb = int(DEFAULT_LB["uint16"])
ub = int(DEFAULT_UB["uint16"])
elif np.issubdtype(np_elem_type, np.uint32):
lb = int(DEFAULT_LB["uint32"])
ub = int(DEFAULT_UB["uint32"])
elif np.issubdtype(np_elem_type, np.uint64):
lb = int(DEFAULT_LB["uint64"])
ub = int(DEFAULT_UB["uint64"])
elif np.issubdtype(np_elem_type, np.int8):
lb = int(DEFAULT_LB["int8"])
ub = int(DEFAULT_UB["int8"])
elif np.issubdtype(np_elem_type, np.int16):
lb = int(DEFAULT_LB["int16"])
ub = int(DEFAULT_UB["int16"])
elif np.issubdtype(np_elem_type, np.int32):
lb = int(DEFAULT_LB["int32"])
ub = int(DEFAULT_UB["int32"])
elif np.issubdtype(np_elem_type, np.int64):
lb = int(DEFAULT_LB["int64"])
ub = int(DEFAULT_UB["int64"])
elif np.issubdtype(np_elem_type, np.float64):
lb = float(DEFAULT_LB["float64"])
ub = float(DEFAULT_UB["float64"])
elif np.issubdtype(np_elem_type, np.float32):
lb = float(DEFAULT_LB["float32"])
ub = float(DEFAULT_UB["float32"])
elif np.issubdtype(np_elem_type, np.float16):
lb = float(DEFAULT_LB["float16"])
ub = float(DEFAULT_UB["float16"])
elif np.issubdtype(np_elem_type, np.str_):
lb = 0
ub = 64
random_element_type = np.dtype("int32")
else:
raise AssertionError("Unsuported element type")
rinput = np.random.uniform(lb, ub, explicit_shape).astype(random_element_type)
# For boolean, transform range into True/False using greater_equal
if np.issubdtype(np_elem_type, np.dtype(bool).type):
rinput = np.greater_equal(rinput, [0])
elif np.issubdtype(np_elem_type, np.str_):
rinput = np.array(rinput, dtype=np.str_)
# rinput = np.array(["ab", "defg"], dtype=np.str_)
rinput = np.array(rinput, dtype=object)
print(
" - {} input's shape {}, element type {}.".format(
ordinal(i + 1), rinput.shape, np_elem_type
),
"Value ranges [{}, {}]".format(lb, ub),
)
inputs.append(rinput)
print(" done.\n")
return inputs
def verify_outs(actual_outs, ref_outs):
total_elements = 0
mismatched_elements = 0
for index, actual_val in np.ndenumerate(actual_outs):
total_elements += 1
ref_val = ref_outs[index]
if np.issubdtype(actual_outs.dtype, np.dtype(bool).type):
if ref_val == actual_val:
continue
else:
# Use equation atol + rtol * abs(desired), that is used in assert_allclose.
diff = float(args.atol) + float(args.rtol) * abs(ref_val)
if abs(actual_val - ref_val) <= diff:
continue
mismatched_elements += 1
print(
" at {}".format(index),
"mismatch {} (actual)".format(actual_val),
"vs {} (reference)".format(ref_val),
)
if mismatched_elements == 0:
print(" correct.\n")
else:
raise AssertionError(
" got mismatched elements {}/{}, abort.\n".format(
mismatched_elements, total_elements
)
)
def warning(msg):
print("Warning:", msg)
def data_without_top_bottom_quartile(data, percent):
data = np.array(sorted(data))
trim = int(percent * data.size / 100.0)
if trim == 0 or data.size - 2 * trim < 1:
# Want at least one element, return as is.
return data
return data[trim:-trim]
class InferenceSession:
"""
in onnxruntime:
class onnxruntime.InferenceSession(path_or_bytes: str | bytes | os.PathLike, sess_options: onnxruntime.SessionOptions | None = None, providers: Sequence[str | tuple[str, dict[Any, Any]]] | None = None, provider_options: Sequence[dict[Any, Any]] | None = None, **kwargs)[source]
In onnxmlir, session_options and provider will be merged into kwargs, and
ignored. onnxruntime.SessionOptions may contain some useful info,
but onnxruntime package is needed to interpret it. Therefore, it is ignored now.
