diff --git a/src/Init/Data/BitVec/Lemmas.lean b/src/Init/Data/BitVec/Lemmas.lean index 61e68c58cbc9..e56c3694d565 100644 --- a/src/Init/Data/BitVec/Lemmas.lean +++ b/src/Init/Data/BitVec/Lemmas.lean @@ -1312,6 +1312,41 @@ theorem umod_eq {x y : BitVec n} : theorem toNat_umod {x y : BitVec n} : (x.umod y).toNat = x.toNat % y.toNat := rfl +/-! ### sdiv -/ + +/-- Equation theorem for `sdiv` in terms of `udiv`. -/ +theorem sdiv_eq (x y : BitVec w) : x.sdiv y = + match x.msb, y.msb with + | false, false => udiv x y + | false, true => - (x.udiv (- y)) + | true, false => - ((- x).udiv y) + | true, true => (- x).udiv (- y) := by + rw [BitVec.sdiv] + rcases x.msb <;> rcases y.msb <;> simp + +theorem sdiv_eq_and (x y : BitVec 1) : x.sdiv y = x &&& y := by + have hx : x = 0#1 \/ x = 1#1 := by bv_omega + have hy : y = 0#1 \/ y = 1#1 := by bv_omega + rcases hx with rfl | rfl <;> + rcases hy with rfl | rfl <;> + rfl + +/-! ### smod -/ + +/-- Equation theorem for `smod` in terms of `umod`. -/ +theorem smod_eq (x y : BitVec w) : x.smod y = + match x.msb, y.msb with + | false, false => x.umod y + | false, true => + let u := x.umod (- y) + (if u = 0#w then u else u + y) + | true, false => + let u := umod (- x) y + (if u = 0#w then u else y - u) + | true, true => - ((- x).umod (- y)) := by + rw [BitVec.smod] + rcases x.msb <;> rcases y.msb <;> simp + /-! ### signExtend -/ /-- Equation theorem for `Int.sub` when both arguments are `Int.ofNat` -/