-
Notifications
You must be signed in to change notification settings - Fork 245
/
Copy pathbenchmark.py
450 lines (376 loc) · 18.7 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
from datetime import datetime
import requests
import yaml
from evals.benchmark.stresscli.commands.load_test import locust_runtests
from kubernetes import client, config
# only support chatqna for now
service_endpoints = {
"chatqna": "/v1/chatqna",
}
def load_yaml(file_path):
with open(file_path, "r") as f:
data = yaml.safe_load(f)
return data
def construct_benchmark_config(test_suite_config):
"""Extract relevant data from the YAML based on the specified test cases."""
return {
"user_queries": test_suite_config.get("user_queries", [1]),
"concurrency": test_suite_config.get("concurrency", [1]),
"load_shape_type": test_suite_config.get("load_shape_type", "constant"),
"poisson_arrival_rate": test_suite_config.get("poisson_arrival_rate", 1.0),
"warmup_iterations": test_suite_config.get("warmup_iterations", 10),
"seed": test_suite_config.get("seed", None),
"bench_target": test_suite_config.get("bench_target", ["chatqnafixed"]),
"dataset": test_suite_config.get("dataset", ""),
"prompt": test_suite_config.get("prompt", [10]),
"llm_max_token_size": test_suite_config.get("llm", {}).get("max_token_size", [128]),
}
def _get_cluster_ip(service_name, namespace="default"):
"""Get the Cluster IP of a service in a Kubernetes cluster."""
# Load the Kubernetes configuration
config.load_kube_config() # or use config.load_incluster_config() if running inside a Kubernetes pod
# Create an API client for the core API (which handles services)
v1 = client.CoreV1Api()
try:
# Get the service object
service = v1.read_namespaced_service(name=service_name, namespace=namespace)
# Extract the Cluster IP
cluster_ip = service.spec.cluster_ip
# Extract the port number (assuming the first port, modify if necessary)
if service.spec.ports:
port_number = service.spec.ports[0].port # Get the first port number
else:
port_number = None
return cluster_ip, port_number
except client.exceptions.ApiException as e:
print(f"Error fetching service: {e}")
return None
def _get_service_ip(service_name, deployment_type="k8s", service_ip=None, service_port=None, namespace="default"):
"""Get the service IP and port based on the deployment type.
Args:
service_name (str): The name of the service.
deployment_type (str): The type of deployment ("k8s" or "docker").
service_ip (str): The IP address of the service (required for Docker deployment).
service_port (int): The port of the service (required for Docker deployment).
namespace (str): The namespace of the service (default is "default").
Returns:
(str, int): The service IP and port.
"""
if deployment_type == "k8s":
# Kubernetes IP and port retrieval logic
svc_ip, port = _get_cluster_ip(service_name, namespace)
elif deployment_type == "docker":
# For Docker deployment, service_ip and service_port must be specified
if not service_ip or not service_port:
raise ValueError(
"For Docker deployment, service_ip and service_port must be provided in the configuration."
)
svc_ip = service_ip
port = service_port
else:
raise ValueError("Unsupported deployment type. Use 'k8s' or 'docker'.")
return svc_ip, port
def _create_yaml_content(service, base_url, bench_target, test_phase, num_queries, test_params, concurrency=1):
"""Create content for the run.yaml file."""
# calculate the number of concurrent users
concurrent_level = int(num_queries // concurrency)
import importlib.util
package_name = "opea-eval"
spec = importlib.util.find_spec(package_name)
print(spec)
# get folder path of opea-eval
eval_path = os.getenv("EVAL_PATH", "")
if not eval_path:
import pkg_resources
for dist in pkg_resources.working_set:
if "opea-eval" in dist.project_name:
eval_path = dist.location
break
if not eval_path:
print("Fail to find the opea-eval package. Please set/install it first.")
exit(1)
load_shape = test_params["load_shape"]
load_shape["params"]["constant"] = {"concurrent_level": concurrent_level}
yaml_content = {
"profile": {
"storage": {"hostpath": test_params["test_output_dir"]},
"global-settings": {
"tool": "locust",
"locustfile": os.path.join(eval_path, "evals/benchmark/stresscli/locust/aistress.py"),
"host": base_url,
"run-time": test_params["run_time"],
"stop-timeout": test_params["query_timeout"],
"processes": 16, # set to 2 by default
"namespace": test_params["namespace"],
"bench-target": bench_target,
"service-metric-collect": test_params["collect_service_metric"],
"service-list": service.get("service_list", []),
"dataset": service.get("dataset", "default"),
"prompts": service.get("prompts", None),
"max-output": service.get("max_output", 128),
"seed": test_params.get("seed", None),
"llm-model": test_params["llm_model"],
"deployment-type": test_params["deployment_type"],
"load-shape": load_shape,
},
"runs": [{"name": test_phase, "users": concurrency, "max-request": num_queries}],
}
}
return yaml_content
def _create_stresscli_confs(case_params, test_params, test_phase, num_queries, base_url, ts, concurrency=1) -> str:
"""Create a stresscli configuration file and persist it on disk."""
stresscli_confs = []
# Get the workload
bench_target = test_params["bench_target"]
for i, b_target in enumerate(bench_target):
stresscli_conf = {}
print(f"[OPEA BENCHMARK] 🚀 Running test for {b_target} in phase {test_phase} for {num_queries} queries")
if len(test_params["dataset"]) > i:
stresscli_conf["envs"] = {"DATASET": test_params["dataset"][i], "MAX_LINES": str(test_params["prompt"][i])}
else:
stresscli_conf["envs"] = {"MAX_LINES": str(test_params["prompt"][i])}
# Generate the content of stresscli configuration file
stresscli_yaml = _create_yaml_content(
case_params, base_url, b_target, test_phase, num_queries, test_params, concurrency
)
# Dump the stresscli configuration file
service_name = case_params.get("service_name")
max_output = case_params.get("max_output")
run_yaml_path = os.path.join(
test_params["test_output_dir"],
f"run_{test_phase}_{service_name}_{num_queries}_{b_target}_{max_output}_{ts}.yaml",
)
with open(run_yaml_path, "w") as yaml_file:
yaml.dump(stresscli_yaml, yaml_file)
stresscli_conf["run_yaml_path"] = run_yaml_path
stresscli_confs.append(stresscli_conf)
return stresscli_confs
def create_stresscli_confs(service, base_url, test_suite_config, index):
"""Create and save the run.yaml file for the service being tested."""
os.makedirs(test_suite_config["test_output_dir"], exist_ok=True)
stresscli_confs = []
# Add YAML configuration of stresscli for warm-ups
warm_ups = test_suite_config["warm_ups"]
if warm_ups is not None and warm_ups > 0:
stresscli_confs.extend(_create_stresscli_confs(service, test_suite_config, "warmup", warm_ups, base_url, index))
# Add YAML configuration of stresscli for benchmark
user_queries_lst = test_suite_config["user_queries"]
if user_queries_lst is None or len(user_queries_lst) == 0:
# Test stop is controlled by run time
stresscli_confs.extend(_create_stresscli_confs(service, test_suite_config, "benchmark", -1, base_url, index))
else:
# Test stop is controlled by request count
for i, user_query in enumerate(user_queries_lst):
concurrency_list = test_suite_config["concurrency"]
user_query *= test_suite_config["node_num"]
stresscli_confs.extend(
_create_stresscli_confs(
service,
test_suite_config,
"benchmark",
user_query,
base_url,
index,
concurrency=concurrency_list[i],
)
)
return stresscli_confs
def ingest_data_to_db(service, dataset, namespace):
"""Ingest data into the database."""
for service_name in service.get("service_list"):
if "data" in service_name:
# Ingest data into the database
print(f"[OPEA BENCHMARK] 🚀 Ingesting data into the database for {service_name}...")
try:
svc_ip, port = _get_service_ip(service_name, "k8s", None, None, namespace)
url = f"http://{svc_ip}:{port}/v1/dataprep/ingest"
files = {"files": open(dataset, "rb")}
response = requests.post(url, files=files)
if response.status_code != 200:
print(f"Error ingesting data: {response.text}. Status code: {response.status_code}")
return False
if "Data preparation succeeded" not in response.text:
print(f"Error ingesting data: {response.text}. Response: {response}")
return False
except Exception as e:
print(f"Error ingesting data: {e}")
return False
print(f"[OPEA BENCHMARK] 🚀 Data ingestion completed for {service_name}.")
