diff --git a/datasets/GE01_MSI_L1B.v1.json b/datasets/GE01_MSI_L1B.v1.json index 81b9fbe26..76b0811c1 100644 --- a/datasets/GE01_MSI_L1B.v1.json +++ b/datasets/GE01_MSI_L1B.v1.json @@ -58,6 +58,24 @@ "type": "application/json", "title": "2013 catalog" }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/GE01_MSI_L1B.v1/2014", + "type": "application/json", + "title": "2014 catalog" + }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/GE01_MSI_L1B.v1/2015", + "type": "application/json", + "title": "2015 catalog" + }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/GE01_MSI_L1B.v1/2016", + "type": "application/json", + "title": "2016 catalog" + }, { "rel": "self", "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/GE01_MSI_L1B.v1", diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index f1a4ab4f1..44051c9b3 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -2625,6 +2625,32 @@ "description": "This specific GEOS-5 model configuration used to perform a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2007 at 7-km (3.5-km in the future) horizontal resolution. Because this simulation is intended to serve as a reference Nature Run for Observing System Simulation Experiments (OSSEs, e.g., Errico et al., 2012) it will be referred to as the 7-km GEOS-5 Nature Run or 7-km G5NR. This simulation has been performed with the Ganymed version of GEOS- 5, more specifically with CVS Tag wmp-Ganymed-4_0_BETA8. In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, as well as surface emissions and uptake of aerosols and trace gases, including daily volcanic and biomass burning emissions, biogenic sources and sinks of CO2, and high-resolution inventories of anthropogenic sources.The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (~ 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625o grid that approximately matches the native cubed-sphere resolution, and another 0.5o reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model\u2019s native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. ", "license": "not-provided" }, + { + "id": "GE01_MSI_L1B.v1", + "title": "GeoEye-1 Level 1B Multispectral 4-Band Satellite Imagery", + "catalog": "CSDA", + "state_date": "2009-01-01", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2471470251-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2471470251-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/GE01_MSI_L1B.v1", + "description": "The GeoEye-1 Level 1B Multispectral 4-Band L1B Satellite Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The imagery has a spatial resolution of 1.84m at nadir (1.65m before summer 2013) and has a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, + { + "id": "GE01_Pan_L1B.v1", + "title": "GeoEye-1 Level 1B Panchromatic Satellite Imagery", + "catalog": "CSDA", + "state_date": "2009-09-18", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497510652-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497510652-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/GE01_Pan_L1B.v1", + "description": "The GeoEye-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This data product includes panchromatic imagery with a spatial resolution of 0.46m at nadir (0.41m before summer 2013) and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, { "id": "GEOS FP.v1", "title": "GEOS Forward Processing", @@ -2846,6 +2872,32 @@ "description": "Measurements made in Green Bay, Wisconsin in 2010.", "license": "not-provided" }, + { + "id": "IKONOS_MSI_L1B.v1", + "title": "IKONOS Level 1B Multispectral 4-Band Satellite Imagery", + "catalog": "CSDA", + "state_date": "1999-10-14", + "end_date": "2015-03-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497453433-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497453433-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/IKONOS_MSI_L1B.v1", + "description": "The IKONOS Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 3.2m at nadir and the temporal resolution is approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, + { + "id": "IKONOS_Pan_L1B.v1", + "title": "IKONOS Level 1B Panchromatic Satellite Imagery", + "catalog": "CSDA", + "state_date": "1999-10-24", + "end_date": "2015-03-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/IKONOS_Pan_L1B.v1", + "description": "The IKONOS Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This data product includes panchromatic imagery with a spatial resolution of 0.82m at nadir and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, { "id": "IMS1_HYSI_GEO.v1.0", "title": "IMS-1 HYSI TOA Radiance and Reflectance Product", @@ -3535,6 +3587,136 @@ "description": "The OMPS-NPP L2 NP Ozone (O3) Total Column swath orbital product provides ozone profile retrievals from the Ozone Mapping and Profiling Suite (OMPS) Nadir-Profiler (NP) instrument on the Suomi-NPP satellite in Near Real Time. The V8 ozone profile algorithm relies on nadir profiler measurements made in the 250 to 310 nm range, as well as from measurements from the nadir mapper in the 300 to 380 nm range. Ozone mixing ratios are reported at 15 pressure levels between 50 and 0.5 hPa. Additionally, this data product contains measurements of total ozone, UV aerosol index and reflectivities at 331 and 380 nm. Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-82 to +82 degrees latitude), and there are about 14.5 orbits per day, each has typically 80 profiles. The NP footprint size is 250 km x 250 km. The L2 NP Ozone data are written using the Hierarchical Data Format Version 5 or HDF5.", "license": "not-provided" }, + { + "id": "NRSCC_GLASS_ FAPAR_MODIS_0.05D.v11", + "title": "NRSCC_GLASS_ FAPAR_MODIS_0.05D", + "catalog": "NRSCC", + "state_date": "2010-02-18", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351149-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351149-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_ FAPAR_MODIS_0.05D.v11", + "description": "This Global LAnd Surface Satellite (GLASS) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) product was generated using MODIS products.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_ FAPAR_MODIS_1KM.v11", + "title": "NRSCC_GLASS_ FAPAR_MODIS_1KM", + "catalog": "NRSCC", + "state_date": "2000-02-18", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351155-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351155-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_ FAPAR_MODIS_1KM.v11", + "description": "This Global LAnd Surface Satellite (GLASS) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) product was developed using MODIS datasets.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_ LAI_AVHRR_0.05D.v11", + "title": "NRSCC_GLASS_ LAI_AVHRR_0.05D", + "catalog": "NRSCC", + "state_date": "1981-01-01", + "end_date": "2018-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351175-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351175-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_ LAI_AVHRR_0.05D.v11", + "description": "This Global LAnd Surface Satellite (GLASS) Leaf Area Index (LAI) product was developed using AVHRR datasets.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_ LAI_MODIS_0.05D.v11", + "title": "NRSCC_GLASS_ LAI_MODIS_0.05D", + "catalog": "NRSCC", + "state_date": "2000-02-18", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351151-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351151-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_ LAI_MODIS_0.05D.v11", + "description": "This Global LAnd Surface Satellite (GLASS) Leaf Area Index (LAI) product was developed using MODIS datasets.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_Albedo_AVHRR.v11", + "title": "NRSCC_GLASS_Albedo_AVHRR", + "catalog": "NRSCC", + "state_date": "2002-01-01", + "end_date": "2015-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351177-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351177-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_Albedo_AVHRR.v11", + "description": "Global high-resolution land surface albedo data from NOAA/AVHRR, generated by Global LAnd Surface Satellite (GLASS) Dataset production team.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_Albedo_MODIS_0.05D.v11", + "title": "NRSCC_GLASS_Albedo_MODIS_0.05D", + "catalog": "NRSCC", + "state_date": "2000-01-01", + "end_date": "2018-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351167-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351167-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_Albedo_MODIS_0.05D.v11", + "description": "The Global LAnd Surface Satellite (GLASS) Albedo product derived from MODIS. The horizontal resolution is 0.05 Degree.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_Albedo_MODIS_1KM.v11", + "title": "NRSCC_GLASS_Albedo_MODIS_1KM", + "catalog": "NRSCC", + "state_date": "2000-01-01", + "end_date": "2018-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351152-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351152-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_Albedo_MODIS_1KM.v11", + "description": "The Global LAnd Surface Satellite (GLASS) Albedo product derived from MODIS. The horizontal resolution is 1KM.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_BBE_AVHRR.v11", + "title": "NRSCC_GLASS_BBE_AVHRR", + "catalog": "NRSCC", + "state_date": "1982-01-01", + "end_date": "2017-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351148-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351148-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_BBE_AVHRR.v11", + "description": "The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from AVHRR.