-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_app.py
869 lines (728 loc) · 43.1 KB
/
my_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# Contents of ~/my_app/streamlit_app.py
import streamlit as st
import folium
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_folium import st_folium
from branca.colormap import LinearColormap
import json
import geojson
from pandas_geojson import to_geojson
import altair as alt
from PIL import Image
st.set_page_config(layout="wide")
image = Image.open('Deptofwaterresources.jpg')
def main_page():
st.title("An analysis of California's DWR testing stations")
st.image(image, caption='Department of water resources logo (Wikipedia)')
st.header(""" A brief introduction:
Some of the data comes from the Data.Gov repository,
a great free resource. Some came from wikipedia. Some came from California state websites.
All of it came together to help create my presentation.
Each data set contained hundreds if not thousands of points and I cleaned,sorted, organized
and visualized it all.
For example just the original data set consisted of 4 separate subsets.
Stations- listing all stations
Periods of record- Ranges for all times and dates that substations were used for sampling.
Field results - A list of all testing results that were able to be taken in the field.
Lab Results- A list of all testing performed in facilities.
But that data alone needed additional data to give it more weight, more impact.
So population data and budgetary data for the state of California was also included.
Thank you for taking the time to look it over.
""")
st.header("""Goals:
Clean water is an important and vital resource for everyone.
The DWR takes samples of drinking water, ground water and other sources. And tests it for safety and
quality. Where and how often is this testing taking place?
Is there less now in some counties than in others?
While on the surface this data set seems mundane, in reality it contained a huge amount of depth
with mountains of useful information just waiting to be parsed and shared. It was a great data set to get people talking and thinking.
My goals for this presentation were to provide information in a way that was clear and hopefully easy to understand.
To get people to ask questions and think about what goes on around them.
I wanted to visualize the numbers of stations over the course of some amount of time. And make comparisons between different counties.
""")
st.header("""Tasks:
The tasks that were most important were:
1) Organizing the data accurately, making sure nothing was missed or left out.
2) Putting it all together in a way that made sense and looked good.
3) Providing useful information.
""")
st.header("""Data Sources:
https://catalog.data.gov/dataset/water-quality-data-0de37
https://www.counties.org/data-and-research
https://lao.ca.gov/analysis
https://law.stanford.edu
https://en.wikipedia.org/wiki/California_Department_of_Water_Resources
""")
def page2():
images = Image.open('lowfid.jpg')
imaged = Image.open('dashboardlow.jpg')
imagee = Image.open('number_of_testing_stations_over_100_years.jpg')
imagef = Image.open('mapearly.jpg')
imageg = Image.open('bettermap.jpg')
imageh = Image.open('finalmap.jpg')
imagei = Image.open('Finalfinalmap.jpg')
imagej = Image.open('Finalbudget.jpg')
imagek = Image.open('countypopulation.jpg')
st.markdown("Procedure and discussion")
st.sidebar.markdown("Sometimes Low fidelity really means low fidelity")
st.header("""Early planning:
I thought a simple line graph would be very easy to use to display the data.
Easy to interpret, easy to understand. With years along the X axis and station numbers
along the Y axis.
""")
st.image(images, caption='lowfidelity prototype')
st.header(""" :
And I wanted a map. When a year subset was selected the map would change to reflect this
a choropleth map.
""")
st.image(imaged, caption='lowfidelity prototype')
st.header("""Early planning continued:
After painstakingly parsing and organizing the data. Which took days.
There were thousands upon thousands of data points that needed sorting.
An attempt was made to plot them.
""")
st.image(imagee, caption='first simple visualization attempt')
st.header(""" The maps were really difficult:
On top of that, getting the data organized and to actually display on the maps was quite the endeavor.
There were limtations that existed within the libraries I used themselves.
For example, when markers were clustered as in the above image. Counties
got crushed together and grouped that should not have been.
""")
st.image(imagef, caption='_Nice map but what is with the weird circles_')
st.header(""" Early evaluation by peers, and by me:
For line plot above:It just looked so bland and lame. Sure I was new at this but I could do better.
So I asked others what they thought.
I asked friends to look it over and provide feedback.
Using journaling, they looked over my early designs and wrote feedback to me,the
responses I recieved were great help.
To start with the line graph.
"It is not very clear what you are trying to say. There are a lot
of stations. Was that all?"