break
return True
def clear_db(service, namespace):
"""Delete all files from the database."""
for service_name in service.get("service_list"):
if "data" in service_name:
# Delete data from the database
try:
svc_ip, port = _get_service_ip(service_name, "k8s", None, None, namespace)
url = f"http://{svc_ip}:{port}/v1/dataprep/delete"
data = {"file_path": "all"}
print(f"[OPEA BENCHMARK] 🚀 Deleting data from the database for {service_name} with {url}")
response = requests.post(url, json=data, headers={"Content-Type": "application/json"})
if response.status_code != 200:
print(f"Error deleting data: {response.text}. Status code: {response.status_code}")
return False
if "true" not in response.text:
print(f"Error deleting data: {response.text}. Response: {response}")
return False
except Exception as e:
print(f"Error deleting data: {e}")
return False
print(f"[OPEA BENCHMARK] 🚀 Data deletion completed for {service_name}.")
break
return True
def _run_service_test(example, service, test_suite_config, namespace):
"""Run the test for a specific service and example."""
print(f"[OPEA BENCHMARK] 🚀 Example: [ {example} ] Service: [ {service.get('service_name')} ], Running test...")
# Get the service name
service_name = service.get("service_name")
# Get the deployment type from the test suite configuration
deployment_type = test_suite_config.get("deployment_type", "k8s")
# Get the service IP and port based on deployment type
svc_ip, port = _get_service_ip(
service_name,
deployment_type,
test_suite_config.get("service_ip"),
test_suite_config.get("service_port"),
test_suite_config.get("namespace"),
)
base_url = f"http://{svc_ip}:{port}"
endpoint = service_endpoints[example]
url = f"{base_url}{endpoint}"
print(f"[OPEA BENCHMARK] 🚀 Running test for {service_name} at {url}")
# Generate a unique index based on the current time
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create the run.yaml for the service
stresscli_confs = create_stresscli_confs(service, base_url, test_suite_config, timestamp)
# Do benchmark in for-loop for different user queries
output_folders = []
for index, stresscli_conf in enumerate(stresscli_confs, start=1):
run_yaml_path = stresscli_conf["run_yaml_path"]
print(f"[OPEA BENCHMARK] 🚀 The {index} time test is running, run yaml: {run_yaml_path}...")
os.environ["MAX_TOKENS"] = str(service.get("max_output"))
dataset = None
if stresscli_conf.get("envs") is not None:
for key, value in stresscli_conf.get("envs").items():
os.environ[key] = value
if key == "DATASET":
dataset = value
if dataset:
# Ingest data into the database for single run of benchmark
result = ingest_data_to_db(service, dataset, namespace)
if not result:
print(f"[OPEA BENCHMARK] 🚀 Data ingestion failed for {service_name}.")
exit(1)
else:
print(f"[OPEA BENCHMARK] 🚀 Dataset is not specified for {service_name}. Check the benchmark.yaml again.")
# Run the benchmark test and append the output folder to the list
print("[OPEA BENCHMARK] 🚀 Start locust_runtests at", datetime.now().strftime("%Y%m%d_%H%M%S"))
locust_output = locust_runtests(None, run_yaml_path)
print(f"[OPEA BENCHMARK] 🚀 locust_output origin name is {locust_output}")
# Rename the output folder to include the index
new_output_path = os.path.join(
os.path.dirname(run_yaml_path), f"{os.path.splitext(os.path.basename(run_yaml_path))[0]}_output"
)
os.rename(locust_output, new_output_path)
print(f"[OPEA BENCHMARK] 🚀 locust new_output_path is {new_output_path}")
output_folders.append(new_output_path)
print("[OPEA BENCHMARK] 🚀 End locust_runtests at", datetime.now().strftime("%Y%m%d_%H%M%S"))
# Delete all files from the database after the test
result = clear_db(service, namespace)
print("[OPEA BENCHMARK] 🚀 End of clean up db", datetime.now().strftime("%Y%m%d_%H%M%S"))
if not result:
print(f"[OPEA BENCHMARK] 🚀 Data deletion failed for {service_name}.")
exit(1)
print(f"[OPEA BENCHMARK] 🚀 Test completed for {service_name} at {url}")
return output_folders
def run_benchmark(benchmark_config, chart_name, namespace, node_num=1, llm_model=None, report=False, output_dir=None):
"""Run the benchmark test for the specified helm chart and configuration.