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_BBE_MODIS_0.05D.v11", + "title": "NRSCC_GLASS_BBE_MODIS_0.05D", + "catalog": "NRSCC", + "state_date": "2000-02-18", + "end_date": "2018-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351185-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351185-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_BBE_MODIS_0.05D.v11", + "description": "The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from MODIS. The horizontal resolution is 0.05 Degree.", + "license": "not-provided" + }, + { + "id": "NRSCC_GLASS_BBE_MODIS_1KM.v11", + "title": "NRSCC_GLASS_BBE_MODIS_1KM", + "catalog": "NRSCC", + "state_date": "2000-02-18", + "end_date": "2018-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351153-NRSCC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2205351153-NRSCC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/NRSCC/collections/NRSCC_GLASS_BBE_MODIS_1KM.v11", + "description": "NRSCC_GLASS_BBE_MODIS_1KM", + "license": "not-provided" + }, { "id": "NSF-ANT05-37371", "title": "A Broadband Seismic Experiment to Image the Lithosphere Beneath the Gamburtsev Mountains and Surrounding Areas, East Antarctica", @@ -3730,6 +3912,19 @@ "description": "PM1EPHND is the Aqua Near Real Time (NRT) daily spacecraft definitive ephemeris data file in native format. This is MODIS Ancillary Data. The data collection consists of PM1 Platform Attitude Data that has been preprocessed by ECS to an internal standard supported by the ECS SDP Toolkit. This data is typically used in determining the geolocation of earth remote sensing observations.The file name format is the following: PM1EPHND_NRT.Ayyyyddd.hhmm.vvv where from left to right: PM1 = PM1 (Aqua); EPH = Spacecraft Ephemeris; N = Native format; D = Definitive; A = Acquisition; yyyy = data year, ddd = Julian data day, hh = data hour, mm = data minute; vvv = Version ID.", "license": "not-provided" }, + { + "id": "PSScene3Band.v1", + "title": "PlanetScope Satellite Imagery 3 Band Scene", + "catalog": "CSDA", + "state_date": "2014-06-01", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2112982481-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2112982481-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/PSScene3Band.v1", + "description": "The Planet Scope 3 band collection contains satellite imagery obtained from Planet Labs, Inc by the Commercial Smallsat Data Acquisition (CSDA) Program. This satellite imagery is in the visible waveband range with data in the red, green, and blue wavelengths. These data are collected by Planets Dove, Super Dove, and Blue Super Dove instruments collected from across the global land surface from June 2014 to present. Data have a spatial resolution of 3.7 meters at nadir and provided in GeoTIFF format. Data access are restricted to US Government funded investigators approved by the CSDA Program.", + "license": "not-provided" + }, { "id": "Permafrost_ActiveLayer_NSlope_1759.v1", "title": "ABoVE: Active Layer Soil Characterization of Permafrost Sites, Northern Alaska, 2018", @@ -3743,6 +3938,32 @@ "description": "This dataset provides in situ soil measurements including soil dielectric properties, temperature, and moisture profiles, active layer thickness (ALT), and measurements of soil organic matter, bulk density, porosity, texture, and coarse root biomass. Samples were collected from the surface to permafrost table in soil pits at selected sites along the Dalton Highway in Northern Alaska. From North to South, the study sites include Franklin Bluffs, Sagwon, Happy Valley, Ice Cut, and Imnavait Creek. Measurements were made from August 22 to August 26, 2018. The purpose of the field campaign was to characterize the dielectric properties of permafrost active layer soils in support of the NASA Arctic and Boreal Vulnerability Experiment (ABoVE) Airborne Campaign.", "license": "not-provided" }, + { + "id": "QB02_MSI_L1B.v1", + "title": "QuickBird Level 1B Multispectral 4-Band Satellite Imagery", + "catalog": "CSDA", + "state_date": "2001-10-18", + "end_date": "2015-01-27", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497489665-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497489665-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/QB02_MSI_L1B.v1", + "description": "The QuickBird Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 2.16m at nadir and the temporal resolution is 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, + { + "id": "QB02_Pan_L1B.v1", + "title": "QuickBird Level 1B Panchromatic Satellite Imagery", + "catalog": "CSDA", + "state_date": "2001-10-18", + "end_date": "2015-01-27", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497480059-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497480059-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/QB02_Pan_L1B.v1", + "description": "The QuickBird Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This data product includes panchromatic imagery with a spatial resolution of 0.55m at nadir and a temporal resolution of 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, { "id": "SEAGLIDER_GUAM_2019.vV1", "title": "Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (Guam 2019-2020)", @@ -3873,6 +4094,175 @@ "description": "Current networking capacity at McMurdo Station is insufficient to even be considered broadband, with a summer population of up to 1000 people sharing what is equivalent to the connection enjoyed by a typical family of three in the United States. The changing Antarctic ice sheets and Southern Ocean are large, complex systems that require cutting edge technology to do cutting edge research, with remote technology becoming increasingly useful and even necessary to monitor changes at sufficient spatial and temporal scales. Antarctic science also often involves large data-transfer needs not currently met by existing satellite communication infrastructure. This workshop will gather representatives from across Antarctic science disciplinesfrom astronomy to zoologyas well as research and education networking experts to explore the scientific advances that would be enabled through dramatically increased real-time network connectivity, and also consider opportunities for subsea cable instrumentation. This workshop will assess the importance of a subsea fiber optic cable for high-capacity real-time connectivity in the US Antarctic Program, which is at the forefront of some of the greatest climate-related challenges facing our planet. The workshop will: (1) document unmet or poorly met current scientific and logistic needs for connectivity; (2) explore connectivity needs for planned future research and note the scientific advances that would be possible if the full value of modern cyberinfrastructure-empowered research could be brought to the Antarctic research community; and (3) identify scientific opportunities in planning a fully instrumented communication cable as a scientific observatory. Due to the ongoing COVID-19 pandemic, the workshop will be hosted and streamed online. While the workshop will be limited to invited personnel in order to facilitate a collaborative working environment, broad community input will be sought via survey and via comment on draft outputs. A workshop summary document and report will be delivered to NSF. Increasing US Antarctic connectivity by orders of magnitude will be transformative for science and logistics, and it may well usher in a new era of Antarctic science that is more accessible, efficient and sustainable. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.", "license": "not-provided" }, + { + "id": "USGS_DDS_P14_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Los Angeles Basin Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-119.63631, 32.7535, -117.52315, 34.17464", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P14_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 14 (Los Angeles Basin) are listed here by play number, type, and name: Number Type Name 1401 conventional Santa Monica Fault System and Las Cienegas Fault and Block 1402 conventional Southwestern Shelf and Adjacent Offshore State Lands 1403 conventional Newport-Inglewood Deformation Zone and Southwestern Flank of Central Syncline 1404 conventional Whittier Fault Zone and Fullerton Embayment 1405 conventional Northern Shelf and Northern Flank of Central Syncline 1406 conventional Anaheim Nose 1407 conventional Chino Marginal Basin, Puente and San Jose Hills, and San Gabriel Valley Marginal Basin", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P16_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Salton Trough Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-116.66911, 32.634293, -114.74501, 34.02059", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P16_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 16 (Salton Trough) are listed here by play number, type, and name.", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P17_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Idaho - Snake River Downwarp Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-117.24303, 41.99332, -111.04548, 49.00115", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550494-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550494-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P17_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 17 (Idaho - Snake River Downwarp) are listed here by play number, type, and name: Number Type Name 1701 conventional Miocene Lacustrine (Lake Bruneau) 1702 conventional Pliocene Lacustrine (Lake Idaho) 1703 conventional Pre-Miocene 1704 conventional Older Tertiary", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P19_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Eastern Great Basin Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-117.02622, 35.002083, -111.170425, 43.022377", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552402-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552402-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P19_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 19 (Eastern Great Basin) are listed here by play number, type, and name: Number Type Name 1901 conventional Unconformity \"A\" 1902 conventional Late Paleozoic 1903 conventional Early Tertiary - Late Cretaceous Sheep Pass and Equivalents 1905 conventional Younger Tertiary Basins 1906 conventional Late Paleozoic - Mesozoic (Central Nevada) Thrust Belt 1907 conventional Sevier Frontal Zone", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P2_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Alaska Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-173.22636, 58.49761, -140.99017, 68.01999", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550471-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550471-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P2_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 2 (Central Alaska) are listed here by play number, type, and name: Number Type Name 201 conventional Central Alaska Cenozoic Gas 202 conventional Central Alaska Mesozoic Gas 203 conventional Central Alaska Paleozoic Oil 204 conventional Kandik Pre-Mid-Cretaceous Strata 205 conventional Kandik Upper Cretaceous and Tertiary Non-Marine Stata", + "license": "not-provided" + }, + { + "id": "USGS_P-11_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Coastal Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-123.80987, 34.66294, -118.997696, 39.082233", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552077-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552077-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_P-11_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 11 (Central Coastal) are listed here by play number, type, and name: Number Type Name 1101 conventional Point Arena Oil 1102 conventional Point Reyes Oil 1103 conventional Pescadero Oil 1104 conventional La Honda Oil 1105 conventional Bitterwater Oil 1106 conventional Salinas Oil 1107 conventional Western Cuyama Basin 1109 conventional Cox Graben", + "license": "not-provided" + }, + { + "id": "USGS_SOFIA_eco_hist_db1995-2007.vversion 7", + "title": "1995 - 2007 Ecosystem History of South Florida's Estuaries Database version 7", + "catalog": "CEOS_EXTRA", + "state_date": "1994-09-27", + "end_date": "2007-04-03", + "bbox": "-81.83, 24.75, -80, 26.