From 51377afd6c8c2c4e4826993a406be38daaf259bd Mon Sep 17 00:00:00 2001 From: Kim Morrison Date: Mon, 21 Oct 2024 18:37:40 +1100 Subject: [PATCH] feat: simp lemmas for Array.isEqv and beq (#5786) - [ ] depends on: #5785 --- src/Init/Data/Array/Basic.lean | 20 +++++++++++ src/Init/Data/Array/Bootstrap.lean | 2 +- src/Init/Data/Array/DecidableEq.lean | 51 ++++++++++++++++++++++++++++ src/Init/Data/Array/GetLit.lean | 2 +- src/Init/Data/Array/Lemmas.lean | 15 ++------ src/Init/Data/List/Basic.lean | 5 +++ src/Init/Data/List/Nat.lean | 1 + src/Init/Data/List/Nat/BEq.lean | 47 +++++++++++++++++++++++++ tests/lean/run/array_isEqvAux.lean | 2 ++ 9 files changed, 131 insertions(+), 14 deletions(-) create mode 100644 src/Init/Data/List/Nat/BEq.lean diff --git a/src/Init/Data/Array/Basic.lean b/src/Init/Data/Array/Basic.lean index 1db7a0dbd78d..d057e5e87df6 100644 --- a/src/Init/Data/Array/Basic.lean +++ b/src/Init/Data/Array/Basic.lean @@ -80,6 +80,26 @@ theorem ext' {as bs : Array α} (h : as.toList = bs.toList) : as = bs := by @[simp] theorem size_toArray (as : List α) : as.toArray.size = as.length := by simp [size] +@[simp] theorem getElem_toList {a : Array α} {i : Nat} (h : i < a.size) : a.toList[i] = a[i] := rfl + +end Array + +namespace List + +@[simp] theorem toArray_toList (a : Array α) : a.toList.toArray = a := rfl + +@[simp] theorem getElem_toArray {a : List α} {i : Nat} (h : i < a.toArray.size) : + a.toArray[i] = a[i]'(by simpa using h) := rfl + +@[simp] theorem getElem?_toArray {a : List α} {i : Nat} : a.toArray[i]? = a[i]? := rfl + +@[simp] theorem getElem!_toArray [Inhabited α] {a : List α} {i : Nat} : + a.toArray[i]! = a[i]! := rfl + +end List + +namespace Array + @[deprecated toList_toArray (since := "2024-09-09")] abbrev data_toArray := @toList_toArray @[deprecated Array.toList (since := "2024-09-10")] abbrev Array.data := @Array.toList diff --git a/src/Init/Data/Array/Bootstrap.lean b/src/Init/Data/Array/Bootstrap.lean index 998e90c377bd..bb322c4c62b1 100644 --- a/src/Init/Data/Array/Bootstrap.lean +++ b/src/Init/Data/Array/Bootstrap.lean @@ -42,7 +42,7 @@ theorem foldrM_eq_reverse_foldlM_toList.aux [Monad m] unfold foldrM.fold match i with | 0 => simp [List.foldlM, List.take] - | i+1 => rw [← List.take_concat_get _ _ h]; simp [← (aux f arr · i)]; rfl + | i+1 => rw [← List.take_concat_get _ _ h]; simp [← (aux f arr · i)] theorem foldrM_eq_reverse_foldlM_toList [Monad m] (f : α → β → m β) (init : β) (arr : Array α) : arr.foldrM f init = arr.toList.reverse.foldlM (fun x y => f y x) init := by diff --git a/src/Init/Data/Array/DecidableEq.lean b/src/Init/Data/Array/DecidableEq.lean index 567a7c25a1de..bda267db790f 100644 --- a/src/Init/Data/Array/DecidableEq.lean +++ b/src/Init/Data/Array/DecidableEq.lean @@ -6,6 +6,8 @@ Authors: Leonardo de Moura prelude import Init.Data.Array.Basic import Init.Data.BEq +import Init.Data.Nat.Lemmas +import Init.Data.List.Nat.BEq import Init.ByCases namespace Array @@ -26,6 +28,14 @@ theorem rel_of_isEqvAux subst hj' exact heqv.left +theorem isEqvAux_of_rel (r : α → α → Bool) (a b : Array α) (hsz : a.size = b.size) (i : Nat) (hi : i ≤ a.size) + (w : ∀ j, (hj : j < i) → r (a[j]'(Nat.lt_of_lt_of_le hj hi)) (b[j]'(Nat.lt_of_lt_of_le hj (hsz ▸ hi)))) : Array.isEqvAux a b hsz r i hi := by + induction i with + | zero => simp [Array.isEqvAux] + | succ i ih => + simp only [isEqvAux, Bool.and_eq_true] + exact ⟨w i (Nat.lt_add_one i), ih _ fun j hj => w j (Nat.lt_add_right 1 hj)⟩ + theorem rel_of_isEqv (r : α → α → Bool) (a b : Array α) : Array.isEqv a b r → ∃ h : a.size = b.size, ∀ (i : Nat) (h' : i < a.size), r (a[i]) (b[i]'(h ▸ h')) := by simp only [isEqv] @@ -33,6 +43,29 @@ theorem rel_of_isEqv (r : α → α → Bool) (a b : Array α) : · exact fun h' => ⟨h, rel_of_isEqvAux r a b h a.size (Nat.le_refl ..) h'⟩ · intro; contradiction +theorem isEqv_iff_rel (a b : Array α) (r) : + Array.isEqv a b r ↔ ∃ h : a.size = b.size, ∀ (i : Nat) (h' : i < a.size), r (a[i]) (b[i]'(h ▸ h')) := + ⟨rel_of_isEqv r a b, fun ⟨h, w⟩ => by + simp only [isEqv, ← h, ↓reduceDIte] + exact isEqvAux_of_rel r a b h a.size (by simp [h]) w⟩ + +theorem isEqv_eq_decide (a b : Array α) (r) : + Array.isEqv a b r = + if h : a.size = b.size then decide (∀ (i : Nat) (h' : i < a.size), r (a[i]) (b[i]'(h ▸ h'))) else false := by + by_cases h : Array.isEqv a b r + · simp only [h, Bool.true_eq] + simp only [isEqv_iff_rel] at h + obtain ⟨h, w⟩ := h + simp [h, w] + · let h' := h + simp only [Bool.not_eq_true] at h + simp only [h, Bool.false_eq, dite_eq_right_iff, decide_eq_false_iff_not, Classical.not_forall, + Bool.not_eq_true] + simpa [isEqv_iff_rel] using h' + +@[simp] theorem isEqv_toList [BEq α] (a b : Array α) : (a.toList.isEqv b.toList r) = (a.isEqv b r) := by + simp [isEqv_eq_decide, List.isEqv_eq_decide] + theorem eq_of_isEqv [DecidableEq α] (a b : Array α) (h : Array.isEqv a b (fun x y => x = y)) : a = b := by have ⟨h, h'⟩ := rel_of_isEqv (fun x y => x = y) a b h exact ext _ _ h (fun i lt _ => by simpa using h' i lt) @@ -56,4 +89,22 @@ instance [DecidableEq α] : DecidableEq (Array α) := | true => isTrue (eq_of_isEqv a b h) | false => isFalse fun h' => by subst h'; rw [isEqv_self] at h; contradiction +theorem beq_eq_decide [BEq α] (a b : Array α) : + (a == b) = if h : a.size = b.size then + decide (∀ (i : Nat) (h' : i < a.size), a[i] == b[i]'(h ▸ h')) else false := by + simp [BEq.beq, isEqv_eq_decide] + +@[simp] theorem beq_toList [BEq α] (a b : Array α) : (a.toList == b.toList) = (a == b) := by + simp [beq_eq_decide, List.beq_eq_decide] + end Array + +namespace List + +@[simp] theorem isEqv_toArray [BEq α] (a b : List α) : (a.toArray.isEqv b.toArray r) = (a.isEqv b r) := by + simp [isEqv_eq_decide, Array.isEqv_eq_decide] + +@[simp] theorem