I had to agree. there was so much to be improved.
"The data could look, well, nicer, is 1000 stations a lot?"
But this image lacked clarity, what was I trying to communicate.
There was no proportion. Sure the lines were higher, but what did the differences
in numbers mean, truly. The scale was also really large.
Without any background knowledge a person would just assume
there were a lot of stations in California. And that was not very useful at all.
For the map above:The early maps, were big. So big loading all of the data of the maps crashed my PC.
Not to mention the weird ways the data kept displaying. The markers clustered very closely together
and the counts of the markers appeared instead of the actual data.
I had someone look over the map and tell me what they thought.
"There are more than 10 stations in that county. This makes it look like there are 10."
A very obvious and useful piece of feedback.
A map like that was not clear, nor easy to understand, nor did it convey a message.
There was no color to indicate different numbers of stations.
And the map kept clustering together.
""")
st.header(""" To make the maps really meaningful I had to entierly overhaul everything I was doing.
Basically restarting from scratch.
I changed the type of map I used. I looked over the data again to see how to better organize it.
I used better balances of color. Choosing colors with
deep contrast and leaving all NA fields gray.
So it would be easy to understand what I was trying to say quickly. "There are stations here."
""")
st.image(imageg, caption='That is looking a little better')
st.header("""My data needed supportive data to help convey its message best.
To be more impactful and meaningful my data set needed additional data.
Just stations and the counts of stations really did not
inform anyone of anything.
So my tasks and my goal had to change slightly. By adding additional data, I helped clarify the message.
By adding population data and budgetary data the data became more than just a map.
""")
st.image(imageh, caption='Looks more meaningful now')
st.header(""" The final product and review.
The final product ended up being a dashboard with a map containing overlays
of stations and counties, with additional data containing budgetary and population information
as supplemental visualizations.
I also included some text to provide supportive and explanatory information.
Each visualization ended up fulfilling the key elements of design pretty well.
The map had nice contrasting colors, with the county names and station counts displaying as tooltips.
This also helped to clearly convey value. Darker colors were more stations and gray
meant there were none.
The space for the map was a good choice. People tend to read from left to right.
So the map would be the first thing they see when the data is loaded. """)
st.image(imagei, caption='Looks more meaningful now')
st.header(""" The next place the eye would go would be to the top of the page and
they would find the budgetary data information.
I tried to keep the visualization simple.
With the budgetary data being a lighter shade of blue, and the
DWR budget being darker. To try to guide the user into scrolling over it.
When they did tooltips appeared providing more information.
The sharp differences in color helped to convey the idea that
there were two pieces of data.
I tried to keep the space fairly even for my first visualization.
So the bars were not overly cluttered, nor too far apart.
The best shape choice ended up being bar charts.
A line chart had no meaning and other charts were too confusing.
The axes labels were simple. Budgetary data vs the years of recording. """)
st.image(imagej, caption = 'Data is more clear')
st.header("""The third visualization was the population data VS the station counts.
In order to not overload the user with data, the mean was taken for each decade.
And the data was ranked and plotted. With higher ranks meaning higher populations.
The station counts were also ranked.
Then the station counts were overlaid as dots of a very contrastting color.
And when the user scrolls over each a tooltip again appears providing information.
But the scrolling does not need to happen at all.
Just by looking over the graphs it is easy to see the accompanying data.
The highly contrasting colors help guide the eyes.
The large differences in line height/length shows a clear difference in numerical value.
The darker is higher helps users understand that higher values are weighted more heavily.
The visualization makes good use of space,with the bars not being cluttered together at all.
Geometric shape elements are used here as well. The lines form a nice step pattern
that the user finds easy to follow.
""")
st.image(imagek,caption = 'population is better communicated')
st.header("""Did the visualizations convey the target data?
I think so. Looking at the maps, the data is fairly straightforward. In recent years the number of testing stations
per county has decreased and this is clearly shown. The map contains gray areas where there are no values.
And the stations vs population graph shows no point for that county.
""")
st.header("""What I would change:
I encountered issues due to the actual limitations of the libraries that I attempted to use.
Many of the things I would like to change are not really able to be changed.
For example one of the maps contains a random point. It is due to a bug in the code.
There is no county data in that area and I cannot fix it.
Or the difficulty in selecting specific color gradients when layering graphs in altair.
It does not always work.