Args:
benchmark_config (dict): The benchmark configuration.
chart_name (str): The name of the helm chart.
namespace (str): The namespace to deploy the chart.
node_num (int): The number of nodes of current deployment.
llm_model (str): The LLM model to use for the test.
report (bool): Whether to generate a report after the test.
output_dir (str): Directory to store the test output. If None, uses default directory.
"""
# If llm_model is None or an empty string, set to default value
if not llm_model:
llm_model = "meta-llama/Meta-Llama-3-8B-Instruct"
# Extract data
parsed_data = construct_benchmark_config(benchmark_config)
test_suite_config = {
"user_queries": parsed_data["user_queries"], # num of user queries
"random_prompt": False, # whether to use random prompt, set to False by default
"run_time": "30m", # The max total run time for the test suite, set to 60m by default
"collect_service_metric": False, # whether to collect service metrics, set to False by default
"llm_model": llm_model, # The LLM model used for the test
"deployment_type": "k8s", # Default is "k8s", can also be "docker"
"service_ip": None, # Leave as None for k8s, specify for Docker
"service_port": None, # Leave as None for k8s, specify for Docker
"test_output_dir": (
output_dir if output_dir else os.getcwd() + "/benchmark_output"
), # Use output_dir if provided
"node_num": node_num,
"load_shape": {
"name": parsed_data["load_shape_type"],
"params": {
"poisson": {"arrival_rate": parsed_data["poisson_arrival_rate"]},
},
},
"concurrency": parsed_data["concurrency"],
"arrival_rate": parsed_data["poisson_arrival_rate"],
"query_timeout": 120,
"warm_ups": parsed_data["warmup_iterations"],
"seed": parsed_data["seed"],
"namespace": namespace,
"bench_target": parsed_data["bench_target"],
"dataset": parsed_data["dataset"],
"prompt": parsed_data["prompt"],
"llm_max_token_size": parsed_data["llm_max_token_size"],
}
dataset = None
query_data = None
# Do benchmark in for-loop for different llm_max_token_size
for llm_max_token in parsed_data["llm_max_token_size"]:
print(f"[OPEA BENCHMARK] 🚀 Run benchmark on {dataset} with llm max-output-token {llm_max_token}.")
case_data = {}
# Support chatqna only for now
if chart_name == "chatqna":
case_data = {
"run_test": True,
"service_name": "chatqna",
"service_list": [
"chatqna",
"chatqna-chatqna-ui",
"chatqna-data-prep",
"chatqna-nginx",
"chatqna-redis-vector-db",
"chatqna-retriever-usvc",
"chatqna-tei",
"chatqna-teirerank",
"chatqna-vllm",
],
# Activate if random_prompt=true: leave blank = default dataset(WebQuestions) or sharegpt
"prompts": query_data,
"max_output": llm_max_token, # max number of output tokens
"k": 1, # number of retrieved documents
}
output_folder = _run_service_test(chart_name, case_data, test_suite_config, namespace)
print(f"[OPEA BENCHMARK] 🚀 Test Finished. Output saved in {output_folder}.")
if report:
print(output_folder)
all_results = dict()
for folder in output_folder:
from evals.benchmark.stresscli.commands.report import get_report_results
results = get_report_results(folder)
all_results[folder] = results
print(f"results = {results}\n")
return all_results
if __name__ == "__main__":
benchmark_config = load_yaml("./ChatQnA/benchmark_chatqna.yaml")
run_benchmark(benchmark_config=benchmark_config, chart_name="chatqna", namespace="benchmark")