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554288-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554288-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_SOFIA_eco_hist_db1995-2007.vversion 7", + "description": "The 1995 - 2007 Ecosystem History of South Florida's Estuaries Database contains listings of all sites (modern and core), modern monitoring site survey information (water chemistry, floral and faunal data, etc.), and published core data. Two general types of data are contained within this database: 1) Modern Field Data and 2) Core data - primarily faunal assemblages. Data are available for modern sites and cores in the general areas of Florida Bay, Biscayne Bay, and the southwest (Florida) coastal mangrove estuaries. Specific sites in the Florida Bay area include Taylor Creek, Bob Allen Key, Russell Bank, Pass Key, Whipray Basin, Rankin Bight, park Key, and Mud Creek core). Specific Biscayne Bay sites include Manatee Bay, Featherbed Bank, Card bank, No Name Bank, Middle Key, Black Point North, and Chicken Key. Sites on the southwest coast include Alligator Bay, Big Lostmans Bay, Broad River Bay, Roberts River mouth, Tarpon Bay, Lostmans River First and Second Bays, Harney River, Shark River near entrance to Ponce de Leon Bay, and Shark River channels. Modern field data contains (1) general information about the site, description, latitude and longitude, date of data collection, (2) water chemistry information, and (3) descriptive text of fauna and flora observed at the site. Core data contain either percent abundance data or actual counts of the distribution of mollusks, ostracodes, forams, and pollen within the cores collected in the estuaries. For some cores dinocyst or diatom data may be available.", + "license": "not-provided" + }, + { + "id": "USGS_cont1992", + "title": "1992 Water-Table Contours of the Mojave River Ground-Water Basin, San Bernardino County, California", + "catalog": "CEOS_EXTRA", + "state_date": "1970-01-01", + "end_date": "", + "bbox": "-117.652695, 34.364513, -116.55357, 35.081955", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231553864-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231553864-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_cont1992", + "description": "This data set consists of digital water-table contours for the Mojave River Basin. The U.S. Geological Survey, in cooperation with the Mojave Water Agency, constructed a water-table map of the Mojave River ground-water basin for ground-water levels measured in November 1992. Water-level data were collected from approximately 300 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,200 to 1,600 feet above sea level. [Summary provided by the USGS.]", + "license": "not-provided" + }, + { + "id": "USGS_cont1994", + "title": "1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California", + "catalog": "CEOS_EXTRA", + "state_date": "1970-01-01", + "end_date": "", + "bbox": "-117.07194, 34.095333, -115.98976, 34.64026", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554677-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554677-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_cont1994", + "description": "This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level. [Summary provided by the USGS.]", + "license": "not-provided" + }, + { + "id": "UTC_1990countyboundaries", + "title": "1990 County Boundaries of the United States", + "catalog": "CEOS_EXTRA", + "state_date": "1972-01-01", + "end_date": "1990-12-31", + "bbox": "-177.1, 13.71, -61.48, 76.63", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550562-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550562-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/UTC_1990countyboundaries", + "description": "This data set portrays the 1990 State and county boundaries of the United States, Puerto Rico, and the U.S. Virgin Islands. The data set was created by extracting county polygon features from the individual 1:2,000,000-scale State boundary Digital Line Graph (DLG) files produced by the U.S. Geological Survey. These files were then merged into a single file and the boundaries were modified to what they were in 1990. This is a revised version of the March 2000 data set.", + "license": "not-provided" + }, + { + "id": "WV01_Pan_L1B.v1", + "title": "WorldView-1 Level 1B Panchromatic Satellite Imagery", + "catalog": "CSDA", + "state_date": "2007-10-10", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497387766-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497387766-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV01_Pan_L1B.v1", + "description": "The WorldView-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Panchromatic imagery is collected by the DigitalGlobe WorldView-1 satellite using the WorldView-60 camera across the global land surface from September 2007 to the present. Data have a spatial resolution of 0.5 meters at nadir and a temporal resolution of approximately 1.7 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, + { + "id": "WV02_MSI_L1B.v1", + "title": "WorldView-2 Level 1B Multispectral 8-Band Satellite Imagery", + "catalog": "CSDA", + "state_date": "2009-10-08", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497404794-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497404794-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV02_MSI_L1B.v1", + "description": "The WorldView-2 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, + { + "id": "WV02_Pan_L1B.v1", + "title": "WorldView-2 Level 1B Panchromatic Satellite Imagery", + "catalog": "CSDA", + "state_date": "2009-10-08", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2497398128-CSDA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2497398128-CSDA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV02_Pan_L1B.v1", + "description": "The WorldView-2 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This data product includes panchromatic imagery with a spatial resolution of 0.46m and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program.", + "license": "not-provided" + }, { "id": "WaterBalance_Daily_Historical_GRIDMET.v1.5", "title": "Daily Historical Water Balance Products for the CONUS", @@ -4003,6 +4393,32 @@ "description": "The Advanced Microwave Precipitation Radiometer (AMPR) IMPACTS dataset consists of brightness temperature measurements collected by the Advanced Microwave Precipitation Radiometer (AMPR) onboard the NASA ER-2 high-altitude research aircraft. AMPR provides multi-frequency microwave imagery, with high spatial and temporal resolution for deriving cloud, precipitation, water vapor and surface properties. These measurements were taken during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. Funded by NASA\u2019s Earth Venture program, IMPACTS is the first comprehensive study of East Coast snowstorms in 30 years. Data files are available from January 18, 2020 through February 28, 2022 in netCDF-4 format. ", "license": "not-provided" }, + { + "id": "amsua15sp.v1", + "title": "ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-15 V1", + "catalog": "GHRC_DAAC", + "state_date": "1998-08-03", + "end_date": "", + "bbox": "-180, -90, 180, 89.756", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1996541017-GHRC_DAAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1996541017-GHRC_DAAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GHRC_DAAC/collections/amsua15sp.v1", + "description": "AMSU-A, the Advanced Microwave Sounding Unit, is a 15-channel passive microwave radiometer used to profile atmospheric temperature and moisture from the earth's surface to ~45 km (3 millibars). All orbits beginning in the day (00:00:00 - 23:59:59 UTC) are stored in one daily HDF-EOS file. Each file contains 15 (channel) arrays, as well as corresponding latitude, longitude, and time. AMSU flies on the National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NOAA-15 was the first spacecraft to fly AMSU. Launched on 13 May 1998, NOAA-15 is in a sun synchronous near polar orbit.", + "license": "not-provided" + }, + { + "id": "amsua16sp.v1", + "title": "ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-16 V1", + "catalog": "GHRC_DAAC", + "state_date": "2001-05-27", + "end_date": "2009-07-30", + "bbox": "-180, -89.91, 180, 89.73", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1979956366-GHRC_DAAC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1979956366-GHRC_DAAC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/GHRC_DAAC/collections/amsua16sp.v1", + "description": "AMSU-A, the Advanced Microwave Sounding Unit, is a 15-channel passive microwave radiometer used to profile atmospheric temperature and moisture from the earth's surface to ~45 km (3 millibars). All orbits beginning in the day (00:00:00 - 23:59:59 UTC) are stored in one daily HDF-EOS file. Each file contains 15 (channel) arrays, as well as corresponding latitude, longitude, and time. AMSU flies on the National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Launched on 21 September 2000, NOAA-16 