I also could not get the markers themselves to be transparent. No matter what I did.
And they are a huge source of clutter.
In future iterations I would like use a map library where the markers can be hidden automatically.
""")
def page3():
st.sidebar.markdown("Final Project, please close the sidebar to see this best")
pa=pd.read_csv(r"pa",index_col=False)
pb=pd.read_csv(r"pb",index_col=False)
pc=pd.read_csv(r"pc",index_col=False)
pe=pd.read_csv(r"pe",index_col=False)
pf=pd.read_csv(r"pf",index_col=False)
pg=pd.read_csv(r"pg",index_col=False)
ph=pd.read_csv(r"ph",index_col=False)
pi=pd.read_csv(r"pi",index_col=False)
pj=pd.read_csv(r"pj",index_col=False)
pk=pd.read_csv(r"pk",index_col=False)
pl=pd.read_csv(r"pl",index_col=False)
pm=pd.read_csv(r"pm",index_col=False)
budget1984percent = pd.read_csv(r'budget1984percent',index_col=False)
budget1984=pd.read_csv(r"budget1984",index_col=False)
pool=pd.read_csv(r"1984populationranked",index_col=False)
budget1994percent = pd.read_csv(r'budget1994percent',index_col=False)
budget1994=pd.read_csv(r"budget1994",index_col=False)
poola=pd.read_csv(r"1994populationranked",index_col=False)
budget2004percent = pd.read_csv(r'budget2004percent',index_col=False)
budget2004=pd.read_csv(r"budget2004",index_col=False)
poolb=pd.read_csv(r"2004populationranked",index_col=False)
budget2023percent = pd.read_csv(r'budget2023percent',index_col=False)
budget2023=pd.read_csv(r"budget2023",index_col=False)
poolc=pd.read_csv(r"2023populationranked",index_col=False)
df_grouped1974=pd.read_csv(r"df_grouped1974",index_col=False)
df_grouped1984=pd.read_csv(r"df_grouped1984",index_col=False)
df_grouped1994=pd.read_csv(r"df_grouped1994",index_col=False)
df_grouped2004=pd.read_csv(r"df_grouped2004",index_col=False)
df_grouped2014=pd.read_csv(r"df_grouped2014",index_col=False)
map1974_dict =df_grouped1974.set_index("COUNTY_NAME")["counts"].to_dict()
map1984_dict =df_grouped1984.set_index("COUNTY_NAME")["counts"].to_dict()
map1994_dict =df_grouped1994.set_index("COUNTY_NAME")["counts"].to_dict()
map2004_dict =df_grouped2004.set_index("COUNTY_NAME")["counts"].to_dict()
map2014_dict =df_grouped2014.set_index("COUNTY_NAME")["counts"].to_dict()
geo_jsong = to_geojson(df=df_grouped1974, lat='latitude', lon='longitude',
properties=['COUNTY_NAME','counts'])
geo_jsonh = to_geojson(df=df_grouped1984, lat='latitude', lon='longitude',
properties=['COUNTY_NAME','counts'])
geo_jsoni = to_geojson(df=df_grouped1994, lat='latitude', lon='longitude',
properties=['COUNTY_NAME','counts'])
geo_jsonj = to_geojson(df=df_grouped2004, lat='latitude', lon='longitude',
properties=['COUNTY_NAME','counts'])
geo_jsonk = to_geojson(df=df_grouped2014, lat='latitude', lon='longitude',
properties=['COUNTY_NAME','counts'])
us_counties = (
"https://raw.githubusercontent.com/oohtmeel1/ColoradoBoulderVisalizations/main/California_County_Boundaries.json"
)
style_function = lambda x: {'fillColor': '#ffffff',
'color':'#000000',
'fillOpacity': 0.0,
'weight': 0.0}
highlight_function = lambda x: {'fillColor': '#000000',
'color':'#000000',
'fillOpacity': 0.00,
'weight': 0.0}
###
color_scaleg = LinearColormap(['green','blue'], vmin = min(map1974_dict.values()), vmax = max(map1974_dict.values()))
def get_colorg(feature):
value = map1974_dict.get(feature['properties']['COUNTY_NAME'])
if value is None:
return '#626262'
else:
return color_scaleg(value)
m7 = folium.Map(location=(38.5816,-120.4944),
max_bounds=True, zoom_start=6,zoom_control= True ,dragging = True, scrollWheelZoom=True)
folium.GeoJson(
data = us_counties,
style_function = lambda feature: {
'fillColor': get_colorg(feature),
'fillOpacity': 0.7,
'color' : 'black',
'weight' : 1,
}
).add_to(m7)
NIL = folium.features.GeoJson(
us_counties,
style_function=style_function,
control=False,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME' ],
aliases = ["County Name "], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
).add_to(m7)
m7.add_child(NIL)
G = folium.features.GeoJson(
geo_jsong,
style_function=style_function,
control=True,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME'
,'counts'],
aliases = ["County Name"