beq_toArray [BEq α] (a b : List α) : (a.toArray == b.toArray) = (a == b) := by + simp [beq_eq_decide, Array.beq_eq_decide] + +end List diff --git a/src/Init/Data/Array/GetLit.lean b/src/Init/Data/Array/GetLit.lean index c294c0b7e14b..73594b793788 100644 --- a/src/Init/Data/Array/GetLit.lean +++ b/src/Init/Data/Array/GetLit.lean @@ -41,6 +41,6 @@ where getLit_eq (as : Array α) (i : Nat) (h₁ : as.size = n) (h₂ : i < n) : as.getLit i h₁ h₂ = getElem as.toList i ((id (α := as.toList.length = n) h₁) ▸ h₂) := rfl go (i : Nat) (hi : i ≤ as.size) : toListLitAux as n hsz i hi (as.toList.drop i) = as.toList := by - induction i <;> simp [getLit_eq, List.get_drop_eq_drop, toListLitAux, List.drop, *] + induction i <;> simp only [List.drop, toListLitAux, getLit_eq, List.get_drop_eq_drop, *] end Array diff --git a/src/Init/Data/Array/Lemmas.lean b/src/Init/Data/Array/Lemmas.lean index 37f5509f2d6c..0a60920f7c97 100644 --- a/src/Init/Data/Array/Lemmas.lean +++ b/src/Init/Data/Array/Lemmas.lean @@ -18,8 +18,6 @@ import Init.TacticsExtra namespace Array -@[simp] theorem getElem_toList {a : Array α} {i : Nat} (h : i < a.size) : a.toList[i] = a[i] := rfl - @[simp] theorem getElem_mk {xs : List α} {i : Nat} (h : i < xs.length) : (Array.mk xs)[i] = xs[i] := rfl theorem getElem_eq_getElem_toList {a : Array α} (h : i < a.size) : a[i] = a.toList[i] := by @@ -86,16 +84,6 @@ We prefer to pull `List.toArray` outwards. (a.toArrayAux b).size = b.size + a.length := by simp [size] -@[simp] theorem toArray_toList (a : Array α) : a.toList.toArray = a := rfl - -@[simp] theorem getElem_toArray {a : List α} {i : Nat} (h : i < a.toArray.size) : - a.toArray[i] = a[i]'(by simpa using h) := rfl - -@[simp] theorem getElem?_toArray {a : List α} {i : Nat} : a.toArray[i]? = a[i]? := rfl - -@[simp] theorem getElem!_toArray [Inhabited α] {a : List α} {i : Nat} : - a.toArray[i]! = a[i]! := rfl - @[simp] theorem push_toArray (l : List α) (a : α) : l.toArray.push a = (l ++ [a]).toArray := by apply ext' simp @@ -170,6 +158,9 @@ namespace Array @[simp] theorem singleton_def (v : α) : singleton v = #[v] := rfl +-- This is a duplicate of `List.toArray_toList`. +-- It's confusing to guess which namespace this theorem should live in, +-- so we provide both. @[simp] theorem toArray_toList (a : Array α) : a.toList.toArray = a := rfl @[simp] theorem length_toList {l : Array α} : l.toList.length = l.size := rfl diff --git a/src/Init/Data/List/Basic.lean b/src/Init/Data/List/Basic.lean index e66e18962007..8e31bf9d2cd9 100644 --- a/src/Init/Data/List/Basic.lean +++ b/src/Init/Data/List/Basic.lean @@ -122,6 +122,11 @@ protected def beq [BEq α] : List α → List α → Bool | a::as, b::bs => a == b && List.beq as bs | _, _ => false +@[simp] theorem beq_nil_nil [BEq α] : List.beq ([] : List α) ([] : List α) = true := rfl +@[simp] theorem beq_cons_nil [BEq α] (a : α) (as : List α) : List.beq (a::as) [] = false := rfl +@[simp] theorem beq_nil_cons [BEq α] (a : α) (as : List α) : List.beq [] (a::as) = false := rfl +theorem beq_cons₂ [BEq α] (a b : α) (as bs : List α) : List.beq (a::as) (b::bs) = (a == b && List.beq as bs) := rfl + instance [BEq α] : BEq (List α) := ⟨List.beq⟩ instance [BEq α] [LawfulBEq α] : LawfulBEq (List α) where diff --git a/src/Init/Data/List/Nat.lean b/src/Init/Data/List/Nat.lean index 60e33a1027b6..ae479a9fead3 100644 --- a/src/Init/Data/List/Nat.lean +++ b/src/Init/Data/List/Nat.lean @@ -12,3 +12,4 @@ import Init.Data.List.Nat.TakeDrop import Init.Data.List.Nat.Count import Init.Data.List.Nat.Erase import Init.Data.List.Nat.Find +import Init.Data.List.Nat.BEq diff --git a/src/Init/Data/List/Nat/BEq.lean b/src/Init/Data/List/Nat/BEq.lean new file mode 100644 index 000000000000..a15b3bf935c2 --- /dev/null +++ b/src/Init/Data/List/Nat/BEq.lean @@ -0,0 +1,47 @@ +/- +Copyright (c) 2024 Lean FRO All rights reserved. +Released under Apache 2.0 license as described in the file LICENSE. +Authors: Kim Morrison +-/ +prelude +import Init.Data.Nat.Lemmas +import Init.Data.List.Basic + +namespace List + +/-! ### isEqv-/ + +theorem isEqv_eq_decide (a b : List α) (r) : + isEqv a b r = if h : a.length = b.length then + decide (∀ (i : Nat) (h' : i < a.length), r (a[i]'(h ▸ h')) (b[i]'(h ▸ h'))) else false := by + induction a generalizing b with + | nil => + cases b <;> simp + | cons a as ih => + cases b with + | nil => simp + | cons b bs => + simp only [isEqv, ih, length_cons, Nat.add_right_cancel_iff] + split <;> simp [Nat.forall_lt_succ_left'] + +/-! ### beq -/ + +theorem beq_eq_isEqv [BEq α] (a b : List α) : a.beq b = isEqv a b (· == ·) := by + induction a generalizing b with + | nil => + cases b <;> simp + | cons a as ih => + cases b with + | nil => simp + | cons b bs => + simp only [beq_cons₂, ih, isEqv_eq_decide, length_cons, Nat.add_right_cancel_iff, + Nat.forall_lt_succ_left', getElem_cons_zero, getElem_cons_succ, Bool.decide_and, + Bool.decide_eq_true] + split <;> simp + +theorem beq_eq_decide [BEq α] (a b : List α) : + (a == b) = if h : a.length = b.length then + decide (∀ (i : Nat) (h' : i < a.length), a[i] == b[i]'(h ▸ h')) else false := by + simp [BEq.beq, beq_eq_isEqv, isEqv_eq_decide] + +end List diff --git a/tests/lean/run/array_isEqvAux.lean b/tests/lean/run/array_isEqvAux.lean index 029b6a4edadd..04c19852bcd7 100644 --- a/tests/lean/run/array_isEqvAux.lean +++ b/tests/lean/run/array_isEqvAux.lean @@ -17,6 +17,8 @@ After unfolding the instances 'instDecidableEqNat', 'Array.instDecidableEq' and example : #[0, 1] = #[0, 1] := by decide +example : let a := Array.range (10^6); a == a := by native_decide + /-! There are other `Array` functions that use well-founded recursion, which we've marked as `@[semireducible]`. We test that `decide` can unfold them here.