is in a sun synchronous near polar orbit.", + "license": "not-provided" + }, { "id": "asas", "title": "Advanced Solid-state Array Spectroradiometer (ASAS)", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index 9f261d409..1eac0c070 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -201,6 +201,8 @@ FIFE_AF_FLT_M_6.v1 Aircraft Flux-Filtered: NRCC (FIFE) ORNL_DAAC 1987-06-26 1989 FIFE_RAIN_30M_2.v1 30 Minute Rainfall Data (FIFE) ORNL_DAAC 1987-05-29 1987-10-26 -96.6, 39.08, -96.55, 39.11 https://cmr.earthdata.nasa.gov/search/concepts/C179002914-ORNL_DAAC.json 30 minute rainfall data for the Konza Prairie not-provided FIFE_STRM_15M_1.v1 15 Minute Stream Flow Data: USGS (FIFE) ORNL_DAAC 1984-12-25 1988-03-04 -96.6, 39.1, -96.6, 39.1 https://cmr.earthdata.nasa.gov/search/concepts/C179003030-ORNL_DAAC.json USGS 15 minute stream flow data for Kings Creek on the Konza Prairie not-provided G5NR.v1 GEOS-5 Nature Run data NCCS 2005-05-15 2007-06-16 -180, 90, 179.9375, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1634215803-NCCS.json This specific GEOS-5 model configuration used to perform a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2007 at 7-km (3.5-km in the future) horizontal resolution. Because this simulation is intended to serve as a reference Nature Run for Observing System Simulation Experiments (OSSEs, e.g., Errico et al., 2012) it will be referred to as the 7-km GEOS-5 Nature Run or 7-km G5NR. This simulation has been performed with the Ganymed version of GEOS- 5, more specifically with CVS Tag wmp-Ganymed-4_0_BETA8. In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, as well as surface emissions and uptake of aerosols and trace gases, including daily volcanic and biomass burning emissions, biogenic sources and sinks of CO2, and high-resolution inventories of anthropogenic sources.The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (~ 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625o grid that approximately matches the native cubed-sphere resolution, and another 0.5o reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model’s native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. not-provided +GE01_MSI_L1B.v1 GeoEye-1 Level 1B Multispectral 4-Band Satellite Imagery CSDA 2009-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2471470251-CSDA.json The GeoEye-1 Level 1B Multispectral 4-Band L1B Satellite Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The imagery has a spatial resolution of 1.84m at nadir (1.65m before summer 2013) and has a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided +GE01_Pan_L1B.v1 GeoEye-1 Level 1B Panchromatic Satellite Imagery CSDA 2009-09-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497510652-CSDA.json The GeoEye-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the GeoEye-1 satellite using the GeoEye-1 Imaging System across the global land surface from September 2008 to the present. This data product includes panchromatic imagery with a spatial resolution of 0.46m at nadir (0.41m before summer 2013) and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided GEOS FP.v1 GEOS Forward Processing NCCS 2014-02-20 -180, 90, 179.6875, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1634094157-NCCS.json The GEOS FP Atmospheric Data Assimilation System (GEOS ADAS) uses an analysis developed jointly with NOAA’s National Centers for Environmental Prediction (NCEP), which allows the Global Modeling and Assimilation Office (GMAO) to take advantage of the developments at NCEP and the Joint Center for Satellite Data Assimilation (JCSDA). The GEOS AGCM uses the finite-volume dynamics (Lin, 2004) integrated with various physics packages (e.g, Bacmeister et al., 2006), under the Earth System Modeling Framework (ESMF) including the Catchment Land Surface Model (CLSM) (e.g., Koster et al., 2000). The GSI analysis is a three-dimensional variational (3DVar) analysis applied in grid-point space to facilitate the implementation of anisotropic, inhomogeneous covariances (e.g., Wu et al., 2002; Derber et al., 2003). The GSI implementation for GEOS FP incorporates a set of recursive filters that produce approximately Gaussian smoothing kernels and isotropic correlation functions. The GEOS ADAS is documented in Rienecker et al. (2008). More recent updates to the model are presented in Molod et al. (2011). The GEOS system actively assimilates roughly 2 ´ 106 observations for each analysis, including about 7.5 ´ 105 AIRS radiance data. The input stream is roughly twice this volume, but because of the large volume, the data are thinned commensurate with the analysis grid to reduce the computational burden. Data are also rejected from the analysis through quality control procedures designed to detect, for example, the presence of cloud. To minimize the spurious periodic perturbations of the analysis, GEOS FP uses the Incremental Analysis Update (IAU) technique developed by Bloom et al. (1996). not-provided GEOS-CF Products.v1 GEOS CF (Composition Forecast) NCCS 2018-01-01 -180, 90, 179.5, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633930911-NCCS.json The NASA Global Earth Observing System (GEOS) model has been expanded to provide global nearreal- time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (about 25 km). This GEOS Composition Forecast (GEOS-CF) system combines the GEOS weather analysis and forecasting system with the state-of-the-science GEOS-Chem chemistry module (Bey et al., 2001; Keller et al., 2014; Long et al., 2015) to provide detailed chemical analysis of a wide range of air pollutants including ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). not-provided GGD222.v1 Active layer and permafrost properties, including snow depth, soil temperature, and soil moisture, Barrow, Alaska, Version 1 NSIDCV0 1962-01-01 1993-12-31 -156.78872, 71.29058, -156.78872, 71.29058 https://cmr.earthdata.nasa.gov/search/concepts/C1386206550-NSIDCV0.json This data set contains soil temperature, soil moisture, thaw depth, and snow depth data collected at test sites near Barrow, Alaska, during the following years. Soil temperature data - 1963-1966, 1993 Soil moisture data - 1963 Thaw depth - 1962-1968, 1991-1993 Snow depth - 1963-1964 This study focused on characterizing the active soil layer at Barrow, and determining the relationships between and among these physical properties at permafrost sites in the Arctic. This site is U1 of the IPA's Circumpolar Active Layer Monitoring (CALM) Program and later measurements are available at the CALM Web site. not-provided @@ -218,6 +220,8 @@ Global_Microbial_Biomass_C_N_P_1264.v1 A Compilation of Global Soil Microbial Bi Global_Phosphorus_Hedley_Fract_1230.v1 A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation ORNL_CLOUD 1985-01-01 2010-12-31 -117.86, -42.5, 117.6, 63.23 https://cmr.earthdata.nasa.gov/search/concepts/C2216863440-ORNL_CLOUD.json This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley and Stewart, 1982). This database contains estimates of different forms of naturally occurring soil phosphorus, including labile inorganic P, organic P, occluded P, secondary mineral P, apatite P, and total P, based on the analyses of the various Hedley soil fractions.The recent literature survey (Yang and Post, 2011) was restricted to studies of natural, unfertilized, and uncultivated soils since 1995. Ninety measurements of soil P fractions were identified. These were added to the 88 values from soils in natural ecosystems that Cross and Schlesinger (1995) had compiled. Cross and Schlesinger provided a comprehensive survey on Hedley P data prior to 1995. Measurement data are provided for studies published from 1985 through 2010. In addition to the Hedley P fraction measurement data Yang and Post (2011) also compiled information on soil order, soil pH, organic carbon and nitrogen content, as well as the geographic location (longitude and latitude) of the measurement sites. not-provided Global_RTSG_Flux_1078.v1 A Global Database of Gas Fluxes from Soils after Rewetting or Thawing, Version 1.0 ORNL_CLOUD 1956-01-01 2009-12-31 -149.63, -36.45, 160.52, 74.5 https://cmr.earthdata.nasa.gov/search/concepts/C2216863284-ORNL_CLOUD.json This database contains information compiled from published studies on gas flux from soil following rewetting or thawing. The resulting database includes 222 field and laboratory observations focused on rewetting of dry soils, and 116 field laboratory observations focused on thawing of frozen soils studies conducted from 1956 to 2010. Fluxes of carbon dioxide, methane, nitrous oxide, nitrogen oxide, and ammonia (CO2, CH4, N2O, NO and NH3) were compiled from the literature and the flux rates were normalized for ease of comparison. Field observations of gas flux following rewetting of dry soils include events caused by natural rainfall, simulated rainfall in natural ecosystems, and irrigation in agricultural lands. Similarly, thawing of frozen soils include field observations of natural thawing, simulated freezing-thawing events (i.e., thawing of simulated frozen soil by snow removal), and thawing of seasonal ice in temperate and high latitude regions (Kim et al., 2012). Reported parameters include experiment type, location, site type, vegetation, climate, soil properties, rainfall, soil moisture, soil gas flux after wetting and thawing, peak soil gas flux properties, and the corresponding study references. There is one comma-delimited data file. not-provided GreenBay.v0 2010 Measurements made in Green Bay, Wisconsin OB_DAAC 2010-09-17 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360352-OB_DAAC.json Measurements made in Green Bay, Wisconsin in 2010. not-provided +IKONOS_MSI_L1B.v1 IKONOS Level 1B Multispectral 4-Band Satellite Imagery CSDA 1999-10-14 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497453433-CSDA.json The IKONOS Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 3.2m at nadir and the temporal resolution is approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided +IKONOS_Pan_L1B.v1 IKONOS Level 1B Panchromatic Satellite Imagery CSDA 1999-10-24 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.json The IKONOS Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This data product includes panchromatic imagery with a spatial resolution of 0.82m at nadir and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IMS1_HYSI_GEO.v1.0 IMS-1 HYSI TOA Radiance and Reflectance Product ISRO 2008-06-22 2012-09-10 -6.0364, -78.8236, 152.6286, 78.6815 https://cmr.earthdata.nasa.gov/search/concepts/C1214622602-ISRO.json The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms. not-provided ISERV.v1 International Space Station SERVIR Environmental Research and Visualization System V1 USGS_EROS 2013-03-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions. not-provided IXBMIGEO.v2 MISR Geometric Parameters subset for the INTEX-B region V002 LARC 2006-02-28 2006-04-03 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.json This file contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid for the INTEXB_2006 theme. not-provided @@ -271,6 +275,16 @@ NMMIEAI-L2-NRT.v2 OMPS-NPP L2 NM Aerosol Index swath orbital NRT OMINRT 2011-11- NMSO2-PCA-L2-NRT.v2 OMPS/NPP PCA SO2 Total Column 1-Orbit L2 Swath 50x50km NRT OMINRT 2011-10-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1439293808-OMINRT.json The OMPS-NPP L2 NM Sulfur Dioxide (SO2) Total and Tropospheric Column swath orbital collection 2 version 2.0 product contains the retrieved sulfur dioxide (SO2) measured by the Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) sensor on the Suomi-NPP satellite. A Principle Component Analysis (PCA) algorithm is used to retrieve the SO2 total column amount and column amounts in the lower (centered at 2.5 km), middle (centered at 7.5 km) and upper (centered at 11 km) troposphere, as well as the lower stratosphere (centered at 16 km). Each granule contains data from the daylight portion for a single orbit or about 50 minutes. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14 orbits per day each with a swath width of 2600 km. There are 35 pixels in the cross-track direction, with a pixel resolution of about 50 km x 50 km at nadir. The files are written using the Hierarchical Data Format Version 5 or HDF5. not-provided NMTO3NRT.v2 OMPS-NPP L2 NM Ozone (O3) Total Column swath orbital NRT OMINRT 2011-10-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1439272084-OMINRT.json The OMPS-NPP L2 NM Ozone (O3) Total Column swath orbital product provides total ozone measurements from the Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) instrument on the Suomi-NPP satellite.The total column ozone amount is derived from normalized radiances using 2 wavelength pairs 317.5 and 331.2 nm under most conditions, and 331.2 and 360 nm for high ozone and high solar zenith angle conditions. Additionally, this data product contains measurements of UV aerosol index and reflectivity at 331 nm.Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14.5 orbits per day, each has typically 400 swaths. The swath width of the NM is about 2800 km with 36 scenes, or pixels, with a footprint size of 50 km x 50 km at nadir. The L2 NM Ozone data are written using the Hierarchical Data Format Version 5 or HDF5. not-provided NPBUVO3-L2-NRT.v2 OMPS-NPP L2 NP Ozone (O3) Vertical Profile swath orbital NRT OMINRT 2011-10-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1439296101-OMINRT.json The OMPS-NPP L2 NP Ozone (O3) Total Column swath orbital product provides ozone profile retrievals from the Ozone Mapping and Profiling Suite (OMPS) Nadir-Profiler (NP) instrument on the Suomi-NPP satellite in Near Real Time. The V8 ozone profile algorithm relies on nadir profiler measurements made in the 250 to 310 nm range, as well as from measurements from the nadir mapper in the 300 to 380 nm range. Ozone mixing ratios are reported at 15 pressure levels between 50 and 0.5 hPa. Additionally, this data product contains measurements of total ozone, UV aerosol index and reflectivities at 331 and 380 nm. Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-82 to +82 degrees latitude), and there are about 14.5 orbits per day, each has typically 80 profiles. The NP footprint size is 250 km x 250 km. The L2 NP Ozone data are written using the Hierarchical Data Format Version 5 or HDF5. not-provided +NRSCC_GLASS_ FAPAR_MODIS_0.05D.v11 NRSCC_GLASS_ FAPAR_MODIS_0.05D NRSCC 2010-02-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351149-NRSCC.json This Global LAnd Surface Satellite (GLASS) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) product was generated using MODIS products. not-provided +NRSCC_GLASS_ FAPAR_MODIS_1KM.v11 NRSCC_GLASS_ FAPAR_MODIS_1KM NRSCC 2000-02-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351155-NRSCC.json This Global LAnd Surface Satellite (GLASS) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) product was developed using MODIS datasets. not-provided +NRSCC_GLASS_ LAI_AVHRR_0.05D.v11 NRSCC_GLASS_ LAI_AVHRR_0.05D NRSCC 1981-01-01 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351175-NRSCC.json This Global LAnd Surface Satellite (GLASS) Leaf Area Index (LAI) product was developed using AVHRR datasets. not-provided +NRSCC_GLASS_ LAI_MODIS_0.05D.v11 NRSCC_GLASS_ LAI_MODIS_0.05D NRSCC 2000-02-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351151-NRSCC.json This Global LAnd Surface Satellite (GLASS) Leaf Area Index (LAI) product was developed using MODIS datasets. not-provided +NRSCC_GLASS_Albedo_AVHRR.v11 NRSCC_GLASS_Albedo_AVHRR NRSCC 2002-01-01 2015-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351177-NRSCC.json Global high-resolution land surface albedo data from NOAA/AVHRR, generated by Global LAnd Surface Satellite (GLASS) Dataset production team. not-provided +NRSCC_GLASS_Albedo_MODIS_0.05D.v11 NRSCC_GLASS_Albedo_MODIS_0.05D NRSCC 2000-01-01 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351167-NRSCC.json The Global LAnd Surface Satellite (GLASS) Albedo product derived from MODIS. The horizontal resolution is 0.05 Degree. not-provided +NRSCC_GLASS_Albedo_MODIS_1KM.v11 NRSCC_GLASS_Albedo_MODIS_1KM NRSCC 2000-01-01 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351152-NRSCC.json The Global LAnd Surface Satellite (GLASS) Albedo product derived from MODIS. The horizontal resolution is 1KM. not-provided +NRSCC_GLASS_BBE_AVHRR.v11 NRSCC_GLASS_BBE_AVHRR NRSCC 1982-01-01 2017-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351148-NRSCC.json The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from AVHRR. not-provided +NRSCC_GLASS_BBE_MODIS_0.05D.v11 NRSCC_GLASS_BBE_MODIS_0.05D NRSCC 2000-02-18 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351185-NRSCC.json The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from MODIS. The horizontal resolution is 0.05 Degree. not-provided +NRSCC_GLASS_BBE_MODIS_1KM.v11 NRSCC_GLASS_BBE_MODIS_1KM NRSCC 2000-02-18 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351153-NRSCC.json NRSCC_GLASS_BBE_MODIS_1KM not-provided NSF-ANT05-37371 A Broadband Seismic Experiment to Image the Lithosphere Beneath the Gamburtsev Mountains and Surrounding Areas, East Antarctica AMD_USAPDC 2007-10-01 2013-09-30 40, -84, 140, -76 https://cmr.earthdata.nasa.gov/search/concepts/C2532069799-AMD_USAPDC.json This award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach. not-provided NSF-ANT10-43485.v1 A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea AMD_USAPDC 2011-07-01 2015-06-30 -160, -78, -150, -68 https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.json This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. not-provided NSF-ANT10-43517 A new reconstruction of the last West Antarctic Ice Sheet deglaciation in the Ross Sea AMD_USAPDC 2011-07-01 2015-06-30 163.5, -78.32, 165.35, -77.57 https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.json This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. not-provided @@ -286,7 +300,10 @@ OMSO2.v003 OMI/Aura Sulphur Dioxide (SO2) Total Column 1-orbit L2 Swath 13x24 km OMTO3.v003 OMI/Aura Ozone (O3) Total Column 1-Orbit L2 Swath 13x24 km V003 NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000140-OMINRT.json The OMI/Aura Level-2 Total Column Ozone Data Product OMTO3 Near Real Time data is made available from the OMI SIPS NASA for the public access. The Ozone Monitoring Instrument (OMI)was launched aboard the EOS-Aura satellite on July 15, 2004(1:38 pm equator crossing time, ascending mode). OMI with its 2600 km viewing swath width provides almost daily global coverage. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR)in collaboration with Finish Meterological Institute (FMI), to the US EOS-Aura Mission. The principal investigator's (Dr. Pieternel Levelt) institute is the KNMI (Royal Netherlands Meteorological Institute). OMI is designed to monitor stratospheric and tropospheric ozone, clouds, aerosols and smoke from biomass burning, SO2 from volcanic eruptions, and key tropospheric pollutants (HCHO, NO2) and ozone depleting gases (OClO and BrO). OMI sensor counts, calibrated and geolocated radiances, and all derived geophysical atmospheric products will be archived at the NASA Goddard DAAC. This level-2 global total column ozone product (OMTO3)is based on the enhanced TOMS version-8 algorithm that essentially uses the ultraviolet radiance data at 317.5 and 331.2 nm. OMI additional hyper-spectral measurements help in the corrections for the factors that induce uncertainty in ozone retrieval (e.g., cloud and aerosol, sea-glint effects, profile shape sensitivity, SO2 and other trace gas contamination). In addition to the total ozone values this product also contains some auxiliary derived and ancillary input parameters including N-values, effective Lambertian scene-reflectivity, UV aerosol index, SO2 index, cloud fraction, cloud pressure, ozone below clouds, terrain height, geolocation, solar and satellite viewing angles, and extensive quality flags. The shortname for this Level-2 OMI total column ozone product is OMTO3 and the algorithm lead for this product is NASA OMI scientist Dr. Pawan K. Bhartia ( Pawan.K.Bhartia@nasa.gov). OMTO3 files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains data from the day lit portion of an orbit (~53 minutes). There are approximately 14 orbits per day. The maximum file size for the OMTO3 data product is about 35 Mbytes. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml For more information on Ozone Monitoring Instrument and atmospheric data products, please visit the OMI-Aura sites: http://aura.gsfc.nasa.gov/ http://www.knmi.nl/omi/research/documents/ . Data Category Parameters: The OMTO3 data file contains one swath which consists of two groups: Data fields: OMI Total Ozone,Effective Reflectivity (331 - 360 nm), N-value, Cloud Fraction, Cloud Top Pressure, O3 below Cloud, UV Aerosol Index, SO2 index, Wavelength used in the algorithm, many Auxiliary Algorithm Parameter and Quality Flags Geolocation Fields: Latitude, Longitude, Time, Relative Azimuth, Solar Zenith and Azimuth, Viewing Zenith and Azimuth angles, Spacecraft Altitude, Latitude, Longitude, Terrain Height, Ground Pixel Quality Flags.For the full set of Aura data products available from the GES DISC, please see the link http://disc.sci.gsfc.nasa.gov/Aura/ . not-provided OMTO3e.v003 OMI/Aura Ozone (O3) Total Column Daily L3 Global 0.25deg Lat/Lon Grid NRT OMINRT 2004-07-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1428966163-OMINRT.json The OMI science team produces this Level-3 Aura/OMI Global TOMS-Like Total Column Ozone gridded product OMTO3e (0.25deg Lat/Lon grids). The OMTO3e product selects the best pixel (shortest path length) data from the good quality filtered level-2 total column ozone data (OMTO3) that fall in the 0.25 x 0.25 degree global grids. Each file contains total column ozone, radiative cloud fraction and solar and viewing zenith angles. OMTO3e files are stored in EOS Hierarchical Data Format (HDF-EOS5). Each file contains daily data from approximately 15 orbits. The maximum file size for the OMTO3e data product is about 2.8 Mbytes. (The shortname for this Level-3 TOMS-Like Total Column Ozone gridded product is OMTO3e) . not-provided PM1EPHND_NRT.v6.1NRT MODIS/Aqua 24-hour Spacecraft ephemeris/orbit data files to be read via SDP Toolkit Binary Format - NRT LANCEMODIS 2017-10-11 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426395235-LANCEMODIS.json PM1EPHND is the Aqua Near Real Time (NRT) daily spacecraft definitive ephemeris data file in native format. This is MODIS Ancillary Data. The data collection consists of PM1 Platform Attitude Data that has been preprocessed by ECS to an internal standard supported by the ECS SDP Toolkit. This data is typically used in determining the geolocation of earth remote sensing observations.The file name format is the following: PM1EPHND_NRT.Ayyyyddd.hhmm.vvv where from left to right: PM1 = PM1 (Aqua); EPH = Spacecraft Ephemeris; N = Native format; D = Definitive; A = Acquisition; yyyy = data year, ddd = Julian data day, hh = data hour, mm = data minute; vvv = Version ID. not-provided +PSScene3Band.v1 PlanetScope Satellite Imagery 3 Band Scene CSDA 2014-06-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2112982481-CSDA.json The Planet Scope 3 band collection contains satellite imagery obtained from Planet Labs, Inc by the Commercial Smallsat Data Acquisition (CSDA) Program. This satellite imagery is in the visible waveband range with data in the red, green, and blue wavelengths. These data are collected by Planets Dove, Super Dove, and Blue Super Dove instruments collected from across the global land surface from June 2014 to present. Data have a spatial resolution of 3.7 meters at nadir and provided in GeoTIFF format. Data access are restricted to US Government funded investigators approved by the CSDA Program. not-provided Permafrost_ActiveLayer_NSlope_1759.v1 ABoVE: Active Layer Soil Characterization of Permafrost Sites, Northern Alaska, 2018 ORNL_CLOUD 2018-08-22 2018-08-26 -149.31, 68.61, -148.56, 69.81 https://cmr.earthdata.nasa.gov/search/concepts/C2143402217-ORNL_CLOUD.json This dataset provides in situ soil measurements including soil dielectric properties, temperature, and moisture profiles, active layer thickness (ALT), and measurements of soil organic matter, bulk density, porosity, texture, and coarse root biomass. Samples were collected from the surface to permafrost table in soil pits at selected sites along the Dalton Highway in Northern Alaska. From North to South, the study sites include Franklin Bluffs, Sagwon, Happy Valley, Ice Cut, and Imnavait Creek. Measurements were made from August 22 to August 26, 2018. The purpose of the field campaign was to characterize the dielectric properties of permafrost active layer soils in support of the NASA Arctic and Boreal Vulnerability Experiment (ABoVE) Airborne Campaign. not-provided +QB02_MSI_L1B.v1 QuickBird Level 1B Multispectral 4-Band Satellite Imagery CSDA 2001-10-18 2015-01-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497489665-CSDA.json The QuickBird Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 2.16m at nadir and the temporal resolution is 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided +QB02_Pan_L1B.v1 QuickBird Level 1B Panchromatic Satellite Imagery CSDA 2001-10-18 2015-01-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497480059-CSDA.json The QuickBird Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the DigitalGlobe QuickBird-2 satellite using the Ball High Resolution Camera 60 across the global land surface from October 2001 to January 2015. This data product includes panchromatic imagery with a spatial resolution of 0.55m at nadir and a temporal resolution of 2.5 to 5.6 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided SEAGLIDER_GUAM_2019.vV1 Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (Guam 2019-2020) POCLOUD 2019-10-03 2020-01-15 143.63035, 13.39476, 144.613, 14.71229 https://cmr.earthdata.nasa.gov/search/concepts/C2151536874-POCLOUD.json This dataset was produced by the Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (NASA grant NNX17AK07G) project, an investigation to develop tools and strategies to better measure the structure and variability of upper-ocean salinity in rain-dominated environments. From October 2019 to January 2020, three Seagliders were deployed near Guam (14°N 144°E). The Seaglider is an autonomous profiler measuring salinity and temperature in the upper ocean. The three gliders sampled in an adaptive formation to capture the patchiness of the rain and the corresponding oceanic response in real time. The location was chosen because of the likelihood of intense tropical rain events and the availability of a NEXRAD (S-band) rain radar at the Guam Airport. Spacing between gliders varies from 1 to 60 km. Data samples are gridded by profile and on regular depth bins from 0 to 1000 m. The time interval between profiles was about 3 hours, and they are typically about 1.5 km apart. These profiles are available at Level 2 (basic gridding) and Level 3 (despiked and interpolated). All Seaglider data files are in netCDF format with standards compliant metadata. The project was led by a team from the Applied Physics Laboratory at the University of Washington. not-provided SRDB_V5_1827.v5 A Global Database of Soil Respiration Data, Version 5.0 ORNL_CLOUD 1961-01-01 2017-12-31 -163.71, -78.02, 175.9, 81.8 https://cmr.earthdata.nasa.gov/search/concepts/C2216864433-ORNL_CLOUD.json The Soil Respiration Database (SRDB) is a near-universal compendium of published soil respiration (Rs) data. The database encompasses published studies that report at least one of the following data measured in the field (not laboratory): annual soil respiration, mean seasonal soil respiration, a seasonal or annual partitioning of soil respiration into its source fluxes, soil respiration temperature response (Q10), or soil respiration at 10 degrees C. The SRDB's orientation is to seasonal and annual fluxes, not shorter-term or chamber-specific measurements, and the database is dominated by temperate, well-drained forest measurement locations. Version 5 (V5) is the compilation of 2,266 published studies with measurements taken between 1961-2017. V5 features more soil respiration data published in Russian and Chinese scientific literature for better global spatio-temporal coverage and improved global climate-space representation. The database is also restructured to have better interoperability with other datasets related to carbon-cycle science. not-provided Survey_1988_89_Mawson_npcms.v1 1988/89 Summer season, surveying and mapping program, Mawson - North Prince Charles Mountains - Davis AU_AADC 1988-10-01 1989-02-28 62, -70, 79, -66 https://cmr.earthdata.nasa.gov/search/concepts/C1214313847-AU_AADC.json Field season report of these programs: 1988/89 Summer Season surveying and mapping North Prince Charles Mountains; ...mapping program Northern PCM's - Mawson Doppler Translocation Support; ....mapping program Voyage 6 stopover Davis. Includes maps and mapsheet layouts. See the report for full details on the program. Contents are: Introduction Preparation Voytage to Antarctica 1988/89 Summer Season Surveying and Mapping Program, Northern Prince Charles Mountains 1988/89 Summer Season Surveying and Mapping Program, Voyage 6 Stopover, Davis Performance of Equipment Station Marking Field Camping Climatic Conditions Conclusion Appendices not-provided @@ -297,6 +314,19 @@ USAP-1643722.v1 A High Resolution Atmospheric Methane Record from the South Pole USAP-1744755.v1 A mechanistic study of bio-physical interaction and air-sea carbon transfer in the Southern Ocean AMD_USAPDC 2018-05-01 2022-04-30 -80, -70, -30, -45 https://cmr.earthdata.nasa.gov/search/concepts/C2545372297-AMD_USAPDC.json Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. not-provided USAP-1744989.v1 A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins AMD_USAPDC 2018-07-15 2022-06-30 -180, -90, 180, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.json This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. not-provided USAP-2130663.v1 2021 Antarctic Subsea Cable Workshop: High-Speed Connectivity Needs to Advance US Antarctic Science AMD_USAPDC 2021-06-01 2023-05-31 -180, -90, 180, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2556670196-AMD_USAPDC.json Current networking capacity at McMurdo Station is insufficient to even be considered broadband, with a summer population of up to 1000 people sharing what is equivalent to the connection enjoyed by a typical family of three in the United States. The changing Antarctic ice sheets and Southern Ocean are large, complex systems that require cutting edge technology to do cutting edge research, with remote technology becoming increasingly useful and even necessary to monitor changes at sufficient spatial and temporal scales. Antarctic science also often involves large data-transfer needs not currently met by existing satellite communication infrastructure. This workshop will gather representatives from across Antarctic science disciplinesfrom astronomy to zoologyas well as research and education networking experts to explore the scientific advances that would be enabled through dramatically increased real-time network connectivity, and also consider opportunities for subsea cable instrumentation. This workshop will assess the importance of a subsea fiber optic cable for high-capacity real-time connectivity in the US Antarctic Program, which is at the forefront of some of the greatest climate-related challenges facing our planet. The workshop will: (1) document unmet or poorly met current scientific and logistic needs for connectivity; (2) explore connectivity needs for planned future research and note the scientific advances that would be possible if the full value of modern cyberinfrastructure-empowered research could be brought to the Antarctic research community; and (3) identify scientific opportunities in planning a fully instrumented communication cable as a scientific observatory. Due to the ongoing COVID-19 pandemic, the workshop will be hosted and streamed online. While the workshop will be limited to invited personnel in order to facilitate a collaborative working environment, broad community input will be sought via survey and via comment on draft outputs. A workshop summary document and report will be delivered to NSF. Increasing US Antarctic connectivity by orders of magnitude will be transformative for science and logistics, and it may well usher in a new era of Antarctic science that is more accessible, efficient and sustainable. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. not-provided +USGS_DDS_P14_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Los Angeles Basin Province CEOS_EXTRA 1990-12-01 1990-12-01 -119.63631, 32.7535, -117.52315, 34.17464 https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 14 (Los Angeles Basin) are listed here by play number, type, and name: Number Type Name 1401 conventional Santa Monica Fault System and Las Cienegas Fault and Block 1402 conventional Southwestern Shelf and Adjacent Offshore State Lands 1403 conventional Newport-Inglewood Deformation Zone and Southwestern Flank of Central Syncline 1404 conventional Whittier Fault Zone and Fullerton Embayment 1405 conventional Northern Shelf and Northern Flank of Central Syncline 1406 conventional Anaheim Nose 1407 conventional Chino Marginal Basin, Puente and San Jose Hills, and San Gabriel Valley Marginal Basin not-provided +USGS_DDS_P16_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Salton Trough Province CEOS_EXTRA 1990-12-01 1990-12-01 -116.66911, 32.634293, -114.74501, 34.02059 https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 16 (Salton Trough) are listed here by play number, type, and name. not-provided +USGS_DDS_P17_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Idaho - Snake River Downwarp Province CEOS_EXTRA 1990-12-01 1990-12-01 -117.24303, 41.99332, -111.04548, 49.00115 https://cmr.earthdata.nasa.gov/search/concepts/C2231550494-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 17 (Idaho - Snake River Downwarp) are listed here by play number, type, and name: Number Type Name 1701 conventional Miocene Lacustrine (Lake Bruneau) 1702 conventional Pliocene Lacustrine (Lake Idaho) 1703 conventional Pre-Miocene 1704 conventional Older Tertiary not-provided +USGS_DDS_P19_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Eastern Great Basin Province CEOS_EXTRA 1990-12-01 1990-12-01 -117.02622, 35.002083, -111.170425, 43.022377 https://cmr.earthdata.nasa.gov/search/concepts/C2231552402-CEOS_EXTRA.json "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 19 (Eastern Great Basin) are listed here by play number, type, and name: Number Type Name 1901 conventional Unconformity ""A"" 1902 conventional Late Paleozoic 1903 conventional Early Tertiary - Late Cretaceous Sheep Pass and Equivalents 1905 conventional Younger Tertiary Basins 1906 conventional Late Paleozoic - Mesozoic (Central Nevada) Thrust Belt 1907 conventional Sevier Frontal Zone" not-provided +USGS_DDS_P2_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Alaska Province CEOS_EXTRA 1990-12-01 1990-12-01 -173.22636, 58.49761, -140.99017, 68.01999 https://cmr.earthdata.nasa.gov/search/concepts/C2231550471-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 2 (Central Alaska) are listed here by play number, type, and name: Number Type Name 201 conventional Central Alaska Cenozoic Gas 202 conventional Central Alaska Mesozoic Gas 203 conventional Central Alaska Paleozoic Oil 204 conventional Kandik Pre-Mid-Cretaceous Strata 205 conventional Kandik Upper Cretaceous and Tertiary Non-Marine Stata not-provided +USGS_P-11_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Coastal Province CEOS_EXTRA 1990-12-01 1990-12-01 -123.80987, 34.66294, -118.997696, 39.082233 https://cmr.earthdata.nasa.gov/search/concepts/C2231552077-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 11 (Central Coastal) are listed here by play number, type, and name: Number Type Name 1101 conventional Point Arena Oil 1102 conventional Point Reyes Oil 1103 conventional Pescadero Oil 1104 conventional La Honda Oil 1105 conventional Bitterwater Oil 1106 conventional Salinas Oil 1107 conventional Western Cuyama Basin 1109 conventional Cox Graben not-provided +USGS_SOFIA_eco_hist_db1995-2007.vversion 7 1995 - 2007 Ecosystem History of South Florida's Estuaries Database version 7 CEOS_EXTRA 1994-09-27 2007-04-03 -81.83, 24.75, -80, 26.5 https://cmr.earthdata.nasa.gov/search/concepts/C2231554288-CEOS_EXTRA.json The 1995 - 2007 Ecosystem History of South Florida's Estuaries Database contains listings of all sites (modern and core), modern monitoring site survey information (water chemistry, floral and faunal data, etc.), and published core data. Two general types of data are contained within this database: 1) Modern Field Data and 2) Core data - primarily faunal assemblages. Data are available for modern sites and cores in the general areas of Florida Bay, Biscayne Bay, and the southwest (Florida) coastal mangrove estuaries. Specific sites in the Florida Bay area include Taylor Creek, Bob Allen Key, Russell Bank, Pass Key, Whipray Basin, Rankin Bight, park Key, and Mud Creek core). Specific Biscayne Bay sites include Manatee Bay, Featherbed Bank, Card bank, No Name Bank, Middle Key, Black Point North, and Chicken Key. Sites on the southwest coast include Alligator Bay, Big Lostmans Bay, Broad River Bay, Roberts River mouth, Tarpon Bay, Lostmans River First and Second Bays, Harney River, Shark River near entrance to Ponce de Leon Bay, and Shark River channels. Modern field data contains (1) general information about the site, description, latitude and longitude, date of data collection, (2) water chemistry information, and (3) descriptive text of fauna and flora observed at the site. Core data contain either percent abundance data or actual counts of the distribution of mollusks, ostracodes, forams, and pollen within the cores collected in the estuaries. For some cores dinocyst or diatom data may be available. not-provided +USGS_cont1992 1992 Water-Table Contours of the Mojave River Ground-Water Basin, San Bernardino County, California CEOS_EXTRA 1970-01-01 -117.652695, 34.364513, -116.55357, 35.081955 https://cmr.earthdata.nasa.gov/search/concepts/C2231553864-CEOS_EXTRA.json This data set consists of digital water-table contours for the Mojave River Basin. The U.S. Geological Survey, in cooperation with the Mojave Water Agency, constructed a water-table map of the Mojave River ground-water basin for ground-water levels measured in November 1992. Water-level data were collected from approximately 300 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,200 to 1,600 feet above sea level. [Summary provided by the USGS.] not-provided +USGS_cont1994 1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California CEOS_EXTRA 1970-01-01 -117.07194, 34.095333, -115.98976, 34.64026 https://cmr.earthdata.nasa.gov/search/concepts/C2231554677-CEOS_EXTRA.json This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level. [Summary provided by the USGS.] not-provided +UTC_1990countyboundaries 1990 County Boundaries of the United States CEOS_EXTRA 1972-01-01 1990-12-31 -177.1, 13.71, -61.48, 76.63 https://cmr.earthdata.nasa.gov/search/concepts/C2231550562-CEOS_EXTRA.json This data set portrays the 1990 State and county boundaries of the United States, Puerto Rico, and the U.S. Virgin Islands. The data set was created by extracting county polygon features from the individual 1:2,000,000-scale State boundary Digital Line Graph (DLG) files produced by the U.S. Geological Survey. These files were then merged into a single file and the boundaries were modified to what they were in 1990. This is a revised version of the March 2000 data set. not-provided +WV01_Pan_L1B.v1 WorldView-1 Level 1B Panchromatic Satellite Imagery CSDA 2007-10-10 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497387766-CSDA.json The WorldView-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Panchromatic imagery is collected by the DigitalGlobe WorldView-1 satellite using the WorldView-60 camera across the global land surface from September 2007 to the present. Data have a spatial resolution of 0.5 meters at nadir and a temporal resolution of approximately 1.7 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided +WV02_MSI_L1B.v1 WorldView-2 Level 1B Multispectral 8-Band Satellite Imagery CSDA 2009-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497404794-CSDA.json The WorldView-2 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided +WV02_Pan_L1B.v1 WorldView-2 Level 1B Panchromatic Satellite Imagery CSDA 2009-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497398128-CSDA.json The WorldView-2 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This data product includes panchromatic imagery with a spatial resolution of 0.46m and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided WaterBalance_Daily_Historical_GRIDMET.v1.5 Daily Historical Water Balance Products for the CONUS LPCLOUD 1980-01-01 2021-12-31 -131.70607, 21.115301, -60.530453, 55.457306 https://cmr.earthdata.nasa.gov/search/concepts/C2674694066-LPCLOUD.json