Another argument, 'options' is added for onnxmlir to specify options for RunONNXModel.py
"""
def __init__(self, model_file, **kwargs):
global args
if "options" in kwargs.keys():
options = kwargs["options"]
args = parser.parse_args(shlex.split(options))
if model_file:
if model_file.endswith(".onnx") or model_file.endswith(".mlir"):
args.model = model_file
else:
args.load_model = compiled_name
# Default model name that will be used for the compiled model.
# e.g. model.so, model.constants.bin, ...
self.default_model_name = args.default_model_name
# Handle cache_model.
if args.cache_model:
shared_lib_path = args.cache_model + f"/{self.default_model_name}.so"
if not os.path.exists(shared_lib_path):
print(
'Cached compiled model not found in "'
+ args.cache_model
+ '": save model this run.'
)
args.save_model = args.cache_model
else:
print(
'Cached compiled model found in "'
+ args.cache_model
+ '": load model this run.'
)
args.load_model = args.cache_model
args.cache_model = None
# Get shape information if given.
# args.shape_info in the form of 'input_index:d1xd2, input_index:d1xd2'
input_shapes = {}
if args.shape_info:
for input_shape in args.shape_info.strip().split(","):
input_index_shape = input_shape.split(":")
input_index = input_index_shape[0]
assert not (input_index in input_shapes), "Duplicate input indices"
dims = [int(d) for d in input_index_shape[1].split("x")]
input_shapes[int(input_index)] = dims
# Load the onnx model.
if args.model and args.model.endswith(".onnx"):
model = onnx.load(args.model)
# Get names of all intermediate tensors and modify model such that each of
# them will be an output of the model. If using onnxruntime for
# verification, we can then verify every operation output.
output_names = [o.name for o in model.graph.output]
output_names = list(OrderedDict.fromkeys(output_names))
if args.verify and args.verify == "onnxruntime" and args.verify_all_ops:
print("Extending the onnx model to check every node output ...\n")
output_names = sum(
[[n for n in node.output if n != ""] for node in model.graph.node],
[],
)
output_names = list(OrderedDict.fromkeys(output_names))
model = extend_model_output(model, output_names)
# Save the modified onnx file of the model if required.
if args.save_onnx:
print("Saving modified onnx model to ", args.save_onnx, "\n")
onnx.save(model, args.save_onnx)
# If a shared library is given, use it without compiling the ONNX model.
# Otherwise, compile the ONNX model.
if args.load_model:
self.model_dir = args.load_model
else:
# Compile the ONNX model.
self.temp_dir = tempfile.TemporaryDirectory()
print("Temporary directory has been created at {}\n".format(self.temp_dir))
print("Compiling the model ...")
self.model_dir = self.temp_dir.name
# Prepare input and output paths.
output_path = os.path.join(self.model_dir, self.default_model_name)
if args.model.endswith(".onnx"):
if args.verify and args.verify == "onnxruntime" and args.verify_all_ops:
input_model_path = os.path.join(
self.model_dir, f"{self.default_model_name}.onnx"
)
onnx.save(model, input_model_path)
else:
input_model_path = args.model
elif args.model.endswith(".mlir") or args.model.endswith(".onnxtext"):
input_model_path = args.model
else:
print(
"Invalid input model path. Must end with .onnx or .mlir or .onnxtext"
)
exit(1)
# Prepare compiler arguments.
command_str = [ONNX_MLIR]
if args.compile_args:
command_str += args.compile_args.split()
if args.compile_using_input_shape:
# Use shapes of the reference inputs to compile the model.
assert args.load_ref or args.load_ref_from_numpy, "No data folder given"
assert "shapeInformation" not in command_str, "shape info was set"
shape_info = "--shapeInformation="
for i in range(len(inputs)):
shape_info += (
str(i) + ":" + "x".join([str(d) for d in inputs[i].shape]) + ","
)
shape_info = shape_info[:-1]
command_str += [shape_info]
warning(
"the shapes of the model's inputs will be "
"changed to the shapes of the inputs in the data folder"
)
command_str += [input_model_path]
command_str += ["-o", output_path]