,'number of stations'], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
)
m7.add_child(G)
m7.add_child(folium.LayerControl())
color_scaleg.caption = "Number of stations per county"
color_scaleg.add_to(m7)
###
color_scaleh = LinearColormap(['green','blue'], vmin = min(map1984_dict.values()), vmax = max(map1984_dict.values()))
def get_colorh(feature):
value = map1984_dict.get(feature['properties']['COUNTY_NAME'])
if value is None:
return '#626262'
else:
return color_scaleh(value)
m8 = folium.Map(location=(38.5816,-120.4944),
max_bounds=True, zoom_start=6,zoom_control= True ,dragging = True, scrollWheelZoom=True)
folium.GeoJson(
data = us_counties,
style_function = lambda feature: {
'fillColor': get_colorh(feature),
'fillOpacity': 0.7,
'color' : 'black',
'weight' : 1,
}
).add_to(m8)
NIL = folium.features.GeoJson(
us_counties,
style_function=style_function,
control=False,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME' ],
aliases = ["County Name "], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
).add_to(m8)
m8.add_child(NIL)
H = folium.features.GeoJson(
geo_jsonh,
style_function=style_function,
control=True,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME'
,'counts'],
aliases = ["County Name"
,'number of stations'], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
)
m8.add_child(H)
m8.add_child(folium.LayerControl())
##
color_scalei = LinearColormap(['green','blue'], vmin = min(map1994_dict.values()), vmax = max(map1994_dict.values()))
def get_colori(feature):
value = map1994_dict.get(feature['properties']['COUNTY_NAME'])
if value is None:
return '#626262'
else:
return color_scalei(value)
m9 = folium.Map(location=(38.5816,-120.4944),
max_bounds=True, zoom_start=6,zoom_control= True ,dragging = True, scrollWheelZoom=True)
folium.GeoJson(
data = us_counties,
style_function = lambda feature: {
'fillColor': get_colori(feature),
'fillOpacity': 0.7,
'color' : 'black',
'weight' : 1,
}
).add_to(m9)
NIL = folium.features.GeoJson(
us_counties,
style_function=style_function,
control=False,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME' ],
aliases = ["County Name "], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
).add_to(m9)
m9.add_child(NIL)
I = folium.features.GeoJson(
geo_jsoni,
style_function=style_function,
control=True,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME'
,'counts'],
aliases = ["County Name"
,'number of stations'], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
)
m9.add_child(I)
m9.add_child(folium.LayerControl())
###
color_scalej = LinearColormap(['green','blue'], vmin = min(map2004_dict.values()), vmax = max(map2004_dict.values()))
def get_colorj(feature):
value = map2004_dict.get(feature['properties']['COUNTY_NAME'])
if value is None:
return '#626262'
else:
return color_scalej(value)
m10 = folium.Map(location=(38.5816,-120.4944),
max_bounds=True, zoom_start=6,zoom_control= True ,dragging = True, scrollWheelZoom=True)
folium.GeoJson(
data = us_counties,
style_function = lambda feature: {
'fillColor': get_colorj(feature),
'fillOpacity': 0.7,
'color' : 'black',
'weight' : 1,
}
).add_to(m10)
NIL = folium.features.GeoJson(
us_counties,
style_function=style_function,
control=False,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME' ],
aliases = ["County Name "], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
).add_to(m10)
m10.add_child(NIL)
J = folium.features.GeoJson(
geo_jsonj,
style_function=style_function,
control=True,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME'
,'counts'],
aliases = ["County Name"
,'number of stations'], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
)
m10.add_child(J)
m10.add_child(folium.LayerControl())
###
color_scalek = LinearColormap(['green','blue'], vmin = min(map2014_dict.values()), vmax = max(map2014_dict.values()))
def get_colork(feature):
value = map2014_dict.get(feature['properties']['COUNTY_NAME'])
if value is None:
return '#626262'
else:
return color_scalek(value)
m11 = folium.Map(location=(38.5816,-120.4944),
max_bounds=True, zoom_start=6,zoom_control= True ,dragging = True, scrollWheelZoom=True)
folium.GeoJson(
data = us_counties,