This dataset provides daily historical Water Balance Model outputs from a Thornthwaite-type, single bucket model. Climate inputs to the model are from GridMet daily temperature and precipitation for the Continental United States (CONUS). The Water Balance Model output variables include the following: Potential Evapotranspiration (PET, mm), Actual Evapotranspiration (AET, mm), Moisture Deficit (Deficit, mm), Soil Water (soilwater, mm), Runoff (mm), Rain (mm), and Accumulated Snow Water Equivalent (accumswe, mm). The dataset covers the period from January 1 to December 31 for years 1980 through 2021 for the CONUS. Water Balance Model variables are provided as individual files, by variable and year, at a 1 km x 1 km spatial resolution and a daily temporal resolution. Data are in a North America Lambert Conformal Conic projection and are distributed in a standardized Climate and Forecast (CF)-compliant NetCDF file format. not-provided a6efcb0868664248b9cb212aba44313d ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 2 aerosol products from MERIS (ALAMO algorithm), Version 2.2 FEDEO 2008-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548142742-FEDEO.json The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation. not-provided aamhcpex.v1 AAMH CPEX V1 GHRC_DAAC 2017-05-26 2017-07-16 154.716, 0.6408, -19.5629, 44.9689 https://cmr.earthdata.nasa.gov/search/concepts/C2645106424-GHRC_DAAC.json The AAMH CPEX dataset contains products obtained from the MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites. These data were collected in support of the NASA Convective Processes Experiment (CPEX) field campaign. The CPEX field campaign took place in the North Atlantic-Gulf of Mexico-Caribbean Sea region from 25 May-25 June 2017. CPEX conducted a total of sixteen DC-8 missions from 27 May-24 June. The CPEX campaign collected data to help explain convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of Mexico-Caribbean Oceanic region during the early summer of 2017. These data are available from May 26, 2017 through July 15, 2017 and are available in netCDF-4 format. not-provided @@ -307,6 +337,8 @@ aces1log.v1 ACES LOG DATA V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 ht aces1time.v1 ACES TIMING DATA V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977855412-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August or 2002, ACES researchers overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of timing data used for the experiment. When used it provides: syncclock_time = time found at the syncclock (VSI-SYnCCLOCK-32) in seconds from first file name, syncclock_m_time = time found at the syncclock (VSI-SYnCCLOCK-32) in Matlab dateform format, system_time = system time in seconds from first file name, system_m_time = system time in dateform format, gps_time = time found at the GPS unit in seconds from first file name, gps_m_time = time found at GPS unit in dateform, cmos_time = time found at the computer CMOS in seconds from first file name, cmos_m_time = time found at the computer CMOS in dateform. not-provided aces1trig.v1 ACES TRIGGERED DATA V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977858342-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloud electrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from the following instruments: Slow/Fast antenna, Electric Field Mill, Optical Pulse Sensors, Searchcoil Magnetometer, Accelerometer, and Gerdien Conductivity Probe. These data were collected at 200KHz from the first 16 telemetry items collected on the aircraft, were initiated by an operator selected trigger (e.g. DOPS), and continued collecting for as long as the trigger continued. not-provided amprimpacts.v1 Advanced Microwave Precipitation Radiometer (AMPR) IMPACTS V1 GHRC_DAAC 2020-01-18 2022-02-28 -118.51, 30.6918, -64.3661, 48.2585 https://cmr.earthdata.nasa.gov/search/concepts/C2004708841-GHRC_DAAC.json The Advanced Microwave Precipitation Radiometer (AMPR) IMPACTS dataset consists of brightness temperature measurements collected by the Advanced Microwave Precipitation Radiometer (AMPR) onboard the NASA ER-2 high-altitude research aircraft. AMPR provides multi-frequency microwave imagery, with high spatial and temporal resolution for deriving cloud, precipitation, water vapor and surface properties. These measurements were taken during the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. Funded by NASA’s Earth Venture program, IMPACTS is the first comprehensive study of East Coast snowstorms in 30 years. Data files are available from January 18, 2020 through February 28, 2022 in netCDF-4 format. not-provided +amsua15sp.v1 ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-15 V1 GHRC_DAAC 1998-08-03 -180, -90, 180, 89.756 https://cmr.earthdata.nasa.gov/search/concepts/C1996541017-GHRC_DAAC.json AMSU-A, the Advanced Microwave Sounding Unit, is a 15-channel passive microwave radiometer used to profile atmospheric temperature and moisture from the earth's surface to ~45 km (3 millibars). All orbits beginning in the day (00:00:00 - 23:59:59 UTC) are stored in one daily HDF-EOS file. Each file contains 15 (channel) arrays, as well as corresponding latitude, longitude, and time. AMSU flies on the National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NOAA-15 was the first spacecraft to fly AMSU. Launched on 13 May 1998, NOAA-15 is in a sun synchronous near polar orbit. not-provided +amsua16sp.v1 ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-16 V1 GHRC_DAAC 2001-05-27 2009-07-30 -180, -89.91, 180, 89.73 https://cmr.earthdata.nasa.gov/search/concepts/C1979956366-GHRC_DAAC.json AMSU-A, the Advanced Microwave Sounding Unit, is a 15-channel passive microwave radiometer used to profile atmospheric temperature and moisture from the earth's surface to ~45 km (3 millibars). All orbits beginning in the day (00:00:00 - 23:59:59 UTC) are stored in one daily HDF-EOS file. Each file contains 15 (channel) arrays, as well as corresponding latitude, longitude, and time. AMSU flies on the National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft as part of the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Launched on 21 September 2000, NOAA-16 is in a sun synchronous near polar orbit. not-provided asas Advanced Solid-state Array Spectroradiometer (ASAS) USGS_LTA 1988-06-26 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220566261-USGS_LTA.json The Advanced Solid-state Array Spectroradiometer (ASAS) data collection contains data collected by the ASAS sensor flown aboard NASA aircraft. A fundamental use of ASAS data is to characterize and understand the directional variability in solar energy scattered by various land surface cover types (e.g.,crops, forests, prairie grass, snow, or bare soil). The sensor's Bidirectional Reflectance Distribution Function determines the variation in the reflectance of a surface as a function of both the view zenith angle and solar illumination angle. The ASAS sensor is a hyperspectral, multiangle, airborne remote sensing instrument maintained and operated by the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The ASAS instrument is mounted on the underside of either NASA C-130 or NASA P-3 aircraft and is capable of off-nadir pointing from approximately 70 degrees forward to 55 degrees aft along the direction of flight. The aircraft is flown at an altitude of 5000 - 6000 meters (approximately 16,000 - 20,000 ft.). Data in the ASAS collection primarily cover areas over the continental United States, but some ASAS data are also available over areas in Canada and western Africa. The ASAS data were collected between 1988 and 1994. not-provided aster_global_dem ASTER Global DEM USGS_LTA 1970-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220567908-USGS_LTA.json ASTER is capable of collecting in-track stereo using nadir- and aft-looking near infrared cameras. Since 2001, these stereo pairs have been used to produce single-scene (60- x 60-kilomenter (km)) digital elevation models (DEM) having vertical (root-mean-squared-error) accuracies generally between 10- and 25-meters (m). The methodology used by Japan's Sensor Information Laboratory Corporation (SILC) to produce the ASTER GDEM involves automated processing of the entire ASTER Level-1A archive. Stereo-correlation is used to produce over one million individual scene-based ASTER DEMs, to which cloud masking is applied to remove cloudy pixels. All cloud-screened DEMS are stacked and residual bad values and outliers are removed. Selected data are averaged to create final pixel values, and residual anomalies are corrected before partitioning the data into 1 degree (°) x 1° tiles. The ASTER GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles. Tiles that contain at least 0.01% land area are included. The ASTER GDEM is distributed as Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude, longitude). The data are posted on a 1 arc-second (approximately 30–m at the equator) grid and referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model (EGM96) geoid. not-provided b673f41b-d934-49e4-af6b-44bbdf164367 AVHRR - Land Surface Temperature (LST) - Europe, Daytime FEDEO 1998-02-23 -24, 28, 57, 78 https://cmr.earthdata.nasa.gov/search/concepts/C2207458008-FEDEO.json "The ""Land Surface Temperature derived from NOAA-AVHRR data (LST_AVHRR)"" is a fixed grid map (in stereographic projection ) with a spatial resolution of 1.1 km. The total size covering Europe is 4100 samples by 4300 lines. Within 24 hours of acquiring data from the satellite, day-time and night-time LSTs are calculated. In general, the products utilise data from all six of the passes that the satellite makes over Europe in each 24 hour period. For the daily day-time LST maps, the compositing criterion for the three day-time passes is maximum NDVI value and for daily night-time LST maps, the criterion is the maximum night-time LST value of the three night-time passes. Weekly and monthly day-time or night-time LST composite products are also produced by averaging daily day-time or daily night-time LST values, respectively. The range of LST values is scaled between –39.5°C and +87°C with a radiometric resolution of 0.5°C. A value of –40°C is used for water. Clouds are masked out as bad values. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/" not-provided