From 3b8cdcf3bf8aec937091360449c1c851816655c2 Mon Sep 17 00:00:00 2001 From: Tobias Grosser Date: Sat, 10 Aug 2024 06:51:07 +0100 Subject: [PATCH] chore: factor out sub_toNat_mod_cancel and sub_sub_toNat_cancel --- src/Init/Data/BitVec/Lemmas.lean | 20 ++++++++++++++------ 1 file changed, 14 insertions(+), 6 deletions(-) diff --git a/src/Init/Data/BitVec/Lemmas.lean b/src/Init/Data/BitVec/Lemmas.lean index 27b27e705220..60ab398d5e1c 100644 --- a/src/Init/Data/BitVec/Lemmas.lean +++ b/src/Init/Data/BitVec/Lemmas.lean @@ -162,6 +162,18 @@ theorem toNat_zero (n : Nat) : (0#n).toNat = 0 := by trivial @[simp] theorem toNat_mod_cancel (x : BitVec n) : x.toNat % (2^n) = x.toNat := Nat.mod_eq_of_lt x.isLt +@[simp] theorem sub_toNat_mod_cancel {x : BitVec w} (h : ¬ x = 0#w) : + (2 ^ w - x.toNat) % 2 ^ w = 2 ^ w - x.toNat := by + rw [Nat.mod_eq_of_lt] + simp [bv_toNat] at h + omega + +@[simp] theorem sub_sub_toNat_cancel { x : BitVec w} : + 2 ^ w - (2 ^ w - x.toNat) = x.toNat := by + rw [Nat.sub_sub_eq_min] + rw [Nat.min_eq_right] + omega + private theorem lt_two_pow_of_le {x m n : Nat} (lt : x < 2 ^ m) (le : m ≤ n) : x < 2 ^ n := Nat.lt_of_lt_of_le lt (Nat.pow_le_pow_of_le_right (by trivial : 0 < 2) le) @@ -1250,13 +1262,9 @@ theorem neg_eq_not_add (x : BitVec w) : -x = ~~~x + 1 := by @[simp] theorem neg_neg {x : BitVec w} : - - x = x := by - by_cases h : x = 0 + by_cases h : x = 0#w · simp [h] - · simp only [toNat_eq, ofNat_eq_ofNat, toNat_ofNat, Nat.zero_mod] at h - simp only [toNat_eq, toNat_neg] - rw [Nat.mod_eq_of_lt (a := 2 ^ w - x.toNat) (by omega)] - rw [Nat.mod_eq_of_lt (by omega)] - omega + · simp [bv_toNat, h] theorem neg_ne_iff_ne_neg {x y : BitVec w} : -x ≠ y ↔ x ≠ -y := by constructor