style_function = lambda feature: {
'fillColor': get_colork(feature),
'fillOpacity': 0.7,
'color' : 'black',
'weight' : 1,
}
).add_to(m11)
NIL = folium.features.GeoJson(
us_counties,
style_function=style_function,
control=False,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME' ],
aliases = ["County Name "], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
).add_to(m11)
m11.add_child(NIL)
K = folium.features.GeoJson(
geo_jsonk,
style_function=style_function,
control=True,
highlight_function=highlight_function,
tooltip=folium.features.GeoJsonTooltip(
fields=['COUNTY_NAME'
,'counts'],
labels = False,
sticky =True,
markertooltip = False,
aliases = ["County Name"
,'number of stations'], # use fields from the json file
style=("background-color: white; color: #333333; font-family: arial; font-size: 12px; padding: 10px;")
)
)
m11.add_child(K)
m11.add_child(folium.LayerControl())
image = Image.open('Deptofwaterresources.jpg')
###########################################
# Turn into a DF
st.title("An analysis of California's DWR testing stations")
dicts = {"1984-1993":m8,"1994-2003":m9,"2004-2013":m10,"2014-2023":m11}
years = st.selectbox("Please pick a year range",
("1984-1993","1994-2003","2004-2013","2014-2023"))
col1,col2,col3 = st.columns([4,4,2])
if years == "1984-1993":
with col1:
st.markdown("""A color map, of the counts of testing stations for the DWR
in California counties.
The tooltips can be hidden by
hovering over the layers icon in the upper right hand of the map.
As the counts increase the color deepens, if no stations are counted,
the color of the county will display as gray.
""")
st_data = st_folium(m8)
st.dataframe(data=pj,height=300)
with col3:
st.markdown("""A dataframe of California's budget data,
containing the total state budget (in dollars),
how much was alloted to the DWR,
and what % that ended up being. """)
st.dataframe(budget1984percent,height=280)
st.markdown("""A dataframe of California's population data. The mean population was calculated.
Each population was ranked,
and the number of testing stations was also ranked.""")
st.dataframe(pool,height=280)
with col2:
st.markdown("""The Budget of California VS
the amount set aside for the Department of Water Resources.
Hovering over the bars reveals tooltips with additional information.""")
title = alt.TitleParams('Budget of California Vs % used by DWR', anchor = 'middle')
bar_chart = alt.Chart(budget1984,title=title).mark_bar().encode(
x="years:O",
y=alt.Y("state_budget",title ='Budget of California'),
color =alt.Color('state_budget', scale=alt.Scale(scheme='yellowgreenblue',zero=False),legend=None),
tooltip=[alt.Tooltip('DWR', title="DWR Budget "),
alt.Tooltip("% of budget to DWR", title= '% of budget to DWR')])
layer = alt.Chart(budget1984).mark_bar().encode(
x="years:O",
y="entire_budget:Q",
tooltip=[alt.Tooltip('state_budget', title="State budget ")]
)
st.altair_chart(bar_chart+ layer, use_container_width=True)
st.markdown("""The rankings of the populations
of each county as bars and the rankings
of the numbers of stations per county as circles.
Note, for population, higher ranking means higher population.
And if station count is missing. It was not in the data itself.""")
title = alt.TitleParams('County population means VS station counts', anchor = 'middle')
not_bar = alt.Chart(pool,title=title).mark_bar().encode(
y =alt.Y('County', sort = None),
x=alt.X("Population_rank",title ='Population rank of county'),
color =alt.Color('Population_rank', scale=alt.Scale(scheme='blueorange',zero=False),legend= None),
tooltip=[alt.Tooltip('County', title="Name of County: "),
alt.Tooltip('Population', title=" mean population "),
alt.Tooltip('Population_rank')])
layers = alt.Chart(pool).mark_circle().encode(
y =alt.Y('County', sort = None),
x="Station rank:Q",
tooltip=[alt.Tooltip('Station count', title="Station count "),
alt.Tooltip("Station rank", title= 'Station rank')])
st.altair_chart(not_bar+layers,use_container_width=True)
# Attempt to use Altair to make it look nicer
if years == "1994-2003":
with col1:
st.markdown("""A color map, of the counts of testing stations for the DWR
in California counties.
