diff --git a/examples/PyMPDATA_examples/advection_diffusion_2d/advection-diffusion-2d.ipynb b/examples/PyMPDATA_examples/advection_diffusion_2d/advection-diffusion-2d.ipynb index 1e4c346c..1a97aea4 100644 --- a/examples/PyMPDATA_examples/advection_diffusion_2d/advection-diffusion-2d.ipynb +++ b/examples/PyMPDATA_examples/advection_diffusion_2d/advection-diffusion-2d.ipynb @@ -30,51 +30,49 @@ }, { "cell_type": "code", - "execution_count": 1, "id": "e333666d", "metadata": { "ExecuteTime": { - "end_time": "2024-10-10T18:30:07.160534Z", - "start_time": "2024-10-10T18:30:07.154497Z" + "end_time": "2024-11-17T10:48:24.048516Z", + "start_time": "2024-11-17T10:48:24.040750Z" } }, - "outputs": [], "source": [ "import sys\n", "if 'google.colab' in sys.modules:\n", " !pip --quiet install open-atmos-jupyter-utils\n", " from open_atmos_jupyter_utils import pip_install_on_colab\n", " pip_install_on_colab('PyMPDATA-examples')" - ] + ], + "outputs": [], + "execution_count": 59 }, { "cell_type": "code", - "execution_count": 2, "id": "43d2893d-f472-43ac-ad5b-bf342a3783b9", "metadata": { + "id": "43d2893d-f472-43ac-ad5b-bf342a3783b9", "ExecuteTime": { - "end_time": "2024-10-10T18:30:08.508979Z", - "start_time": "2024-10-10T18:30:07.162539Z" - }, - "id": "43d2893d-f472-43ac-ad5b-bf342a3783b9" + "end_time": "2024-11-17T10:48:24.064Z", + "start_time": "2024-11-17T10:48:24.058632Z" + } }, - "outputs": [], "source": [ "from open_atmos_jupyter_utils import show_plot" - ] + ], + "outputs": [], + "execution_count": 60 }, { "cell_type": "code", - "execution_count": 3, "id": "9aaadc4a5234804a", "metadata": { + "id": "9aaadc4a5234804a", "ExecuteTime": { - "end_time": "2024-10-10T18:30:09.426364Z", - "start_time": "2024-10-10T18:30:08.508979Z" - }, - "id": "9aaadc4a5234804a" + "end_time": "2024-11-17T10:48:24.074911Z", + "start_time": "2024-11-17T10:48:24.072769Z" + } }, - "outputs": [], "source": [ "import os\n", "import numpy as np\n", @@ -84,20 +82,20 @@ "import matplotlib.pyplot as plt\n", "from PyMPDATA import Solver, ScalarField, VectorField, Stepper, Options\n", "from PyMPDATA.boundary_conditions import Periodic" - ] + ], + "outputs": [], + "execution_count": 61 }, { "cell_type": "code", - "execution_count": 4, "id": "a563a769a256feba", "metadata": { + "id": "a563a769a256feba", "ExecuteTime": { - "end_time": "2024-10-10T18:30:09.432980Z", - "start_time": "2024-10-10T18:30:09.427370Z" - }, - "id": "a563a769a256feba" + "end_time": "2024-11-17T10:48:24.083541Z", + "start_time": "2024-11-17T10:48:24.080757Z" + } }, - "outputs": [], "source": [ "mu = 0.0005 # diffusion coefficient\n", "dt = 0.025\n", @@ -117,54 +115,54 @@ "dy = (max_y - min_y) / ny\n", "Cx = ux * dt / dx\n", "Cy = uy * dt / dy" - ] + ], + "outputs": [], + "execution_count": 62 }, { "cell_type": "code", - "execution_count": 5, "id": "9a0f60b51e32ce3e", "metadata": { + "id": "9a0f60b51e32ce3e", "ExecuteTime": { - "end_time": "2024-10-10T18:30:09.442790Z", - "start_time": "2024-10-10T18:30:09.433984Z" - }, - "id": "9a0f60b51e32ce3e" + "end_time": "2024-11-17T10:48:24.091078Z", + "start_time": "2024-11-17T10:48:24.089428Z" + } }, - "outputs": [], "source": [ "opt = Options(n_iters=3, non_zero_mu_coeff=True)\n", "boundary_conditions = (Periodic(), Periodic())" - ] + ], + "outputs": [], + "execution_count": 63 }, { "cell_type": "code", - "execution_count": 6, "id": "cab790be5c425ea5", "metadata": { + "id": "cab790be5c425ea5", "ExecuteTime": { - "end_time": "2024-10-10T18:30:09.451908Z", - "start_time": "2024-10-10T18:30:09.443796Z" - }, - "id": "cab790be5c425ea5" + "end_time": "2024-11-17T10:48:24.098801Z", + "start_time": "2024-11-17T10:48:24.096647Z" + } }, - "outputs": [], "source": [ "def analytic_solution(x, y, t):\n", " return np.sin(omega*(x-ux*t+y-uy*t))*np.exp(-2*mu*t*omega**2) + 1" - ] + ], + "outputs": [], + "execution_count": 64 }, { "cell_type": "code", - "execution_count": 7, "id": "b454a74473b8f900", "metadata": { + "id": "b454a74473b8f900", "ExecuteTime": { - "end_time": "2024-10-10T18:30:09.464508Z", - "start_time": "2024-10-10T18:30:09.452917Z" - }, - "id": "b454a74473b8f900" + "end_time": "2024-11-17T10:48:24.108540Z", + "start_time": "2024-11-17T10:48:24.104379Z" + } }, - "outputs": [], "source": [ "def z(t):\n", " return np.array(\n", @@ -176,20 +174,20 @@ ").reshape((nx, ny))\n", "\n", "advectee = ScalarField(data=z(t=0), halo=opt.n_halo, boundary_conditions=boundary_conditions)" - ] + ], + "outputs": [], + "execution_count": 65 }, { "cell_type": "code", - "execution_count": 8, "id": "fb28f958a4920cd", "metadata": { + "id": "fb28f958a4920cd", "ExecuteTime": { - "end_time": "2024-10-10T18:30:09.474302Z", - "start_time": "2024-10-10T18:30:09.465513Z" - }, - "id": "fb28f958a4920cd" + "end_time": "2024-11-17T10:48:24.116792Z", + "start_time": "2024-11-17T10:48:24.114299Z" + } }, - "outputs": [], "source": [ "field_x = np.full((nx+1, ny), Cx, dtype=opt.dtype)\n", "field_y = np.full((nx, ny+1), Cy, dtype=opt.dtype)\n", @@ -199,67 +197,70 @@ " halo=opt.n_halo,\n", " boundary_conditions=(boundary_conditions[0], Periodic())\n", ")" - ] + ], + "outputs": [], + "execution_count": 66 }, { "cell_type": "code", - "execution_count": 9, "id": "45c8ea60d8490cd4", "metadata": { + "id": "45c8ea60d8490cd4", "ExecuteTime": { - "end_time": "2024-10-10T18:30:10.886354Z", - "start_time": "2024-10-10T18:30:09.476309Z" - }, - "id": "45c8ea60d8490cd4" + "end_time": "2024-11-17T10:48:24.125339Z", + "start_time": "2024-11-17T10:48:24.122603Z" + } }, - "outputs": [], "source": [ "stepper = Stepper(options=opt, n_dims=2)\n", "solver = Solver(stepper=stepper, advector=advector, advectee=advectee)" - ] + ], + "outputs": [], + "execution_count": 67 }, { "cell_type": "code", - "execution_count": 10, "id": "bd4722c47297508c", "metadata": { + "id": "bd4722c47297508c", "ExecuteTime": { - "end_time": "2024-10-10T18:30:10.890517Z", - "start_time": "2024-10-10T18:30:10.886354Z" - }, - "id": "bd4722c47297508c" + "end_time": "2024-11-17T10:48:24.132258Z", + "start_time": "2024-11-17T10:48:24.130678Z" + } }, - "outputs": [], "source": [ "vmin = np.min(solver.advectee.get())\n", "vmax = np.max(solver.advectee.get())" - ] + ], + "outputs": [], + "execution_count": 68 }, { "cell_type": "code", - "execution_count": 11, "id": "0e66ee78-f623-4e5f-99ef-0e43a2c81da1", - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-11-17T10:48:24.145284Z", + "start_time": "2024-11-17T10:48:24.139694Z" + } + }, "source": [ - "def plot(*, data, title):\n", + "def plot(*, data, title, colorbar=True):\n", " fig, axs = plt.subplots(1, 1, figsize=(6, 6))\n", - " ims = axs.imshow(data, cmap='viridis', vmin=vmin, vmax=vmax)\n", - " fig.colorbar(ims, ax=axs)\n", + " ims = axs.imshow(data, cmap='viridis', vmin=vmin, vmax=vmax, origin='lower')\n", + " if colorbar:\n", + " fig.colorbar(ims, ax=axs)\n", " axs.set_xlabel('x')\n", " axs.set_ylabel('y')\n", " axs.set_title(title)" - ] + ], + "outputs": [], + "execution_count": 69 }, { "cell_type": "code", - "execution_count": 12, "id": "d7a5cd43651621e6", "metadata": { - "ExecuteTime": { - "end_time": "2024-10-10T18:30:11.275924Z", - "start_time": "2024-10-10T18:30:10.891521Z" - }, "colab": { "base_uri": "https://localhost:8080/", "height": 536, @@ -275,51 +276,51 @@ ] }, "id": "d7a5cd43651621e6", - "outputId": "dcf9d10e-7f93-4491-8c26-a24e322eb4ee" + "outputId": "dcf9d10e-7f93-4491-8c26-a24e322eb4ee", + "ExecuteTime": { + "end_time": "2024-11-17T10:48:24.401807Z", + "start_time": "2024-11-17T10:48:24.156844Z" + } }, + "source": [ + "plot(\n", + " data=solver.advectee.get().copy(),\n", + " title='Initial condition'\n", + ")\n", + "show_plot(\"fig_1\", inline_format='png')" + ], "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAHiCAYAAABr4v9eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/SrBM8AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMTElEQVR4nO3de3yU5Z338e8kkAQICQTIqUCIaIMcEixKjFUXNBKiD4+s1EVqa4gUty5pF1NLTdcSULdxqSvYLoUegGAVQVSwVgsiGqgrhyUsRdrKAylIkCQcNAmJJoHMPH8wGR0Ik/vCuZlk5vN+ve7Xi8zcueeaDIeL331dv6/D5XK5BAAA0IGwQA8AAAB0DUwaAACAJUwaAACAJUwaAACAJUwaAACAJUwaAACAJUwaAACAJUwaAACAJd0CPQAAADqDpqYmtbS02HLtiIgIRUVF2XLty4lJAwAg5DU1NSk1JVrVx1ttuX5iYqIOHTrU5ScOTBoAACGvpaVF1cdb9WH5EMX09u+d+/rTTqWMOayWlhYmDQAABIvo3g5F93b49ZpO+fd6gcRCSAAAYAmVBgAA3FpdTrX6Ofu51eX07wUDiEkDAABuTrnklH9nDf6+XiBxewIAAFhCpQEAADennPL3zQT/XzFwqDQAAABLqDQAAODW6nKp1eXfNQj+vl4gUWkAAACWUGkAAMCN3RO+UWkAAACWUGkAAMDNKZdaqTRcFJMGAADcuD3hG7cnAACAJVQaAABwY8ulb1QaAACAJVQaAABwc7oPf18zWFBpAAAAllBpAADArdWGLZf+vl4gUWkAAACWUGkAAMCt1XXu8Pc1gwWVBuALHA6H5s2bZ+ncIUOGaPr06cavcfjwYTkcDpWWlhp/byBNnz5dQ4YM8Xrscvy8gMvJadMRLJg0IKiUlpbK4XBo165dfrnee++9p3nz5qm2ttYv1wt2/LyA4MbtCeALPvvsM3Xr9vkfi/fee0/z58/X9OnT1adPH69z9+/fr7Cw0J538/NCsHHKoVY5/H7NYMGkAfiCqKgoy+dGRkbaOJKugZ8XEFqY9iPoTZ8+XdHR0froo480efJkRUdHa8CAAXr44YfV2trqde4X79HPmzdPP/zhDyVJqampcjgccjgcOnz4sKQL79F//PHHevjhhzVq1ChFR0crJiZGubm5+vOf/3zJY6+trdVDDz2kIUOGKDIyUgMHDtR9992nkydPes45fvy4ZsyYoYSEBEVFRSkjI0MrV670uk7bOoqnnnpKv/71rzV06FBFRkbquuuu0//8z/9c8Lrr16/XyJEjFRUVpZEjR2rdunXtju/L/Lwk6e9//7vuvvtuxcXFqWfPnrr++uv1+uuve51TVlYmh8OhF198Uf/+7/+ugQMHKioqSrfeeqsOHjxo8uMEOuR02XMECyoNCAmtra3KyclRZmamnnrqKb311lv6z//8Tw0dOlQPPvhgu99z11136f/9v/+nF154QQsXLlT//v0lSQMGDGj3/L///e9av3697r77bqWmpqqmpka/+tWv9A//8A/661//quTkZKMxNzQ06KabbtLf/vY33X///fra176mkydP6ve//72OHj2q/v3767PPPtO4ceN08OBBFRQUKDU1VWvXrtX06dNVW1urf/3Xf/W65qpVq3T69Gn98z//sxwOhxYsWKC77rpLf//739W9e3dJ0ptvvqkpU6Zo+PDhKikp0alTp5Sfn6+BAwf6HK/pz6umpkY33HCDPv30U33/+99Xv379tHLlSv3f//t/9dJLL+kf//Efvc5/8sknFRYWpocfflh1dXVasGCB7r33Xu3YscPo5wrgS3ABQWTFihUuSa7/+Z//8TyWl5fnkuR67LHHvM695pprXGPGjPF6TJKruLjY8/XPfvYzlyTXoUOHLnitlJQUV15enufrpqYmV2trq9c5hw4dckVGRnq99qFDh1ySXCtWrPD5XubOneuS5HrllVcueM7pdLpcLpdr0aJFLkmu5557zvNcS0uLKysryxUdHe2qr6/3es1+/fq5Pv74Y8+5r776qkuS67XXXvM8Nnr0aFdSUpKrtrbW89ibb77pkuRKSUnxGseX+XnNnj3bJcn1pz/9yfPY6dOnXampqa4hQ4Z4fpbvvPOOS5Lr6quvdjU3N3vOfeaZZ1ySXO+//357Pz7ASF1dnUuSa8dfEl1/OZLs12PHXxJdklx1dXWBfptfGrcnEDK++93ven1900036e9//7vfrh8ZGelZ6Nfa2qpTp04pOjpaaWlp2r17t/H1Xn75ZWVkZFzwP27p3G0BSXrjjTeUmJioadOmeZ7r3r27vv/976uhoUFbtmzx+r6pU6eqb9++nq9vuukmSfL8HKqqqrRnzx7l5eUpNjbWc95tt92m4cOHG78HX9544w2NHTtWN954o+ex6OhoPfDAAzp8+LD++te/ep2fn5+viIiIi44dgP2YNCAkREVFXVAm79u3rz755BO/vYbT6dTChQt11VVXKTIyUv3799eAAQO0d+9e1dXVGV+voqJCI0eO9HnOhx9+qKuuuuqCXQlXX3215/kvGjx4sNfXbROItp9D2/lXXXXVBa+VlpZmMPqOffjhh+1e81LHDvhDq3v3hL+PYMGkASEhPDzc9tf46U9/qsLCQt1888167rnntHHjRm3atEkjRoyQ09k52rtc7OfgcnX+lVpdeezoOpwuhy1HsGAhJOBD220AK1566SWNHz9ey5Yt83q8trbWsyjQxNChQ7Vv3z6f56SkpGjv3r1yOp1e1YYPPvjA87yJtvMPHDhwwXP79+/v8PtNfl4pKSntXvNSxw7AflQaAB969eolSZY6HIaHh1/wv961a9fqo48+uqTXnjJliv785z+3u92x7XVuv/12VVdXa82aNZ7nzp49q1/84heKjo7WP/zDPxi9ZlJSkkaPHq2VK1d63VLZtGnTBWsM2mPy87r99tu1c+dObdu2zfNYY2Ojfv3rX2vIkCF+X0MBWMHtCd+oNAA+jBkzRpL0b//2b7rnnnvUvXt3TZo0yfOP4xf9n//zf/TYY48pPz9fN9xwg95//309//zzuuKKKy7ptX/4wx/qpZde0t133637779fY8aM0ccff6zf//73Wrp0qTIyMvTAAw/oV7/6laZPn67y8nINGTJEL730kv77v/9bixYtUu/evY1ft6SkRHfccYduvPFG3X///fr444/