Releases: open-mmlab/mmpose
MMPose V0.28.1 Release
This release is meant to fix the compatibility with the latest mmcv v1.6.1
MMPose V0.28.0 Release
Highlights
- Support TCFormer backbone, CVPR'2022 (#1447, #1452) @zengwang430521
- Add RLE models on COCO dataset (#1424) @Indigo6, @Ben-Louis, @ly015
- Update swin models with better performance (#1467) @jin-s13
New Features
- Support TCFormer backbone, CVPR'2022 (#1447, #1452) @zengwang430521
- Add RLE models on COCO dataset (#1424) @Indigo6, @Ben-Louis, @ly015
- Support layer decay optimizer conctructor and learning rate decay optimizer constructor (#1423) @jin-s13
Improvements
- Improve documentation quality (#1416, #1421, #1423, #1426, #1458, #1463) @ly015, @liqikai9
- Support installation by mim (#1425) @liqikai9
- Support PAVI logger (#1434) @EvelynWang-0423
- Add progress bar for some demos (#1454) @liqikai9
- Webcam API supports quick device setting in terminal commands (#1466) @ly015
- Update swin models with better performance (#1467) @jin-s13
Bug Fixes
MMPose V0.27.0 Release
Highlights
- Support hand gesture recognition
- Try the demo for gesture recognition
- Learn more about the algorithm, dataset and experiment results
- Major upgrade to the Webcam API
- Tutorials (EN|zh_CN)
- API Reference
- Demo
New Features
- Support gesture recognition algorithm MTUT CVPR'2019 and dataset NVGesture CVPR'2016 (#1380) @Ben-Louis
Improvements
- Upgrade Webcam API and related documents (#1393, #1404, #1413) @ly015
- Support exporting COCO inference result without the annotation file (#1368) @liqikai9
- Replace markdownlint with mdformat in CI to avoid the dependence on ruby #1382 @ly015
- Improve documentation quality (#1385, #1394, #1395, #1408) @chubei-oppen, @ly015, @liqikai9
Bug Fixes
- Fix xywh->xyxy bbox conversion in dataset sanity check (#1367) @jin-s13
- Fix a bug in two-stage 3D keypoint demo (#1373) @ly015
- Fix out-dated settings in PVT configs (#1376) @ly015
- Fix myst settings for document compiling (#1381) @ly015
- Fix a bug in bbox transform (#1384) @ly015
- Fix inaccurate description of
min_keypoints
in tracking apis (#1398) @pallgeuer - Fix warning with
torch.meshgrid
(#1402) @pallgeuer - Remove redundant transformer modules from
mmpose.datasets.backbones.utils
(#1405) @ly015
MMPose V0.26.0 Release
Highlights
- Support RLE (Residual Log-likelihood Estimation), ICCV'2021 (#1259) @Indigo6, @ly015
- Support Swin Transformer, ICCV'2021 (#1300) @yumendecc, @ly015
- Support PVT, ICCV'2021 and PVTv2, CVMJ'2022 (#1343) @zengwang430521
- Speed up inference and reduce CPU usage by optimizing the pre-processing pipeline (#1320) @chenxinfeng4, @liqikai9
New Features
- Support RLE (Residual Log-likelihood Estimation), ICCV'2021 (#1259) @Indigo6, @ly015
- Support Swin Transformer, ICCV'2021 (#1300) @yumendecc, @ly015
- Support PVT, ICCV'2021 and PVTv2, CVMJ'2022 (#1343) @zengwang430521
- Support FPN, CVPR'2017 (#1300) @yumendecc, @ly015
Improvements
- Speed up inference and reduce CPU usage by optimizing the pre-processing pipeline (#1320) @chenxinfeng4, @liqikai9
- Video demo supports models that requires multi-frame inputs (#1300) @liqikai9, @jin-s13
- Update benchmark regression list (#1328) @ly015, @liqikai9
- Remove unnecessary warnings in
TopDownPoseTrack18VideoDataset
(#1335) @liqikai9 - Improve documentation quality (#1313, #1305) @Ben-Louis, @ly015
- Update deprecating settings in configs (#1317) @ly015
Bug Fixes
- Fix a bug in human skeleton grouping that may skip the matching process unexpectedly when
ignore_to_much
is True (#1341) @daixinghome - Fix a GPG key error that leads to CI failure (#1354) @ly015
- Fix bugs in distributed training script (#1338, #1298) @ly015
- Fix an upstream bug in xtoccotools that causes incorrect AP(M) results (#1308) @jin-s13, @ly015
- Fix indentiation errors in the colab tutorial (#1298) @YuanZi1501040205
- Fix incompatible model weight initialization with other OpenMMLab codebases (#1329) @274869388
- Fix HRNet FP16 checkpoints download URL (#1309) @YinAoXiong
- Fix typos in
body3d_two_stage_video_demo.py
(#1295) @mucozcan
Breaking Changes
- Refactor bbox processing in datasets and pipelines (#1311) @ly015, @Ben-Louis
The bbox format conversion (xywh to center-scale) and random translation are moved from the dataset to the pipeline. The comparison between new and old version is as below:
v0.26.0 | v0.25.0 | |
---|---|---|
Dataset (e.g. TopDownCOCODataset) |
...