The tooltips can be hidden by
hovering over the layers icon in the upper right hand of the map.
As the counts increase the color deepens, if no stations are counted,
the color of the county will display as gray.
""")
st_data = st_folium(m9)
st.dataframe(data=pk,height=300)
with col3:
st.markdown("""A dataframe of California's budget data,
containing the total state budget (in dollars),
how much was alloted to the DWR,
and what % that ended up being. """)
st.dataframe(budget1984percent,height=280)
st.markdown("""A dataframe of California's population data. The mean population was calculated.
Each population was ranked,
and the number of testing stations was also ranked.""")
st.dataframe(poola,height=280)
with col2:
st.markdown("""The Budget of California VS
the amount set aside for the Department of Water Resources.
Hovering over the bars reveals tooltips with additional information.""")
title = alt.TitleParams('Budget of California Vs % used by DWR', anchor = 'middle')
bar_chart = alt.Chart(budget1994,title=title).mark_bar().encode(
x="years:O",
y=alt.Y("state_budget",title ='Budget of California'),
color =alt.Color('state_budget', scale=alt.Scale(scheme='yellowgreenblue',zero=False),legend=None),
tooltip=[alt.Tooltip('DWR', title="DWR Budget "),
alt.Tooltip("% of budget to DWR", title= '% of budget to DWR')])
layer = alt.Chart(budget1994).mark_bar().encode(
x="years:O",
y="entire_budget:Q",
tooltip=[alt.Tooltip('state_budget', title="State budget ")]
)
st.altair_chart(bar_chart+ layer, use_container_width=True)
st.markdown("""The rankings of the populations
of each county as bars and the rankings
of the numbers of stations per county as circles.
Note, for population, higher ranking means higher population.
And if station count is missing. It was not in the data itself.""")
title = alt.TitleParams('County population means VS station counts', anchor = 'middle')
not_bar = alt.Chart(poola,title=title).mark_bar().encode(
y =alt.Y('County', sort = None),
x=alt.X("Population_rank",title ='Population rank of county'),
color =alt.Color('Population_rank', scale=alt.Scale(scheme='blueorange',zero=False),legend=None),
tooltip=[alt.Tooltip('County', title="Name of County: "),
alt.Tooltip('Population', title=" mean population "),
alt.Tooltip('Population_rank')])
layers = alt.Chart(poola).mark_circle().encode(
y =alt.Y('County', sort = None),
x="Station rank:Q",
tooltip=[alt.Tooltip('Station count', title="Station count "),
alt.Tooltip("Station rank", title= 'Station rank')])
st.altair_chart(not_bar+layers,use_container_width=True)
if years == "2004-2013":
with col1:
st.markdown("""A color map, of the counts of testing stations for the DWR
in California counties.
The tooltips can be hidden by
hovering over the layers icon in the upper right hand of the map.
As the counts increase the color deepens, if no stations are counted,
the color of the county will display as gray.
""")
st_data = st_folium(m10)
st.dataframe(data=pl,height=300)
with col3:
st.markdown("""A dataframe of California's budget data,
containing the total state budget (in dollars),
how much was alloted to the DWR,
and what % that ended up being. """)
st.dataframe(budget2004percent,height=280)
st.markdown("""A dataframe of California's population data. The mean population was calculated.
Each population was ranked,
and the number of testing stations was also ranked.""")
st.dataframe(poolb,height=280)
with col2:
st.markdown("""The Budget of California VS
the amount set aside for the Department of Water Resources.