1i1/8QiNGjFBDQ4PP7zX5eT3yyCN64YUXlJubq+9///uKi4vTypUrdejQIb388st0jwQ6ISYNgA/XXXedHn/8cS1dulQbNmyQ0+nUoUOH2v1H8Mc//rEaGxu1atUqrVmzRl/72tf0+uuv65FHHrmk146Ojtaf/vQnFRcXa926dVq5cqXi4+N16623enom9OjRQ2VlZXrkkUe0cuVK1dfXKy0tTStWrLjkcKiJEydq7dq1evTRR1VUVKShQ4dqxYoVevXVV1VWVubze01+XgkJCXrvvff0ox/9SL/4xS/U1NSk9PR0vfbaa7rjjjsuaezAl9WqMLX6uQjf2vEpXYbDxSoiAECIq6+vV2xsrN7eN0jRvf07aWg47dQtIytVV1enmJgYv177cqPSAACAm8uG3Q6uINo9wU1DAABgCZUGAADc7NjtEEy7J6g0AAAAS6g0AADg1uoKU6ufY5lag2i7AZMGAADcnHLI6ecivFPBM2sI+kmD0+nUsWPH1Lt3b6MWtwCAzsXlcun06dNKTk6m+VeABP2k4dixYxo0aFCghwEA8JPKykpPgzN/YyGkb11i0rB48WL97Gc/U3V1tTIyMvSLX/xCY8eOtfS9bW10B857VGFRUZa+J2xAk+WxDY7/2PK5kjSqzzGj89N7VVo+d1j3aqNrD+5m1qesd5i1n58khTvM/hfQ7DpjdP7x1mbL51acMWumsq9pcMcnuf35tNlfXB+cijc6v7bGehvoiONmf5x71Jj9Rdarxvrvlx411v8MSVK3E6eNztcn1qPGnad9t74+n+vsWbOxGFQww3pY/zMkSWF9Yo3Od/azfn5zfE+ja38a393o/MZE6z+XpnhrKbDOpiYdnf/EJbVHh390+knDmjVrVFhYqKVLlyozM1OLFi1STk6O9u/fr/j4jv8CbrslERYVZX3SYPBnqVuvSOsnS4qMNvuD16OX9Y8oOsLsH+re3czus8UYlAPNJw1m53/Wav38XmfMYrGjuln/mXd3RhhdO/wzs98vJv/IhEWZ/XEOjzCbNHTrbn3SYPAjPHd+eIvZNzis/9ydDrM/cy7T25gmkwaDcUtSWJjZ7xdnuPXzW7uZTWDCI8x+juGRBj+XKLPoeDtvNduzEDJ41jR0+ptCTz/9tGbOnKn8/HwNHz5cS5cuVc+ePbV8+fJADw0AgJDSqScNLS0tKi8vV3Z2tuexsLAwZWdne8XpAgDgD+d2T/j/CBad+vbEyZMn1draqoSEBK/HExIS9MEHH7T7Pc3NzWpu/vx+d319va1jBAAgVHTqSsOlKCkpUWxsrOdg5wQAwCqnOxrbn4e/+z4EUqd+J/3791d4eLhqamq8Hq+pqVFiYmK731NUVKS6ujrPUVlpffcBACC0tS2E9PcRLDr1O4mIiNCYMWO0efNmz2NOp1ObN29WVlZWu98TGRmpmJgYrwMAgK5k69atmjRpkpKTk+VwOLR+/Xqf50+fPl0Oh+OCY8SIEZ5z5s2bd8Hzw4YNMxpXp540SFJhYaF+85vfaOXKlfrb3/6mBx98UI2NjcrPzw/00AAAQcbpvp3g78NUY2OjMjIytHjxYkvnP/PMM6qqqvIclZWViouL09133+113ogRI7zOe/fdd43G1akXQkrS1KlTdeLECc2dO1fV1dUaPXq0NmzYcMHiSAAAgkVubq5yc3Mtn9+2jq/N+vXr9cknn1zwH+xu3bpd9Pa+FZ1+0iBJBQUFKigo+FLXCBvQZLlp05CEU5avO7rvUaNxjO51xOj8ERHWO0imGHZ4jDHo8CiZNWwy7fBYY9DhUZIOnLHe+e7Pn6UYXXt3vfWOkH89aTZ5/aTa7HZZRI31P6I9q8y2dUVXm/1+6VFtvctjt+OGu5ZO1Rqd7jxtvYOknR0eJSmsRw/r5/btY3RtZ3+zjpDNCb0sn9uYaNjhMcns5/JZgvWGTWGJFn9vfWrWafRStLocanX5uY20n69nxbJly5Sdna2UFO+//w4cOKDk5GRFRUUpKytLJSUlGjzY+t95XWLSAABAV3d+C4DIyEhFRpp1/bTi2LFj+uMf/6hVq1Z5PZ6ZmanS0lKlpaWpqqpK8+fP10033aR9+/ZZbs3NpAEAALe2bZL+vea5NtLntwAoLi7WvHnz/PpakrRy5Ur16dNHkydP9nr8i7c70tPTlZmZqZSUFL344ouaMWOGpWszaQAA4DKorKz02tFnR5XB5XJp+fLl+va3v62ICN9ZJ3369NFXv/pVHTx40PL1O/3uCQAALhenK8yWQ9IF7QDsmDRs2bJFBw8etFQ5aGhoUEVFhZKSkixfn0oDAABudt6eMNHQ0OBVATh06JD27NmjuLg4DR48WEVFRfroo4/07LPPen3fsmXLlJmZqZEjR15wzYcffliTJk1SSkqKjh07puLiYoWHh2vatGmWx8WkAQCATmbXrl0aP3685+vCwkJJUl5enkpLS1VVVaUjR7x349XV1enll1/WM8880+41jx49qmnTpunUqVMaMGCAbrzxRm3fvl0DBgywPC4mDQAAuDnl/y2S1jeffm7cuHFyuS5eoSgtLb3gsdjYWH366acX/Z7Vq1dfwki8saYBAABYQqUBAAC3S2373NE1g0XwvBMAAGCrkKk0DI7/WN16WdveYtIa2s620JJZa2g720JLZq2h7WwLLZm1hjZpCy2ZtYa2sy20ZNYa2s620JJha2gb20JLhq2hbWwLLZm1hrazLbRk1hrazrbQkkFraFlv3X+2sVmHjUZhzo4oa6KxAQBAyAmZSgMAAB1xyiGn/L174vIHVtmFSQMAAG7cnvAteN4JAACwFZUGAADc7GkjHTz/Pw+edwIAAGxFpQEAADenyyGnv9tI+/l6gUSlAQAAWEKlAQAAN6cNaxpoIw0AAEIOlQYAANycrjA5/dxXwd/XC6SQmTSM6nNMkdHW+rKb5EnYmSUhmeVJ2JklIZnlSdiZJSGZ5UmYZElIZnkSdmZJSGZ5ErZmSUhGeRK2ZklIRnkSdmZJSGZ5EnZmSUhmeRJ2ZklI1vMkJOt5P83dz2ir0SjMtcqhVj93cPT39QIpeKY/AADAViFTaQAAoCPcnvAteN4JAACwFZUGAADcWuX/NQhmK9k6NyoNAADAEioNAAC4sabBt+B5JwAAwFZUGgAAcGt1hanVz5UBf18vkJg0AADg5pJDTj8vhHTR3AkAAIQaKg0AALhxe8K3kJk0pPeqVI9e1t6uSZ6EnVkSklmehJ1ZEpJZnoSdWRKSWZ6ESZaEZJYnYWeWhGSWJ2FnloRklidhZ5aEZJYnYWeWhGSWJ2FnloRklidhZ5aEZD1PQrKe9/OZy/D3FfwuZCYNAAB0xOlyyOny7xoEf18vkIKnZgIAAGxFpQEAALdWhanVz/+f9vf1Ail43gkAALAVlQYAANxY0+AbkwYAANycCpPTz0V4f18vkILnnQAAAFtRaQAAwK3V5VCrn28n+Pt6gUSlAQAAWEKlAQAANxZC+hYyk4Zh3asVHWGtsGLSGtrOttCSWWtoO9tCS2atoe1sCy2ZtYY2aQstmbWGtrMttGTYGtrGttCSYWtoG9tCS2atoe1sCy2ZtYa2sy20ZNYa2s620JL11tCS9db9Dd3Nfh7wv5CZNAAA0BGXK0xOPwdMuYIosKpTv5N58+bJ4XB4HcOGDQv0sAAACEmdvtIwYsQIvfXWW56vu3Xr9EMGAHRRrXKoVX7ePeHn6wVSp/8XuFu3bkpMTAz0MAAAIcDp8v/CRafLr5cLqE59e0KSDhw4oOTkZF1xxRW69957deSI9cU1AADAfzp1pSEzM1OlpaVKS0tTVVWV5s+fr5tuukn79u1T79692/2e5uZmNTd/vougvt5g9TkAIKQ5bVgI6e/rBVKnnjTk5uZ6fp2enq7MzEylpKToxRdf1IwZM9r9npKSEs2fP/9yDREAgJDRpaY/ffr00Ve/+lUdPHjwoucUFRWprq7Oc1RWVl7GEQIAujKnHLYcwaJLTRoaGhpUUVGhpKSki54TGRmpmJgYrwMAgK5k69atmjRpkpKTk+VwOLR+/Xqf55eVlV3QosDhcKi6utrrvMWLF2vIkCGKiopSZmamdu7caTSuTj1pePjhh7VlyxYdPnxY7733nv7xH/9R4eHhmjZtWqCHBgAIQm2BVf4+TDU2NiojI0OLFy82+r79+/erqqrKc8THx3ueW7NmjQoLC1VcXKzdu3crIyNDOTk5On78uOXrd+o1DUePHtW0adN06tQpDRgwQDfeeKO2b9+uAQMGBHpoAADYJjc312tdn1Xx8fHq06dPu889/fTTmjlzpvLz8yVJS5cu1euvv67ly5frkUcesXT9Tj1pWL16td+uNbhbq3p3s7ZZ1iRPws4sCcksT8LOLAnJLE/CziwJySxPwiRLQjLLk7A1S0IyypOwNUtCMsqTsDNLQjLLk7AzS0Iyy5OwM0tCMsuTsDNLQrKeJyFZz/s53c3+7Ak7d0+cv5svMjJSkZGRfn2t0aNHq7m5WSNHjtS8efP09a9/XZLU0tKi8vJyFRUVec4NCwtTdna2tm3bZvn6nfr2BAAAwWLQoEGKjY31HCUlJX67dlJSkpYuXaqXX35ZL7/8sgYNGqRx48Zp9+7dkqSTJ0+qtbVVCQne/6FLSEi4YN2DL5260gAAwOXklA3R2O7dE5WVlV6L8/1ZZUhLS1NaWprn6xtuuEEVFRVauHChfve73/ntdZg0AADg5rJhi6TLfb3LvaNv7NixevfddyVJ/fv3V3h4uGpqarzOqampMYpq4PYEAABBaM+ePZ4WBRERERozZow2b97sed7pdGrz5s3KysqyfE0qDQAAuDldNtyeuITrNTQ0eDUyPHTokPbs2aO4uDgNHjxYRUVF+uijj/Tss89KkhYtWqTU1FSNGDFCTU1N+u1vf6u3335bb775pucahYWFysvL07XXXquxY8dq0aJFamxs9OymsIJJAwAAncyuXbs0fvx4z9eFhYWSpLy8PJWWlqqqqsorwLGlpUU/+MEP9NFHH6lnz55KT0/XW2+95XWNqVOn6sSJE5o7d66qq6s1evRobdiw4YLFkb4waQAAwK2zBFaNGzdOLtfF2wSUlpZ6fT1nzhzNmTOnw+sWFBSooKDAeDxtWNMAAAAsodIAAIBbZ1nT0FlRaQAAAJZQaQAAwM2OKOtgisYOmUlD77AoxYRZK6yY5EnYmSUhmeVJ2JklIZnlSdiZJSGZ5UmYZElIZnkSdmZJSGZ5EnZmSUhmeRJ2ZklIZnkSdmZJSGZ5EnZmSUhmeRJ2ZklI1vMkJIO8n7DLkT3B7QlfuD0BAAAsCZlKAwAAHaHS4BuVBgAAYAmVBgAA3Kg0+EalAQAAWEKlAQAANyoNvlFpAAAAllBpAADAzSX/N2O6eOxU18OkAQAAN25P+MbtCQAAYEnIVBrCHWGW20ObtIa2sy20ZNYa2s620JJZa2g720JLZq2hTdpCS4atoW1sCy0Ztoa2sS20ZNYa2s620JJZa2g720JLZq2h7WwLLZm1hrazLbRk0Bpa1lv3h1+G/7BTafCNSgMAALAkZCoNAAB0hEqDb1QaAACAJVQaAABwo9LgG5UGAABgCZUGAADcXC6HXH6uDPj7eoHEpAEAADenHH7vCOnv6wUStycAAIAlVBoAAHBjIaRvVBoAAIAlVBoAAHBjIaRvITNpaHadUbPLWmHFJE/CziwJySxPws4sCcksT8LOLAnJLE/CKEtCMsqTsDVLQjLKk7AzS0Iyy5OwM0tCMsuTsDNLQjLLk7AzS0Iyy5OwM0tCsp4nIVnP+2l2mX2W8L+QmTQAANAR1jT4xpoGAABgCZUGAADcWNPgG5MGAADcXDbcngimSQO3JwAAgCVUGgAAcHNJcrn8f81gQaUBAABYQqUBAAA3pxxyEFh1UVQaAACAJVQaAABwY8ulb1QaAACAJSFTaTje2qzPWq3NkUzyJOzMkpDM8iTszJKQzPIk7MySkAzzJAyyJCSzPAk7syQkszwJO7MkJLM8CTuzJCSzPAk7syQkszwJO7MkJLM8CTuzJCTreRKS9byf0632Z084XQ45aCN9USEzaQAAoCMulw1bLoNoz2VAb09s3bpVkyZNUnJyshwOh9avX+/1vMvl0ty5c5WUlKQePXooOztbBw4cCMxgAQAIcQGdNDQ2NiojI0OLFy9u9/kFCxbo5z//uZYuXaodO3aoV69eysnJUVOTWbkRAAAr2hZC+vsIFgG9PZGbm6vc3Nx2n3O5XFq0aJEeffRR3XnnnZKkZ599VgkJCVq/fr3uueeeyzlUAABCXqfdPXHo0CFVV1crOzvb81hsbKwyMzO1bdu2i35fc3Oz6uvrvQ4AAKyg0uBbp500VFdXS5ISErx3DyQkJHiea09JSYliY2M9x6BBg2wdJwAAoaLTThouVVFRkerq6jxHZWVloIcEAOginO5obH8fwaLTThoSExMlSTU1NV6P19TUeJ5rT2RkpGJiYrwOAAC6ko52F57vlVde0W233aYBAwYoJiZGWVlZ2rhxo9c58+bNk8Ph8DqGDRtmNK5OO2lITU1VYmKiNm/e7Hmsvr5eO3bsUFZWVgBHBgAIVm19Gvx9mOpod+H5tm7dqttuu01vvPGGysvLNX78eE2aNEn/+7//63XeiBEjVFVV5Tneffddo3EFdPdEQ0ODDh486Pn60KFD2rNnj+Li4jR48GDNnj1bTzzxhK666iqlpqbqJz/5iZKTkzV58uTADRoAELTO/SPv7+wJ8+/xtbuwPYsWLfL6+qc//aleffVVvfbaa7rmmms8j3fr1s1ntb4jAZ007Nq1S+PHj/d8XVhYKEnKy8tTaWmp5syZo8bGRj3wwAOqra3VjTfeqA0bNigqyqz9qSRVnIlRrzPhls41aQ1tZ1toyaw1tJ1toSWz1tC2toWWjFpDm7SFlgxbQ9vYFloyaw1tZ1toyaw1tJ1toSWz1tB2toWWzFpD29kWWjJrDW1nW2jJemtoyXrr/sYzrZKOG42jMzl/N19kZKQiIyNteS2n06nTp08rLi7O6/EDBw4oOTlZUVFRysrKUklJiQYPtv7vWEAnDePGjZPLxxTM4XDoscce02OPPXYZRwUACFV2plyev5uvuLhY8+bN8+trtXnqqafU0NCgf/qnf/I8lpmZqdLSUqWlpamqqkrz58/XTTfdpH379ql3796Wrkv2BAAAl0FlZaXX4ny7qgyrVq3S/Pnz9eqrryo+Pt7z+Bdvd6SnpyszM1MpKSl68cUXNWPGDEvXZtIAAICby334+5qSLsuOvtWrV+s73/mO1q5d69UcsT19+vTRV7/6Va+1hR3ptLsnAACAdS+88ILy8/P1wgsv6I477ujw/IaGBlVUVCgpKcnya1BpAADAzc41DSY62l1YVFSkjz76SM8++6ykc7ck8vLy9MwzzygzM9PTOblHjx6KjT230PThhx/WpEmTlJKSomPHjqm4uFjh4eGaNm2a5XFRaQAAoJPZtWuXrrnmGs92ycLCQl1zzTWaO3euJKmqqkpHjny+c+fXv/61zp49q1mzZikpKclz/Ou//qvnnKNHj2ratGlKS0vTP/3TP6lfv37avn27BgwYYHlcVBoAAGhj56IGAx3tLiwtLfX6uqysrMNrrl692nwg52HSAABAGztSKcmeAAAAoYZKAwAAbpeaFdHRNYMFlQYAAGBJyFQa9jUNVlQ3a2/XJE/CziwJySxPws4sCcksT8LOLAnJLE/CKEtCMsqTsDNLQjLLk7AzS0Iyy5OwM0tCMsuTsDNLQjLLk7AzS0Iyy5OwM0tCsp4nIVnP+2lqOivJeiOiS9FZtlx2VlQaAACAJSFTaQAAoEMuh/93O1BpAAAAoYZKAwAAbuye8I1JAwAAbTpJR8jOitsTAADAEioNAAC4seXSNyoNAADAEioNAAB8URCtQfA3Kg0AAMASKg0AALixpsG3kJk0/Pn0QHV3Rlg61yRPws4sCcksT8LOLAnJME/CxiwJyTBPwiBLQjLLk7AzS0Iyy5OwM0tCMsuTsDNLQjLLk7AzS0Iyy5OwM0tCMsuTsDNLQrKeJyFZz/s509hiNAb4X8hMGgAA6BB9GnxiTQMAALCESgMAAB4O9+HvawYHJg0AALTh9oRP3J4AAACWUGkAAKANlQafqDQAAABLqDQAANDG5Th3+PuaQYJKAwAAsIRKAwAAbi7XucPf1wwWITNp+OBUvMI/i7R0rklraDvbQktmraFtbQstGbWGtrUttGTUGtqkLbRk1hrazrbQkllraDvbQktmraHtbAstmbWGtrMttGTWGtrOttCSWWtoO9tCS9ZbQ0vWW/e3fmrW+hr+FzKTBgAAOsTuCZ+YNAAA0IaFkD6xEBIAAFhCpQEAADeH69zh72sGCyoNAADAEioNAAC0YSGkT1QaAACAJVQaAABow+4Jn6g0AAAAS6g0AADQhjUNPjFpAACgDZMGn0Jm0lBb01thPaz1iDfJk7AzS0Iyy5OwM0tCMsuTsDNLQjLLkzDJkpDM8iTszJKQzPIk7MySkMzyJOzMkpDM8iTszJKQzPIk7MySkMzyJOzMkpCs50lI1vN+nJ+Z/Z6F/4XMpAEAgA5RafApoAsht27dqkmTJik5OVkOh0Pr16/3en769OlyOBxex8SJEwMzWAAAQlxAJw2NjY3KyMjQ4sWLL3rOxIkTVVVV5TleeOGFyzhCAEBIadty6e8jSAT09kRubq5yc3N9nhMZGanExMTLNCIAAHAxnb5PQ1lZmeLj45WWlqYHH3xQp075XozV3Nys+vp6rwMAACvaAqv8fQSLTj1pmDhxop599llt3rxZ//Ef/6EtW7YoNzdXra0XXw1dUlKi2NhYzzFo0KDLOGIAAIJXp949cc8993h+PWrUKKWnp2vo0KEqKyvTrbfe2u73FBUVqbCw0PN1fX09EwcAgDXsnvCpU1caznfFFVeof//+Onjw4EXPiYyMVExMjNcBAEBX0tHuwvaUlZXpa1/7miIjI3XllVeqtLT0gnMWL16sIUOGKCoqSpmZmdq5c6fRuIwnDXl5edq6davpt/nF0aNHderUKSUlJQXk9QEAuBys7C78okOHDumOO+7Q+PHjtWfPHs2ePVvf+c53tHHjRs85a9asUWFhoYqLi7V7925lZGQoJydHx48ftzwu49sTdXV1ys7OVkpKivLz85WXl6evfOUrppeRJDU0NHhVDQ4dOqQ9e/YoLi5OcXFxmj9/vqZMmaLExERVVFRozpw5uvLKK5WTk3NJrwcAgC8O+X/h4qVsuLSyu/CLli5dqtTUVP3nf/6nJOnqq6/Wu+++q4ULF3r+zXz66ac1c+ZM5efne77n9ddf1/Lly/XII49Yeh3jScP69et14sQJ/e53v9PKlStVXFys7OxszZgxQ3feeae6d7feJnfXrl0aP3685+u2tQh5eXlasmSJ9u7dq5UrV6q2tlbJycmaMGGCHn/8cUVGRpoOWxHHuyksytrbNWkNbWdbaMmwNbSNbaElw9bQNraFlsxaQ5u0hZbMWkPb2RZaMmsNbWdbaMmsNbSdbaEls9bQdraFlsxaQ9vZFloyaw1tZ1toyXpraMl6635nU6dehteh83fzRUZGXtK/Z+3Ztm2bsrOzvR7LycnR7NmzJUktLS0qLy9XUVGR5/mwsDBlZ2dr27Ztll/nkj6BAQMGqLCwUIWFhdq9e7dWrFihb3/724qOjta3vvUt/cu//IuuuuqqDq8zbtw4uVwXn9J9sawCAIDt7GjG5L7e+Yvyi4uLNW/ePL+8RHV1tRISvCd2CQkJqq+v12effaZPPvlEra2t7Z7zwQcfWH6dLzVtq6qq0qZNm7Rp0yaFh4fr9ttv1/vvv6/hw4drwYIFeuihh77M5QEACBqVlZVei/P9VWW4nIwnDWfOnNHvf/97rVixQm+++abS09M1e/ZsffOb3/T8MNatW6f777+fSQMAoGuxcculnTv6EhMTVVNT4/VYTU2NYmJi1KNHD4WHhys8PLzdc0y6LhtPGpKSkuR0OjVt2jTt3LlTo0ePvuCc8ePHq0+fPqaXBgAAlyArK0tvvPGG12ObNm1SVlaWJCkiIkJjxozR5s2bNXnyZEmS0+nU5s2bVVBQYPl1jCcNCxcu1N13362oqIsvLurTp48OHTpkemkAAAKrkzR38rW7cPDgwSoqKtJHH32kZ599VpL03e9+V//1X/+lOXPm6P7779fbb7+tF198Ua+//rrnGoWFhcrLy9O1116rsWPHatGiRWpsbPTsprDCeNLw7W9/2/RbAADoEuzIiriU6/naXVhaWqqqqiodOfL5LqXU1FS9/vrreuihh/TMM89o4MCB+u1vf+vVomDq1Kk6ceKE5s6dq+rqao0ePVobNmy4YHGkL117/woAAEGoo92F7XV7HDdunP73f//X53ULCgqMbkecj0kDAABtOsntic6qS2VPAACAwKHSAABAGyoNPlFpAAAAloRMpaFHjUPhEdZag5rkSdiaJSEZ5UnYmiUhGeVJ2JklIZnlSZhkSUhmeRJ2ZklIZnkSdmZJSGZ5EnZmSUhmeRJ2ZklIZnkSdmZJSGZ5EnZmSUjW8yQk63k/rS1+bu/cjs6ye6KzotIAAAAsCZlKAwAAHbIxsCoYMGkAAKANCyF94vYEAACwhEoDAABuLIT0jUoDAACwhEoDAABtWNPgE5UGAABgCZUGAADa2LCmgUoDAAAIOVQaAABow5oGn0Jm0tCrplXdulvrb2+SJ2FnloRklidhZ5aEZJYnYWeWhGSWJ2GSJSGZ5UnYmSUhmeVJ2JklIZnlSdiZJSGZ5UnYmSUhmeVJ2JklIZnlSdiZJSFZz5OQrOf9nD1j9vvqkjBp8InbEwAAwJKQqTQAANARmjv5RqUBAABYwqQBAABYwqQBAABYwpoGAADasHvCJyoNAADAEioNAAC4sXvCNyYNAAB8URD9I+9v3J4AAACWhEyloUdNk7pZfLdGraFtbAstGbaGtrEttGTWGtrOttCSWWtok7bQkllraDvbQktmraHtbAstmbWGtrMttGTWGtrOttCSWWtoO9tCS2atoe1sCy1Zbw0tWW/df/as2Z+3S8JCSJ+oNAAAAEtCptIAAEBHWAjpG5UGAABgCZUGAADasKbBJyoNAADAEioNAAC4sabBNyoNAADAEioNAAC0YU2DT0waAABow6TBJ25PAAAAS6g0AADgxkJI30Jm0tDtxGl1C2+xdrJBnoStWRKSUZ6EnVkSklmehJ1ZEpJZnoRJloRklidhZ5aEZJYnYWeWhGSWJ2FnloRklidhZ5aEZJYnYWeWhGSWJ2FnloRkPU9CMsj7McwRgf+FzKQBAIAOsabBp4CuaSgpKdF1112n3r17Kz4+XpMnT9b+/fu9zmlqatKsWbPUr18/RUdHa8qUKaqpqQnQiAEACF0BnTRs2bJFs2bN0vbt27Vp0yadOXNGEyZMUGNjo+echx56SK+99prWrl2rLVu26NixY7rrrrsCOGoAQNBy2XQEiYDentiwYYPX16WlpYqPj1d5ebluvvlm1dXVadmyZVq1apVuueUWSdKKFSt09dVXa/v27br++usDMWwAAEJSp9pyWVdXJ0mKi4uTJJWXl+vMmTPKzs72nDNs2DANHjxY27Zta/cazc3Nqq+v9zoAALCibfeEv49g0WkmDU6nU7Nnz9bXv/51jRw5UpJUXV2tiIgI9enTx+vchIQEVVdXt3udkpISxcbGeo5BgwbZPXQAQLDg9oRPnWbSMGvWLO3bt0+rV6/+UtcpKipSXV2d56isrPTTCAEAuHwWL16sIUOGKCoqSpmZmdq5c+dFzx03bpwcDscFxx133OE5Z/r06Rc8P3HiRKMxdYotlwUFBfrDH/6grVu3auDAgZ7HExMT1dLSotraWq9qQ01NjRITE9u9VmRkpCIjI+0eMgAgCHWW5k5r1qxRYWGhli5dqszMTC1atEg5OTnav3+/4uPjLzj/lVdeUUvL572ITp06pYyMDN19991e502cOFErVqzwfG3672VAKw0ul0sFBQVat26d3n77baWmpno9P2bMGHXv3l2bN2/2PLZ//34dOXJEWVlZl3u4AABcFk8//bRmzpyp/Px8DR8+XEuXLlXPnj21fPnyds+Pi4tTYmKi59i0aZN69ux5waQhMjLS67y+ffsajSugk4ZZs2bpueee06pVq9S7d29VV1erurpan332mSQpNjZWM2bMUGFhod555x2Vl5crPz9fWVlZ7JwAAPhfJ1jT0NLSovLycq9NAGFhYcrOzr7oJoDzLVu2TPfcc4969fLuzltWVqb4+HilpaXpwQcf1KlTZl1tA3p7YsmSJZLO3Yv5ohUrVmj69OmSpIULFyosLExTpkxRc3OzcnJy9Mtf/vIyjxQAgC/n/N18F7udfvLkSbW2tiohwbvteEJCgj744IMOX2fnzp3at2+fli1b5vX4xIkTdddddyk1NVUVFRX68Y9/rNzcXG3btk3h4eGW3kNAJw0uV8fTr6ioKC1evFiLFy/+ci/2SZ3kiLB0qkmehJ1ZEpJZnoSdWRKSWZ6EnVkSklmehEmWhGSWJ2FnloRklidhZ5aEZJYnYWeWhGSWJ2FnloRklidhZ5aEZJYnYWeWhGSQJyFZz/txWcwP+jJsbCN9/m6+4uJizZs3z88vdq7KMGrUKI0dO9br8Xvuucfz61GjRik9PV1Dhw5VWVmZbr31VkvX7hQLIQEACHaVlZWKifl84nixRYj9+/dXeHj4BZEJvjYBtGlsbNTq1av12GOPdTieK664Qv3799fBgwctTxo6zZZLAAACzWHTIUkxMTFex8UmDRERERozZozXJgCn06nNmzd3uAlg7dq1am5u1re+9a0O3+vRo0d16tQpJSUldXhuGyYNAAC06QQLISWpsLBQv/nNb7Ry5Ur97W9/04MPPqjGxkbl5+dLku677z4VFRVd8H3Lli3T5MmT1a9fP6/HGxoa9MMf/lDbt2/X4cOHtXnzZt1555268sorlZOTY3lc3J4AAKCTmTp1qk6cOKG5c+equrpao0eP1oYNGzyLI48cOaKwMO//9+/fv1/vvvuu3nzzzQuuFx4err1792rlypWqra1VcnKyJkyYoMcff9yoVwOTBgAA3DpLcyfpXOPDgoKCdp8rKyu74LG0tLSLbjDo0aOHNm7ceGkD+QJuTwAAAEuoNAAA0MbGLZfBgEoDAACwhEoDAABfFESVAX+j0gAAACwJmUqD83SDnA5rrY2NWkPb2BZaMmsNbWdbaMmsNbSdbaEls9bQJm2hJbPW0Ha2hZbMWkPb2RZaMmsNbWdbaMmsNbSdbaEls9bQdraFlsxaQ9vaFlqy3hpa1lv3Ow3bk1+KzrR7ojMKmUkDAAAdYiGkT9yeAAAAllBpAADAjdsTvlFpAAAAllBpAACgDWsafKLSAAAALKHSAACAG2safKPSAAAALKHSAABAG9Y0+MSkAQCANkwafOL2BAAAsCRkKg2us2flspoTYZAnYWeWhGSWJ2FnloRklidhZ5aEZJYnYZIlIZnlSdiZJSGZ5UnYmSUhmeVJ2JklIZnlSdiZJSGZ5UnYmSUhmeVJ2JklIVnPk5Cs5/24XAa5QJeIhZC+UWkAAACWhEylAQCADrGmwScqDQAAwBIqDQAAuDlcLjlc/i0N+Pt6gUSlAQAAWEKlAQCANqxp8IlJAwAAbmy59I3bEwAAwBIqDQAAtOH2hE9UGgAAgCVUGgAAcGNNg2+hM2lwOCxnSpjkSdiZJSGZ5UnYmSUhmeVJ2JklIZnlSZhkSUhmeRJ2ZklIZnkSdmZJSGZ5EnZmSUhmeRJ2ZklIZnkSdmZJSIZ5EjZmSUjW8yQkGeT9OIKq1N8Vhc6kAQCAjrCmwSfWNAAAAEuoNAAA4MaaBt+YNAAA0IbbEz5xewIAAFhCpQEAgC8IptsJ/kalAQAAWEKlAQCANi7XucPf1wwSVBoAAIAlVBoAAHBjy6VvITNpCOsRpTBHhLVzDVpD29kWWjJrDW1nW2jJrDW0nW2hJbPW0CZtoSWz1tB2toWWzFpD29kWWjJrDW1nW2jJrDW0nW2hJbPW0La2hZaMWkPb2hZaMmgNbb11f5grXPrUbBjwr5CZNAAA0CH6NPgU0DUNJSUluu6669S7d2/Fx8dr8uTJ2r9/v9c548aNk8Ph8Dq++93vBmjEAIBg5nDacwSLgE4atmzZolmzZmn79u3atGmTzpw5owkTJqixsdHrvJkzZ6qqqspzLFiwIEAjBgAgdAX09sSGDRu8vi4tLVV8fLzKy8t18803ex7v2bOnEhMTL/fwAAChhtsTPnWqLZd1dXWSpLi4OK/Hn3/+efXv318jR45UUVGRPv304ithmpubVV9f73UAAIAvr9MshHQ6nZo9e7a+/vWva+TIkZ7Hv/nNbyolJUXJycnau3evfvSjH2n//v165ZVX2r1OSUmJ5s+ff7mGDQAIImy59K3TVBpmzZqlffv2afXq1V6PP/DAA8rJydGoUaN077336tlnn9W6detUUVHR7nWKiopUV1fnOSorKy/H8AEA8KvFixdryJAhioqKUmZmpnbu3HnRc0tLSy/YNBAV5b0l3OVyae7cuUpKSlKPHj2UnZ2tAwcOGI2pU0waCgoK9Ic//EHvvPOOBg4c6PPczMxMSdLBgwfbfT4yMlIxMTFeBwAAlrS1kfb3YWjNmjUqLCxUcXGxdu/erYyMDOXk5Oj48eMX/Z6YmBivTQMffvih1/MLFizQz3/+cy1dulQ7duxQr169lJOTo6Ym6/1DAjppcLlcKigo0Lp16/T2228rNTW1w+/Zs2ePJCkpKcnm0QEAEBhPP/20Zs6cqfz8fA0fPlxLly5Vz549tXz58ot+j8PhUGJioudISPi8aZrL5dKiRYv06KOP6s4771R6erqeffZZHTt2TOvXr7c8roBOGmbNmqXnnntOq1atUu/evVVdXa3q6mp99tlnkqSKigo9/vjjKi8v1+HDh/X73/9e9913n26++Walp6cHcugAgCDUtqbB34eJlpYWlZeXKzs72/NYWFiYsrOztW3btot+X0NDg1JSUjRo0CDdeeed+stf/uJ57tChQ6qurva6ZmxsrDIzM31e83wBnTQsWbJEdXV1GjdunJKSkjzHmjVrJEkRERF66623NGHCBA0bNkw/+MEPNGXKFL322muBHDYAAMbO39nX3Nx+6/eTJ0+qtbXVq1IgSQkJCaqurm73e9LS0rR8+XK9+uqreu655+R0OnXDDTfo6NFzLfrbvs/kmu0J6O4JVwf3eQYNGqQtW7b45bXC+sQqLCzS0rkmeRJ2ZklIZnkSdmZJSGZ5EnZmSUhmeRImWRKSWZ6EnVkSklmehJ1ZEpJZnoSdWRKSWZ6EnVkSklmehJ1ZEpJZnoSdWRKS9TwJyXreT5iz2f7sCRv7NAwaNMjr4eLiYs2bN88vL5GVlaWsrCzP1zfccIOuvvpq/epXv9Ljjz/ul9eQOtGWSwAAAs3OLZeVlZVei/MjI9v/j2z//v0VHh6umpoar8dramosNzrs3r27rrnmGs+mgbbvq6mp8VoTWFNTo9GjR1t9K51j9wQAAMHu/J19F5s0REREaMyYMdq8ebPnMafTqc2bN3tVE3xpbW3V+++/75kgpKamKjEx0eua9fX12rFjh+VrSlQaAAD43CVukezwmoYKCwuVl5ena6+9VmPHjtWiRYvU2Nio/Px8SdJ9992nr3zlKyopKZEkPfbYY7r++ut15ZVXqra2Vj/72c/04Ycf6jvf+Y6kczsrZs+erSeeeEJXXXWVUlNT9ZOf/ETJycmaPHmy5XExaQAAoJOZOnWqTpw4oblz56q6ulqjR4/Whg0bPAsZjxw5orCwz28WfPLJJ5o5c6aqq6vVt29fjRkzRu+9956GDx/uOWfOnDlqbGzUAw88oNraWt14443asGHDBU2gfGHSAACAW2dqI11QUKCCgoJ2nysrK/P6euHChVq4cKHvcTgceuyxx/TYY49d2oDEmgYAAGARlQYAANoQje0TlQYAAGAJlQYAANw605qGzohJAwAAbZyuc4e/rxkkuD0BAAAsCZlKg7NfrJzh1rInTPIk7MySkMzyJOzMkpDM8iTszJKQzPIkTLIkJLM8CTuzJCSzPAk7syQkszwJO7MkJLM8CTuzJCTDPAkbsyQkwzwJG7MkJOt5EpL1vB9na7Nk9leFORZC+kSlAQAAWBIylQYAADrikA0LIf17uYCi0gAAACyh0gAAQJtOEljVWVFpAAAAllBpAADAjeZOvjFpAACgDVsufeL2BAAAsIRKAwAAbg6XSw4/L1z09/UCiUoDAACwJGQqDc3xPdXazVo7YZPW0Ha2hZbMWkPb2RZaMmsNbWdbaMmsNbRJW2jJrDW0nW2hJbPW0Ha2hZbMWkPb2RZaMmsNbWtbaMmoNbStbaElo9bQdraFlqy3hpast+4/ezbcaAyXxOk+/H3NIEGlAQAAWBIylQYAADrCmgbfqDQAAABLqDQAANCGPg0+MWkAAKAN2RM+cXsCAABYQqUBAAA3sid8o9IAAAAsodIAAEAb1jT4RKUBAABYQqUBAAA3h/Pc4e9rBouQmTR8Gt9d4RHWMiVM8iTszJKQzPIk7MySkMzyJOzMkpDM8iRMsiQkszwJO7MkJLM8CTuzJCSzPAk7syQkszwJO7MkJLM8CTuzJCSzPAk7syQk63kSkvW8n9YWs98n8L+QmTQAANAh1jT4xKQBAIA2dIT0iYWQAADAEioNAAC4kXLpG5UGAABgCZUGAADasBDSJyoNAADAEioNAAC0cUnydzOm4Ck0UGkAAADWUGkAAMCN3RO+MWkAAKCNSzYshPTv5QIpZCYNjYkOhUda6+NukidhZ5aEZJYnYWeWhGSWJ2FnloRklidhkiUhmeVJ2JklIZnlSdiZJSGZ5UnYmSUhGeZJ2JglIRnmSdiYJSGZ5UnYmSUhWc+TkKzn/bQ2m/384H8BXdOwZMkSpaenKyYmRjExMcrKytIf//hHz/NNTU2aNWuW+vXrp+joaE2ZMkU1NTUBHDEAIKi1bbn09xEkAjppGDhwoJ588kmVl5dr165duuWWW3TnnXfqL3/5iyTpoYce0muvvaa1a9dqy5YtOnbsmO66665ADhkAgJAV0NsTkyZN8vr63//937VkyRJt375dAwcO1LJly7Rq1SrdcsstkqQVK1bo6quv1vbt23X99dcHYsgAgGDmlOTvuyD+3sIZQJ1my2Vra6tWr16txsZGZWVlqby8XGfOnFF2drbnnGHDhmnw4MHatm1bAEcKAEBoCvhCyPfff19ZWVlqampSdHS01q1bp+HDh2vPnj2KiIhQnz59vM5PSEhQdXX1Ra/X3Nys5ubPF77V1xssmAIAhDS2XPoW8EpDWlqa9uzZox07dujBBx9UXl6e/vrXv17y9UpKShQbG+s5Bg0a5MfRAgBweSxevFhDhgxRVFSUMjMztXPnzoue+5vf/EY33XST+vbtq759+yo7O/uC86dPny6Hw+F1TJw40WhMAZ80RERE6Morr9SYMWNUUlKijIwMPfPMM0pMTFRLS4tqa2u9zq+pqVFiYuJFr1dUVKS6ujrPUVlZafM7AAAEjU6ye2LNmjUqLCxUcXGxdu/erYyMDOXk5Oj48ePtnl9WVqZp06bpnXfe0bZt2zRo0CBNmDBBH330kdd5EydOVFVVled44YUXjMYV8EnD+ZxOp5qbmzVmzBh1795dmzdv9jy3f/9+HTlyRFlZWRf9/sjISM8WzrYDAABLOsmk4emnn9bMmTOVn5+v4cOHa+nSperZs6eWL1/e7vnPP/+8/uVf/kWjR4/WsGHD9Nvf/lZOp9Pr31Dp3L+RiYmJnqNv375G4wromoaioiLl5uZq8ODBOn36tFatWqWysjJt3LhRsbGxmjFjhgoLCxUXF6eYmBh973vfU1ZWFjsnAABdzvlr7CIjIxUZGXnBeS0tLSovL1dRUZHnsbCwMGVnZ1veCPDpp5/qzJkziouL83q8rKxM8fHx6tu3r2655RY98cQT6tevn+X3ENBJw/Hjx3XfffepqqpKsbGxSk9P18aNG3XbbbdJkhYuXKiwsDBNmTJFzc3NysnJ0S9/+ctADhkAEMzsaMbkvt75a+yKi4s1b968C04/efKkWltblZDg3RE2ISFBH3zwgaWX/NGPfqTk5GSvHYgTJ07UXXfdpdTUVFVUVOjHP/6xcnNztW3bNoWHh1u6bkAnDcuWLfP5fFRUlBYvXqzFixd/6ddqincqLMraZlmT1tB2toWWzFpD29kWWjJrDW1nW2jJrDW0SVtoyaw1tJ1toSWz1tB2toWWzFpD29oWWjJqDW1rW2jJqDW0nW2hJbPW0Ha2hZast4aWrLfudzZ17YYHlZWVXrfM26sy+MOTTz6p1atXq6ysTFFRn/+9fc8993h+PWrUKKWnp2vo0KEqKyvTrbfeaunanW5NAwAAAeO06ZAuWG93sUlD//79FR4efkFsQkcbASTpqaee0pNPPqk333xT6enpPs+94oor1L9/fx08eNDneV/EpAEAgE4kIiJCY8aM8VrE2Lao0ddGgAULFujxxx/Xhg0bdO2113b4OkePHtWpU6eUlJRkeWwBb+4EAEBn0VmaOxUWFiovL0/XXnutxo4dq0WLFqmxsVH5+fmSpPvuu09f+cpXVFJSIkn6j//4D82dO1erVq3SkCFDPE0Qo6OjFR0drYaGBs2fP19TpkxRYmKiKioqNGfOHF155ZXKycmxPC4mDQAAdDJTp07ViRMnNHfuXFVXV2v06NHasGGDZ3HkkSNHFBb2+c2CJUuWqKWlRd/4xje8rtO22DI8PFx79+7VypUrVVtbq+TkZE2YMEGPP/640doKJg0AALSxcfeEqYKCAhUUFLT7XFlZmdfXhw8f9nmtHj16aOPGjZc0ji9i0gAAQBunS3L4edLgJHsCAACEGCoNAAC06US3JzojKg0AAMASKg0AAHjYUGlQ8FQagn7S4HJ/+M4mg7a2n1o/92yj9XbGktTc3axd8mcu6y1tG7qbtVg93c2wJWuY9fPDzToUq9llOPZW6+c3njFrl93UZP1nfqaxxejarZ+a/X5xfmb996KzyeyPc2uL2Yd01uDnePasWRtpGbQFlyS5rP/cnYYtyl0Gf+bOMWgj7bLW399zvtPw94vBz/HsWbOxtLaY/Tlqbbb+c7HaHrrt73FXEJX7u5qgnzScdvedPzr/CVuuf9jw/K12DAIdaD9//uKst1QFjP4T+anhtU3PN4uf6bJOnz6t2FizTBnLWNPgU9BPGpKTk1VZWanevXvL8YVgmfr6eg0aNOiCAJFgw/sMLrzP4ML7NONyuXT69GklJyf7cXQwEfSThrCwMA0cOPCiz7cFhwQ73mdw4X0GF96ndbZVGNo4XfL7GoQg6tMQ9JMGAAAscznPHf6+ZpBgyyUAALAkZCsNkZGRKi4uNgrq6Ip4n8GF9xlceJ+dEAshfXK42LsCAAhx9fX1io2NVfagB9UtzL+Tm7POZr1VuUR1dXVdfu1KyFYaAAC4AAshfWJNAwAAsIRKAwAAbVjT4BOVBgAAYElIThoWL16sIUOGKCoqSpmZmdq5c2egh+R38+bNk8Ph8DqGDRsW6GF9aVu3btWkSZOUnJwsh8Oh9evXez3vcrk0d+5cJSUlqUePHsrOztaBAwcCM9gvoaP3OX369As+34kTJwZmsJeopKRE1113nXr37q34+HhNnjxZ+/fv9zqnqalJs2bNUr9+/RQdHa0pU6aopqYmQCO+dFbe67hx4y74TL/73e8GaMSXZsmSJUpPT/c0ccrKytIf//hHz/Nd4vN06fNqg9+OQL8p/wm5ScOaNWtUWFio4uJi7d69WxkZGcrJydHx46b5BJ3fiBEjVFVV5TnefffdQA/pS2tsbFRGRoYWL17c7vMLFizQz3/+cy1dulQ7duxQr169lJOToyaTwLJOoKP3KUkTJ070+nxfeOGFyzjCL2/Lli2aNWuWtm/frk2bNunMmTOaMGGCGhsbPec89NBDeu2117R27Vpt2bJFx44d01133RXAUV8aK+9VkmbOnOn1mS5YsCBAI740AwcO1JNPPqny8nLt2rVLt9xyi+6880795S9/kRQ8n2coC7ktl5mZmbruuuv0X//1X5Ikp9OpQYMG6Xvf+54eeeSRAI/Of+bNm6f169drz549gR6KbRwOh9atW6fJkydLOldlSE5O1g9+8AM9/PDDkqS6ujolJCSotLRU99xzTwBHe+nOf5/SuUpDbW3tBRWIruzEiROKj4/Xli1bdPPNN6uurk4DBgzQqlWr9I1vfEOS9MEHH+jqq6/Wtm3bdP311wd4xJfu/Pcqnas0jB49WosWLQrs4PwsLi5OP/vZz/SNb3yjU3+eni2XiQ+oW1iEX6991tmit6p/HRRbLkOq0tDS0qLy8nJlZ2d7HgsLC1N2dra2bdsWwJHZ48CBA0pOTtYVV1yhe++9V0eOHAn0kGx16NAhVVdXe32+sbGxyszMDMrPt6ysTPHx8UpLS9ODDz6oU6dOBXpIX0pdXZ2kc//ISFJ5ebnOnDnj9XkOGzZMgwcP7vKf5/nvtc3zzz+v/v37a+TIkSoqKtKnn5rGXHYera2tWr16tRobG5WVldV1Pk+n054jSITU7omTJ0+qtbVVCQkJXo8nJCTogw8+CNCo7JGZmanS0lKlpaWpqqpK8+fP10033aR9+/apd+/egR6eLaqrqyWp3c+37blgMXHiRN11111KTU1VRUWFfvzjHys3N1fbtm1TeHh4oIdnzOl0avbs2fr617+ukSNHSjr3eUZERKhPnz5e53b1z7O99ypJ3/zmN5WSkqLk5GTt3btXP/rRj7R//3698sorARytuffff19ZWVlqampSdHS01q1bp+HDh2vPnj1B+XmGmpCaNISS3Nxcz6/T09OVmZmplJQUvfjii5oxY0YARwZ/+OKtllGjRik9PV1Dhw5VWVmZbr311gCO7NLMmjVL+/btC4p1Nx252Ht94IEHPL8eNWqUkpKSdOutt6qiokJDhw693MO8ZGlpadqzZ4/q6ur00ksvKS8vT1u2bAn0sKxjy6VPIXV7on///goPD79gtW5NTY0SExMDNKrLo0+fPvrqV7+qgwcPBnootmn7DEPx873iiivUv3//Lvn5FhQU6A9/+IPeeecdrxj7xMREtbS0qLa21uv8rvx5Xuy9ticzM1OSutxnGhERoSuvvFJjxoxRSUmJMjIy9MwzzwTl5xmKQmrSEBERoTFjxmjz5s2ex5xOpzZv3qysrKwAjsx+DQ0NqqioUFJSUqCHYpvU1FQlJiZ6fb719fXasWNH0H++R48e1alTp7rU5+tyuVRQUKB169bp7bffVmpqqtfzY8aMUffu3b0+z/379+vIkSNd7vPs6L22p20Rc1f6TNvjdDrV3NzcdT5Pv2+3tKFyEUAhd3uisLBQeXl5uvbaazV27FgtWrRIjY2Nys/PD/TQ/Orhhx/WpEmTlJKSomPHjqm4uFjh4eGaNm1aoIf2pTQ0NHj9z+vQoUPas2eP4uLiNHjwYM2ePVtPPPGErrrqKqWmpuonP/mJkpOTvXYedAW+3mdcXJzmz5+vKVOmKDExURUVFZozZ46uvPJK5eTkBHDUZmbNmqVVq1bp1VdfVe/evT33tWNjY9WjRw/FxsZqxowZKiwsVFxcnGJiYvS9731PWVlZAV9pb6qj91pRUaFVq1bp9ttvV79+/bR371499NBDuvnmm5Wenh7g0VtXVFSk3NxcDR48WKdPn9aqVatUVlamjRs3BtXnGcpCbtIwdepUnThxQnPnzlV1dbVGjx6tDRs2XLB4rqs7evSopk2bplOnTmnAgAG68cYbtX37dg0YMCDQQ/tSdu3apfHjx3u+LiwslCTl5eWptLRUc+bMUWNjox544AHV1tbqxhtv1IYNGxQVFRWoIV8SX+9zyZIl2rt3r1auXKna2lolJydrwoQJevzxx7tG9LDbkiVLJJ3bavhFK1as0PTp0yVJCxcuVFhYmKZMmaLm5mbl5OTol7/85WUe6ZfX0XuNiIjQW2+95flPzKBBgzRlyhQ9+uijARjtpTt+/Ljuu+8+VVVVKTY2Vunp6dq4caNuu+02SV3k8ySwyqeQ69MAAMD5PH0a4vLt6dPw8Yqg6NMQcpUGAAAuxuVyyuXyb18Ff18vkJg0AADQxuXy/+2EICroh9TuCQAAcOmoNAAA0MZlw0JIKg0AACDUUGkAAKCN0yk5/LxwMYgWQlJpAAAAllBpAACgDWsafKLSAAAALKHSAACAm8vplMvPaxqCqbkTlQagizpx4oQSExP105/+1PPYe++9p4iICK8kQQAGSLn0iUoD0EUNGDBAy5cv1+TJkzVhwgSlpaXp29/+tgoKCnTrrbcGengAghCTBqALu/322zVz5kzde++9uvbaa9WrVy+VlJQEelhA1+V0SQ4WQl4MtyeALu6pp57S2bNntXbtWj3//PNdKh4bQNfCpAHo4ioqKnTs2DE5nU4dPnw40MMBujaX61wzJr8ewVNp4PYE0IW1tLToW9/6lqZOnaq0tDR95zvf0fvvv6/4+PhADw1AEGLSAHRh//Zv/6a6ujr9/Oc/V3R0tN544w3df//9+sMf/hDooQFdksvpksvPaxpcQVRp4PYE0EWVlZVp0aJF+t3vfqeYmBiFhYXpd7/7nf70pz9pyZIlgR4egCBEpQHoosaNG6czZ854PTZkyBDV1dUFaERAEHA5JRFYdTFMGgAAcOP2hG/cngAAAJZQaQAAoA23J3xi0gAAgNtZnfF7MvZZnen4pC6CSQMAIORFREQoMTFR71a/Ycv1ExMTFRERYcu1LyeHK5hWaAAAcImamprU0tJiy7UjIiIUFRVly7UvJyYNAADAEnZPAAAAS5g0AAAAS5g0AAAAS5g0AAAAS5g0AAAAS5g0AAAAS5g0AAAAS/4/mLo1I3VuVMEAAAAASUVORK5CYII=", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAHiCAYAAABr4v9eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJaElEQVR4nO3df3xU1Z3/8fckkAQICQTIryVARAwCBixKjFUXJBqiS6VQirRVQItbl9jFrKWmq/xQt7HWCrZLod0CwVYUUcFaLYhosK4gFZui7cpXYpAASUA0CYkmgcz9/sFk6ghM7olzmcnM6/l43MeDmTlz5ty5JBw+59zPx2VZliUAAIAORAV7AAAAoGtg0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGzpFuwBAAAQCpqbm9Xa2upI3zExMYqLi3Ok73OJSQMAIOI1Nzcrc3C8ao60OdJ/amqqKisru/zEgUkDACDitba2quZImz7cPUQJvQO7ct9w3K3BY/ertbWVSQMAAOEivrdL8b1dAe3TrcD2F0xshAQAALYQaQAAwKPNcqstwLWf2yx3YDsMIiYNAAB4uGXJrcDOGgLdXzCxPAEAAGwh0gAAgIdbbgV6MSHwPQYPkQYAAGALkQYAADzaLEttVmD3IAS6v2Ai0gAAAGwh0gAAgAd3T/hHpAEAANhCpAEAAA+3LLURaTgrJg0AAHiwPOEfyxMAAMAWIg0AAHhwy6V/RBoAAIAtRBoAAPBwe45A9xkuiDQAAABbiDQAAODR5sAtl4HuL5iINAAAAFuINAAA4NFmnToC3We4INIAfI7L5dLixYtttR0yZIhmz55t/Bn79++Xy+VSaWmp8XuDafbs2RoyZIjPc+fi+wLOJbdDR7hg0oCwUlpaKpfLpbfeeisg/b3xxhtavHix6urqAtJfuOP7AsIbyxPA53z22Wfq1u0fPxZvvPGGlixZotmzZ6tPnz4+bffu3auoqMied/N9Idy45VKbXAHvM1wwaQA+Jy4uznbb2NhYB0fSNfB9AZGFaT/C3uzZsxUfH69Dhw5pypQpio+P14ABA3TXXXepra3Np+3n1+gXL16sH/zgB5KkzMxMuVwuuVwu7d+/X9Lpa/Qff/yx7rrrLl100UWKj49XQkKCCgoK9Ne//rXTY6+rq9Odd96pIUOGKDY2VgMHDtTNN9+sjz76yNvmyJEjuvXWW5WSkqK4uDiNHj1aa9eu9emnfR/Fww8/rF//+tcaOnSoYmNjdemll+rPf/7zaZ+7adMmjRo1SnFxcRo1apQ2btx4xvF9me9Lkj744ANNnz5dSUlJ6tmzpy677DK98MILPm3Kysrkcrn01FNP6b/+6780cOBAxcXFaeLEidq3b5/J1wl0yG05c4QLIg2ICG1tbcrPz1dOTo4efvhhvfzyy/rZz36moUOH6vbbbz/je6ZOnar/9//+n5544gktXbpU/fv3lyQNGDDgjO0/+OADbdq0SdOnT1dmZqZqa2v1q1/9Sv/8z/+sv//970pPTzcac2Njo6688kr93//9n2655RZ95Stf0UcffaTf//73OnjwoPr376/PPvtM48eP1759+1RYWKjMzExt2LBBs2fPVl1dnf793//dp89169bp+PHj+td//Ve5XC499NBDmjp1qj744AN1795dkvTSSy9p2rRpGjFihEpKSnTs2DHNmTNHAwcO9Dte0++rtrZWl19+uT799FN9//vfV79+/bR27Vp97Wtf09NPP62vf/3rPu0ffPBBRUVF6a677lJ9fb0eeughffvb39abb75p9L0C+BIsIIysWbPGkmT9+c9/9j43a9YsS5J13333+bS9+OKLrbFjx/o8J8latGiR9/FPf/pTS5JVWVl52mcNHjzYmjVrlvdxc3Oz1dbW5tOmsrLSio2N9fnsyspKS5K1Zs0av+eycOFCS5L17LPPnvaa2+22LMuyli1bZkmyfve733lfa21ttXJzc634+HiroaHB5zP79etnffzxx962zz33nCXJev75573PjRkzxkpLS7Pq6uq8z7300kuWJGvw4ME+4/gy39f8+fMtSdaf/vQn73PHjx+3MjMzrSFDhni/y1dffdWSZF144YVWS0uLt+2jjz5qSbLeeeedM319gJH6+npLkvXm31Ktvx1ID+jx5t9SLUlWfX19sE/zS2N5AhHje9/7ns/jK6+8Uh988EHA+o+NjfVu9Gtra9OxY8cUHx+vrKwsvf3228b9PfPMMxo9evRp/+OWTi0LSNKLL76o1NRUzZw50/ta9+7d9f3vf1+NjY3avn27z/tmzJihvn37eh9feeWVkuT9Hqqrq1VeXq5Zs2YpMTHR2+6aa67RiBEjjM/BnxdffFHjxo3TFVdc4X0uPj5et912m/bv36+///3vPu3nzJmjmJiYs44dgPOYNCAixMXFnRYm79u3rz755JOAfYbb7dbSpUs1bNgwxcbGqn///howYID27Nmj+vp64/4qKio0atQov20+/PBDDRs27LS7Ei688ELv6583aNAgn8ftE4j276G9/bBhw077rKysLIPRd+zDDz88Y5+dHTsQCG2euycCfYQLJg2ICNHR0Y5/xo9//GMVFRXpqquu0u9+9ztt2bJFW7du1ciRI+V2h0Z6l7N9D5YV+ju1uvLY0XW4LZcjR7hgIyTgR/sygB1PP/20JkyYoFWrVvk8X1dX590UaGLo0KF69913/bYZPHiw9uzZI7fb7RNteO+997yvm2hv//7775/22t69ezt8v8n3NXjw4DP22dmxA3AekQbAj169ekmSrQyH0dHRp/2vd8OGDTp06FCnPnvatGn661//esbbHds/57rrrlNNTY3Wr1/vfe3kyZP6xS9+ofj4eP3zP/+z0WempaVpzJgxWrt2rc+SytatW0/bY3AmJt/Xddddp127dmnHjh3e55qamvTrX/9aQ4YMCfgeCsAOlif8I9IA+DF27FhJ0n/+53/qxhtvVPfu3TV58mTvP46f9y//8i+67777NGfOHF1++eV655139Pjjj+u8887r1Gf/4Ac/0NNPP63p06frlltu0dixY/Xxxx/r97//vVauXKnRo0frtttu069+9SvNnj1bu3fv1pAhQ/T000/rf//3f7Vs2TL17t3b+HNLSkp0/fXX64orrtAtt9yijz/+WL/4xS80cuRINTY2+n2vyfd1991364knnlBBQYG+//3vKykpSWvXrlVlZaWeeeYZskcCIYhJA+DHpZdeqvvvv18rV67U5s2b5Xa7VVlZecZ/BH/0ox+pqalJ69at0/r16/WVr3xFL7zwgu6+++5OfXZ8fLz+9Kc/adGiRdq4caPWrl2r5ORkTZw40ZszoUePHiorK9Pdd9+ttWvXqqGhQVlZWVqzZk2ni0NNmjRJGzZs0D333KPi4mINHTpUa9as0XPPPaeysjK/7zX5vlJSUvTGG2/ohz/8oX7xi1+oublZ2dnZev7553X99dd3auzAl9WmKLUFOAjf1nGTLsNlsYsIABDhGhoalJiYqFfezVB878BOGhqPu3X1qCrV19crISEhoH2fa0QaAADwsBy428EKo7snWDQEAAC2EGkAAMDDibsdwunuCSINAADAFiINAAB4tFlRagtwWaa2MLrdgEkDAAAebrnkDnAQ3q3wmTWE/aTB7Xbr8OHD6t27t1GKWwBAaLEsS8ePH1d6ejrJv4Ik7CcNhw8fVkZGRrCHAQAIkKqqKm+Cs0BjI6R/YT9paE+jO3DRPYqKi7P1nqjkZtv9D0r+2Gg8F/U5bNQ+u1eV7bbDu9cY9T2om1mest5R9r4/SYp2mf0voMU6YdT+SFuL7bYVJ8ySqbzbPKjjRh5/PW72i+u9Y8lG7etq7aeBjjli9uPco9bsF1mvWvt/X3rU2v8ZkqRuR48btdcn9kuNu4/7T339RdbJk2ZjMYhgRvWw/zMkSVF9Eo3au/vZb9+S3NOo70+Tuxu1b0q1/700J9urAutubtbBJQ90Kj06AiPsJw3tSxJRcXH2Jw0GP0vdesUajSc23uwHr0cv+5coPsbsH+re3czW2RIMwoHmkwaz9p+12W/f64RZWey4bva/8+7uGKO+oz8z+/ti8o9MVJzZj3N0jNmkoVt3+5MGg6/wVPvoVrM3uOx/726X2c+cZbqMaTJpMBi3JEVFmf19cUfbb9/WzWwCEx1j9j1Gxxp8L3FmpeOdXGp2ZiNk+OxpYFEIAADYEvaRBgAA7Dp190RgIxmB7i+YiDQAAABbiDQAAODhdqA0NnkaAAAIQ2yE9I/lCQAAQsxrr72myZMnKz09XS6XS5s2bfLbfvbs2XK5XKcdI0eO9LZZvHjxaa8PHz7caFxMGgAA8HArypHDVFNTk0aPHq3ly5fbav/oo4+qurrae1RVVSkpKUnTp0/3aTdy5Eifdq+//rrRuFieAAAgxBQUFKigoMB2+8TERCUm/iO516ZNm/TJJ59ozpw5Pu26deum1NTUTo8rYiYNcUeiFB1rb7b3mewnPdmvfp0dUggwy045uJv9LH8JBtkjJSnWMAFPilG+JvvZA0/50LC9c/5u0PYTmWW+NP/xN/nSza5/D7OBGI3c9P947uNm2SlNMki6P/vMcDRmTM7VLG2UJPUybG/yM21v5G0tzgfH2yyX2qwAp5EOcH92rFq1Snl5eRo8eLDP8++//77S09MVFxen3NxclZSUaNAg+1lwI2bSAABAMDU0NPg8jo2NVWys+fStI4cPH9Yf//hHrVu3zuf5nJwclZaWKisrS9XV1VqyZImuvPJKvfvuu7ZTcwd1T8OKFSuUnZ2thIQEJSQkKDc3V3/84x+9rzc3N2vevHnq16+f4uPjNW3aNNXW1gZxxACAcNbmueUy0IckZWRkeJcREhMTVVJS4sg5rF27Vn369NGUKVN8ni8oKND06dOVnZ2t/Px8vfjii6qrq9NTTz1lu++gRhoGDhyoBx98UMOGDZNlWVq7dq1uuOEG/eUvf9HIkSN155136oUXXtCGDRuUmJiowsJCTZ06Vf/7v/8bzGEDAGCsqqpKCQn/WEZ0IspgWZZWr16tm266STEx/mud9OnTRxdccIH27dtnu/+gThomT57s8/i//uu/tGLFCu3cuVMDBw7UqlWrtG7dOl199dWSpDVr1ujCCy/Uzp07ddlllwVjyACAMOa2ouQOcJ4GtydPQ3tU3Unbt2/Xvn37dOutt3bYtrGxURUVFbrpppts9x8yexra2tq0YcMGNTU1KTc3V7t379aJEyeUl5fnbTN8+HANGjRIO3bsOOukoaWlRS0t/yib/MU1JAAAzubzywmB69M8uVNjY6NPBKCyslLl5eVKSkrSoEGDVFxcrEOHDumxxx7zed+qVauUk5OjUaNGndbnXXfdpcmTJ2vw4ME6fPiwFi1apOjoaM2cOdP2uII+aXjnnXeUm5ur5uZmxcfHa+PGjRoxYoTKy8sVExOjPn36+LRPSUlRTU3NWfsrKSnRkiVLHB41AADOeeuttzRhwgTv46KiIknSrFmzVFpaqurqah04cMDnPfX19XrmmWf06KOPnrHPgwcPaubMmTp27JgGDBigK664Qjt37tSAAQNsjyvok4asrCyVl5ervr5eTz/9tGbNmqXt27d3ur/i4mLvlyudijRkZGQEYqgAgDDnVuBvkXR34j3jx4+X5Sf9dGlp6WnPJSYm6tNPPz3re5588slOjMRX0CcNMTExOv/88yVJY8eO1Z///Gc9+uijmjFjhlpbW1VXV+cTbaitrfWbmMKpW1gAAIh0IZdG2u12q6WlRWPHjlX37t21bds272t79+7VgQMHlJubG8QRAgDCVaikkQ5VQY00FBcXq6CgQIMGDdLx48e1bt06lZWVacuWLUpMTNStt96qoqIiJSUlKSEhQXfccYdyc3O5cwIAgCAI6qThyJEjuvnmm1VdXa3ExERlZ2dry5YtuuaaayRJS5cuVVRUlKZNm6aWlhbl5+frl7/8Zac+q1eNpegYuztY7c8KTVJOS5GTdtok5bTkbNpps5TTklna6a6ZclpyOu206ZfuXNpp019yTqadNkk5LTmbdtr0PJ1NO23v57mt1fkS086UxibSEBCrVq3y+3pcXJyWL19uu8oXAABwTtA3QgIAECrccsmtQN89ce4LVjmFSQMAAB4sT/gXPmcCAAAcRaQBAAAPZ9JIh8//z8PnTAAAgKOINAAA4OG2XHIHOo10gPsLJiINAADAFiINAAB4uB3Y0xBOaaTD50wAAICjiDQAAODhtqLkDnBehUD3F0wRM2noeeSEunWzmw/ffl0D02BN5NSqsF+nQnK2VoVJnQrJtFaFSZ0KKXJqVZj+anGuVoVJnQrJ2VoVJnUqpEiqVWGvTsXJkycMR2GuTS61BTiDY6D7C6bwmf4AAABHRUykAQCAjrA84V/4nAkAAHAUkQYAADzaFPg9CG0B7S24iDQAAABbiDQAAODBngb/wudMAACAo4g0AADg0WZFqS3AkYFA9xdMTBoAAPCw5JI7wBshLZI7AQCASEOkAQAAD5Yn/IuYSUPskU/VLdru3bL28qCfYlbXwMlaFV23ToXkZK0KkzoVklmtCrM6FVKk1Kowq1MhOVurwuz6O1mrwvSfDidrVThZp0IyO1e7dSqi21o6MxQEUMRMGgAA6IjbcsltBXYPQqD7C6bwiZkAAABHEWkAAMCjTVFqC/D/pwPdXzCFz5kAAABHEWkAAMCDPQ3+MWkAAMDDrSi5AxyED3R/wRQ+ZwIAABxFpAEAAI82y6W2AC8nBLq/YCLSAAAAbCHSAACABxsh/YuYSUPUsXpFRdlLVmo3pekpJimnJSfTTpuknJYiJ+20ScppySzttEnKacnptNNdM+W05HTaadMv3bm006a/cJ1MO22SclpyNu203fOMcpNGOtgiZtIAAEBHLCtK7gAXmLLCqGBV+JwJAABwFJEGAAA82uRSmwJ890SA+wsmJg0AAHi4rcBvXHRbAe0uqFieAAAAthBpAADAw+3ARshA9xdM4XMmAADAUUQaAADwcMsld4A3Lga6v2Ai0gAAQIh57bXXNHnyZKWnp8vlcmnTpk1+25eVlcnlcp121NTU+LRbvny5hgwZori4OOXk5GjXrl1G42LSAACAR3vBqkAfppqamjR69GgtX77c6H179+5VdXW190hOTva+tn79ehUVFWnRokV6++23NXr0aOXn5+vIkSO2+2d5AgCAEFNQUKCCggLj9yUnJ6tPnz5nfO2RRx7R3LlzNWfOHEnSypUr9cILL2j16tW6++67bfUfMZMGd1293K4YW21Nwi9mdSokZ2tVmAWOIqdWhf06FZJZrQqTOhWS07UqTOpUSJFTq8L015xztSpM6lRIztaqMKlTIYVGrQq31RrwPk//DOfunmhoaPB5PjY2VrGx5v+K+DNmzBi1tLRo1KhRWrx4sb761a9KklpbW7V7924VFxd720ZFRSkvL087duyw3T/LEwAAnAMZGRlKTEz0HiUlJQHrOy0tTStXrtQzzzyjZ555RhkZGRo/frzefvttSdJHH32ktrY2paSk+LwvJSXltH0P/gQ10lBSUqJnn31W7733nnr06KHLL79cP/nJT5SVleVtM378eG3fvt3nff/6r/+qlStXnuvhAgDCnFsOlMb23D1RVVWlhIR/RMkCGWXIysry+bfz8ssvV0VFhZYuXarf/va3AfucoEYatm/frnnz5mnnzp3aunWrTpw4oWuvvVZNTU0+7ebOneuzseOhhx4K0ogBAOHM8txyGcjD8kwaEhISfI5AL0180bhx47Rv3z5JUv/+/RUdHa3a2lqfNrW1tUpNTbXdZ1AjDZs3b/Z5XFpaquTkZO3evVtXXXWV9/mePXsanRQAAJGuvLxcaWlpkqSYmBiNHTtW27Zt05QpUyRJbrdb27ZtU2Fhoe0+Q2ojZH39qY1cSUlJPs8//vjj+t3vfqfU1FRNnjxZ9957r3r27BmMIQIAwpjbcmB5ohP9NTY2eqMEklRZWany8nIlJSVp0KBBKi4u1qFDh/TYY49JkpYtW6bMzEyNHDlSzc3N+s1vfqNXXnlFL730krePoqIizZo1S5dcconGjRunZcuWqampyXs3hR0hM2lwu92aP3++vvrVr2rUqFHe57/1rW9p8ODBSk9P1549e/TDH/5Qe/fu1bPPPnvGflpaWtTS0uJ9/MXdqgAAhLq33npLEyZM8D4uKiqSJM2aNUulpaWqrq7WgQMHvK+3trbqP/7jP3To0CH17NlT2dnZevnll336mDFjho4ePaqFCxeqpqZGY8aM0ebNm0/bHOlPyEwa5s2bp3fffVevv/66z/O33Xab988XXXSR0tLSNHHiRFVUVGjo0KGn9VNSUqIlS5Y4Pl4AQPgJlYJV48ePl2WdvaZ2aWmpz+MFCxZowYIFHfZbWFhotBzxRSFxy2VhYaH+8Ic/6NVXX9XAgQP9ts3JyZEkn7DN5xUXF6u+vt57VFVVBXy8AABEoqBGGizL0h133KGNGzeqrKxMmZmZHb6nvLxckrybO77IiWQZAIDIECp7GkJVUCcN8+bN07p16/Tcc8+pd+/e3gQTiYmJ6tGjhyoqKrRu3Tpdd9116tevn/bs2aM777xTV111lbKzs4M5dAAAIk5QJw0rVqyQdGrt5vPWrFmj2bNnKyYmRi+//LJ3h2dGRoamTZume+65JwijBQCEO0pj+xf05Ql/MjIyTssG2Vnuz5rldrUFpK/PM90U4mytCrO6Bk7Wqui6dSokk1oVJnUqJGdrVZjVqZAipVaFWZ0KydlaFWbX38laFaa/u5ysVWG3ToXbOmE0hs5gecK/kNgICQAAQl/I3HIJAECwEWnwj0gDAACwhUgDAAAeRBr8I9IAAABsIdIAAIAHkQb/iDQAAABbiDQAAOBhKfDJmPxnJOpamDQAAODB8oR/LE8AAABbIifSYFmyGySym9K0M5xNO22SclpyMu20ScppqSunnbafclpyNu20Scppyem0010z5bTkdNpp0y/dubTTpr/8nUw7bTvldAelBwKBSIN/RBoAAIAtkRNpAACgA0Qa/CPSAAAAbCHSAACAB5EG/4g0AAAAW4g0AADgYVkuWQGODAS6v2Bi0gAAgIdbroBnhAx0f8HE8gQAALCFSAMAAB5shPSPSAMAALCFSAMAAB5shPQvYiYNrm7d5HLZO13bedDlbJ0KySwUZFanQnK2VoVZEItaFWdmUqvCpE6F5HStCpM6FVLk1Kow/ZXrXK0KkzoVkrO1KuzWqXBZlmT/1zMcEDGTBgAAOsKeBv/Y0wAAAGwh0gAAgAd7Gvxj0gAAgIflwPJEOE0aWJ4AAAC2EGkAAMDDkmRZge8zXBBpAAAAthBpAADAwy2XXBSsOisiDQAAwBYiDQAAeHDLpX9EGgAAgC0RE2mI6h2vKFeMrbZ286BLZnUqJGdrVZjOAJ2tVWFW18DJWhVdt06FZFKrwqROheRsrQqzOhVSpNSqMKtTITlbq8Ls+jtZq8LuT3+U1Sp9YjgQQ27LJRdppM8qYiYNAAB0xLIcuOUyjO65ZHkCAADYQqQBAAAPNkL6R6QBAADYQqQBAAAPIg3+EWkAAAC2EGkAAMCDWy79I9IAAECIee211zR58mSlp6fL5XJp06ZNfts/++yzuuaaazRgwAAlJCQoNzdXW7Zs8WmzePFiuVwun2P48OFG42LSAACAR3uehkAfppqamjR69GgtX77cVvvXXntN11xzjV588UXt3r1bEyZM0OTJk/WXv/zFp93IkSNVXV3tPV5//XWjcbE8AQCAx6l/5AO9EdL8PQUFBSooKLDdftmyZT6Pf/zjH+u5557T888/r4svvtj7fLdu3ZSammo+oPb3d/qdXU3fRCnaXuJkk/CLScppKZLSTpuknJacTDttknJa6sppp+2nnJacTTttknJacjrtdNdMOS05nXba9Et3Lu207VG3tTieRtpJDQ0NPo9jY2MVG2ue0N8Ot9ut48ePKykpyef5999/X+np6YqLi1Nubq5KSko0aNAg2/2yPAEAgEf7LZeBPiQpIyNDiYmJ3qOkpMSx83j44YfV2Niob37zm97ncnJyVFpaqs2bN2vFihWqrKzUlVdeqeMG//kN6qShpKREl156qXr37q3k5GRNmTJFe/fu9WnT3NysefPmqV+/foqPj9e0adNUW1sbpBEDANA5VVVVqq+v9x7FxcWOfM66deu0ZMkSPfXUU0pOTvY+X1BQoOnTpys7O1v5+fl68cUXVVdXp6eeesp230GdNGzfvl3z5s3Tzp07tXXrVp04cULXXnutmpqavG3uvPNOPf/889qwYYO2b9+uw4cPa+rUqUEcNQAgXFkOHZKUkJDgczixNPHkk0/qu9/9rp566inl5eX5bdunTx9dcMEF2rdvn+3+g7qnYfPmzT6PS0tLlZycrN27d+uqq65SfX29Vq1apXXr1unqq6+WJK1Zs0YXXnihdu7cqcsuuywYwwYAIOQ88cQTuuWWW/Tkk0/q+uuv77B9Y2OjKioqdNNNN9n+jJDa01Bff2pzU/vGjd27d+vEiRM+s6Xhw4dr0KBB2rFjR1DGCAAIX07uaTDR2Nio8vJylZeXS5IqKytVXl6uAwcOSJKKi4t18803e9uvW7dON998s372s58pJydHNTU1qqmp8f67Kkl33XWXtm/frv379+uNN97Q17/+dUVHR2vmzJm2xxUykwa326358+frq1/9qkaNGiVJqqmpUUxMjPr06ePTNiUlRTU1NWfsp6WlRQ0NDT4HAABdyVtvvaWLL77Ye7tkUVGRLr74Yi1cuFCSVF1d7Z1ASNKvf/1rnTx5UvPmzVNaWpr3+Pd//3dvm4MHD2rmzJnKysrSN7/5TfXr1087d+7UgAEDbI8rZG65nDdvnt59913jRBNfVFJSoiVLlgRoVACAiPL5TQiB7NPQ+PHjZflJ8FBaWurzuKysrMM+n3zySfOBfEFIRBoKCwv1hz/8Qa+++qoGDhzofT41NVWtra2qq6vzaV9bW3vW5BTFxcU+u1OrqqqcHDoAIJw4sTRB7YnAsCxLhYWF2rhxo1555RVlZmb6vD527Fh1795d27Zt8z63d+9eHThwQLm5uWfsMzY29rQdqgAA4MsL6vLEvHnztG7dOj333HPq3bu3d59CYmKievToocTERN16660qKipSUlKSEhISdMcddyg3N5c7JwAAAdfZWhEd9RkugjppWLFihaRTazeft2bNGs2ePVuStHTpUkVFRWnatGlqaWlRfn6+fvnLX57jkQIAgKBOGvxt8mgXFxen5cuX2670dTYnB/SWutnLnW7ypZiu7zhZq8LJOhWS2bmapyxxslaF2VUyqVXRdetUSE7WqjCpUyE5XavCpE6FFDm1Kkx//TtXq8JunYqTJ5ulDwyHYaizt0h21Ge4CImNkAAAIPSFzC2XAAAEnRN3OxBpAAAAkYZIAwAAHtw94R+TBgAA2oVIRshQxfIEAACwhUgDAAAe3HLpH5EGAABgC5EGAAA+L4z2IAQakQYAAGALkQYAADzY0+BfxEwaPkuJU7fu9nKh282DLpl/gU7WqjCpUyE5W6vC9DydrVVhVtfAZPQmdSqkyKlVYVKnQnK2VoVZnQopUmpVmNWpkJytVWHv+p88YTgEBFzETBoAAOgQeRr8Yk8DAACwhUgDAABeLs8R6D7DA5MGAADasTzhF8sTAADAFiINAAC0I9LgF5EGAABgC5EGAADaWa5TR6D7DBNEGgAAgC1EGgAA8LCsU0eg+wwXETNpaEqJVnSM3bSm9lPamqSclpxNO22SclqKpLTTJimnJbO002Yjj5y00/ZTTkvOpp02STktOZ12umumnJacTjtt70tvazW+OAiwiJk0AADQIe6e8ItJAwAA7dgI6RcbIQEAgC1EGgAA8HBZp45A9xkuiDQAAABbiDQAANCOjZB+EWkAAAC2EGkAAKAdd0/4RaQBAADYQqQBAIB27Gnwi0kDAADtmDT4FTGThs9SLEXF2b1yJvnNzWoJOFmrwnStyclaFU7WqZDMztWsToVkVqvCrK6Bk7Uqum6dCsnJWhUmdSokp2tVmNSpkCKnVoW933Tu5jD617eLiphJAwAAHSLS4BcbIQEAgC1EGgAAaMctl34RaQAAALYQaQAAwIOCVf4RaQAAALYQaQAAoB13T/hFpAEAgBDz2muvafLkyUpPT5fL5dKmTZs6fE9ZWZm+8pWvKDY2Vueff75KS0tPa7N8+XINGTJEcXFxysnJ0a5du4zGZTxpmDVrll577TXTtwEAAJuampo0evRoLV++3Fb7yspKXX/99ZowYYLKy8s1f/58ffe739WWLVu8bdavX6+ioiItWrRIb7/9tkaPHq38/HwdOXLE9riMJw319fXKy8vTsGHD9OMf/1iHDh0y7QIAgJDk0j82Qwbs6MQ4CgoK9MADD+jrX/+6rfYrV65UZmamfvazn+nCCy9UYWGhvvGNb2jp0qXeNo888ojmzp2rOXPmaMSIEVq5cqV69uyp1atX2x6X8aRh06ZNOnTokG6//XatX79eQ4YMUUFBgZ5++mmdOHHCtDsAACJCQ0ODz9HS0hKwvnfs2KG8vDyf5/Lz87Vjxw5JUmtrq3bv3u3TJioqSnl5ed42dnRqI+SAAQNUVFSkoqIivf3221qzZo1uuukmxcfH6zvf+Y7+7d/+TcOGDetM145pTT6pqB52ayeYfC1GieflZK0K04vpZK0KkzoVkrO1KkzP06xWhUmdCsnJWhUmdSqkyKlVYVKnQnK2VoVZnQopUmpV2K1T4f7M7PdKpziY3CkjI8Pn6UWLFmnx4sUB+YiamhqlpKT4PJeSkqKGhgZ99tln+uSTT9TW1nbGNu+9957tz/lSGyGrq6u1detWbd26VdHR0bruuuv0zjvvaMSIET4hkbPpaKPH7Nmz5XK5fI5JkyZ9mSEDABAUVVVVqq+v9x7FxcXBHpIx40jDiRMn9Pvf/15r1qzRSy+9pOzsbM2fP1/f+ta3lJBwara4ceNG3XLLLbrzzjv99tW+0eOWW27R1KlTz9hm0qRJWrNmjfdxbKx5zUIAAGxx8JbLhIQE77+TgZaamqra2lqf52pra5WQkKAePXooOjpa0dHRZ2yTmppq+3OMJw1paWlyu92aOXOmdu3apTFjxpzWZsKECerTp0+HfRUUFKigoMBvm9jYWKMTAgAg0uTm5urFF1/0eW7r1q3Kzc2VJMXExGjs2LHatm2bpkyZIklyu93atm2bCgsLbX+O8aRh6dKlmj59uuLizr7u16dPH1VWVpp2fUZlZWVKTk5W3759dfXVV+uBBx5Qv35deS0WABCyQiS5U2Njo/bt2+d9XFlZqfLyciUlJWnQoEEqLi7WoUOH9Nhjj0mSvve97+m///u/tWDBAt1yyy165ZVX9NRTT+mFF17w9lFUVKRZs2bpkksu0bhx47Rs2TI1NTVpzpw5tsdlPGm46aabTN/SaZMmTdLUqVOVmZmpiooK/ehHP1JBQYF27Nih6Ogz7yhqaWnx2ZHa0NBwroYLAOjiQqX2xFtvvaUJEyZ4HxcVFUk6lSuptLRU1dXVOnDggPf1zMxMvfDCC7rzzjv16KOPauDAgfrNb36j/Px8b5sZM2bo6NGjWrhwoWpqajRmzBht3rz5tM2R/oR0Gukbb7zR++eLLrpI2dnZGjp0qMrKyjRx4sQzvqekpERLliw5V0MEACDgxo8fL8s6+2zjTNkex48fr7/85S9++y0sLDRajviiLpVG+rzzzlP//v19QjZfVFxc7LM7taqq6hyOEADQpVkOHWEipCMNX3Tw4EEdO3ZMaWlpZ20TGxvLHRYAADggqJMGfxs9kpKStGTJEk2bNk2pqamqqKjQggULdP755/us0QAAEDAhshEyVAV10uBvo8eKFSu0Z88erV27VnV1dUpPT9e1116r+++/n0gCAABBENRJQ0cbPT5fnevL6pNyXNE9W221tZvS9BTTr9C5tNMmKaclZ9NOm6Sclrpu2mnz6auTaafNtihFTtpp+ymnJWfTTpuknJacTjvd9VJOt33aooOOjiR07p4IVV1qIyQAAAieLrUREgAARzlYsCocMGkAAKAdGyH9YnkCAADYQqQBAAAPNkL6R6QBAADYQqQBAIB27Gnwi0gDAACwhUgDAADtHNjTQKQBAABEHCINAAC0Y0+DXxEzaRje74i694qx1dZuHnTJtE6F5GytCrNaAk7WqjANYTlZqyJU6lRITteqMKtr4GStiq5bp0JyslaFSZ0KyelaFSZ1KqRQqFVxoqlV7zr9IUwa/GJ5AgAA2BIxkQYAADpCcif/iDQAAABbmDQAAABbmDQAAABb2NMAAEA77p7wi0gDAACwhUgDAAAe3D3hH5MGAAA+L4z+kQ80licAAIAtERNpGN37oOLiA3+6JimnJafTThvlkJWTaadNv2kn006bpJyWunLaaZOU05KTaadNUk5LkZN22iTltORs2mmzlNNSKKSdbo46qacD3usXsBHSLyINAADAloiJNAAA0BE2QvpHpAEAANhCpAEAgHbsafCLSAMAALCFSAMAAB7safCPSAMAALCFSAMAAO3Y0+AXkwYAANoxafCL5QkAAGALkQYAADzYCOlfxEwaRsUdUK8exsnWA87ZWhWml9O5WhUmdSokZ2tVmNSpkMxqVThZp0IyO0+zOhWSs7UqzIKYkVOrwn6dCsnZWhUmdSokp2tV2KtT0XSyzXQQCLCImTQAANAh9jT4xZ4GAABgC5EGAADaEWnwi0gDAACwhUgDAAAe3D3hH5MGAADasTzhF8sTAACEoOXLl2vIkCGKi4tTTk6Odu3adda248ePl8vlOu24/vrrvW1mz5592uuTJk0yGhORBgAAPEJleWL9+vUqKirSypUrlZOTo2XLlik/P1979+5VcnLyae2fffZZtba2eh8fO3ZMo0eP1vTp033aTZo0SWvWrPE+jo01y/BCpAEAgBDzyCOPaO7cuZozZ45GjBihlStXqmfPnlq9evUZ2yclJSk1NdV7bN26VT179jxt0hAbG+vTrm/fvkbjYtIAAEA7y6HDQGtrq3bv3q28vDzvc1FRUcrLy9OOHTts9bFq1SrdeOON6tXLN/NrWVmZkpOTlZWVpdtvv13Hjh0zGhvLEwAAnAMNDQ0+j2NjY8+4PPDRRx+pra1NKSkpPs+npKTovffe6/Bzdu3apXfffVerVq3yeX7SpEmaOnWqMjMzVVFRoR/96EcqKCjQjh07FB1tL094xEwahnZvUO/udgMr9vKgnwsmtSrM6lRIztaqMKsl4GStCtNwmkmtCpM6FZKztSpMz9PZWhVmdQ2crFXRdetUSE7WqjCpUyE5XavCXp2K493dRmPoFAfvnsjIyPB5etGiRVq8eHGAP+xUlOGiiy7SuHHjfJ6/8cYbvX++6KKLlJ2draFDh6qsrEwTJ0601XdQlydee+01TZ48Wenp6XK5XNq0aZPP65ZlaeHChUpLS1OPHj2Ul5en999/PziDBQDgS6iqqlJ9fb33KC4uPmO7/v37Kzo6WrW1tT7P19bWKjU11e9nNDU16cknn9Stt97a4XjOO+889e/fX/v27bN9DkGdNDQ1NWn06NFavnz5GV9/6KGH9POf/1wrV67Um2++qV69eik/P1/NzWaV3wAAsMPl0CFJCQkJPsfZ7lyIiYnR2LFjtW3bNu9zbrdb27ZtU25urt/xb9iwQS0tLfrOd77T4bkePHhQx44dU1paWodt2wV1eaKgoEAFBQVnfM2yLC1btkz33HOPbrjhBknSY489ppSUFG3atMknzAIAQECESHKnoqIizZo1S5dcconGjRunZcuWqampSXPmzJEk3Xzzzfqnf/onlZSU+Lxv1apVmjJlivr1812Wa2xs1JIlSzRt2jSlpqaqoqJCCxYs0Pnnn6/8/Hzb4wrZPQ2VlZWqqanx2T2amJionJwc7dixg0kDACBszZgxQ0ePHtXChQtVU1OjMWPGaPPmzd7NkQcOHFBUlO9iwd69e/X666/rpZdeOq2/6Oho7dmzR2vXrlVdXZ3S09N17bXX6v777zfK1RCyk4aamhpJOuPu0fbXzqSlpUUtLS3ex1/crQoAwNmESnInSSosLFRhYeEZXysrKzvtuaysLFnWmT+sR48e2rJlS+cG8jlhl6ehpKREiYmJ3uOLu1UBAEDnhOykoX2HqOnu0eLiYp/dqVVVVY6OEwAQRkIguVMoC9lJQ2ZmplJTU312jzY0NOjNN9/0u3s0Njb2tB2qAADgywvqnobGxkaf+0MrKytVXl6upKQkDRo0SPPnz9cDDzygYcOGKTMzU/fee6/S09M1ZcqU4A0aABDewigyEGhBnTS89dZbmjBhgvdxUVGRJGnWrFkqLS3VggUL1NTUpNtuu011dXW64oortHnzZsXFmWUyAwAAX15QJw3jx48/605PSXK5XLrvvvt03333fenPSo6OVUK03dUYeylNT+maKaclp9NOG+WQlZNpp03/kpus2ZmknJYiKe20Scppycm00yYpp6XISTttknJacjbttN2U0z2inU8jHUp3T4SikL3lEgCAcy5EkjuFqpDdCAkAAEILkQYAADxYnvCPSAMAALCFSAMAAO3Y0+AXkQYAAGALkQYAADzY0+AfkQYAAGALkQYAANqxp8EvJg0AALRj0uAXyxMAAMCWiIk0xLq6K9Zlb45kNw/6KSZ1KqTIqVVh+lfLuVoVJnUqJLORm866naxV4WSdCsnsXM3qVEjO1qowu0qRU6vCfp0KydlaFXbrVMS6qD0RbEQaAACALRETaQAAoEPsafCLSAMAALCFSAMAAB4uy5LLCmxoIND9BRORBgAAYAuRBgAA2rGnwS8mDQAAeHDLpX8sTwAAAFuINAAA0I7lCb+INAAAAFuINAAA4MGeBv8iZtLQZrnVZvPC2c2DLpnWqZAipVaFWZ0KydlaFWa1BExqVZiO2slaFSZ1KiRna1WYnqeztSpM6lRITtaq6Lp1KiQna1XYrVPRZjlfewL+RcykAQCADrGnwS/2NAAAAFuINAAA4MGeBv+YNAAA0I7lCb9YngAAALYQaQAA4HPCaTkh0Ig0AAAAW4g0AADQzrJOHYHuM0wQaQAAALYQaQAAwINbLv2LmEnDcXez5LYXWLGb0lQySzktOZ12umumnJacTjtt+qXbv/4mKaclZ9NOm6ScliIp7bRJymnJybTTJimnpchJO2035fRxN2mkgy1iJg0AAHSIPA1+MWkAAMDD5T51BLrPcMFGSAAAYAuRBgAA2rE84ReRBgAAYAuRBgAAPLjl0j8iDQAAhKDly5dryJAhiouLU05Ojnbt2nXWtqWlpXK5XD5HXJzvLb6WZWnhwoVKS0tTjx49lJeXp/fff99oTEwaAABo155GOtCHofXr16uoqEiLFi3S22+/rdGjRys/P19Hjhw563sSEhJUXV3tPT780Dd3z0MPPaSf//znWrlypd5880316tVL+fn5am62lydDYtIAAEDIeeSRRzR37lzNmTNHI0aM0MqVK9WzZ0+tXr36rO9xuVxKTU31HikpKd7XLMvSsmXLdM899+iGG25Qdna2HnvsMR0+fFibNm2yPS4mDQAAeLTvaQj0YaK1tVW7d+9WXl6e97moqCjl5eVpx44dZ31fY2OjBg8erIyMDN1www3629/+5n2tsrJSNTU1Pn0mJiYqJyfHb59fxKQBAIBzoKGhwedoaWk5Y7uPPvpIbW1tPpECSUpJSVFNTc0Z35OVlaXVq1frueee0+9+9zu53W5dfvnlOnjwoCR532fS55lEzN0TB05GK/6kvTmS3TzoklmdCsnpWhUmdSqkyKlVYfrX3ORLN7v+TtaqMP0fgJO1KpysUyGZnatZnQrJ2VoVZlcpcmpV2KtT0XjS5fA45GiehoyMDJ+nFy1apMWLFwfkI3Jzc5Wbm+t9fPnll+vCCy/Ur371K91///0B+QwpgiYNAAB0xMlbLquqqpSQ8I//8MTGnnlK279/f0VHR6u2ttbn+draWqWmptr6zO7du+viiy/Wvn37JMn7vtraWqWlpfn0OWbMGLunEtrLE4sXLz7tFpLhw4cHe1gAABhLSEjwOc42aYiJidHYsWO1bds273Nut1vbtm3ziSb409bWpnfeecc7QcjMzFRqaqpPnw0NDXrzzTdt9yl1gUjDyJEj9fLLL3sfd+sW8kMGAHRVnbxFssM+DRUVFWnWrFm65JJLNG7cOC1btkxNTU2aM2eOJOnmm2/WP/3TP6mkpESSdN999+myyy7T+eefr7q6Ov30pz/Vhx9+qO9+97uSTt1ZMX/+fD3wwAMaNmyYMjMzde+99yo9PV1TpkyxPa6Q/xe4W7dutsMxAACEgxkzZujo0aNauHChampqNGbMGG3evNm7kfHAgQOKivrHYsEnn3yiuXPnqqamRn379tXYsWP1xhtvaMSIEd42CxYsUFNTk2677TbV1dXpiiuu0ObNm09LAuVPyE8a3n//faWnpysuLk65ubkqKSnRoEGDztq+paXFZ0dqQ0PDuRgmACAMhFIa6cLCQhUWFp7xtbKyMp/HS5cu1dKlS/2Pw+XSfffdp/vuu69zA1KI72nIyclRaWmpNm/erBUrVqiyslJXXnmljvvZ9V1SUqLExETv8cXdqgAAoHNCetJQUFCg6dOnKzs7W/n5+XrxxRdVV1enp5566qzvKS4uVn19vfeoqqo6hyMGAHRplkNHmAj55YnP69Onjy644ALvLSRnEhsbe9YdqQAAoPNCOtLwRY2NjaqoqPC5xxQAgEAJhTTSoSykJw133XWXtm/frv379+uNN97Q17/+dUVHR2vmzJnBHhoAIBy5LWeOMBHSyxMHDx7UzJkzdezYMQ0YMEBXXHGFdu7cqQEDBgR7aAAARJyQnjQ8+eSTAevrvROp6tFq93Tt5UGXzOpUSM7WqjCrUyFFSq0KszoVktmPhemX7lytCtMfZidrVZjUqZCcrVVhep7O1qowqz3jZK2Krlin4rMTJyUdcvZDHKw9EQ5CenkCAACEjpCONAAAcC655EByp8B2F1REGgAAgC1EGgAAaBciBatCFZEGAABgC5EGAAA8QqlgVShi0gAAQDtuufSL5QkAAGALkQYAADxcliVXgDcuBrq/YCLSAAAAbImYSMOepgyjlMz22U85LTmbdtr0/JxNO901U05LpmmnTX+EnEs7bZJyWnI27bRJymkpktJOm6SclpxMO22ScloKjbTTLU0nJO129kPcniPQfYYJIg0AAMCWiIk0AADQEfY0+EekAQAA2EKkAQCAduRp8ItJAwAA7ag94RfLEwAAwBYiDQAAeFB7wj8iDQAAwBYiDQAAtGNPg19EGgAAgC1EGgAA8HC5Tx2B7jNcRMyk4Z26dHU7YZYl3hnO1aowqVMhOV2rwqROhdRVa1WY1amQnK1VYXb9naxVYRrCdLJWhZN1KiSzczX/DeRkrQqzqxQKtSpONrUEvE+YiZhJAwAAHWJPg19MGgAAaEdGSL/YCAkAAGwh0gAAgAdVLv0j0gAAAGwh0gAAQDs2QvpFpAEAANhCpAEAgHaWpEAnYwqfQAORBgAAYA+RBgAAPLh7wj8mDQAAtLPkwEbIwHYXTBEzaThwJElRPc1yp4cG+7UqTOpUSM7WqjCrUyF11VoVJnUqJKdrVZh+6c7VqjD9xeJkrQqTOhWSs7UqTM/T2VoVZrVnnKxVYbdOhftTs99xCLyImTQAANAhbrn0i42QAADAFiINAAC0c0tyOdBnmCDSAAAAbCHSAACAB7dc+kekAQCAELR8+XINGTJEcXFxysnJ0a5du87a9n/+53905ZVXqm/fvurbt6/y8vJOaz979my5XC6fY9KkSUZjYtIAAEC79rsnAn0YWr9+vYqKirRo0SK9/fbbGj16tPLz83XkyJEzti8rK9PMmTP16quvaseOHcrIyNC1116rQ4cO+bSbNGmSqqurvccTTzxhNC4mDQAAtAuRScMjjzyiuXPnas6cORoxYoRWrlypnj17avXq1Wds//jjj+vf/u3fNGbMGA0fPly/+c1v5Ha7tW3bNp92sbGxSk1N9R59+/Y1GheTBgAAzoGGhgafo6Wl5YztWltbtXv3buXl5Xmfi4qKUl5ennbs2GHrsz799FOdOHFCSUlJPs+XlZUpOTlZWVlZuv3223Xs2DGjc2DSAABAOwcjDRkZGUpMTPQeJSUlZxzCRx99pLa2NqWkpPg8n5KSopqaGlun8cMf/lDp6ek+E49Jkybpscce07Zt2/STn/xE27dvV0FBgdra2mx/PRFz94T7aJwUZy+tqd2UpqHHfsppydm00yYppyWn006HRsppyem006Y/zs6lnTZJOS05m3baJOW0FElpp01STktOpp22m3La3cWzSFdVVSkh4R8/07Gx5onC7XjwwQf15JNPqqysTHGf+3fvxhtv9P75oosuUnZ2toYOHaqysjJNnDjRVt9EGgAAaOd26JCUkJDgc5xt0tC/f39FR0ertrbW5/na2lqlpqb6Hf7DDz+sBx98UC+99JKys7P9tj3vvPPUv39/7du3z2+7z+sSkwaT204AAOjKYmJiNHbsWJ9NjO2bGnNzc8/6voceekj333+/Nm/erEsuuaTDzzl48KCOHTumtLQ022ML+UmD6W0nAAB0Vntyp0AfpoqKivQ///M/Wrt2rf7v//5Pt99+u5qamjRnzhxJ0s0336zi4mJv+5/85Ce69957tXr1ag0ZMkQ1NTWqqalRY2OjJKmxsVE/+MEPtHPnTu3fv1/btm3TDTfcoPPPP1/5+fm2xxXykwbT204AAOjqZsyYoYcfflgLFy7UmDFjVF5ers2bN3s3Rx44cEDV1dXe9itWrFBra6u+8Y1vKC0tzXs8/PDDkqTo6Gjt2bNHX/va13TBBRfo1ltv1dixY/WnP/3JaG9FSG+EbL/t5POzqY5uO2lpafG5jaWhocHxcQIAwkQIlcYuLCxUYWHhGV8rKyvzebx//36/ffXo0UNbtmzp1Dg+L6QjDZ257aSkpMTnlpaMjIxzMVQAQDhwW84cYSKkJw2dUVxcrPr6eu9RVVUV7CEBABAWQnp5ojO3ncTGxjp27ysAIMyF0PJEKArpSENnbzsBAACBF9KRBunUbSezZs3SJZdconHjxmnZsmU+t50AABA4DkQaFD6RhpCfNMyYMUNHjx7VwoULVVNTozFjxvjcdtIRy3Px3c0G+Uc/td/2ZNOZC46cTUv3E0btP7Psp7Rt7O426vt4N7P2irLfPtpl1nWLZTj2Nvvtm07Yz6suSc3N9r/zE02tRn23fWr298X9mf2/i+5msx/ntlazi3TS4Hs8edIw32+b2fciy/737rbMfuYsg5+5U+x/j1GWWeruKLfh3xeD7/HkSbOxtLWa/Ry1tdj/XtzN9n6e23+PW2EU7u9qXFaYf/sHDx7kDgoACCNVVVUaOHBgQPtsaGhQYmKi8jLvULeowO6LO+lu0cuVv1B9fb1P7YmuKOQjDV9Wenq6qqqq1Lt3b7lc/5j5NjQ0KCMj47QCIuGG8wwvnGd44TzNWJal48ePKz09PYCjg4mwnzRERUX5nZG2Fw4Jd5xneOE8wwvnaV9iYmKARnMWbksB34MQRnkawn7SAACAbZb71BHoPsNESN9yCQAAQkfERhpiY2O1aNGisE8ExXmGF84zvHCeIYjkTn6F/d0TAAB0xHv3RMbtztw9UbWCuycAAAgrbIT0iz0NAADAFiINAAC0Y0+DX0QaAACALRE5aVi+fLmGDBmiuLg45eTkaNeuXcEeUsAtXrxYLpfL5xg+fHiwh/Wlvfbaa5o8ebLS09Plcrm0adMmn9cty9LChQuVlpamHj16KC8vT++//35wBvsldHSes2fPPu36Tpo0KTiD7aSSkhJdeuml6t27t5KTkzVlyhTt3bvXp01zc7PmzZunfv36KT4+XtOmTVNtbW2QRtx5ds51/Pjxp13T733ve0EaceesWLFC2dnZ3iROubm5+uMf/+h9vUtcT0v/iDYE7Aj2SQVOxE0a1q9fr6KiIi1atEhvv/22Ro8erfz8fB05ciTYQwu4kSNHqrq62nu8/vrrwR7Sl9bU1KTRo0dr+fLlZ3z9oYce0s9//nOtXLlSb775pnr16qX8/Hw1mxQsCwEdnackTZo0yef6PvHEE+dwhF/e9u3bNW/ePO3cuVNbt27ViRMndO2116qpqcnb5s4779Tzzz+vDRs2aPv27Tp8+LCmTp0axFF3jp1zlaS5c+f6XNOHHnooSCPunIEDB+rBBx/U7t279dZbb+nqq6/WDTfcoL/97W+Swud6RrKIu+UyJydHl156qf77v/9bkuR2u5WRkaE77rhDd999d5BHFziLFy/Wpk2bVF5eHuyhOMblcmnjxo2aMmWKpFNRhvT0dP3Hf/yH7rrrLklSfX29UlJSVFpaqhtvvDGIo+28L56ndCrSUFdXd1oEois7evSokpOTtX37dl111VWqr6/XgAEDtG7dOn3jG9+QJL333nu68MILtWPHDl122WVBHnHnffFcpVORhjFjxmjZsmXBHVyAJSUl6ac//am+8Y1vhPT19N5ymXqbukXFBLTvk+5WvVzz67C45TKiIg2tra3avXu38vLyvM9FRUUpLy9PO3bsCOLInPH+++8rPT1d5513nr797W/rwIEDwR6SoyorK1VTU+NzfRMTE5WTkxOW17esrEzJycnKysrS7bffrmPHjgV7SF9KfX29pFP/yEjS7t27deLECZ/rOXz4cA0aNKjLX88vnmu7xx9/XP3799eoUaNUXFysTz/9NBjDC4i2tjY9+eSTampqUm5ubte5nm63M0eYiKi7Jz766CO1tbUpJSXF5/mUlBS99957QRqVM3JyclRaWqqsrCxVV1dryZIluvLKK/Xuu++qd+/ewR6eI2pqaiTpjNe3/bVwMWnSJE2dOlWZmZmqqKjQj370IxUUFGjHjh2Kjo4O9vCMud1uzZ8/X1/96lc1atQoSaeuZ0xMjPr06ePTtqtfzzOdqyR961vf0uDBg5Wenq49e/bohz/8ofbu3atnn302iKM198477yg3N1fNzc2Kj4/Xxo0bNWLECJWXl4fl9Yw0ETVpiCQFBQXeP2dnZysnJ0eDBw/WU089pVtvvTWII0MgfH6p5aKLLlJ2draGDh2qsrIyTZw4MYgj65x58+bp3XffDYt9Nx0527nedttt3j9fdNFFSktL08SJE1VRUaGhQ4ee62F2WlZWlsrLy1VfX6+nn35as2bN0vbt24M9LPu45dKviFqe6N+/v6Kjo0/brVtbW6vU1NQgjerc6NOnjy644ALt27cv2ENxTPs1jMTre95556l///5d8voWFhbqD3/4g1599VWfMvapqalqbW1VXV2dT/uufD3Pdq5nkpOTI0ld7prGxMTo/PPP19ixY1VSUqLRo0fr0UcfDcvrGYkiatIQExOjsWPHatu2bd7n3G63tm3bptzc3CCOzHmNjY2qqKhQWlpasIfimMzMTKWmpvpc34aGBr355pthf30PHjyoY8eOdanra1mWCgsLtXHjRr3yyivKzMz0eX3s2LHq3r27z/Xcu3evDhw40OWuZ0fneibtm5i70jU9E7fbrZaWlq5zPQN+u6UDkYsgirjliaKiIs2aNUuXXHKJxo0bp2XLlqmpqUlz5swJ9tAC6q677tLkyZM1ePBgHT58WIsWLVJ0dLRmzpwZ7KF9KY2NjT7/86qsrFR5ebmSkpI0aNAgzZ8/Xw888ICGDRumzMxM3XvvvUpPT/e586Ar8HeeSUlJWrJkiaZNm6bU1FRVVFRowYIFOv/885Wfnx/EUZuZN2+e1q1bp+eee069e/f2rmsnJiaqR48eSkxM1K233qqioiIlJSUpISFBd9xxh3Jzc4O+095UR+daUVGhdevW6brrrlO/fv20Z88e3XnnnbrqqquUnZ0d5NHbV1xcrIKCAg0aNEjHjx/XunXrVFZWpi1btoTV9YxkETdpmDFjho4ePaqFCxeqpqZGY8aM0ebNm0/bPNfVHTx4UDNnztSxY8c0YMAAXXHFFdq5c6cGDBgQ7KF9KW+99ZYmTJjgfVxUVCRJmjVrlkpLS7VgwQI1NTXptttuU11dna644gpt3rxZcXFxwRpyp/g7zxUrVmjPnj1au3at6urqlJ6ermuvvVb3339/1yg97LFixQpJp241/Lw1a9Zo9uzZkqSlS5cqKipK06ZNU0tLi/Lz8/XLX/7yHI/0y+voXGNiYvTyyy97/xOTkZGhadOm6Z577gnCaDvvyJEjuvnmm1VdXa3ExERlZ2dry5YtuuaaayR1ketJwSq/Ii5PAwAAX+TN05A0x5k8DR+vCYs8DREXaQAA4Gwsyy3LCmxehUD3F0xMGgAAaGdZgV9OCKOAfkTdPQEAADqPSAMAAO0sBzZCEmkAAACRhkgDAADt3G7JFeCNi2G0EZJIAwAAsIVIAwAA7djT4BeRBgAAYAuRBgAAPCy3W1aA9zSEU3InIg1AF3X06FGlpqbqxz/+sfe5N954QzExMT6VBAEYoMqlX0QagC5qwIABWr16taZMmaJrr71WWVlZuummm1RYWKiJEycGe3gAwhCTBqALu+666zR37lx9+9vf1iWXXKJevXqppKQk2MMCui63JbnYCHk2LE8AXdzDDz+skydPasOGDXr88ce7VHlsAF0Lkwagi6uoqNDhw4fldru1f//+YA8H6Nos61QypoAe4RNpYHkC6MJaW1v1ne98RzNmzFBWVpa++93v6p133lFycnKwhwYgDDFpALqw//zP/1R9fb1+/vOfKz4+Xi+++KJuueUW/eEPfwj20IAuyXJbsgK8p8EKo0gDyxNAF1VWVqZly5bpt7/9rRISEhQVFaXf/va3+tOf/qQVK1YEe3gAwhCRBqCLGj9+vE6cOOHz3JAhQ1RfXx+kEQFhwHJLomDV2TBpAADAg+UJ/1ieAAAAthBpAACgHcsTfjFpAADA46ROBLwy9kmd6LhRF8GkAQAQ8WJiYpSamqrXa150pP/U1FTFxMQ40ve55LLCaYcGAACd1NzcrNbWVkf6jomJUVxcnCN9n0tMGgAAgC3cPQEAAGxh0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGxh0gAAAGz5//ezKZUWu9yYAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d6fdbacca62746459f4ff36aaae89d34", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "HBox(children=(HTML(value=\"./fig_1.pdf
\"), HTML(value=\"" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAAHiCAYAAABr4v9eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP/ElEQVR4nO3de3hU1bk/8O+eSWYmIRcIhFxKSCJokEvAEyTGW0EjSfSgVLSIVgMi/rTEFqOlxqPc5DRqqaCnEU4rELRS8Aa2iiCiAT1yKdAc1KdyIAYJkIRLTUJCrrP37w8mU0bCZL1xhplMvh+f/TzOnjUra8+eCSvvXvt9NcMwDBARERF1wuTrARAREVH3wEkDERERKeGkgYiIiJRw0kBERERKOGkgIiIiJZw0EBERkRJOGoiIiEgJJw1ERESkJMjXAyAiIvIHTU1NaGlp8UrfFosFNpvNK31fTJw0EBFRj9fU1ITkxDBUHbd7pf/Y2FiUl5d3+4kDJw1ERNTjtbS0oOq4Hd/uSUJEuGev3Ned1pGYdggtLS2cNBAREQWKsHANYeGaR/vU4dn+fIkLIYmIiEgJIw1EREQOdkOH3cO1n+2G7tkOfYiTBiIiIgcdBnR4dtbg6f58iZcniIiISAkjDURERA46dHj6YoLne/QdRhqIiIhICSMNREREDnbDgN3w7BoET/fnS4w0EBERkRJGGoiIiBx494R7jDQQERGREkYaiIiIHHQYsDPScEGcNBARETnw8oR7vDxBREREShhpICIicuAtl+4x0kBERERKGGkgIiJy0B2bp/sMFIw0EBERkRJGGoiIiBzsXrjl0tP9+RIjDURERKSEkQYiIiIHu3F283SfgYKRBurRDh06BE3TUFxc7NWfk5SUhKlTp3r1Z3hacXExNE3DoUOHnPvGjh2LsWPHKr1+6tSpSEpK8srYiLxF99IWKDhpoIDW/g9fR9sTTzzh6+F1e8eOHcO8efNQWlrq66EQ0UXAyxPUIyxYsADJycku+4YPH47ExEQ0NjYiODjYRyPrXj788EOXx8eOHcP8+fORlJSEUaNGuTz3xz/+EboeSH9jUU+gQ4Mdmsf7DBScNFCPkJOTg9GjR3f4nM1mu8ij6b4sFotyW07EiAIPL09Qj9bRmoapU6ciLCwMR48excSJExEWFobo6Gg8/vjjsNvtLq9ftGgRrr76avTt2xchISFIS0vDW2+91eXx6LqOF198ESNGjIDNZkN0dDSys7Oxe/duZ5u2tjY888wzGDRoEKxWK5KSkvDkk0+iubnZpa+kpCT8+7//Oz777DOMGTMGNpsNl1xyCV599dXzfu5XX32FG264ASEhIRgwYAAWLlzYYZTg3DUNJSUluPLKKwEA06ZNc172aX8vO1rT0NDQgMceewwJCQmwWq1ISUnBokWLYHwvza6macjLy8P69esxfPhwWK1WDBs2DBs3bpS+pUQiuuGdLVAw0kA9Qm1tLU6ePOmyr1+/fhdsb7fbkZWVhfT0dCxatAgfffQRfve732HQoEF4+OGHne1efPFF3HrrrbjnnnvQ0tKCNWvW4M4778R7772HW265RTzO6dOno7i4GDk5OXjggQfQ1taGTz/9FDt27HBGSh544AGsWrUKd9xxBx577DHs3LkThYWF+Mc//oF169a59Hfw4EHccccdmD59OnJzc7FixQpMnToVaWlpGDZsGACgqqoK48aNQ1tbG5544gn06tULf/jDHxASEuJ2rJdffjkWLFiAOXPm4MEHH8R1110HALj66qs7bG8YBm699VZ88sknmD59OkaNGoVNmzbhV7/6FY4ePYrFixe7tP/ss8/wzjvv4Oc//znCw8Px0ksvYdKkSTh8+DD69u0rfm+JyAMMogC2cuVKA0CHm2EYRnl5uQHAWLlypfM1ubm5BgBjwYIFLn1dccUVRlpamsu+M2fOuDxuaWkxhg8fbtxwww0u+xMTE43c3Fy3Y/34448NAMYvfvGL857Tdd0wDMMoLS01ABgPPPCAy/OPP/64AcD4+OOPXX4mAGPbtm3OfcePHzesVqvx2GOPOffNmjXLAGDs3LnTpV1kZKQBwCgvL3fu//GPf2z8+Mc/dj7+29/+dt771y43N9dITEx0Pl6/fr0BwFi4cKFLuzvuuMPQNM04ePCgcx8Aw2KxuOz73//9XwOA8V//9V/n/SyiH6q2tvbs9+CrWOOrw/Ee3XZ+FWsAMGpra319mD8YL09Qj1BUVITNmze7bJ156KGHXB5fd911+Oabb1z2nfvX+HfffYfa2lpcd9112Lt3r3iMb7/9NjRNw9y5c897TtPOLqTasGEDACA/P9/l+cceewwA8P7777vsHzp0qDMCAADR0dFISUlxOY4NGzbgqquuwpgxY1za3XPPPeJjcGfDhg0wm834xS9+cd7YDcPABx984LI/MzMTgwYNcj5OTU1FRETEeeeAiC4eXp6gHmHMmDEXXAjZkfb1BOfq06cPvvvuO5d97733HhYuXIjS0lKXNQXt/8hLlJWVIT4+HlFRURds8+2338JkMmHw4MEu+2NjY9G7d298++23LvsHDhx4Xh/fP45vv/0W6enp57VLSUmRHoJb3377LeLj4xEeHu6y//LLL3c+fy6VsRN5mt0Ld094uj9fYqSBqANms7nTNp9++iluvfVW2Gw2vPzyy9iwYQM2b96Mu++++7yFfZ6mOim50HF4e3ye0J3HTt2Xbmhe2QIFJw1EXfT222/DZrNh06ZNuP/++5GTk4PMzMwu9zdo0CAcO3YM//znPy/YJjExEbqu48CBAy77q6urUVNTg8TERPHPTUxMPK8/ANi/f3+nr5VEVBITE3Hs2DGcPn3aZf/XX3/tfJ6I/BsnDURdZDaboWmay22Yhw4dwvr167vU36RJk2AYBubPn3/ec+1/Xd98880AgCVLlrg8/8ILLwBAl+7YuPnmm7Fjxw7s2rXLue/EiRN4/fXXO31tr169AAA1NTVKP8dut+P3v/+9y/7FixdD0zTk5OTIBk7kBe2XJzy9BQquaSDqoltuuQUvvPACsrOzcffdd+P48eMoKirC4MGDsW/fPnF/48aNw7333ouXXnoJBw4cQHZ2NnRdx6effopx48YhLy8PI0eORG5uLv7whz+gpqYGP/7xj7Fr1y6sWrUKEydOxLhx48Q/d/bs2XjttdeQnZ2NX/7yl85bLhMTEzs9jkGDBqF3795YtmwZwsPD0atXL6Snp5+XfRMAJkyYgHHjxuE//uM/cOjQIYwcORIffvgh3n33XcyaNctl0SMR+SdOGoi66IYbbsDy5cvx7LPPYtasWUhOTsZzzz2HQ4cOdWnSAAArV65Eamoqli9fjl/96leIjIzE6NGjXXIfvPLKK7jkkktQXFyMdevWITY2FgUFBR3edaEiLi4On3zyCR555BE8++yz6Nu3Lx566CHEx8dj+vTpbl8bHByMVatWoaCgAA899BDa2tqwcuXKDicNJpMJf/nLXzBnzhysXbsWK1euRFJSEn7729867/4g8jU7TLB7OAhv77xJt6EZXFVEREQ9XF1dHSIjI/HxlwkIC/fspKH+tI4bhlegtrYWERERHu37YmOkgYiIyMHwwt0OBu+eICIiop6GkQYiIiIHJndyj5EGIiIiUsJIAxERkYPdMMHu4bJM9gC63YCTBiIiIgcdGnQPB+F1BM6sIeAnDbqu49ixYwgPD+9SESEiIvIPhmHg9OnTiI+Ph8nEq+u+EPCThmPHjiEhIcHXwyAiIg+pqKjAgAEDvNI3F0K6F/CThvYyvNdbf4IgLVjtRQoVDttpVqtoPFpYqKi9vY96IpDm6BBR32f6y07/mVj1D35TjC7q2xzdKGqf1P+UctuRvY+K+h4Veli57SDLCVHfMWZZbrgQTf2zaBKGVFuFeerqdfX2x+0WUd+HW/uK2v+jKV657Rd16m0B4MDJ6M4bnaOpupdyW2u1+vkEgNBqWVg79Lj6ObKdbBL1bf7ujKi9drpBua3RqPb9bzNasPX0G+eVV6eLJ+AnDe2XJIK0YARpir/IBL+oNZPsl6NmEk4yzOrt7cE2Ud9mi+z0m63qkwaTTTZpMIXKfjkG9VJ/X6xhipNFh9Be6uc/zCL7hzrcLPxHQFPvXz5pkI1F09Xbn7HLxhLaKvvH1Bqkfk6DhRMY8xnZd9QUov69M1tlx2m2CL8XweqThiDhb3+zcMKrmVqV2xqasG8vXmr2zkLIwFnTwItCREREpCTgIw1ERESqzt494dlIhqf78yVGGoiIiEgJIw1EREQOuhdKYzNPAxERUQDiQkj3eHmCiIjIz2zbtg0TJkxAfHw8NE3D+vXr3bafOnUqNE07bxs2bJizzbx58857fsiQIaJxcdJARETkoMPklU2qoaEBI0eORFFRkVL7F198EZWVlc6toqICUVFRuPPOO13aDRs2zKXdZ599JhoXL08QERH5mZycHOTk5Ci3j4yMRGRkpPPx+vXr8d1332HatGku7YKCghAbG9vlcfWYSYNmsUBTTO5ktLQo92s0NXd1SErMgiQmspQ0ACDLTin7uMhm1o2QZbP8RpNlEPQWaXrY1mBZBsl4s/pnMVKYaCxUNdmZg82snrDLpqmP+2z7alF7s6Y+Fknbrvg/wUfgDMKEvcuSQcnay5LByVrLRqL6Fmq6GagTDkTIbmiwGx5OI+3h/lQsX74cmZmZSExMdNl/4MABxMfHw2azISMjA4WFhRg4cKByvz1m0kBERORLdXWuMx6r1QqrsBSBimPHjuGDDz7A6tWrXfanp6ejuLgYKSkpqKysxPz583Hdddfhyy+/VE7N7dM1DUuXLkVqaioiIiIQERGBjIwMfPDBB87nm5qaMHPmTPTt2xdhYWGYNGkSqqtlf5EQERGpsjtuufT0BgAJCQnOywiRkZEoLCz0yjGsWrUKvXv3xsSJE1325+Tk4M4770RqaiqysrKwYcMG1NTU4I033lDu26eRhgEDBuDZZ5/FpZdeCsMwsGrVKtx22234+9//jmHDhuHRRx/F+++/jzfffBORkZHIy8vD7bffjv/5n//x5bCJiIjEKioqEBHxryKE3ogyGIaBFStW4N5774XF4v4SZO/evXHZZZfh4MGDyv37dNIwYcIEl8f/+Z//iaVLl2LHjh0YMGAAli9fjtWrV+OGG24AAKxcuRKXX345duzYgauuusoXQyYiogCmGyboHs7ToDvyNLRH1b1p69atOHjwIKZPn95p2/r6epSVleHee+9V7t9v1jTY7Xa8+eabaGhoQEZGBvbs2YPW1lZkZmY62wwZMgQDBw7E9u3bLzhpaG5uRnPzvxYnfv8aEhER0YWceznBc33KkzvV19e7RADKy8tRWlqKqKgoDBw4EAUFBTh69CheffVVl9ctX74c6enpGD58+Hl9Pv7445gwYQISExNx7NgxzJ07F2azGVOmTFEel88nDV988QUyMjLQ1NSEsLAwrFu3DkOHDkVpaSksFgt69+7t0j4mJgZVVVUX7K+wsBDz58/38qiJiIi8Z/fu3Rg3bpzzcX5+PgAgNzcXxcXFqKysxOHDh11eU1tbi7fffhsvvvhih30eOXIEU6ZMwalTpxAdHY1rr70WO3bsQHR0tPK4fD5pSElJQWlpKWpra/HWW28hNzcXW7du7XJ/BQUFzjcXOBtpSEhI8MRQiYgowOnw/C2SXbnpd+zYsTDcpJ8uLi4+b19kZCTOnDlzwdesWbOmCyNx5fNJg8ViweDBgwEAaWlp+Nvf/oYXX3wRkydPRktLC2pqalyiDdXV1W4TU3jrFhYiIqKezu/SSOu6jubmZqSlpSE4OBhbtmxxPrd//34cPnwYGRkZPhwhEREFKn9JI+2vfBppKCgoQE5ODgYOHIjTp09j9erVKCkpwaZNmxAZGYnp06cjPz8fUVFRiIiIwCOPPIKMjAzeOUFEROQDPp00HD9+HPfddx8qKysRGRmJ1NRUbNq0CTfddBMAYPHixTCZTJg0aRKam5uRlZWFl19+uUs/SwsJgSZMs6tCknIa8G7aaWnCWe+mnZZ+tKRpp9XH8o1wJN6khwr/4rBIkpnJPotRZtknwKoFK7cNMsk+jcGa7HthwnFBW++mkZb4P2H7Bq2X8BWS7530N4b30k6rjsSwNwNezu/nndLYjDR4xPLly90+b7PZUFRUpFzli4iIiLzH5wshiYiI/IUODbqwEJ1Kn4GCkwYiIiIHXp5wL3COhIiIiLyKkQYiIiIH76SRDpy/zwPnSIiIiMirGGkgIiJy0A0NuqfTSHu4P19ipIGIiIiUMNJARETkoHthTUMgpZEOnCMhIiIir2KkgYiIyEE3TNA9nFfB0/35Uo+ZNBjhvWAo5tr35pIVv6pV4aZWe0dklQokdSoAb9aqkNSpALxbq8Krt16J6lQAZk32WexjUh97sCaraxCphYjam4Oa1NtqJ0R9+5P/Q39R+wZIalVIv3Peq1Wh2tLeJh2DnB0a7B7+V8DT/flS4Ex/iIiIyKt6TKSBiIioM7w84V7gHAkRERF5FSMNREREDnZ4fg2C3aO9+RYjDURERKSEkQYiIiIHrmlwL3COhIiIiLyKkQYiIiIHu2GC3cORAU/350ucNBARETkY0KB7eCGkweRORERE1NMw0kBEROTAyxPu9ZhJg71PKLQgtQznkuzm3g46SWpVeLNOBQCYNfWjldWpALxbq0L2hZXUqigXfgBMmqzehxm67AeIyGpV2M2Nym2jFOu8tLNqwaL2YSb1ugbxUK9TAQCwyGpVmDVvniMZSa0KWZ0KwLu1KtTOZ1urcAjkcT1m0kBERNQZ3dCgG579c9DT/flS4MRMiIiIyKsYaSAiInKww+TxEvae7s+XAudIiIiIyKsYaSAiInLgmgb3OGkgIiJy0GGC7uEgvKf786XAORIiIiLyKkYaiIiIHOyGBruHLyd4uj9fYqSBiIiIlDDSQERE5MCFkO71mElDUz8bgoLVUpWqJ6iVJUoFvJt2WpJyGgCMRmF6XQHp++LNtNOaIf2Yqwfgzmiy9NffaH2FY1EnvRe8xZCdpVaLetppO9RTTgNAlEmWXjvUZFFuK0k5DQAxwrEDp5Rb2kP8J7grSTkNeDvttNpn0d4i/c1CntZjJg1ERESdMQwTdA8XmDICqGBV4BwJEREReRUjDURERA52aLB7+EKyp/vzJU4aiIiIHHTD8wsXddmSHb/GyxNERESkhJEGIiIiB90LCyE93Z8vBc6REBERkVcx0kBEROSgQ4Pu4YWLnu7PlxhpICIi8jPbtm3DhAkTEB8fD03TsH79erftS0pKoGnaeVtVVZVLu6KiIiQlJcFmsyE9PR27du0SjYuTBiIiIof2glWe3qQaGhowcuRIFBUViV63f/9+VFZWOrf+/f+V+XPt2rXIz8/H3LlzsXfvXowcORJZWVk4fvy4cv+8PEFERORncnJykJOTI35d//790bt37w6fe+GFFzBjxgxMmzYNALBs2TK8//77WLFiBZ544gml/nvMpOFMfzPMFtW85eq56mVZ7QGzIbthVzI/NYR9o7VV1Nxoapb1L+DVWhVGiLD3YPWuNVmwrlFYq6Lci5dC23TZ2JsM9XoPTUZV543OkRhUJ2ofDV25bYimPm4ACNOElVDMgu+F5YSsbz8irVVxxggTtFasPdHs/bUB3rx7oq7O9XNutVphtcor77gzatQoNDc3Y/jw4Zg3bx6uueYaAEBLSwv27NmDgoICZ1uTyYTMzExs375duX9eniAiIroIEhISEBkZ6dwKCws91ndcXByWLVuGt99+G2+//TYSEhIwduxY7N27FwBw8uRJ2O12xMTEuLwuJibmvHUP7vg00lBYWIh33nkHX3/9NUJCQnD11VfjueeeQ0pKirPN2LFjsXXrVpfX/b//9/+wbNmyiz1cIiIKcDq8UBrbETOuqKhARESEc78nowwpKSku/3ZeffXVKCsrw+LFi/Haa6957Of4NNKwdetWzJw5Ezt27MDmzZvR2tqK8ePHo6GhwaXdjBkzXBZ2PP/88z4aMRERBTLDcculJzfDMWmIiIhw2Tx9aeL7xowZg4MHDwIA+vXrB7PZjOpq1xL31dXViI2NVe7Tp5GGjRs3ujwuLi5G//79sWfPHlx//fXO/aGhoaKDIiIi6ulKS0sRFxcHALBYLEhLS8OWLVswceJEAICu69iyZQvy8vKU+/SrhZC1tbUAgKioKJf9r7/+Ov70pz8hNjYWEyZMwNNPP43QUNmCMiIios7ohhcuT3Shv/r6emeUAADKy8tRWlqKqKgoDBw4EAUFBTh69CheffVVAMCSJUuQnJyMYcOGoampCa+88go+/vhjfPjhh84+8vPzkZubi9GjR2PMmDFYsmQJGhoanHdTqPCbSYOu65g1axauueYaDB8+3Ln/7rvvRmJiIuLj47Fv3z78+te/xv79+/HOO+902E9zczOam/+1mvn7q1WJiIj83e7duzFu3Djn4/z8fABAbm4uiouLUVlZicOHDzufb2lpwWOPPYajR48iNDQUqamp+Oijj1z6mDx5Mk6cOIE5c+agqqoKo0aNwsaNG89bHOmO30waZs6ciS+//BKfffaZy/4HH3zQ+f8jRoxAXFwcbrzxRpSVlWHQoEHn9VNYWIj58+d7fbxERBR4/KVg1dixY93eRl9cXOzyePbs2Zg9e3an/ebl5YkuR3yfX9xymZeXh/feew+ffPIJBgwY4LZteno6ALiEbc5VUFCA2tpa51ZRUeHx8RIREfVEPo00GIaBRx55BOvWrUNJSQmSk5M7fU1paSkAOBd3fJ83kmUQEVHP4C9rGvyVTycNM2fOxOrVq/Huu+8iPDzcmWAiMjISISEhKCsrw+rVq3HzzTejb9++2LdvHx599FFcf/31SE1N9eXQiYiIehyfThqWLl0K4Oy1m3OtXLkSU6dOhcViwUcffeRc4ZmQkIBJkybhqaee8sFoiYgo0LE0tns+vzzhTkJCwnnZILvqTIwGs1X1xAkqIRiy6hPiWhWCtpqw9oRxRjYWSa0Kb9apAGQ1PGzSmhxQv53XMKnXqQAAaLIqG40m9bF8Iy09ogvHoqvXcGgOlb0vTVZZrYpW/FO5bYykNgTktSdE7YVjkdaqMGvqNTm87f8Ebc9ArU6F3mjv2mAEeHnCPb9YCElERET+z29uuSQiIvI1RhrcY6SBiIiIlDDSQERE5MBIg3uMNBAREZESRhqIiIgcGGlwj5EGIiIiUsJIAxERkYMBzydjkmaK8WecNBARETnw8oR7vDxBRERESnpMpKE5xg5TiGIKUkOSRlqWileaSNqmqwe2JKmVAYgDcKK004KU00AX0k4L3heToC0gO0OGqZeob90s+8oZJvXPV5OhnnIaAL61y/5maGxVTw3daJelkT4jSFENAC2C7509+KSo7/gg76WdlqaoFqedxinllvYQ//mbcb/iV9R+xrvp6QFGGjrjP58aIiIi8ms9JtJARETUGUYa3GOkgYiIiJQw0kBEROTASIN7jDQQERGREkYaiIiIHAxDg+HhyICn+/MlThqIiIgcdGgezwjp6f58iZcniIiISAkjDURERA5cCOkeIw1ERESkhJEGIiIiBy6EdK/HTBpsMQ0wh7YptW00wpT71YS1J+Tt1Ssh2IT1V83CmgySeg/iUrDSWhXN3stBLwm/2cyyXwaGWVarAoLaE9I6KM32EFH7yjb1d6bFLh2L7FeR3fBmkNR7tSqktSciTbJzZEaTemPLCVHf/qC1oQUHfD2IHq7HTBqIiIg6wzUN7nFNAxERESlhpIGIiMiBaxrc46SBiIjIwfDC5YlAmjTw8gQREREpYaSBiIjIwQBgiG//6rzPQMFIAxERESlhpIGIiMhBhwaNBasuiJEGIiIiUsJIAxERkQNvuXSPkQYiIiJS0mMiDcl9/4ngXhaltgd09blUox4qG4i09oQuOEW6ep0KALDpuqi9WbKk2JD1bQjHYrSp1REBADQ2ivqWMAfJzqfNLJunG0GS2gPSz5ZsLM1t6nUTTgjqVABAm13Y3qu1J2TMmnoNB7O5RdR3mCb7ToeZ1NvHS+pUALAHy2py6IK/SVVriTSbW7FBNAo53dCgMY30BfWYSQMREVFnDMMLt1wG0D2X/jNdJyIiIr/GSAMREZEDF0K6x0gDERERKWGkgYiIyIGRBvcYaSAiIiIljDQQERE58JZL9xhpICIi8jPbtm3DhAkTEB8fD03TsH79erft33nnHdx0002Ijo5GREQEMjIysGnTJpc28+bNg6ZpLtuQIUNE4+KkgYiIyKE9T4OnN6mGhgaMHDkSRUVFSu23bduGm266CRs2bMCePXswbtw4TJgwAX//+99d2g0bNgyVlZXO7bPPPhONi5cniIiIHM7+I+/phZDy1+Tk5CAnJ0e5/ZIlS1we/+Y3v8G7776Lv/71r7jiiiuc+4OCghAbGysfUPvru/zKbmZoeCWsYcFKbVvs6ul4v7HLPlxNdlnaaZMgva5ml51Ok12Sohiw2tU/+SZhWmjxt6pRvb3RKkg5DcjSTgvTQovTTgertzc09TTPZ18gG7sk7XSzXS1le7vvjHBR+4OCtkGaMF26sL1Fsyu3DcYpUd8myNJOh5rU33dJymkAiA+SpWPXoZ5e2x6i9tk606b+Xvujuro6l8dWqxVWq/B7q0jXdZw+fRpRUVEu+w8cOID4+HjYbDZkZGSgsLAQAwcOVO6XlyeIiIgc2m+59PQGAAkJCYiMjHRuhYWFXjuORYsWob6+Hj/96U+d+9LT01FcXIyNGzdi6dKlKC8vx3XXXYfTp08r9+vTSUNhYSGuvPJKhIeHo3///pg4cSL279/v0qapqQkzZ85E3759ERYWhkmTJqG6utpHIyYiIuqaiooK1NbWOreCggKv/JzVq1dj/vz5eOONN9C/f3/n/pycHNx5551ITU1FVlYWNmzYgJqaGrzxxhvKfft00rB161bMnDkTO3bswObNm9Ha2orx48ejoaHB2ebRRx/FX//6V7z55pvYunUrjh07httvv92HoyYiokBleGkDgIiICJfNG5cm1qxZgwceeABvvPEGMjMz3bbt3bs3LrvsMhw8qH7Bz6drGjZu3OjyuLi4GP3798eePXtw/fXXo7a2FsuXL8fq1atxww03AABWrlyJyy+/HDt27MBVV13li2ETERH5nT//+c+4//77sWbNGtxyyy2dtq+vr0dZWRnuvfde5Z/hV2saamtrAcC5cGPPnj1obW11mS0NGTIEAwcOxPbt230yRiIiClzeXNMgUV9fj9LSUpSWlgIAysvLUVpaisOHDwMACgoKcN999znbr169Gvfddx9+97vfIT09HVVVVaiqqnL+uwoAjz/+OLZu3YpDhw7h888/x09+8hOYzWZMmTJFeVx+M2nQdR2zZs3CNddcg+HDhwMAqqqqYLFY0Lt3b5e2MTExqKqq6rCf5uZm1NXVuWxERETdye7du3HFFVc4b5fMz8/HFVdcgTlz5gAAKisrnRMIAPjDH/6AtrY2zJw5E3Fxcc7tl7/8pbPNkSNHMGXKFKSkpOCnP/0p+vbtix07diA6Olp5XH5zy+XMmTPx5ZdfihNNfF9hYSHmz5/voVEREVGPcu4iBE/2KTR27FgYbm5FLy4udnlcUlLSaZ9r1qyRD+R7/CLSkJeXh/feew+ffPIJBgwY4NwfGxuLlpYW1NTUuLSvrq6+YHKKgoICl9WpFRUV3hw6EREFEm9cmmDtCc8wDAN5eXlYt24dPv74YyQnJ7s8n5aWhuDgYGzZssW5b//+/Th8+DAyMjI67NNqtZ63QpWIiIh+OJ9enpg5cyZWr16Nd999F+Hh4c51CpGRkQgJCUFkZCSmT5+O/Px8REVFISIiAo888ggyMjJ45wQREXlcV2tFdNZnoPDppGHp0qUAzl67OdfKlSsxdepUAMDixYthMpkwadIkNDc3IysrCy+//PJFHikRERH5dNLgbpFHO5vNhqKiIuVKXxdyWUglQkLUDveMrp6/vVlY7+Fwm6z2QFOren54U6vsupm5VVirQjCW4DZZ/n6TLpyK2wU56IV1MAy7oH1jk6hvU7Ba/ZN2QcHq58hmkl43ldWHkNSq0ITXcJsge1++08KU2x40y86/1SyrVRJqUq8PYdNaRX0Ha7K7v8ya+vtu1WTveZiwtkmMWb1WRVPwSaV29cHCmjZd0NVbJDvrM1D4xUJIIiIi8n9+c8slERGRz3njbgdGGoiIiKinYaSBiIjIgXdPuMdJAxERUTs/yQjpr3h5goiIiJQw0kBEROTAWy7dY6SBiIiIlDDSQEREdK4AWoPgaYw0EBERkRJGGoiIiBy4psG9HjNpGBj8T/SyqAVWTushyv2eDlevxwAAja2yfO/VLeq1KpqEfZtaZYEmU5t6/1qb+nsIAMHC+hCapL20rkWLei0BUQ0MAEZTs6i9dvqMctugINn5tInjjJJaFbLODUHNBAAwzOqfxVNB6nUqAOCAOVrUPsSsXk/CapLVnpDWqjBDvd5DP7PsHAVrsro54Sb1z0uMWe17ESqsI0Ke12MmDURERJ1inga3uKaBiIiIlDDSQERE5KQ5Nk/3GRg4aSAiImrHyxNu8fIEERERKWGkgYiIqB0jDW4x0kBERERKGGkgIiJqZ2hnN0/3GSAYaSAiIiIljDQQERE5GMbZzdN9BooeM2mIMTcgTDFt6mnLCeV+a0NDReM43WYVtT/Top4u93RLuKhvU4vs9EvSTmt2ScphQLPL0sMGCdprwlTPEkZbm1fbQ5B22nRaluY3SJi6WZYwXXb+oQnTTpvU2zcFyb5zx4Nk36MDweppp0NMghTlAGyarH2wdky5rVlrEvUdKUgLDQAmQSA73KT22TVMgRPm7656zKSBiIioU7x7wi1OGoiIiNpxIaRbXAhJREREShhpICIictCMs5un+wwUjDQQERGREkYaiIiI2nEhpFuMNBAREZESRhqIiIja8e4JtxhpICIiIiWMNBAREbXjmga3OGkgIiJqx0mDWz1m0hBpAsIVL8b8yFyr3G+DrUo0jjO6LH97k1299sTBNlntgaa2XqL2ml29f02XXfnSdFl9AJvgSxgkrBYjuvrYJMvfbwhrbEBSq6JRNhbptUnJ+2gTHqY3a1VI6lQAQJNZVmWjwtxbuW2wSVYHJcgkeyMtmqT/alHfdrN6HRRAVqsiGGq/W4Jl307ygh4zaSAiIuoUIw1ucSEkERERKWGkgYiIqB1vuXSLkQYiIiJSwkgDERGRAwtWucdIAxERESlhpIGIiKgd755wi5EGIiIiP7Nt2zZMmDAB8fHx0DQN69ev7/Q1JSUl+Ld/+zdYrVYMHjwYxcXF57UpKipCUlISbDYb0tPTsWvXLtG4xJOG3NxcbNu2TfoyIiIiUtTQ0ICRI0eiqKhIqX15eTluueUWjBs3DqWlpZg1axYeeOABbNq0ydlm7dq1yM/Px9y5c7F3716MHDkSWVlZOH78uPK4xJOG2tpaZGZm4tJLL8VvfvMbHD16VNoFERGRX9Lwr8WQHtu6MI6cnBwsXLgQP/nJT5TaL1u2DMnJyfjd736Hyy+/HHl5ebjjjjuwePFiZ5sXXngBM2bMwLRp0zB06FAsW7YMoaGhWLFihfK4xJOG9evX4+jRo3j44Yexdu1aJCUlIScnB2+99RZaW1ul3REREfUIdXV1Lltzsyw1tzvbt29HZmamy76srCxs374dANDS0oI9e/a4tDGZTMjMzHS2UdGlhZDR0dHIz89Hfn4+9u7di5UrV+Lee+9FWFgYfvazn+HnP/85Lr300q507TUhmhmhivnq+5nVJz8tOCkaR2uI7C1vNdTrPbQJ6z18o8vmv01GqHpjwbgBALqsvaRWhSasPSEZiaYJ/4ZoEv6SsKvXEjCaW4R9y+oamNrUxxLcJutb04X1QQxJrQrhZ1ET1nDR1L8X5V7O8WOGuOiHOousVgWg/nkMN6n9XtS9eXztvJjcKSEhwWX33LlzMW/ePI/8iKqqKsTExLjsi4mJQV1dHRobG/Hdd9/Bbrd32Obrr79W/jk/aCFkZWUlNm/ejM2bN8NsNuPmm2/GF198gaFDh7qERC6ks4UeU6dOhaZpLlt2dvYPGTIREZFPVFRUoLa21rkVFBT4ekhi4khDa2sr/vKXv2DlypX48MMPkZqailmzZuHuu+9GREQEAGDdunW4//778eijj7rtq32hx/3334/bb7+9wzbZ2dlYuXKl87HVKquGSEREpMyLt1xGREQ4/530tNjYWFRXu0aDqqurERERgZCQEJjNZpjN5g7bxMbGKv8c8aQhLi4Ouq5jypQp2LVrF0aNGnVem3HjxqF3796d9pWTk4OcnBy3baxWq+iAiIiIepqMjAxs2LDBZd/mzZuRkZEBALBYLEhLS8OWLVswceJEAICu69iyZQvy8vKUf4540rB48WLceeedsNkuXHO+d+/eKC8vl3bdoZKSEvTv3x99+vTBDTfcgIULF6Jv374e6ZuIiMiFnyR3qq+vx8GDB52Py8vLUVpaiqioKAwcOBAFBQU4evQoXn31VQDAQw89hN///veYPXs27r//fnz88cd444038P777zv7yM/PR25uLkaPHo0xY8ZgyZIlaGhowLRp05THJZ403HvvvdKXdFl2djZuv/12JCcno6ysDE8++SRycnKwfft2mM0dL1Zqbm52WZFaV1d3sYZLRETdnL/Unti9ezfGjRvnfJyfnw/gbK6k4uJiVFZW4vDhw87nk5OT8f777+PRRx/Fiy++iAEDBuCVV15BVlaWs83kyZNx4sQJzJkzB1VVVRg1ahQ2btx43uJId/w6jfRdd93l/P8RI0YgNTUVgwYNQklJCW688cYOX1NYWIj58+dfrCESERF53NixY2G4ufOro2yPY8eOxd///ne3/ebl5YkuR3xft0ojfckll6Bfv34uIZvvKygocFmdWlFRcRFHSERE3ZrhpS1A+HWk4fuOHDmCU6dOIS4u7oJtrFYr77AgIiLyAp9OGtwt9IiKisL8+fMxadIkxMbGoqysDLNnz8bgwYNdrtEQERF5jJ8shPRXPp00uFvosXTpUuzbtw+rVq1CTU0N4uPjMX78eDzzzDOMJBAREfmATycNnS30OLc61w9lcvynIsqknqLWoslS91pwTNQ+WGsTtFVP8wsAJuGS3jKtn3JbSWrds4SpfiXtjQvfHtwRSWvpqKXJaQ1B2mmjTf2zAgDwYntN2HdQq6x9SGsvwVhCRH3LU5qrt2/UZd+Lb7z4F6rd20vaBGmnEzS11P2NhvfTSPvL3RP+qlsthCQiIiLf6VYLIYmIiLzKiwWrAgEnDURERO24ENItXp4gIiIiJYw0EBEROXAhpHuMNBAREZESRhqIiIjacU2DW4w0EBERkRJGGoiIiNp5YU0DIw1ERETU4zDSQERE1I5rGtzqMZOGFqMNzYZaYCXMpF4Qq68mewutweq1BADAqlUqt7Up5m9vJ61VYTGp1wfYb+ov6rtRCxO1hyaoDyBpCwCaevUJWVULL9eqaJTl5TdaZJ8Xo1W9vdEiq8miCfoGgKA29c9uiF32vmh2WX0Ik13wO8CQfQIaDfUaGwBQJsg8qAuzFJohex9Nmnr7YE2tTkW9/SJkVuSkwS1eniAiIiIlPSbSQERE1Bkmd3KPkQYiIiJSwkkDERERKeGkgYiIiJRwTQMREVE73j3hFiMNREREpISRBiIiIgfePeEeJw1ERETnCqB/5D2NlyeIiIhISY+JNFTaNZxWTEE6QFNPgRtpChGNI1KTtQ8OUh+LRTsu6tsiTCMtSTttEsbjvhZmh23QJOl1pR9zSapfWSJpb6ad1gzhn0e6rL0kNbQ0RTXsss8iBKmhzYKU0wAQYpe9L5qunnZa04NlfSumvm/XaKiP5Rs/+mvarPin/ZkWO4Bj3h0MF0K6xUgDERERKekxkQYiIqLOcCGke4w0EBERkRJGGoiIiNpxTYNbjDQQERGREkYaiIiIHLimwT1GGoiIiEgJIw1ERETtuKbBLU4aiIiI2nHS4BYvTxAREZESRhqIiIgcuBDSvR4zafi/lv4IbVHN5F+t3nFQo2gc0loVoSaLcts4Uc8AcErWXD2tvdd9jRjltg2Q1KkAZF8LSXUIAIb3alUIRwJhuQ8ZQZ0KADAEtSQAAI2y752ENPwqO6PSL5GsVoVk9I3CsXwjHIk3NJ9pBfC/vh5Gj9ZjJg1ERESd4poGt7imgYiIiJQw0kBERNSOkQa3GGkgIiIiJYw0EBEROfDuCfc4aSAiImrHyxNu8fIEERGRHyoqKkJSUhJsNhvS09Oxa9euC7YdO3YsNE07b7vlllucbaZOnXre89nZ2aIxMdJARETk4C+XJ9auXYv8/HwsW7YM6enpWLJkCbKysrB//37079//vPbvvPMOWs7Jj3Lq1CmMHDkSd955p0u77OxsrFy50vnYarWKxsVIAxERkZ954YUXMGPGDEybNg1Dhw7FsmXLEBoaihUrVnTYPioqCrGxsc5t8+bNCA0NPW/SYLVaXdr16dNHNC5OGoiIiNoZXtoEWlpasGfPHmRmZjr3mUwmZGZmYvv27Up9LF++HHfddRd69XLNiFtSUoL+/fsjJSUFDz/8ME6dkmUG5uUJIiKii6Curs7lsdVq7fDywMmTJ2G32xET45ouPyYmBl9//XWnP2fXrl348ssvsXz5cpf92dnZuP3225GcnIyysjI8+eSTyMnJwfbt22E2qyWi7zGThj1nkmA1qeVxbzXUs/jbUSkaR7y5QdQ+0qSe2d6qyU5njFmW79+Of6q3DZVVNtC9WAlBUqcCkNaqEH6FBJ8tAIAmOf+y9zBI2F5T/KUCAGiQfc7R0ipqbtjt6o2bm2VjETKZ1N9H6TmCsL0h+h0gCzT7Q62KtgbvnksAXr17IiEhwWX33LlzMW/ePA//sLNRhhEjRmDMmDEu+++66y7n/48YMQKpqakYNGgQSkpKcOONNyr17dPLE9u2bcOECRMQHx8PTdOwfv16l+cNw8CcOXMQFxeHkJAQZGZm4sCBA74ZLBER0Q9QUVGB2tpa51ZQUNBhu379+sFsNqO62rV4YnV1NWJjY93+jIaGBqxZswbTp0/vdDyXXHIJ+vXrh4MHDyofg08nDQ0NDRg5ciSKioo6fP7555/HSy+9hGXLlmHnzp3o1asXsrKy0NTUdJFHSkREPYHmpQ0AIiIiXLYL3blgsViQlpaGLVu2OPfpuo4tW7YgIyPD7fjffPNNNDc342c/+1mnx3rkyBGcOnUKcXHqNZJ9enkiJycHOTk5HT5nGAaWLFmCp556CrfddhsA4NVXX0VMTAzWr1/vEmYhIiLyCD9J7pSfn4/c3FyMHj0aY8aMwZIlS9DQ0IBp06YBAO677z786Ec/QmFhocvrli9fjokTJ6Jv374u++vr6zF//nxMmjQJsbGxKCsrw+zZszF48GBkZWUpj8tv1zSUl5ejqqrKZfVoZGQk0tPTsX37dk4aiIgoYE2ePBknTpzAnDlzUFVVhVGjRmHjxo3OxZGHDx+GyeR6sWD//v347LPP8OGHH57Xn9lsxr59+7Bq1SrU1NQgPj4e48ePxzPPPCPK1eC3k4aqqioA6HD1aPtzHWlubkbzOQufvr9alYiI6EL8JbkTAOTl5SEvL6/D50pKSs7bl5KSAsPo+IeFhIRg06ZNXRvIOQIuT0NhYSEiIyOd2/dXqxIREVHX+O2koX2FqHT1aEFBgcvq1IqKCq+Ok4iIAogfJHfyZ347aUhOTkZsbKzL6tG6ujrs3LnT7epRq9V63gpVIiIi+uF8uqahvr7e5f7Q8vJylJaWIioqCgMHDsSsWbOwcOFCXHrppUhOTsbTTz+N+Ph4TJw40XeDJiKiwBZAkQFP8+mkYffu3Rg3bpzzcX5+PgAgNzcXxcXFmD17NhoaGvDggw+ipqYG1157LTZu3AibTT1LHhEREXmGTycNY8eOveBKTwDQNA0LFizAggULfvDP+uK7eAS1qN1WohvqqVvtwis8rRZZ2umEIPVEVpEmi6hvq6aWVrtdtEk97bQ9SD3lNADYQ/znSpkk7fQZI0zWuTSNNNTbGyZZiVubMKNxkFn9HGkm4fk8c0bWvkmQTliSchqAcU55YSX16imzzcK00LIzCkCU6ln66997aae/Ufydq5/xfmI/f7p7wh/57S2XREREF52fJHfyV/7z5x0RERH5NUYaiIiIHHh5wj1GGoiIiEgJIw1ERETtuKbBLUYaiIiISAkjDURERA5c0+AeIw1ERESkhJEGIiKidlzT4BYnDURERO04aXCLlyeIiIhISY+JNHx7Igqmhu5X6MqMY8ptTUGynPmRJtn7ESaobRALQW0AAMBJUWuzpl4Hw+TFaf4/hF03SmtVCGpPwCSra2EIz79NUHsiSFh7wmQSFsIQ1HAwmoW1JFpbRc0NSR0MIWmlElmtCkmdCsCbtSoaEaLUTm8Sfk66gAsh3WOkgYiIiJT0mEgDERFRp7imwS1GGoiIiEgJIw1EREQOmmFAMzwbGvB0f77ESAMREREpYaSBiIioHdc0uMVJAxERkQNvuXSPlyeIiIhICSMNRERE7Xh5wi1GGoiIiEgJIw1EREQOXNPgXo+ZNNhPhMCwqeXaL9eilPvVhJ8Gk7C9GYIaC1qlsG9ZznxJ7QlJW0Beq8KsnVJvG+q9b6xuyHLh/0OXBfeaDEF9AE1ae0I2FsNsUW5rC5K9L8FB0loVgvbaGVHf4k+LoFaFN+tUALJaFbJvKODdWhVq59PezOC4r/WYSQMREVGnuKbBLU7biIiISAkjDURERA5c0+AeJw1ERETteHnCLV6eICIiIiWMNBAREZ0jkC4neBojDURERKSEkQYiIqJ2hnF283SfAYKRBiIiIlLCSAMREZEDb7l0r8dMGmzVJpitaoGVM5p6utRyWbZcrzJp6imnAcBsqRK1jxekepamkZa2D9bUU/eaoZ5yGoAoW26rIUvd3KLLvnIHjX7KbZsEn1sAMMyysevB6u11YRppW7As6Gkxq/dv1oRfUpOsvSHJUi1IOQ0ARmOTqL2EWRgy927aabXvhb0lgP717aZ6zKSBiIioU8zT4BYnDURERA6afnbzdJ+BggshiYiISAkjDURERO14ecItRhqIiIhICSMNREREDrzl0j1GGoiIiPxQUVERkpKSYLPZkJ6ejl27dl2wbXFxMTRNc9lsNptLG8MwMGfOHMTFxSEkJASZmZk4cOCAaEycNBAREbVrTyPt6U1o7dq1yM/Px9y5c7F3716MHDkSWVlZOH78+AVfExERgcrKSuf27bffujz//PPP46WXXsKyZcuwc+dO9OrVC1lZWWhqUs8HwkkDERGRn3nhhRcwY8YMTJs2DUOHDsWyZcsQGhqKFStWXPA1mqYhNjbWucXExDifMwwDS5YswVNPPYXbbrsNqampePXVV3Hs2DGsX79eeVycNBARETm0r2nw9CbR0tKCPXv2IDMz07nPZDIhMzMT27dvv+Dr6uvrkZiYiISEBNx222346quvnM+Vl5ejqqrKpc/IyEikp6e77fP7OGkgIiK6COrq6ly25uaOU/OfPHkSdrvdJVIAADExMaiq6jj9f0pKClasWIF3330Xf/rTn6DrOq6++mocOXIEAJyvk/TZkR5z90RolQGzRXW6pz6XajRk+f6/Ec44DcN/ilvYLdXKbeMhy5kfbrKI2odo6u3jzNK5sXqtipZQWf0Gaa0KXXD+D5lkH67GINlnV7cIak8Ia0nYg4NlYxHUnrCZZGMxCWtPSFqL6lQA8loVTer1YaSkNTxktSrUPottrW2iXrvEi3kaEhISXHbPnTsX8+bN88iPyMjIQEZGhvPx1Vdfjcsvvxz//d//jWeeecYjPwPoQZMGIiKiznjzlsuKigpEREQ491utHU+t+vXrB7PZjOpq1z/UqqurERsbq/Qzg4ODccUVV+DgwYMA4HxddXU14uLiXPocNWqU6qH49+WJefPmnXcLyZAhQ3w9LCIiIrGIiAiX7UKTBovFgrS0NGzZssW5T9d1bNmyxSWa4I7dbscXX3zhnCAkJycjNjbWpc+6ujrs3LlTuU+gG0Qahg0bho8++sj5OCjI74dMRETdVRdvkey0T6H8/Hzk5uZi9OjRGDNmDJYsWYKGhgZMmzYNAHDffffhRz/6EQoLCwEACxYswFVXXYXBgwejpqYGv/3tb/Htt9/igQceAHD2zopZs2Zh4cKFuPTSS5GcnIynn34a8fHxmDhxovK4/P5f4KCgIOVwDBERUSCYPHkyTpw4gTlz5qCqqgqjRo3Cxo0bnQsZDx8+DNM563W+++47zJgxA1VVVejTpw/S0tLw+eefY+jQoc42s2fPRkNDAx588EHU1NTg2muvxcaNG89LAuWO308aDhw4gPj4eNhsNmRkZKCwsBADBw68YPvm5maXFal1dXUXY5hERBQA/CmNdF5eHvLy8jp8rqSkxOXx4sWLsXjxYvfj0DQsWLAACxYs6NqA4OdrGtLT01FcXIyNGzdi6dKlKC8vx3XXXYfTp09f8DWFhYWIjIx0bt9frUpERERd49eThpycHNx5551ITU1FVlYWNmzYgJqaGrzxxhsXfE1BQQFqa2udW0VFxUUcMRERdWuGl7YA4feXJ87Vu3dvXHbZZc5bSDpitVovuCKViIiIus6vIw3fV19fj7KyMpd7TImIiDzFH9JI+zO/njQ8/vjj2Lp1Kw4dOoTPP/8cP/nJT2A2mzFlyhRfD42IiAKRbnhnCxB+fXniyJEjmDJlCk6dOoXo6Ghce+212LFjB6Kjo309NCIioh7HrycNa9as8VhfocfbEBSsmrdc8rbIgjWNijnW25X7Ue0J3VA/Vt2iXgAFAOKDWkTt+5jU7ysOFda1kFz8agk+Keq7KVRWY0FSqyLIpIv6PhTUR9T+tKWXcltdWksiWPY5N8yC76jgswIAVuFXTlKTwSSs32CcaZS1b1H/HnmzTgUASKqsqK5CM9u9O2YAXq09EQj8+vIEERER+Q+/jjQQERFdTBq8kNzJs935FCMNREREpISRBiIionZ+UrDKXzHSQEREREoYaSAiInLwp4JV/oiTBiIiona85dItXp4gIiIiJYw0EBEROWiGAc3DCxc93Z8vMdJARERESnpMpMF6ohFBZtU0u5JUz9K3UJp2OkS5bbkWJepb8+LqHLvwOO2oFLU3BTUpt+1nVk9/DMjSTscH2UV9NxvHRe1bQ9U/X8GabCw2c6uo/WGLetrpE5ZwUd9ngmXl7HWz+ufLMMm+o4am/p0DAJtJPXWPJLUy4N2kQJKU04B3006bFf8SN/SLkEZad2ye7jNAMNJARERESnpMpIGIiKgzXNPgHiMNREREpISRBiIionbM0+AWJw1ERETtWHvCLV6eICIiIiWMNBARETmw9oR7jDQQERGREkYaiIiI2nFNg1uMNBAREZESRhqIiIgcNP3s5uk+A0WPmTSYa07DbFLLtS7Lgi+pUwF4s1ZFo3As5V5MbK8b3syaDwRrRwVtG0V9R5rUaw+EabJPS3yQbCwtqFJuG6y1ifoOVfw+tAsPUs/7/02wrK7F0aBIUftGs6A+hCar+GAI2wM2L7Q8y6zJvkeBXqvC0GVjIM/rMZMGIiKiTnFNg1ucNBAREbVjRki3uBCSiIiIlDDSQERE5MAql+4x0kBERERKGGkgIiJqx4WQbjHSQEREREoYaSAiImpnAPB0MqbACTQw0kBERERqGGkgIiJy4N0T7nHSQERE1M6AFxZCerY7X+oxkwbjdAMMk1o+fEnmeVnlAcC7tSpkV5vOaLKxfCP44Bterj1hFlx0NOOYrHNBfYhQzSLqOkwLFrWPN6vn77fguKjvXiZZbYDIoDPKbcODm0R9W82yuhnfmqOU2zaaZJ9zce0JSXtNVn1CXKtC0Na731BZrQrVOhWGwdoTvtZjJg1ERESd4i2XbnEhJBERESlhpIGIiKidDs9fu/H0LZw+xEgDERERKWGkgYiIyIG3XLrHSAMREZEfKioqQlJSEmw2G9LT07Fr164Ltv3jH/+I6667Dn369EGfPn2QmZl5XvupU6dC0zSXLTs7WzQmThqIiIjatd894elNaO3atcjPz8fcuXOxd+9ejBw5EllZWTh+vONbq0tKSjBlyhR88skn2L59OxISEjB+/HgcPXrUpV12djYqKyud25///GfRuDhpICIiaucnk4YXXngBM2bMwLRp0zB06FAsW7YMoaGhWLFiRYftX3/9dfz85z/HqFGjMGTIELzyyivQdR1btmxxaWe1WhEbG+vc+vTpIxoXJw1EREQXQV1dncvW3NxxUquWlhbs2bMHmZmZzn0mkwmZmZnYvn270s86c+YMWltbERXlmgitpKQE/fv3R0pKCh5++GGcOnVKdAycNBAREbXzYqQhISEBkZGRzq2wsLDDIZw8eRJ2ux0xMTEu+2NiYlBVVaV0GL/+9a8RHx/vMvHIzs7Gq6++ii1btuC5557D1q1bkZOTA7vdrvz29Ji7J4zmZhia51ewChPOejnttPR0yuaMjYb6WMq9nEbaJDiXwZr6F+KsauWWkjTPAGDVZOeot0m9vUWTpWIONcn+wgg3qaeGDjepp+I+OxZZemCLWf2clpn6ivpu1MJE7UVppMW/MbyXdlo6Em9+o5VTThvS77J/qaioQEREhPOx1Sr/F0HFs88+izVr1qCkpAQ2278+FXfddZfz/0eMGIHU1FQMGjQIJSUluPHGG5X6ZqSBiIione6lDUBERITLdqFJQ79+/WA2m1Fd7foHTHV1NWJjY90Of9GiRXj22Wfx4YcfIjU11W3bSy65BP369cPBgwfdtjtXt5g0SG47ISIi6s4sFgvS0tJcFjG2L2rMyMi44Ouef/55PPPMM9i4cSNGjx7d6c85cuQITp06hbi4OOWx+f2kQXrbCRERUVe1J3fy9CaVn5+PP/7xj1i1ahX+8Y9/4OGHH0ZDQwOmTZsGALjvvvtQUFDgbP/cc8/h6aefxooVK5CUlISqqipUVVWhvr4eAFBfX49f/epX2LFjBw4dOoQtW7bgtttuw+DBg5GVlaU8Lr+fNEhvOyEiIuruJk+ejEWLFmHOnDkYNWoUSktLsXHjRufiyMOHD6OystLZfunSpWhpacEdd9yBuLg457Zo0SIAgNlsxr59+3Drrbfisssuw/Tp05GWloZPP/1UtLbCrxdCtt92cu5sqrPbTpqbm11uY6mrq/P6OImIKED4UWnsvLw85OXldfhcSUmJy+NDhw657SskJASbNm3q0jjO5deRhq7cdlJYWOhyS0tCQsLFGCoREQUC3fDOFiD8etLQFQUFBaitrXVuFRUVvh4SERFRQPDryxNdue3EarV67d5XIiIKcH50ecIf+XWkoau3nRAREZHn+XWkATh720lubi5Gjx6NMWPGYMmSJS63nRAREXmOFyINCJxIg99PGiZPnowTJ05gzpw5qKqqwqhRo1xuO+mM4Tj5bUar8s/UdPWEqZouSyNst1tE7dta1YNB9hbZ6bQ3yxLD6k26clvtjHrKYQBoa5C9j80W9fN5Rpelnq23qB/nabPsl0Gzpt43AOhQb99oyPqulzVHg10wllZZSuvmRvXzCQCtDeppp+1nZJ8tvVH6PVJPyGxvkX1e2lpln922NvXvnWGXvS+aLkv1bRjq7VXbtv8eNwIo3N/daEaAv/tHjhzhHRRERAGkoqICAwYM8GifdXV1iIyMRGbyIwgyeXZdXJvejI/K/wu1tbUutSe6I7+PNPxQ8fHxqKioQHh4ODTtX39Z19XVISEh4bwCIoGGxxlYeJyBhccpYxgGTp8+jfj4eA+OjiQCftJgMpnczkjbC4cEOh5nYOFxBhYep7rIyEgPjeYCdAMeX4MQQHkaAn7SQEREpMzQz26e7jNA+PUtl0REROQ/emykwWq1Yu7cuQGfCIrHGVh4nIGFx+mHmNzJrYC/e4KIiKgzzrsnEh72zt0TFUt59wQREVFA4UJIt7imgYiIiJQw0kBERNSOaxrcYqSBiIiIlPTISUNRURGSkpJgs9mQnp6OXbt2+XpIHjdv3jxomuayDRkyxNfD+sG2bduGCRMmID4+HpqmYf369S7PG4aBOXPmIC4uDiEhIcjMzMSBAwd8M9gfoLPjnDp16nnnNzs72zeD7aLCwkJceeWVCA8PR//+/TFx4kTs37/fpU1TUxNmzpyJvn37IiwsDJMmTUJ1dbWPRtx1Ksc6duzY887pQw895KMRd83SpUuRmprqTOKUkZGBDz74wPl8tzifBv4VbfDY5uuD8pweN2lYu3Yt8vPzMXfuXOzduxcjR45EVlYWjh8/7uuhedywYcNQWVnp3D777DNfD+kHa2howMiRI1FUVNTh888//zxeeuklLFu2DDt37kSvXr2QlZWFpiZZAS1f6+w4ASA7O9vl/P75z3++iCP84bZu3YqZM2dix44d2Lx5M1pbWzF+/Hg0NDQ42zz66KP461//ijfffBNbt27FsWPHcPvtt/tw1F2jcqwAMGPGDJdz+vzzz/toxF0zYMAAPPvss9izZw92796NG264Abfddhu++uorAIFzPnuyHnfLZXp6Oq688kr8/ve/BwDouo6EhAQ88sgjeOKJJ3w8Os+ZN28e1q9fj9LSUl8PxWs0TcO6deswceJEAGejDPHx8Xjsscfw+OOPAwBqa2sRExOD4uJi3HXXXT4cbdd9/ziBs5GGmpqa8yIQ3dmJEyfQv39/bN26Fddffz1qa2sRHR2N1atX44477gAAfP3117j88suxfft2XHXVVT4ecdd9/1iBs5GGUaNGYcmSJb4dnIdFRUXht7/9Le644w6/Pp/OWy5jH0SQSVaNuDNtegs+qvpDQNxy2aMiDS0tLdizZw8yMzOd+0wmEzIzM7F9+3Yfjsw7Dhw4gPj4eFxyySW45557cPjwYV8PyavKy8tRVVXlcn4jIyORnp4ekOe3pKQE/fv3R0pKCh5++GGcOnXK10P6QWprawGc/UcGAPbs2YPW1laX8zlkyBAMHDiw25/P7x9ru9dffx39+vXD8OHDUVBQgDNnzvhieB5ht9uxZs0aNDQ0ICMjo/ucT133zhYgetTdEydPnoTdbkdMTIzL/piYGHz99dc+GpV3pKeno7i4GCkpKaisrMT8+fNx3XXX4csvv0R4eLivh+cVVVVVANDh+W1/LlBkZ2fj9ttvR3JyMsrKyvDkk08iJycH27dvh9ls9vXwxHRdx6xZs3DNNddg+PDhAM6eT4vFgt69e7u07e7ns6NjBYC7774biYmJiI+Px759+/DrX/8a+/fvxzvvvOPD0cp98cUXyMjIQFNTE8LCwrBu3ToMHToUpaWlAXk+e5oeNWnoSXJycpz/n5qaivT0dCQmJuKNN97A9OnTfTgy8oRzL7WMGDECqampGDRoEEpKSnDjjTf6cGRdM3PmTHz55ZcBse6mMxc61gcffND5/yNGjEBcXBxuvPFGlJWVYdCgQRd7mF2WkpKC0tJS1NbW4q233kJubi62bt3q62Gp4y2XbvWoyxP9+vWD2Ww+b7VudXU1YmNjfTSqi6N379647LLLcPDgQV8PxWvaz2FPPL+XXHIJ+vXr1y3Pb15eHt577z188sknLmXsY2Nj0dLSgpqaGpf23fl8XuhYO5Keng4A3e6cWiwWDB48GGlpaSgsLMTIkSPx4osvBuT57Il61KTBYrEgLS0NW7Zsce7TdR1btmxBRkaGD0fmffX19SgrK0NcXJyvh+I1ycnJiI2NdTm/dXV12LlzZ8Cf3yNHjuDUqVPd6vwahoG8vDysW7cOH3/8MZKTk12eT0tLQ3BwsMv53L9/Pw4fPtztzmdnx9qR9kXM3emcdkTXdTQ3N3ef8+nx2y29ELnwoR53eSI/Px+5ubkYPXo0xowZgyVLlqChoQHTpk3z9dA86vHHH8eECROQmJiIY8eOYe7cuTCbzZgyZYqvh/aD1NfXu/zlVV5ejtLSUkRFRWHgwIGYNWsWFi5ciEsvvRTJycl4+umnER8f73LnQXfg7jijoqIwf/58TJo0CbGxsSgrK8Ps2bMxePBgZGVl+XDUMjNnzsTq1avx7rvvIjw83HldOzIyEiEhIYiMjMT06dORn5+PqKgoRERE4JFHHkFGRobPV9pLdXasZWVlWL16NW6++Wb07dsX+/btw6OPPorrr78eqampPh69uoKCAuTk5GDgwIE4ffo0Vq9ejZKSEmzatCmgzmdP1uMmDZMnT8aJEycwZ84cVFVVYdSoUdi4ceN5i+e6uyNHjmDKlCk4deoUoqOjce2112LHjh2Ijo729dB+kN27d2PcuHHOx/n5+QCA3NxcFBcXY/bs2WhoaMCDDz6ImpoaXHvttdi4cSNsNpuvhtwl7o5z6dKl2LdvH1atWoWamhrEx8dj/PjxeOaZZ7pH6WGHpUuXAjh7q+G5Vq5cialTpwIAFi9eDJPJhEmTJqG5uRlZWVl4+eWXL/JIf7jOjtViseCjjz5y/hGTkJCASZMm4amnnvLBaLvu+PHjuO+++1BZWYnIyEikpqZi06ZNuOmmmwB0k/PJglVu9bg8DURERN/nzNMQNc07eRr+uTIg8jT0uEgDERHRhRiGDsPwbF4FT/fnS5w0EBERtTMMz19OCKCAfo+6e4KIiIi6jpEGIiKidoYXFkIy0kBEREQ9DSMNRERE7XQd0Dy8cDGAFkIy0kBERERKGGkgIiJqxzUNbjHSQEREREoYaSAiInIwdB2Gh9c0BFJyJ0YaiLqpEydOIDY2Fr/5zW+c+z7//HNYLBaXSoJEJMAql24x0kDUTUVHR2PFihWYOHEixo8fj5SUFNx7773Iy8vDjTfe6OvhEVEA4qSBqBu7+eabMWPGDNxzzz0YPXo0evXqhcLCQl8Pi6j70g1A40LIC+HlCaJubtGiRWhra8Obb76J119/vVuVxyai7oWTBqJurqysDMeOHYOu6zh06JCvh0PUvRnG2WRMHt0CJ9LAyxNE3VhLSwt+9rOfYfLkyUhJScEDDzyAL774Av379/f10IgoAHHSQNSN/cd//Adqa2vx0ksvISwsDBs2bMD999+P9957z9dDI+qWDN2A4eE1DUYARRp4eYKomyopKcGSJUvw2muvISIiAiaTCa+99ho+/fRTLF261NfDI6IAxEgDUTc1duxYtLa2uuxLSkpCbW2tj0ZEFAAMHQALVl0IJw1EREQOvDzhHi9PEBERkRJGGoiIiNrx8oRbnDQQERE5tKHV45Wx29DaeaNugpMGIiLq8SwWC2JjY/FZ1Qav9B8bGwuLxeKVvi8mzQikFRpERERd1NTUhJaWFq/0bbFYYLPZvNL3xcRJAxERESnh3RNERESkhJMGIiIiUsJJAxERESnhpIGIiIiUcNJARERESjhpICIiIiWcNBAREZGS/w/R6Uf/A9ODDgAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" }, { "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7b34d1077e5a4b72ad14f6112fd85986", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "HBox(children=(HTML(value=\"./fig_2.pdf
\"), HTML(value=\"