# Data sample only contains bbox
rec.append({
'bbox': obj['clean_bbox][:4],
...
}) |
...
# Convert bbox from xywh to center-scale
center, scale = self._xywh2cs(*obj['clean_bbox'][:4])
# Data sample contains center and scale
rec.append({
'bbox': obj['clean_bbox][:4],
'center': center,
'scale': scale,
...
}) |
Pipeline Config (e.g. HRNet+COCO) |
...
train_pipeline = [
dict(type='LoadImageFromFile'),
# Convert bbox from xywh to center-scale
dict(type='TopDownGetBboxCenterScale', padding=1.25),
# Randomly shift bbox center
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
...
] |
...
train_pipeline = [
dict(type='LoadImageFromFile'),
...
] |
Advantage |
|
- |
BC Breaking | The method _xywh2cs of dataset base classes (e.g. Kpt2dSviewRgbImgTopDownDataset) will be deprecated in the future. Custom datasets will need modifications to move the bbox format conversion to pipelines. |
- |
MMPose V0.25.1 Release
This release is meant to fix the compatibility with the latest mmcv v1.5.0
MMPose V0.25.0 Release
Highlights
- Support Shelf and Campus datasets with pre-trained VoxelPose models, "3D Pictorial Structures for Multiple Human Pose Estimation", CVPR'2014 (#1225) @liqikai9 @wusize
- Add
Smoother
module for temporal smoothing of the pose estimation with configurable filters (#1127) @ailingzengzzz, @ly015 - Support SmoothNet for pose smoothing, "SmoothNet: A Plug-and-Play Network for Refining Human Poses in Videos", arXiv'2021 (#1279) @ailingzengzzz, @ly015
- Add multiview 3D pose estimation demo (#1270) @wusize
New Features
- Support Shelf and Campus datasets with pre-trained VoxelPose models, "3D Pictorial Structures for Multiple Human Pose Estimation", CVPR'2014 (#1225) @liqikai9 @wusize
- Add
Smoother
module for temporal smoothing of the pose estimation with configurable filters (#1127) @ailingzengzzz, @ly015 - Support SmoothNet for pose smoothing, "SmoothNet: A Plug-and-Play Network for Refining Human Poses in Videos", arXiv'2021 (#1279) @ailingzengzzz, @ly015
- Add multiview 3D pose estimation demo (#1270) @wusize
- Support multi-machine distributed training (#1248) @ly015
Improvements
- Update HRFormer configs and checkpoints with relative position bias (#1245) @zengwang430521
- Support using different random seed for each distributed node (#1257, #1229) @ly015
- Improve documentation quality (#1275, #1255, #1258, #1249, #1247, #1240, #1235) @ly015, @jin-s13, @YoniChechik
Bug Fixes
- Fix keypoint index in RHD dataset meta information (#1265) @liqikai9
- Fix pre-commit hook unexpected behavior on Windows (#1282) @liqikai9
- Remove python-dev installation in CI (#1276) @ly015
- Unify hyphens in argument names in tools and demos (#1271) @ly015
- Fix ambiguous channel size in
channel_shuffle
that may cause exporting failure (#1242) @PINTO0309 - Fix a bug in Webcam API that causes single-class detectors fail (#1239) @674106399
- Fix the issue that
custom_hook
can not be set in configs (#1236) @bladrome - Fix incompatible MMCV version in DockerFile (#raykindle)
- Skip invisible joints in visualization (#1228) @womeier
MMPose V0.24.0 Release
Highlights
- Support HRFormer "HRFormer: High-Resolution Vision Transformer for Dense Predict", NeurIPS'2021 (#1203) @zengwang430521
- Support Windows installation with pip (#1213) @jin-s13, @ly015
- Add WebcamAPI documents and tutorials (#1187) @ly015
New Features
- Support HRFormer "HRFormer: High-Resolution Vision Transformer for Dense Predict", NeurIPS'2021 (#1203) @zengwang430521
- Support Windows installation with pip (#1213) @jin-s13, @ly015
- Support CPU training with mmcv < v1.4.4 (#1161) @EasonQYS, @ly015
- Add "Valentine Magic" demo with WebcamAPI (#1189, #1191) @liqikai9
Improvements
- Refactor multi-view 3D pose estimation framework towards better modularization and expansibility (#1196) @wusize
- Add WebcamAPI documents and tutorials (#1187) @ly015
- Refactor dataset evaluation interface to align with other OpenMMLab codebases (#1209) @ly015
- Add deprecation message for deploy tools since MMDeploy has supported MMPose (#1207) @QwQ2000
- Improve documentation quality (#1206, #1161) @ly015
- Switch to OpenMMLab official pre-commit-hook for copyright check (#1214) @ly015
Bug Fixes
- Fix hard-coded data collating and scattering in inference (#1175) @ly015
- Fix model configs on JHMDB dataset (#1188) @jin-s13
- Fix area calculation in pose tracking inference (#1197) @pallgeuer
- Fix registry scope conflict of module wrapper (#1204) @ly015
- Update MMCV installation in CI and documents (#1205)
- Fix incorrect color channel order in visualization functions (#1212) @ly015
MMPose V0.23.0 Release
Highlights
- Add MMPose Webcam API: A simple yet powerful tools to develop interactive webcam applications with MMPose functions. (#1178, #1173, #1173, #1143, #1094, #1133, #1098, #1160) @ly015, @jin-s13, @liqikai9, @wusize, @luminxu, @zengwang430521 @mzr1996
New Features
- Add MMPose Webcam API: A simple yet powerful tools to develop interactive webcam applications with MMPose functions. (#1178, #1173, #1173, #1143, #1094, #1133, #1098, #1160) @ly015, @jin-s13, @liqikai9, @wusize, @luminxu, @zengwang430521 @mzr1996
- Support ConcatDataset (#1139) @Canwang-sjtu
- Support CPU training and testing (#1157) @ly015
Improvements
-
Add multi-processing configurations to speed up distributed training and testing (#1146) @ly015
-
Add default runtime config (#1145)
-
Update README and documents (#1171, #1167, #1153, #1149, #1148, #1147, #1140) @jin-s13, @wusize, @TommyZihao, @ly015
Bug Fixes
MMPose V0.22.0 Release
Highlights
- Support VoxelPose "VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Environment", ECCV'2020 (#1050) @wusize
- Support Soft Wing loss "Structure-Coherent Deep Feature Learning for Robust Face Alignment", TIP'2021 (#1077) @jin-s13
- Support Adaptive Wing loss "Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression", ICCV'2019 (#1072) @jin-s13
New Features
- Support VoxelPose "VoxelPose: Towards Multi-Camera 3D Human Pose Estimation in Wild Environment", ECCV'2020 (#1050) @wusize
- Support Soft Wing loss "Structure-Coherent Deep Feature Learning for Robust Face Alignment", TIP'2021 (#1077) @jin-s13
- Support Adaptive Wing loss "Adaptive Wing Loss for Robust Face Alignment via Heatmap Regression", ICCV'2019 (#1072) @jin-s13
- Add LiteHRNet-18 Checkpoints trained on COCO. (#1120) @jin-s13
Improvements
- Improve documentation quality (#1115, #1111, #1105, #1087, #1086, #1085, #1084, #1083, #1124, #1070, #1068) @jin-s13, @liqikai9, @ly015
- Support CircleCI (#1074) @ly015
- Skip unit tests in CI when only document files were changed (#1074, #1041) @QwQ2000, @ly015
- Support file_client_args in LoadImageFromFile (#1076) @jin-s13
Bug Fixes
- Fix a bug in Dark UDP postprocessing that causes error when the channel number is large. (#1079, #1116) @X00123, @jin-s13
- Fix hard-coded
sigmas
in bottom-up image demo (#1107, #1101) @chenxinfeng4, @liqikai9 - Fix unstable checks in unit tests (#1112) @ly015
- Do not destroy NULL windows if
args.show==False
in demo scripts (#1104) @bladrome
MMPose V0.21.0 Release
Highlights
- Support "Learning Temporal Pose Estimation from Sparsely-Labeled Videos", NeurIPS'2019 (#932, #1006, #1036, #1060) @liqikai9
- Add ViPNAS-MobileNetV3 models (#1025) @luminxu, @jin-s13
- Add inference speed benchmark (#1028, #1034, #1044) @liqikai9
New Features
- Support "Learning Temporal Pose Estimation from Sparsely-Labeled Videos", NeurIPS'2019 (#932, #1006, #1036) @liqikai9
- Add ViPNAS-MobileNetV3 models (#1025) @luminxu, @jin-s13
- Add light-weight top-down models for whole-body keypoint detection (#1009, #1020, #1055) @luminxu, @ly015
- Add HRNet checkpoints with various settings on PoseTrack18 (#1035) @liqikai9
Improvements
- Add inference speed benchmark (#1028, #1034, #1044) @liqikai9
- Update model metafile format (#1001) @ly015
- Support minus output feature index in mobilenet_v3 (#1005) @luminxu
- Improve documentation quality (#1018, #1026, #1027, #1031, #1038, #1046, #1056, #1057) @edybk, @luminxu, @ly015, @jin-s13
- Set default random seed in training initialization (#1030) @ly015
- Skip CI when only specific files changed (#1041, #1059) @QwQ2000, @ly015
- Automatically cancel uncompleted action runs when new commit arrives (#1053) @ly015
Bug Fixes