Hovering over the bars reveals tooltips with additional information.""")
title = alt.TitleParams('Budget of California Vs % used by DWR', anchor = 'middle')
bar_chart = alt.Chart(budget2004,title=title).mark_bar().encode(
x="years:O",
y=alt.Y("state_budget",title ='Budget of California'),
color =alt.Color('state_budget', scale=alt.Scale(scheme='yellowgreenblue',zero=False),legend=None),
tooltip=[alt.Tooltip('DWR', title="DWR Budget "),
alt.Tooltip("% of budget to DWR", title= '% of budget to DWR')])
layer = alt.Chart(budget2004).mark_bar().encode(
x="years:O",
y="entire_budget:Q",
tooltip=[alt.Tooltip('state_budget', title="State budget ")]
)
st.altair_chart(bar_chart+ layer, use_container_width=True)
st.markdown("""The rankings of the populations
of each county as bars and the rankings
of the numbers of stations per county as circles.""")
title = alt.TitleParams('County population means VS station counts', anchor = 'middle')
not_bar = alt.Chart(poolb,title=title).mark_bar().encode(
y =alt.Y('County', sort = None),
x=alt.X("Population_rank",title ='Population rank of county'),
color =alt.Color('Population_rank', scale=alt.Scale(scheme='blueorange',zero=False),legend=None),
tooltip=[alt.Tooltip('County', title="Name of County: "),
alt.Tooltip('Population', title=" mean population "),
alt.Tooltip('Population_rank')])
layers = alt.Chart(poolb).mark_circle().encode(
y =alt.Y('County', sort = None),
x="Station rank:Q",
tooltip=[alt.Tooltip('Station count', title="Station count "),
alt.Tooltip("Station rank", title= 'Station rank')])
st.altair_chart(not_bar+layers,use_container_width=True)
if years == "2014-2023":
with col1:
st.markdown("""A color map, of the counts of testing stations for the DWR
in California counties.
The tooltips can be hidden by
hovering over the layers icon in the upper right hand of the map.
As the counts increase the color deepens, if no stations are counted,
the color of the county will display as gray.
""")
st_data = st_folium(m11)
st.dataframe(data=pm,height=300)
with col3:
st.markdown("""A dataframe of California's budget data,
containing the total state budget (in dollars),
how much was alloted to the DWR,
and what % that ended up being. """)
st.dataframe(budget2023percent,height=280)
st.markdown("""A dataframe of California's population data. The mean population was calculated.
Each population was ranked,
and the number of testing stations was also ranked.""")
st.dataframe(poolc,height=280)
with col2:
st.markdown("""The Budget of California VS
the amount set aside for the Department of Water Resources.
Most of this decade, the budget for DWR was so insignificant
that it won't even appear as a data point.
Hovering over the bars reveals tooltips with additional information.""")
title = alt.TitleParams('Budget of California Vs % used by DWR', anchor = 'middle')
bar_chart = alt.Chart(budget2023,title=title).mark_bar().encode(
x="years:O",
y=alt.Y("state_budget",title ='Budget of California'),
color =alt.Color('state_budget', scale=alt.Scale(scheme='yellowgreenblue',zero=False),legend=None),
tooltip=[alt.Tooltip('DWR', title="DWR Budget "),
alt.Tooltip("% of budget to DWR", title= '% of budget to DWR')])
layer = alt.Chart(budget2023).mark_bar().encode(
x="years:O",
y="entire_budget:Q",
tooltip=[alt.Tooltip('state_budget', title="State budget ")]
)
st.altair_chart(bar_chart+ layer, use_container_width=True)
st.markdown("""The rankings of the populations
of each county as bars and the rankings
of the numbers of stations per county as circles.
And if station count is missing. It was not in the data itself.""")
title = alt.TitleParams('County population means VS station counts', anchor = 'middle')
not_bar = alt.Chart(poolc,title=title).mark_bar().encode(
y =alt.Y('County', sort = None),
x=alt.X("Population_rank",title ='Population rank of county'),
color =alt.Color('Population_rank', scale=alt.Scale(scheme='blueorange',zero=False),legend=None),
tooltip=[alt.Tooltip('County', title="Name of County: "),
alt.Tooltip('Population', title=" mean population "),
alt.Tooltip('Population_rank')])
layers = alt.Chart(poolc).mark_circle().encode(
y =alt.Y('County', sort = None),
x="Station rank:Q",
tooltip=[alt.Tooltip('Station count', title="Station count "),
alt.Tooltip("Station rank", title= 'Station rank')])
st.altair_chart(not_bar+layers,use_container_width=True)
page_names_to_funcs = {
"Introduction": main_page,
"Procedure and discussions": page2,
"Final Project": page3,
}
selected_page = st.sidebar.selectbox("Select a page", page_names_to_funcs.keys())
page_names_to_funcs[selected_page]()