# Compile the model.
start = time.perf_counter()
ok, msg = execute_commands(command_str)
# Dump the compilation log into a file.
if args.log_to_file:
log_file = (
args.log_to_file
if args.log_to_file.startswith("/")
else os.path.join(os.getcwd(), args.log_to_file)
)
print(" Compilation log is dumped into {}".format(log_file))
with open(log_file, "w") as f:
f.write(msg)
if not ok:
print(msg)
exit(1)
end = time.perf_counter()
print(" took ", end - start, " seconds.\n")
# Save the following information:
# - .so file,
# - .constants.bin file, and
# - compilation.log containing the compilation output.
if args.save_model:
if not os.path.exists(args.save_model):
os.makedirs(args.save_model)
if not os.path.isdir(args.save_model):
print("Path to --save-model is not a folder")
exit(0)
# .so file.
shared_lib_path = self.model_dir + f"/{self.default_model_name}.so"
if os.path.exists(shared_lib_path):
print("Saving the shared library to", args.save_model)
shutil.copy2(shared_lib_path, args.save_model)
# .constants.bin file.
constants_file_path = os.path.join(
self.model_dir, f"{self.default_model_name}.constants.bin"
)
if os.path.exists(constants_file_path):
print("Saving the constants file to", args.save_model, "\n")
shutil.copy2(constants_file_path, args.save_model)
# Compilation log.
log_file_path = os.path.join(args.save_model, "compile.log")
with open(log_file_path, "w") as f:
print("Saving the compilation log to", args.save_model, "\n")
f.write(msg)
# Exit if only compiling the model.
if args.compile_only:
exit(0)
# Use the generated shared library to create an execution session.
start = time.perf_counter()
shared_lib_path = self.model_dir + f"/{self.default_model_name}.so"
if not os.path.exists(shared_lib_path):
print(f"Input model {shared_lib_path} does not exist")
exit(0)
print("Loading the compiled model ...")
if args.load_model:
sess = OMExecutionSession(shared_lib_path, tag="None")
else:
sess = OMExecutionSession(shared_lib_path)
end = time.perf_counter()
print(" took ", end - start, " seconds.\n")
self.sess = sess
"""
From onnxruntime API:
run(output_names, input_feed, run_options=None)
Compute the predictions.
PARAMETERS:
output_names – name of the outputs
input_feed – dictionary { input_name: input_value }
run_options – See onnxruntime.RunOptions.
RETURNS:
list of results, every result is either a numpy array, a sparse tensor, a list or a dictionary.
For onnxmlir, the run_options is ignored. If 'input_feed' is None, the
input could be randomly generated or read from file, as args specified.
In future, add '--shape-info' here. Better than in InferenceSession to
allow different shape from run to run.
"""
def run(self, outputname, input_feed, **kwargs):
# Get shape information if given.
# args.shape_info in the form of 'input_index:d1xd2, input_index:d1xd2'
input_shapes = {}
if args.shape_info:
for input_shape in args.shape_info.strip().split(","):
input_index_shape = input_shape.split(":")
input_index = input_index_shape[0]
assert not (input_index in input_shapes), "Duplicate input indices"
dims = [int(d) for d in input_index_shape[1].split("x")]
input_shapes[int(input_index)] = dims
# Get the input and output signature.
input_signature = self.sess.input_signature()
output_signature = self.sess.output_signature()
input_names = get_names_in_signature(input_signature)
output_names = get_names_in_signature(output_signature)
if args.print_signatures:
print("Model's input signature: ", input_signature.strip())
print("Model's output signature: ", output_signature.strip())
inputs = []
# Get input from input_feed, if input_feed is provided
if input_feed:
if isinstance(input_feed, dict):
for name in input_names:
if name in input_feed:
inputs.append(input_feed[name])
else:
print("input name given: ", input_feed.keys())
print("input name expected by model: ", input_names)
print("do not match")
exit(1)
# Since Python guarantees the order of values in a dictionary,
# the name check could be ignored as follows:
# inputs = list(input_feed.values())
else:
inputs = input_feed
args.inputs_from_arrays = inputs
# Prepare input data.
inputs = []
if args.load_ref:
inputs = read_input_from_refs(len(input_names), args.load_ref)
elif args.load_ref_from_numpy:
inputs = read_input_from_refs(len(input_names), args.load_ref_from_numpy)
elif args.inputs_from_arrays:
inputs = args.inputs_from_arrays
else:
inputs = generate_random_input(input_signature, input_shapes)
# Print the input if required.
if args.print_input:
for i, inp in enumerate(inputs):
print(
"The {} input {}:[{}x{}] is: \n {} \n".format(
ordinal(i + 1),
input_names[i],
"x".join([str(i) for i in inp.shape]),
inp.dtype,
inp,
)
)
# Running inference.
print("Running inference ...")
# Let onnx-mlir know where to find the constants file.
os.environ["OM_CONSTANT_PATH"] = self.model_dir
for i in range(args.warmup):
start = time.perf_counter()
outs = self.sess.run(inputs)
end = time.perf_counter()
print(" {} warmup: {} seconds".format(ordinal(i + 1), end - start))
perf_results = []
for i in range(args.n_iteration):
start = time.perf_counter()
outs = self.sess.run(inputs)
end = time.perf_counter()
elapsed = end - start
perf_results += [elapsed]
print(" {} iteration, {}, seconds".format(ordinal(i + 1), elapsed))
# Print statistics info, e.g., min/max/stddev inference time.
if args.n_iteration > 1:
print(
" Statistics 1 (excluding warmup),"
" min, {:.6e}, max, {:.6e}, mean, {:.6e}, stdev, {:.6e}".format(
np.min(perf_results),
np.max(perf_results),
np.mean(perf_results),
np.std(perf_results, dtype=np.float64),
)
)
t_perf_results = data_without_top_bottom_quartile(perf_results, 25)
print(
" Statistics 2 (no warmup/quart.),"
" min, {:.6e}, max, {:.6e}, mean, {:.6e}, stdev, {:.6e}".format(
np.min(t_perf_results),
np.max(t_perf_results),
np.mean(t_perf_results),
np.std(t_perf_results, dtype=np.float64),
)
)
# Print the output if required.
if args.print_output:
for i, out in enumerate(outs):
print(
"The {} output {}:[{}x{}] is: \n {} \n".format(
ordinal(i + 1),
output_names[i],
"x".join([str(i) for i in out.shape]),
out.dtype,
out,
)
)
# Store the input and output if required.
if args.save_ref:
load_ref = args.save_ref
if not os.path.exists(load_ref):
os.mkdir(load_ref)
for i in range(len(inputs)):
tensor = numpy_helper.from_array(inputs[i])
tensor_path = os.path.join(load_ref, "input_{}.pb".format(i))
with open(tensor_path, "wb") as f:
f.write(tensor.SerializeToString())
for i in range(len(outs)):
tensor = numpy_helper.from_array(outs[i])
tensor_path = os.path.join(load_ref, "output_{}.pb".format(i))
with open(tensor_path, "wb") as f:
f.write(tensor.SerializeToString())
# Verify the output if required.
if args.verify:
ref_outs = []
if args.verify.lower() == "onnxruntime":
input_model_path = args.model
# Reference backend by using onnxruntime.
import onnxruntime
input_feed = dict(zip(input_names, inputs))
print("Running inference using onnxruntime ...")
start = time.perf_counter()
ref_session = onnxruntime.InferenceSession(input_model_path)
ref_outs = ref_session.run(output_names, input_feed)
end = time.perf_counter()
print(" took ", end - start, " seconds.\n")
elif args.verify.lower() == "ref":
# Reference output available in protobuf.
if args.load_ref:
ref_outs = read_output_from_refs(len(output_names), args.load_ref)
elif args.load_ref_from_numpy: