diff --git a/datasets/WV01_Pan_L1B.v1.json b/datasets/WV01_Pan_L1B.v1.json index 4fce52902..ca04ad9f6 100644 --- a/datasets/WV01_Pan_L1B.v1.json +++ b/datasets/WV01_Pan_L1B.v1.json @@ -28,6 +28,12 @@ "type": "application/json", "title": "CMR JSON metadata for collection" }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV01_Pan_L1B.v1/2011", + "type": "application/json", + "title": "2011 catalog" + }, { "rel": "child", "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV01_Pan_L1B.v1/2013", diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index b61e35e99..a8bd46a36 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -25,58 +25,6 @@ "description": "The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 3 aerosol daily and monthly gridded products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation.", "license": "not-provided" }, - { - "id": "12-hourly_interpolated_surface_position_from_buoys", - "title": "12-Hourly Interpolated Surface Position from Buoys", - "catalog": "SCIOPS", - "state_date": "1979-01-01", - "end_date": "2009-12-01", - "bbox": "-180, 60, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214600619-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214600619-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/12-hourly_interpolated_surface_position_from_buoys", - "description": "This data set contains Arctic Ocean daily buoy positions interpolated to hours 0Z and 12Z.", - "license": "not-provided" - }, - { - "id": "12-hourly_interpolated_surface_velocity_from_buoys", - "title": "12-Hourly Interpolated Surface Velocity from Buoys", - "catalog": "SCIOPS", - "state_date": "1979-01-01", - "end_date": "2009-12-02", - "bbox": "-180, 74, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214600621-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214600621-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/12-hourly_interpolated_surface_velocity_from_buoys", - "description": "This data set contains 12-hourly interpolated surface velocity data from buoys. Point grid: Latitude 74N to 90N - 4 degree increment Longitude 0E to 320E - 20 and 40 degree increment.", - "license": "not-provided" - }, - { - "id": "12_hourly_interpolated_surface_air_pressure_from_buoys", - "title": "12 Hourly Interpolated Surface Air Pressure from Buoys", - "catalog": "SCIOPS", - "state_date": "1979-01-01", - "end_date": "2007-11-30", - "bbox": "-180, 70, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214600618-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214600618-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/12_hourly_interpolated_surface_air_pressure_from_buoys", - "description": "Optimally interpolated atmospheric surface pressure over the Arctic Ocean Basin. Temporal format - twice daily (0Z and 12Z) Spatial format - 2 degree latitude x 10 degree longitude - latitude: 70 N - 90 N - longitude: 0 E - 350 E", - "license": "not-provided" - }, - { - "id": "14c_of_soil_co2_from_ipy_itex_cross_site_comparison", - "title": "14C of soil CO2 from IPY ITEX Cross Site Comparison", - "catalog": "SCIOPS", - "state_date": "2008-01-16", - "end_date": "2008-01-21", - "bbox": "-157.4, -36.9, 147.29, 71.3", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214602443-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214602443-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/14c_of_soil_co2_from_ipy_itex_cross_site_comparison", - "description": "Study sites: Toolik Lake Field Station Alaska, USA 68.63 N, 149.57 W; Atqasuk, Alaska USA 70.45 N, 157.40 W; Barrow, Alaska, USA 71.30 N, 156.67 W; Latnjajaure, Sweden 68.35 N, 18.50 E; Falls Creek, Australia: Site 2-unburned 36.90 S 147.29 E; Site 3-burned 36.89 S 147.28 E. Additional sites will be added summer 2008, but the exact sites are not finalized. Purpose: Collect soil CO2 for analysis of radiocarbon to evaluate the age of the carbon respired in controls and warmed plots from across the ITEX network. Treatments: control and ITEX OTC warming experiment (1994-2007). Design: 5 replicates of each treatment at dry site and moist site. Sampling frequency: Once per peak season.", - "license": "not-provided" - }, { "id": "200708_CEAMARC_CASO_TRACE_ELEMENT_SAMPLES.v1", "title": "2007-08 CEAMARC-CASO VOYAGE TRACE ELEMENT SAMPLING AROUND AN ICEBERG", @@ -662,32 +610,6 @@ "description": "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The \"ACOS\" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the \"ACOS\" Level 2 production process.", "license": "not-provided" }, - { - "id": "ACR3L2DM.v1", - "title": "ACRIM III Level 2 Daily Mean Data V001", - "catalog": "LARC", - "state_date": "2000-04-05", - "end_date": "2013-11-09", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/ACR3L2DM.v1", - "description": "ACR3L2DM_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Daily Mean Data version 1 product consists of Level 2 total solar irradiance in the form of daily means gathered by the ACRIM III instrument on the ACRIMSAT satellite. The daily means are constructed from the shutter cycle results for each day.", - "license": "not-provided" - }, - { - "id": "ACR3L2SC.v1", - "title": "ACRIM III Level 2 Shutter Cycle Data V001", - "catalog": "LARC", - "state_date": "2000-04-05", - "end_date": "2013-11-09", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/ACR3L2SC.v1", - "description": "ACR3L2SC_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Shutter Cycle Data version 1 product contains Level 2 total solar irradiance in the form of shutter cycles gathered by the ACRIM instrument on the ACRIMSAT satellite.", - "license": "not-provided" - }, { "id": "ADAM.Surface.Reflectance.Database", "title": "ADAM Surface Reflectance Database v4.0", @@ -1689,19 +1611,6 @@ "description": "This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit).", "license": "not-provided" }, - { - "id": "ATSMIGEO.v002", - "title": "MISR Geometric Parameters subset for the ARCTAS region V002", - "catalog": "LARC", - "state_date": "2008-04-02", - "end_date": "2008-07-24", - "bbox": "-157, 54, -110, 71", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/ATSMIGEO.v002", - "description": "This file contains the Geometric Parameters subset for the ARCTAS region which measures the sun and view angles at the reference ellipsoid", - "license": "not-provided" - }, { "id": "AU_DySno_NRT_R02.v2", "title": "NRT AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent V2", @@ -2040,19 +1949,6 @@ "description": "On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 3 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments.", "license": "not-provided" }, - { - "id": "CH-OG-1-GPS-10S.v0.0", - "title": "10 sec GPS ground tracking data", - "catalog": "SCIOPS", - "state_date": "2001-05-28", - "end_date": "", - "bbox": "-63.51, -45.69, 170.42, 78.87", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214586614-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214586614-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/CH-OG-1-GPS-10S.v0.0", - "description": "This data set comprises GPS ground data of a sample rate of 10 sec, generated by decoding and sampling GPS high rate ground data. This raw data passed no quality control. The data are given in the Rinex 2.1 format.", - "license": "not-provided" - }, { "id": "CIESIN_SEDAC_EPI_2008.v2008.00", "title": "2008 Environmental Performance Index (EPI)", @@ -2807,19 +2703,6 @@ "description": "Studies of change and variations on decadal timescales are essential for planning satellite missions that seek to improve our understanding of linkages among various components of the Earth System. Decadal predictions using a version of the GEOS-5 AOGCM were contributed to the CMIP5 project. The dataset include a three-member ensemble initialized on December 1 of each year from 1960 to 2010. These data are available, with the designation NASA GMAO, from the CMIP5 Archive at NASA NCCS.", "license": "not-provided" }, - { - "id": "GOMIGEO.v002", - "title": "MISR Geometric Parameters subset for the GoMACCS region V002", - "catalog": "LARC", - "state_date": "2006-07-30", - "end_date": "2006-10-17", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1625796320-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1625796320-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/GOMIGEO.v002", - "description": "Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR Geometric Parameters subset for the GoMACCS region V002 contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid.", - "license": "not-provided" - }, { "id": "Global_Microbial_Biomass_C_N_P_1264.v1", "title": "A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data", @@ -2911,32 +2794,6 @@ "description": "The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms.", "license": "not-provided" }, - { - "id": "ISERV.v1", - "title": "International Space Station SERVIR Environmental Research and Visualization System V1", - "catalog": "USGS_EROS", - "state_date": "2013-03-27", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/USGS_EROS/collections/ISERV.v1", - "description": "Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions.", - "license": "not-provided" - }, - { - "id": "IXBMIGEO.v2", - "title": "MISR Geometric Parameters subset for the INTEX-B region V002", - "catalog": "LARC", - "state_date": "2006-02-28", - "end_date": "2006-04-03", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/IXBMIGEO.v2", - "description": "This file contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid for the INTEXB_2006 theme.", - "license": "not-provided" - }, { "id": "KOPRI-KPDC-00000008.v1", "title": "1998 Seismic Data, Antarctica", @@ -3067,19 +2924,6 @@ "description": "Korean Antarctic survey was conducted in the continental margin (II region) of the northwestern Antarctic Peninsula. We took on lease Russian R/V \"Yuzhmorgeologiya\" (5500 ton, ice strengthed vessel) and 10 researchers participated in the cruise, including acquisition of multichannel seismic, gravity, and magnetometer as well as a detailed samplings (box cores, gravity cores, and grab samples). 1. Geophysical researches (Multichannel seismic and SBP surveys) 2. Paleoceanographic researches", "license": "not-provided" }, - { - "id": "KUKRI_He", - "title": "(U-Th)/He ages from the Kukri Hills of southern Victoria Land", - "catalog": "SCIOPS", - "state_date": "1970-01-01", - "end_date": "", - "bbox": "162.7, -77.7, 162.7, -77.7", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214587974-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214587974-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/KUKRI_He", - "description": "The data set consists of (U-Th)/He ages collected from three vertical profiles from the the Kukri Hills (north side of the Ferrar Glacier) of Southern Victoria Land. The data set provides information on the cooling history and hence the denduation history of the Transantarctic Mountains in this area. Analyses were all carried out at the (U-Th)/He lab of Ken Farley at the Californai Institute of Technology.", - "license": "not-provided" - }, { "id": "L1B_Wind_Products", "title": "Aeolus preliminary HLOS (horizontal line-of-sight) wind observations for Rayleigh and Mie receivers", @@ -3223,71 +3067,6 @@ "description": "Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes.", "license": "not-provided" }, - { - "id": "MIANACP.v1", - "title": "MISR Aerosol Climatology Product V001", - "catalog": "LARC", - "state_date": "1999-11-22", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIANACP.v1", - "description": "MIANACP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Climatology Product version 1. It is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure aerosol to be compared with MISR observations; and 3) likelihood value assigned to each mode geographically. The ACP describes mixtures of up to three component aerosol types from a list of eight components, in varying proportions. ACP component aerosol particle data quality depends on the ACP input data, which are based on aerosol particles described in the literature, and consider MISR-specific sensitivity to particle size, single-scattering albedo, and shape, and shape - roughly: small, medium and large; dirty and clean; spherical and nonspherical [Kahn et al. , 1998; 2001]. Also reported in the ACP are the mixtures of these components used by the retrieval algorithm. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.", - "license": "not-provided" - }, - { - "id": "MIANCAGP.v1", - "title": "MISR Ancillary Geographic Product V001", - "catalog": "LARC", - "state_date": "1999-11-07", - "end_date": "2005-06-30", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIANCAGP.v1", - "description": "MIANCAGP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Geographic Product version 1. It is a set of 233 pre-computed files. Each AGP file pertains to a single Terra orbital path. MISR production software relies on information in the AGP, such as digital terrain elevation, as input to the algorithms which generate MISR products. The AGP contains eleven fields of geographical data. This product consists primarily of geolocation data on a Space Oblique Mercator (SOM) Grid. It has 233 parts, corresponding to the 233 repeat orbits of the EOS-AM1 Spacecraft. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.", - "license": "not-provided" - }, - { - "id": "MIANCARP.v2", - "title": "MISR Ancillary Radiometric Product V002", - "catalog": "LARC", - "state_date": "1999-12-28", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIANCARP.v2", - "description": "MIANCARP_2 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Radiometric Product version 2. It is composed of 4 files covering instrument characterization data, pre-flight calibration data, in-flight calibration data, and configuration parameters. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.", - "license": "not-provided" - }, - { - "id": "MIRCCMF.v001", - "title": "MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001", - "catalog": "LARC", - "state_date": "2000-12-13", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C135857530-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C135857530-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIRCCMF.v001", - "description": "Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001 contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs Radiometric Camera-by-camera Cloud mask Threshold (RCCT) from the previous time period. It is used to determine whether a scene is clear, cloudy or dusty (over ocean).", - "license": "not-provided" - }, - { - "id": "MISBR.v005", - "title": "MISR Browse data V005", - "catalog": "LARC", - "state_date": "1999-12-18", - "end_date": "", - "bbox": "-180, -90, 180, 90", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C43677744-LARC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C43677744-LARC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MISBR.v005", - "description": "This is the browse data associated with a particular granule.", - "license": "not-provided" - }, { "id": "MURI_Camouflage.v0", "title": "A Multi University Research Initiative (MURI) Camouflage Project", @@ -3522,19 +3301,6 @@ "description": "The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate scenarios for the globe that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs). The CMIP5 GCM runs were developed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The NEX-GDDP dataset includes downscaled projections for RCP 4.5 and RCP 8.5 from the 21 models and scenarios for which daily scenarios were produced and distributed under CMIP5. Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100. The spatial resolution of the dataset is 0.25 degrees (~25 km x 25 km). The NEX-GDDP dataset is provided to assist the science community in conducting studies of climate change impacts at local to regional scales, and to enhance public understanding of possible future global climate patterns at the spatial scale of individual towns, cities, and watersheds. Each of the climate projections includes monthly averaged maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2005 (Retrospective Run) and from 2006 to 2099 (Prospective Run). ", "license": "not-provided" }, - { - "id": "NIPR_UAP_ELF_SYO", - "title": "1-100Hz ULF/ELF Electromagnetic Wave Observation at Syowa Station", - "catalog": "SCIOPS", - "state_date": "2000-01-01", - "end_date": "", - "bbox": "39.6, -69, 39.6, -69", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214590112-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214590112-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/NIPR_UAP_ELF_SYO", - "description": "1-100Hz ULF/ELF Electromagnetic Wave Observation at Syowa Station", - "license": "not-provided" - }, { "id": "NMMIEAI-L2-NRT.v2", "title": "OMPS-NPP L2 NM Aerosol Index swath orbital NRT", @@ -3730,32 +3496,6 @@ "description": "This award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach.", "license": "not-provided" }, - { - "id": "NSF-ANT10-43485.v1", - "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", - "catalog": "AMD_USAPDC", - "state_date": "2011-07-01", - "end_date": "2015-06-30", - "bbox": "-160, -78, -150, -68", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT10-43485.v1", - "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. ", - "license": "not-provided" - }, - { - "id": "NSF-ANT10-43517", - "title": "A new reconstruction of the last West Antarctic Ice Sheet deglaciation in the Ross Sea", - "catalog": "AMD_USAPDC", - "state_date": "2011-07-01", - "end_date": "2015-06-30", - "bbox": "163.5, -78.32, 165.35, -77.57", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT10-43517", - "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", - "license": "not-provided" - }, { "id": "NSF-ANT10-43621", "title": "A Comparison of Conjugate Auroral Electojet Indices", @@ -4068,19 +3808,6 @@ "description": "Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. ", "license": "not-provided" }, - { - "id": "USAP-1744989.v1", - "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", - "catalog": "AMD_USAPDC", - "state_date": "2018-07-15", - "end_date": "2022-06-30", - "bbox": "-180, -90, 180, -60", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.html", - "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/USAP-1744989.v1", - "description": "This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public.", - "license": "not-provided" - }, { "id": "USAP-2130663.v1", "title": "2021 Antarctic Subsea Cable Workshop: High-Speed Connectivity Needs to Advance US Antarctic Science", @@ -4458,19 +4185,6 @@ "description": "The \"Land Surface Temperature derived from NOAA-AVHRR data (LST_AVHRR)\" is a fixed grid map (in stereographic projection ) with a spatial resolution of 1.1 km. The total size covering Europe is 4100 samples by 4300 lines. Within 24 hours of acquiring data from the satellite, day-time and night-time LSTs are calculated. In general, the products utilise data from all six of the passes that the satellite makes over Europe in each 24 hour period. For the daily day-time LST maps, the compositing criterion for the three day-time passes is maximum NDVI value and for daily night-time LST maps, the criterion is the maximum night-time LST value of the three night-time passes. Weekly and monthly day-time or night-time LST composite products are also produced by averaging daily day-time or daily night-time LST values, respectively. The range of LST values is scaled between \u201339.5\u00b0C and +87\u00b0C with a radiometric resolution of 0.5\u00b0C. A value of \u201340\u00b0C is used for water. Clouds are masked out as bad values. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/", "license": "not-provided" }, - { - "id": "blue_ice_core_DML2004_AS", - "title": "101.1 m long horizontal blue ice core collected from Scharffenbergbotnen, DML, Antarctica, in 2003/2004", - "catalog": "SCIOPS", - "state_date": "1970-01-01", - "end_date": "", - "bbox": "-180, -90, 180, -62.83", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1214614210-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1214614210-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/blue_ice_core_DML2004_AS", - "description": "Horizontal blue ice core collected from the surface of a blue ice area in Scharffenbergbotnen, Heimefrontfjella, DML. Samples were collected in austral summer 2003/2004 and transported to Finland for chemical analyses. The blue ice core is estimated to represent a 1000-year period of climate history 20 - 40 kyr B.P.. The results of the analyses will be available in 2005.", - "license": "not-provided" - }, { "id": "chesapeake_val_2013.v0", "title": "2013 Chesapeake Bay measurements", @@ -4497,19 +4211,6 @@ "description": "Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. However, this collection contains the monoscopic data.", "license": "not-provided" }, - { - "id": "envidat-lwf-34.v2019-03-06", - "title": "10-HS Pfynwald", - "catalog": "SCIOPS", - "state_date": "2019-01-01", - "end_date": "2019-01-01", - "bbox": "7.61211, 46.30279, 7.61211, 46.30279", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1647993129-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1647993129-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/envidat-lwf-34.v2019-03-06", - "description": "Continuous measurement of soil water content at 10 and 80 cm depth (3 replications) with 10-HS soil moisture probes (Decagon Incorporation, Pullman, WA, USA). ### Purpose: ### Monitoring of the soil water matrix potential ### Paper Citation: ### * Dobbertin, M.; Eilmann, B.; Bleuler, P.; Giuggiola, A.; Graf Pannatier, E.; Landolt, W.; Schleppi, P.; Rigling, A., 2010: Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30, 3: 346-360. [doi: 10.1093/treephys/tpp123](http://doi.org/10.1093/treephys/tpp123) ", - "license": "not-provided" - }, { "id": "gov.noaa.nodc:0000029", "title": "1990, 1991, 1992 and 1995 CRETM/LMER Zooplankton Data Sets (NCEI Accession 0000029)", @@ -4692,19 +4393,6 @@ "description": "2014 Lake Erie measurements.", "license": "not-provided" }, - { - "id": "latent-reserves-in-the-swiss-nfi.v1.0", - "title": "'Latent reserves' within the Swiss NFI", - "catalog": "SCIOPS", - "state_date": "2020-01-01", - "end_date": "2020-01-01", - "bbox": "5.95587, 45.81802, 10.49203, 47.80838", - "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1931110427-SCIOPS.json", - "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1931110427-SCIOPS.html", - "href": "https://cmr.earthdata.nasa.gov/stac/SCIOPS/collections/latent-reserves-in-the-swiss-nfi.v1.0", - "description": "The files refer to the data used in Portier et al. \"\u2018Latent reserves\u2019: a hidden treasure in National Forest Inventories\" (2020) *Journal of Ecology*. **'Latent reserves'** are defined as plots in National Forest Inventories (NFI) that have been free of human influence for >40 to >70 years. They can be used to investigate and acquire a deeper understanding of attributes and processes of near-natural forests using existing long-term data. To determine which NFI sample plots could be considered \u2018latent reserves\u2019, criteria were defined based on the information available in the Swiss NFI database: * Shrub forests were excluded. * Plots must have been free of any kind of management, including salvage logging or sanitary cuts, for a minimum amount of time. Thresholds of 40, 50, 60 and 70 years without intervention were tested. * To ensure that species composition was not influenced by past management, plots where potential vegetation was classified as deciduous by Ellenberg & Kl\u00f6tzli (1972) had to have an observed proportion of deciduous trees matching the theoretical proportion expected in a natural deciduous forest, as defined by Kienast, Brzeziecki, & Wildi (1994). * Plots had to originate from natural regeneration. * Intensive livestock grazing must never have occurred on the plots. The tables stored here were derived from the first, second and third campaigns of the Swiss NFI. The raw data from the Swiss NFI can be provided free of charge within the scope of a contractual agreement (http://www.lfi.ch/dienstleist/daten-en.php). **** The files 'Data figure 2' to 'Data figure 8' are publicly available and contain the data used to produce the figures published in the paper. The files 'Plot-level data for characterisation of 'latent reserves' and 'Tree-level data for characterisation of 'latent reserves' contain all the data required to reproduce the section of the article concerning the characterisation of 'latent reserves' and the comparison to managed forests. The file 'Data for mortality analyses' contains the data required to reproduce the section of the article concerning tree mortality in 'latent reserves'. The access to these three files is restricted as they contain some raw data from the Swiss NFI, submitted to the Swiss law and only accessible upon contractual agreement. ", - "license": "not-provided" - }, { "id": "law_dome_annual_msa.v1", "title": "150 year MSA sea ice proxy record from Law Dome, Antarctica", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index 933d6689f..1ad545f31 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -1,10 +1,6 @@ id title catalog state_date end_date bbox url description license 0f4324af-fa0a-4aaf-9b97-89a4f3325ce1 DESIS - Hyperspectral Images - Global FEDEO 2018-08-30 -180, -52, 180, 52 https://cmr.earthdata.nasa.gov/search/concepts/C2207458058-FEDEO.json The hyperspectral instrument DESIS (DLR Earth Sensing Imaging Spectrometer) is one of four possible payloads of MUSES (Multi-User System for Earth Sensing), which is mounted on the International Space Station (ISS). DLR developed and delivered a Visual/Near-Infrared Imaging Spectrometer to Teledyne Brown Engineering, which was responsible for integrating the instrument. Teledyne Brown designed and constructed, integrated and tested the platform before delivered to NASA. Teledyne Brown collaborates with DLR in several areas, including basic and applied research for use of data. DESIS is operated in the wavelength range from visible through the near infrared and enables precise data acquisition from Earth's surface for applications including fire-detection, change detection, maritime domain awareness, and atmospheric research. Three product types can be ordered, which are Level 1B (systematic and radiometric corrected), Level 1C (geometrically corrected) and Level 2A (atmospherically corrected). The spatial resolution is about 30m on ground. DESIS is sensitive between 400nm and 1000nm with a spectral resolution of about 3.3nm. DESIS data are delivered in tiles of about 30x30km. For more information concerning DESIS the reader is referred to https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-13614/ not-provided 11c5f6df1abc41968d0b28fe36393c9d ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 3 aerosol products from MERIS (ALAMO algorithm), Version 2.2 FEDEO 2008-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548143004-FEDEO.json The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 3 aerosol daily and monthly gridded products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation. not-provided -12-hourly_interpolated_surface_position_from_buoys 12-Hourly Interpolated Surface Position from Buoys SCIOPS 1979-01-01 2009-12-01 -180, 60, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1214600619-SCIOPS.json This data set contains Arctic Ocean daily buoy positions interpolated to hours 0Z and 12Z. not-provided -12-hourly_interpolated_surface_velocity_from_buoys 12-Hourly Interpolated Surface Velocity from Buoys SCIOPS 1979-01-01 2009-12-02 -180, 74, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1214600621-SCIOPS.json This data set contains 12-hourly interpolated surface velocity data from buoys. Point grid: Latitude 74N to 90N - 4 degree increment Longitude 0E to 320E - 20 and 40 degree increment. not-provided -12_hourly_interpolated_surface_air_pressure_from_buoys 12 Hourly Interpolated Surface Air Pressure from Buoys SCIOPS 1979-01-01 2007-11-30 -180, 70, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1214600618-SCIOPS.json Optimally interpolated atmospheric surface pressure over the Arctic Ocean Basin. Temporal format - twice daily (0Z and 12Z) Spatial format - 2 degree latitude x 10 degree longitude - latitude: 70 N - 90 N - longitude: 0 E - 350 E not-provided -14c_of_soil_co2_from_ipy_itex_cross_site_comparison 14C of soil CO2 from IPY ITEX Cross Site Comparison SCIOPS 2008-01-16 2008-01-21 -157.4, -36.9, 147.29, 71.3 https://cmr.earthdata.nasa.gov/search/concepts/C1214602443-SCIOPS.json Study sites: Toolik Lake Field Station Alaska, USA 68.63 N, 149.57 W; Atqasuk, Alaska USA 70.45 N, 157.40 W; Barrow, Alaska, USA 71.30 N, 156.67 W; Latnjajaure, Sweden 68.35 N, 18.50 E; Falls Creek, Australia: Site 2-unburned 36.90 S 147.29 E; Site 3-burned 36.89 S 147.28 E. Additional sites will be added summer 2008, but the exact sites are not finalized. Purpose: Collect soil CO2 for analysis of radiocarbon to evaluate the age of the carbon respired in controls and warmed plots from across the ITEX network. Treatments: control and ITEX OTC warming experiment (1994-2007). Design: 5 replicates of each treatment at dry site and moist site. Sampling frequency: Once per peak season. not-provided 200708_CEAMARC_CASO_TRACE_ELEMENT_SAMPLES.v1 2007-08 CEAMARC-CASO VOYAGE TRACE ELEMENT SAMPLING AROUND AN ICEBERG AU_AADC 2008-01-01 2008-03-20 139.01488, -67.07104, 150.06479, -42.88246 https://cmr.earthdata.nasa.gov/search/concepts/C1214305618-AU_AADC.json We collected surface seawater samples using trace clean 1L Nalgene bottles on the end of a long bamboo pole. We will analyse these samples for trace elements. Iron is the element of highest interest to our group. We will determine dissolved iron and total dissolvable iron concentrations. Samples collected from 7 sites: Sites 1, 2, 3, 4 were a transect perpendicular to the edge of the iceberg to try and determine if there is a iron concentration gradient relative to the iceberg. Sites 4, 5, 6 were along the edge of the iceberg to determine if there is any spatial variability along the iceberg edge. Site 7 was away from the iceberg to determine what the iron concentration is in the surrounding waters not influenced by the iceberg. not-provided 39480 1988 Mosaic of Aerial Photography of the Salt River Bay National Historical Park and Ecological Preserve NOAA_NCEI 1988-11-24 1988-11-24 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2102656753-NOAA_NCEI.json Aerial photographs taken by NOAA's National Geodetic Survey during 1988 were mosaicked and orthorectified by the Biogeography Branch. The resulting image was used to digitize benthic, land cover and mangrove habitat maps of the Salt River Bay National Historic Park and Ecological Preserve (National Park Service), on St. Croix, in the U.S. Virgin Islands.The mosaic is centered on the National Park Service Site, located on the north central coast of St. Croix, and extends beyond the park boundaries approximately 0.5 - 4.0 km. not-provided 39481 1988 Seagrass and Mangrove Habitats of the Salt River Bay National Historical Park and Ecological Preserve NOAA_NCEI 1988-11-24 1988-11-24 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2102656462-NOAA_NCEI.json Habitat maps were created as part of a larger ecological assessment conducted by NOAA's National Ocean Service (NOS), Biogeography Branch, for Salt River Bay National Historic Park and Ecological Preserve (National Park Service).Aerial photographs were obtained for 1988 from the National Geodetic Survey, and were orthorectified by the Biogeography Branch. A classification scheme was set up with 20 benthic habitat types, 19 land cover types, and 13 mangrove habitat types. For this map of seagrass and mangrove habitats during 1988 only the 3 seagrass, and 14 mangrove classification categories were used. These were mapped directly into a GIS system through visual interpretation of orthorectified aerial photographs. not-provided @@ -50,8 +46,6 @@ ACOS_L2S.v7.3 ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V7.3 (A ACOS_L2S.v9r ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V9r (ACOS_L2S) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633158704-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, ""ACOS"" data are still produced and improved, using approaches applied to the OCO-2 spectra. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: ""sounding_qual_flag"" - quality of input data provided to the retrieval processing ""outcome_flag"" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) " not-provided ACOS_L2_Lite_FP.v7.3 ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3 (ACOS_L2_Lite_FP) at GES DISC GES_DISC 2009-04-21 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1339230298-GES_DISC.json "The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process." not-provided ACOS_L2_Lite_FP.v9r ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V9r (ACOS_L2_Lite_FP) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1720416694-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process." not-provided -ACR3L2DM.v1 ACRIM III Level 2 Daily Mean Data V001 LARC 2000-04-05 2013-11-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.json ACR3L2DM_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Daily Mean Data version 1 product consists of Level 2 total solar irradiance in the form of daily means gathered by the ACRIM III instrument on the ACRIMSAT satellite. The daily means are constructed from the shutter cycle results for each day. not-provided -ACR3L2SC.v1 ACRIM III Level 2 Shutter Cycle Data V001 LARC 2000-04-05 2013-11-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.json ACR3L2SC_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Shutter Cycle Data version 1 product contains Level 2 total solar irradiance in the form of shutter cycles gathered by the ACRIM instrument on the ACRIMSAT satellite. not-provided ADAM.Surface.Reflectance.Database ADAM Surface Reflectance Database v4.0 ESA 2005-01-01 2005-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1965336812-ESA.json ADAM enables generating typical monthly variations of the global Earth surface reflectance at 0.1° spatial resolution (Plate Carree projection) and over the spectral range 240-4000nm. The ADAM product is made of gridded monthly mean climatologies over land and ocean surfaces, and of a companion API toolkit that enables the calculation of hyperspectral (at 1 nm resolution over the whole 240-4000 nm spectral range) and multidirectional reflectances (i.e. in any illumination/viewing geometry) depending on user choices. The ADAM climatologies that feed the ADAM calculation tools are: For ocean: monthly chlorophyll concentration derived from SeaWiFS-OrbView-2 (1999-2009); it is used to compute the water column reflectance (which shows large spectral variations in the visible, but is insignificant in the near and mid infrared). monthly wind speed derived from SeaWinds-QuikSCAT-(1999-2009); it is used to calculate the ocean glint reflectance. For land: monthly normalized surface reflectances in the 7 MODIS narrow spectral bands derived from FondsdeSol processing chain of MOD09A1 products (derived from Aqua and Terra observations), on which relies the modelling of the hyperspectral/multidirectional surface (soil/vegetation/snow) reflectance. uncertainty variance-covariance matrix for the 7 spectral bands associated to the normalized surface reflectance. For sea-ice: Sea ice pixels (masked in the original MOD09A1 products) have been accounted for by a gap-filling approach relying on the spatial-temporal distribution of sea ice coverage provided by the CryoClim climatology for year 2005. not-provided ADEOS_OCTS_L3BM_GAC_OCC_1day ADEOS OCTS L3 GAC Binned Map Ocean Color (OCC) (1-Day) JAXA 1996-11-01 1997-07-06 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2698128761-JAXA.json "ADEOS OCTS L3BM GAC OCC 1day dataset is obtained from OCTS sensor onboard ADEOS and produced by NASDA (National Space Development Agency of Japan). Advanced Earth Observing Satellite (ADEOS) is sun-synchronous quasi-recurrent orbiter launched on August 17, 1996, and carries OCTS (Ocean Color and Temperature Scanner) and AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor.The main objectives of ADEOS (MIDORI) is to contribute to elucidation of phenomena of the earth system through integrated observation of geophysical parameters using a number of sensors. ADEOS operation on orbit was given up on June 30, 1997, because the generated power was lost due to the accident of the blanket of the solar array paddle breaking. OCTS observes the amount of chlorophyll and various substances contained in the sea, sea surface temperature, cloud formation process, etc by receiving 12 bands of wavelengths from the visible light region to the thermal infrared region. The observation field of OCTS is about 1400km, and it is possible to scan in the north-south direction. Those sensors aim at collecting global data for mainly understanding the state of the ocean and its phenomena. This product is daily L3BM, Level 3 Binned map GAC (Global Area Coverage) OCC (Ocean Color-Chlorophyll-a concentration) product. Level 3 Binned map products are generated from Level 3 Binned products and classified into three subproducts: ocean color, vegetation, and sea surface temperature. GAG OCC product is daily or weekly, monthly, annually integrated. This product is one of the Ocean Color product stores, and these parameters are array of chlorophyll a concentration and palette data. The unit of geophysical quantity in this product is ""mg/m-3"". The provided format is HDF4 format. The image data object, 13m-data, in each binned map product is a byte-valued, 4,096 * 2,048 array of an Equal-Area Rectangular projection of the globe." not-provided ADEOS_OCTS_L3BM_GAC_OCC_1month ADEOS OCTS L3 GAC Binned Map Ocean Color (OCC) (1-Month) JAXA 1996-11-01 1997-07-06 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2698129571-JAXA.json "ADEOS OCTS L3BM GAC OCC 1month dataset is obtained from OCTS sensor onboard ADEOS and produced by NASDA (National Space Development Agency of Japan). Advanced Earth Observing Satellite (ADEOS) is sun-synchronous quasi-recurrent orbiter launched on August 17, 1996, and carries OCTS (Ocean Color and Temperature Scanner) and AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor.The main objectives of ADEOS (MIDORI) is to contribute to elucidation of phenomena of the earth system through integrated observation of geophysical parameters using a number of sensors. ADEOS operation on orbit was given up on June 30, 1997, because the generated power was lost due to the accident of the blanket of the solar array paddle breaking. OCTS observes the amount of chlorophyll and various substances contained in the sea, sea surface temperature, cloud formation process, etc by receiving 12 bands of wavelengths from the visible light region to the thermal infrared region. The observation field of OCTS is about 1400km, and it is possible to scan in the north-south direction. Those sensors aim at collecting global data for mainly understanding the state of the ocean and its phenomena. This product is monthly L3BM, Level 3 Binned map GAC (Global Area Coverage) OCC (Ocean Color-Chlorophyll-a concentration) product. Level 3 Binned map products are generated from Level 3 Binned products and classified into three subproducts: ocean color, vegetation, and sea surface temperature. GAG OCC product is daily or weekly, monthly, annually integrate. This product is one of the Ocean Color product stores, and these parameters are array of chlorophyll a concentration and palette data. The unit of geophysical quantity in this product is ""mg/m-3"". The provided format is HDF4 format. The image data object, 13m-data, in each binned map product is a byte-valued, 4,096 * 2,048 array of an Equal-Area Rectangular projection of the globe." not-provided @@ -129,7 +123,6 @@ ATL09.v005 ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric La ATL09.v006 ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric Layer Characteristics V006 NSIDC_CPRD 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2649212495-NSIDC_CPRD.json This data set (ATL09) contains calibrated, attenuated backscatter profiles, layer integrated attenuated backscatter, and other parameters including cloud layer height and atmospheric characteristics obtained from the data. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. not-provided ATL13.v005 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V005 NSIDC_CPRD 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2153575088-NSIDC_CPRD.json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). not-provided ATL13.v006 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006 NSIDC_CPRD 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). not-provided -ATSMIGEO.v002 MISR Geometric Parameters subset for the ARCTAS region V002 LARC 2008-04-02 2008-07-24 -157, 54, -110, 71 https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-LARC.json This file contains the Geometric Parameters subset for the ARCTAS region which measures the sun and view angles at the reference ellipsoid not-provided AU_DySno_NRT_R02.v2 NRT AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent V2 LANCEAMSR2 2021-04-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2052622563-LANCEAMSR2.json The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument on the Global Change Observation Mission - Water 1 (GCOM-W1) provides global passive microwave measurements of terrestrial, oceanic, and atmospheric parameters for the investigation of global water and energy cycles. Near real-time (NRT) products are generated within 3 hours of the last observations in the file, by the Land Atmosphere Near real-time Capability for EOS (LANCE) at the AMSR Science Investigator-led Processing System (AMSR SIPS), which is collocated with the Global Hydrology Resource Center (GHRC) DAAC. The NRT AMSR2 Unified L3 Global Daily Snow Water Equivalent data set contains snow water equivalent (SWE) data and quality assurance flags mapped to Northern and Southern Hemisphere 25 km Equal-Area Scalable Earth Grids (EASE-Grids). Data are stored in HDF-EOS5 format and are available via HTTP from the EOSDIS LANCE system at https://lance.nsstc.nasa.gov/amsr2-science/data/level3/daysnow/. If data latency is not a primary concern, please consider using science quality products. Science products are created using the best available ancillary, calibration and ephemeris information. Science quality products are an internally consistent, well-calibrated record of the Earth's geophysical properties to support science. not-provided AU_Land_NRT_R02.v2 NRT AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture Beta V2 LANCEAMSR2 2018-04-11 -180, -89.24, 180, 89.24 https://cmr.earthdata.nasa.gov/search/concepts/C1514684539-LANCEAMSR2.json The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument on the Global Change Observation Mission - Water 1 (GCOM-W1) provides global passive microwave measurements of terrestrial, oceanic, and atmospheric parameters for the investigation of global water and energy cycles. Near real-time (NRT) products are generated within 3 hours of the last observations in the file, by the Land Atmosphere Near real-time Capability for EOS (LANCE) at the AMSR Science Investigator-led Processing System (AMSR SIPS), which is collocated with the Global Hydrology Resource Center (GHRC) DAAC. The GCOM-W1 NRT AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture product is a daily measurement of surface soil moisture produced by two retrieval algorithms using resampled Tb (Level-1R) data provided by JAXA: the Normalized Polarization Difference (NPD) algorithm developed by JPL and the Single Channel Algorithm (SCA) developed by USDA. Ancillary data include time, geolocation, and quality assessment. Data are stored in HDF-EOS5 and netCDF4 formats and are available via HTTPS from the EOSDIS LANCE system at https://lance.nsstc.nasa.gov/amsr2-science/data/level2/land/. If data latency is not a primary concern, please consider using science quality products. Science products are created using the best available ancillary, calibration and ephemeris information. Science quality products are an internally consistent, well-calibrated record of the Earth's geophysical properties to support science. The AMSR SIPS produces AMSR2 standard science quality data products and they are available at the NSIDC DAAC. Note: This is the same algorithm that generates the corresponding standard science products in the AMSR SIPS. With this beta release, we are generating NRT products in both HDF-EOS5 and netCDF with CF metadata. Version 2 corrects these issues from the previous release: a boundary condition error that resulted in the failure of a small number of version 1 product files and an error in the number of low resolution scans processed which caused only the first half of each scan to be processed. not-provided AU_Ocean.v1 AMSR-E/AMSR2 Unified L2B Global Swath Ocean Products V001 NSIDC_ECS 2002-06-01 -180, -89.24, 180, 89.24 https://cmr.earthdata.nasa.gov/search/concepts/C2176472016-NSIDC_ECS.json This AMSR Unified global ocean data set reports integrated water vapor and cloud liquid water content in the atmospheric column, plus 10-meter sea surface wind speeds. The data are derived from AMSR-E and AMSR2 brightness temperature observations that have been resampled by the Japan Aerospace Exploration Agency (JAXA) to facilitate an intercalibrated (i.e., “unified”) AMSR-E/AMSR2 data record. Ancillary files, including product history, quality assessment (QA), and file-specific metadata are also available. not-provided @@ -156,7 +149,6 @@ CDDIS_SLR_products_ITRF2020_REPRO2020.v1 CDDIS SLR products ITRF2020 Station Pos CDDIS_VLBI_data_aux.v1 CDDIS VLBI Auxilliary Files CDDIS 2005-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2404928689-CDDIS.json Very Long Baseline Interferometry (VLBI) auxiliary ASCII files provided by the International VLBI Service for Geodesy and Astrometry (IVS) include schedules, notes, and session log files. not-provided CEAMARC_CASO_200708030_EVENT_BATHYMETRY_PLOTS.v1 2007-08 V3 CEAMARC-CASO Bathymetry Plots Over Time During Events AU_AADC 2007-12-17 2008-01-26 139.01488, -67.07104, 150.06479, -42.88246 https://cmr.earthdata.nasa.gov/search/concepts/C1214308504-AU_AADC.json A routine was developed in R ('bathy_plots.R') to plot bathymetry data over time during individual CEAMARC events. This is so we can analyse benthic data in relation to habitat, ie. did we trawl over a slope or was the sea floor relatively flat. Note that the depth range in the plots is autoscaled to the data, so a small range in depths appears as a scatetring of points. As long as you look at the depth scale though interpretation will be ok. The R files need a file of bathymetry data in '200708V3_one_minute.csv' which is a file containing a data export from the underway PostgreSQL ship database and 'events.csv' which is a stripped down version of the events export from the ship board events database export. If you wish to run the code again you may need to change the pathnames in the R script to relevant locations. If you have opened the csv files in excel at any stage and the R script gets an error you may need to format the date/time columns as yyyy-mm-dd hh;mm:ss, save and close the file as csv without opening it again and then run the R script. However, all output files are here for every CEAMARC event. Filenames contain a reference to CEAMARC event id. Files are in eps format and can be viewed using Ghostview which is available as a free download on the internet. not-provided CEOS_CalVal_Test_Sites-Algeria3 CEOS Cal Val Test Site - Algeria 3 - Pseudo-Invariant Calibration Site (PICS) USGS_LTA 1972-08-11 5.22, 29.09, 10.01, 31.36 https://cmr.earthdata.nasa.gov/search/concepts/C1220567099-USGS_LTA.json On the background of these requirements for sensor calibration, intercalibration and product validation, the subgroup on Calibration and Validation of the Committee on Earth Observing System (CEOS) formulated the following recommendation during the plenary session held in China at the end of 2004, with the goal of setting-up and operating an internet based system to provide sensor data, protocols and guidelines for these purposes: Background: Reference Datasets are required to support the understanding of climate change and quality assure operational services by Earth Observing satellites. The data from different sensors and the resulting synergistic data products require a high level of accuracy that can only be obtained through continuous traceable calibration and validation activities. Requirement: Initiate an activity to document a reference methodology to predict Top of Atmosphere (TOA) radiance for which currently flying and planned wide swath sensors can be intercompared, i.e. define a standard for traceability. Also create and maintain a fully accessible web page containing, on an instrument basis, links to all instrument characteristics needed for intercomparisons as specified above, ideally in a common format. In addition, create and maintain a database (e.g. SADE) of instrument data for specific vicarious calibration sites, including site characteristics, in a common format. Each agency is responsible for providing data for their instruments in this common format. Recommendation : The required activities described above should be supported for an implementation period of two years and a maintenance period over two subsequent years. The CEOS should encourage a member agency to accept the lead role in supporting this activity. CEOS should request all member agencies to support this activity by providing appropriate information and data in a timely manner. Pseudo-Invariant Calibration Sites (PICS): Algeria 3 is one of six CEOS reference Pseudo-Invariant Calibration Sites (PICS) that are CEOS Reference Test Sites. Besides the nominally good site characteristics (temporal stability, uniformity, homogeneity, etc.), these six PICS were selected by also taking into account their heritage and the large number of datasets from multiple instruments that already existed in the EO archives and the long history of characterization performed over these sites. The PICS have high reflectance and are usually made up of sand dunes with climatologically low aerosol loading and practically no vegetation. Consequently, these PICS can be used to evaluate the long-term stability of instrument and facilitate inter-comparison of multiple instruments. not-provided -CH-OG-1-GPS-10S.v0.0 10 sec GPS ground tracking data SCIOPS 2001-05-28 -63.51, -45.69, 170.42, 78.87 https://cmr.earthdata.nasa.gov/search/concepts/C1214586614-SCIOPS.json This data set comprises GPS ground data of a sample rate of 10 sec, generated by decoding and sampling GPS high rate ground data. This raw data passed no quality control. The data are given in the Rinex 2.1 format. not-provided CIESIN_SEDAC_EPI_2008.v2008.00 2008 Environmental Performance Index (EPI) SEDAC 1994-01-01 2007-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179001707-SEDAC.json The 2008 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health, and (2) promoting ecosystem vitality and sound natural resource management. Derived from a careful review of the environmental literature, these twin goals mirror the priorities expressed by policymakers. Environmental health and ecosystem vitality are gauged using 25 indicators tracked in six well-established policy categories: Environmental Health (Environmental Burden of Disease, Water, and Air Pollution), Air Pollution (effects on ecosystems), Water (effects on ecosystems), Biodiversity and Habitat, Productive Natural Resources (Forestry, Fisheries, and Agriculture), and Climate Change. The 2008 EPI utilizes a proximity-to-target methodology in which performance on each indicator is rated on a 0 to 100 scale (100 represents �at target�). By identifying specific targets and measuring how close each country comes to them, the EPI provides a foundation for policy analysis and a context for evaluating performance. Issue-by-issue and aggregate rankings facilitate cross-country comparisons both globally and within relevant peer groups. The 2008 EPI is the result of collaboration among the Yale Center for Environmental Law and Policy (YCELP), Columbia University Center for International Earth Science Information Network (CIESIN), World Economic Forum (WEF), and the Joint Research Centre (JRC), European Commission. not-provided CIESIN_SEDAC_EPI_2010.v2010.00 2010 Environmental Performance Index (EPI) SEDAC 1994-01-01 2009-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179002147-SEDAC.json The 2010 Environmental Performance Index (EPI) ranks 163 countries on environmental performance based on twenty-five indicators grouped within ten core policy categories addressing environmental health, air quality, water resource management, biodiversity and habitat, forestry, fisheries, agriculture, and climate change in the context of two broad objectives: environmental health and ecosystem vitality. The EPI�s proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. It was formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 28, 2010. The 2010 EPI is the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). not-provided CIESIN_SEDAC_EPI_2012.v2012.00 2012 Environmental Performance Index and Pilot Trend Environmental Performance Index SEDAC 2000-01-01 2010-12-31 -180, -55, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000000-SEDAC.json The 2012 Environmental Performance Index (EPI) ranks 132 countries on 22 performance indicators in the following 10 policy categories: environmental burden of disease, water (effects on human health), air pollution (effects on human health), air pollution (ecosystem effects), water resources (ecosystem effects), biodiversity and habitat, forestry, fisheries, agriculture and climate change. These categories track performance and progress on two broad policy objectives, environmental health and ecosystem vitality. Each indicator has an associated environmental public health or ecosystem sustainability target. The EPI's proximity-to-target methodology facilitates cross-country comparisons among economic and regional peer groups. The Pilot Trend Environmental Performance Index (Trend EPI) ranks countries on the change in their environmental performance over the last decade. As a complement to the EPI, the Trend EPI shows who is improving and who is declining over time. The 2012 EPI and Pilot Trend EPI were formally released in Davos, Switzerland, at the annual meeting of the World Economic Forum on January 27, 2012. These are the result of collaboration between the Yale Center for Environmental Law and Policy (YCELP) and the Columbia University Center for International Earth Science Information Network (CIESIN). The Interactive Website for the 2012 EPI is at http://epi.yale.edu/. not-provided @@ -215,7 +207,6 @@ GGD632.v1 Active-Layer and Permafrost Temperatures, Soendre Stroemfjord, Greenla GISS-CMIP5.v1 GISS ModelE2 contributions to the CMIP5 archive NCCS 0850-01-01 2100-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1542315069-NCCS.json We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980-2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics. not-provided GLOBAL_LITTER_CARBON_NUTRIENTS_1244.v1 A Global Database of Litterfall Mass and Litter Pool Carbon and Nutrients ORNL_DAAC 1827-01-01 1997-12-31 -156.7, -54.5, 176.2, 72.5 https://cmr.earthdata.nasa.gov/search/concepts/C1227811476-ORNL_DAAC.json Measurement data of aboveground litterfall and littermass and litter carbon, nitrogen, and nutrient concentrations were extracted from 685 original literature sources and compiled into a comprehensive database to support the analysis of global patterns of carbon and nutrients in litterfall and litter pools. Data are included from sources dating from 1827 to 1997. The reported data include the literature reference, general site information (description, latitude, longitude, and elevation), site climate data (mean annual temperature and precipitation), site vegetation characteristics (management, stand age, ecosystem and vegetation-type codes), annual quantities of litterfall (by class, kg m-2 yr-1), litter pool mass (by class and litter layer, kg m-2), and concentrations of nitrogen (N), phosphorus (P), and base cations for the litterfall (g m-2 yr-1) and litter pool components (g m-2). The investigators intent was to compile a comprehensive data set of individual direct field measurements as reported by researchers. While the primary emphasis was on acquiring C data, measurements of N, P, and base cations were also obtained, although the database is sparse for elements other than C and N. Each of the 1,497 records in the database represents a measurement site. Replicate measurements were averaged according to conventions described in Section 5 and recorded for each site in the database. The sites were at 575 different locations. not-provided GMAO-CMIP5.v1 GMAO Decadal Analysis & Prediction for CMIP5 NCCS 1961-01-01 2019-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1542704969-NCCS.json Studies of change and variations on decadal timescales are essential for planning satellite missions that seek to improve our understanding of linkages among various components of the Earth System. Decadal predictions using a version of the GEOS-5 AOGCM were contributed to the CMIP5 project. The dataset include a three-member ensemble initialized on December 1 of each year from 1960 to 2010. These data are available, with the designation NASA GMAO, from the CMIP5 Archive at NASA NCCS. not-provided -GOMIGEO.v002 MISR Geometric Parameters subset for the GoMACCS region V002 LARC 2006-07-30 2006-10-17 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1625796320-LARC.json Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR Geometric Parameters subset for the GoMACCS region V002 contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid. not-provided Global_Microbial_Biomass_C_N_P_1264.v1 A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data ORNL_CLOUD 1977-11-16 2012-06-01 -180, -90, 177.9, 79 https://cmr.earthdata.nasa.gov/search/concepts/C2216863966-ORNL_CLOUD.json This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total phosphorus at biome and global scales. The data were compiled from a comprehensive survey of publications from the late 1970s to 2012 and include 3,422 data points from 315 papers. These data are from soil samples collected primarily at 0-15 cm depth with some from 0-30 cm. In addition, data were compiled for soil microbial biomass concentrations from soil profile samples to depths of 100 cm. Sampling site latitude and longitude were available for the majority of the samples that enabled assembling additional soil properties, site characteristics, vegetation distributions, biomes, and long-term climate data from several global sources of soil, land-cover, and climate data. These site attributes are included with the microbial biomass data. This data set contains two *.csv files of the soil microbial biomass C, N, P data. The first provides all compiled results emphasizing the full spatial extent of the data, while the second is a subset that provides only data from a series of profile samples emphasizing the vertical distribution of microbial biomass concentrations.There is a companion file, also in .csv format, of the references for the surveyed publications. A reference_number relates the data to the respective publication.The concentrations of soil microbial biomass, in combination with other soil databases, were used to estimate the global storage of soil microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles. These storage estimates were combined with a spatial map of 12 major biomes (boreal forest, temperate coniferous forest, temperate broadleaf forest, tropical and subtropical forests, mixed forest, grassland, shrub, tundra, desert, natural wetland, cropland, and pasture) at 0.05-degree by 0.5-degree spatial resolution. The biome map and six estimates of C and N storage and C:N ration in soil microbial biomass are provided in a single netCDF format file. not-provided Global_Phosphorus_Hedley_Fract_1230.v1 A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation ORNL_CLOUD 1985-01-01 2010-12-31 -117.86, -42.5, 117.6, 63.23 https://cmr.earthdata.nasa.gov/search/concepts/C2216863440-ORNL_CLOUD.json This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley and Stewart, 1982). This database contains estimates of different forms of naturally occurring soil phosphorus, including labile inorganic P, organic P, occluded P, secondary mineral P, apatite P, and total P, based on the analyses of the various Hedley soil fractions.The recent literature survey (Yang and Post, 2011) was restricted to studies of natural, unfertilized, and uncultivated soils since 1995. Ninety measurements of soil P fractions were identified. These were added to the 88 values from soils in natural ecosystems that Cross and Schlesinger (1995) had compiled. Cross and Schlesinger provided a comprehensive survey on Hedley P data prior to 1995. Measurement data are provided for studies published from 1985 through 2010. In addition to the Hedley P fraction measurement data Yang and Post (2011) also compiled information on soil order, soil pH, organic carbon and nitrogen content, as well as the geographic location (longitude and latitude) of the measurement sites. not-provided Global_RTSG_Flux_1078.v1 A Global Database of Gas Fluxes from Soils after Rewetting or Thawing, Version 1.0 ORNL_CLOUD 1956-01-01 2009-12-31 -149.63, -36.45, 160.52, 74.5 https://cmr.earthdata.nasa.gov/search/concepts/C2216863284-ORNL_CLOUD.json This database contains information compiled from published studies on gas flux from soil following rewetting or thawing. The resulting database includes 222 field and laboratory observations focused on rewetting of dry soils, and 116 field laboratory observations focused on thawing of frozen soils studies conducted from 1956 to 2010. Fluxes of carbon dioxide, methane, nitrous oxide, nitrogen oxide, and ammonia (CO2, CH4, N2O, NO and NH3) were compiled from the literature and the flux rates were normalized for ease of comparison. Field observations of gas flux following rewetting of dry soils include events caused by natural rainfall, simulated rainfall in natural ecosystems, and irrigation in agricultural lands. Similarly, thawing of frozen soils include field observations of natural thawing, simulated freezing-thawing events (i.e., thawing of simulated frozen soil by snow removal), and thawing of seasonal ice in temperate and high latitude regions (Kim et al., 2012). Reported parameters include experiment type, location, site type, vegetation, climate, soil properties, rainfall, soil moisture, soil gas flux after wetting and thawing, peak soil gas flux properties, and the corresponding study references. There is one comma-delimited data file. not-provided @@ -223,8 +214,6 @@ GreenBay.v0 2010 Measurements made in Green Bay, Wisconsin OB_DAAC 2010-09-17 - IKONOS_MSI_L1B.v1 IKONOS Level 1B Multispectral 4-Band Satellite Imagery CSDA 1999-10-14 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497453433-CSDA.json The IKONOS Level 1B Multispectral 4-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This satellite imagery is in the visible and near-infrared waveband range with data in the blue, green, red, and near-infrared wavelengths. The spatial resolution is 3.2m at nadir and the temporal resolution is approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IKONOS_Pan_L1B.v1 IKONOS Level 1B Panchromatic Satellite Imagery CSDA 1999-10-24 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.json The IKONOS Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This data product includes panchromatic imagery with a spatial resolution of 0.82m at nadir and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IMS1_HYSI_GEO.v1.0 IMS-1 HYSI TOA Radiance and Reflectance Product ISRO 2008-06-22 2012-09-10 -6.0364, -78.8236, 152.6286, 78.6815 https://cmr.earthdata.nasa.gov/search/concepts/C1214622602-ISRO.json The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms. not-provided -ISERV.v1 International Space Station SERVIR Environmental Research and Visualization System V1 USGS_EROS 2013-03-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions. not-provided -IXBMIGEO.v2 MISR Geometric Parameters subset for the INTEX-B region V002 LARC 2006-02-28 2006-04-03 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.json This file contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid for the INTEXB_2006 theme. not-provided KOPRI-KPDC-00000008.v1 1998 Seismic Data, Antarctica AMD_KOPRI 1998-12-07 1998-12-11 -66.266667, -64.616667, -64.416667, -62.995 https://cmr.earthdata.nasa.gov/search/concepts/C2244292774-AMD_KOPRI.json "Korean Antarctic survey carried out as part of step 2 project in year 2 of 'the Antarctic Undersea Geological Survey' was conducted in the Ⅱ region around the northwestern continent of the Antarctic Peninsula. This area is northwest of Anvers Island, including areas around the pericontinent from the continental shelf to the continental rise zone. The investigation period for this project took a total of 8 days for moving navigation, the survey of the side lines and drilling investigation. After seismic investigation, a surface drilling investigation was conducted in coring point was decided from the reference seismic section. 10 researcher from ‘Korea Ocean Research and Development Institute’ participated in the field survey. We took on lease Russian icebreaker ""Yuzhmorgeologiya""." not-provided KOPRI-KPDC-00000009.v1 1997 Seismic Data, Antarctica AMD_KOPRI 1997-12-23 1997-12-28 -64.699722, -63.525, -62.157778, -62.041389 https://cmr.earthdata.nasa.gov/search/concepts/C2244293126-AMD_KOPRI.json Korean Antarctic survey carried out as part of step 2 project in year 1 of ‘The Antarctic Undersea Geological Survey’ in 1997 was conducted in a continental shelf in the northwestern part of the Antarctic Peninsula. The research period took a total of 8 days, including 6 days for the seismic survey and 2 days for the drilling investigation. We took on lease Norway R/V 'Polar Duke' and 10 researchers from ‘Korea Ocean Research and Development Institute’ participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12 –channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling. not-provided KOPRI-KPDC-00000011.v1 1996 Seismic Data, Antarctica AMD_KOPRI 1996-12-17 1996-12-26 -62.766667, -63.583333, -60.233333, -62.733333 https://cmr.earthdata.nasa.gov/search/concepts/C2244293499-AMD_KOPRI.json "Korean Antarctic survey carried out as in year 3 project of 'the Antarctic Undersea Geological Survey' was conducted in the basin region of western part of the Bransfeed Strait between the Antarctic Peninsula and the South Shetland Islands . During the field investigation, the seismic investigation and the drilling investigation was conducted at the same time. The investigation period took 9 days. 10 researchers from ‘Korea Ocean Research and Development Institute’ and 3 academic personnel participated in the cruise as field investigation personnel. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker." not-provided @@ -235,7 +224,6 @@ KOPRI-KPDC-00000052.v1 1995 Sediment Core, Antarctica AMD_KOPRI 1995-12-19 1995- KOPRI-KPDC-00000053.v1 1996 Sediment Core, Antarctica AMD_KOPRI 1996-12-16 1996-12-16 -60.151944, -62.100278, -59.717778, -62.051389 https://cmr.earthdata.nasa.gov/search/concepts/C2244291950-AMD_KOPRI.json "Korean Antarctic survey was conducted in west of the Bransfeed Strait, a basin between the Antarctic Peninsula and the south Shetland Islands. It tooks 9 days. seismic investigation and drilling investigation were conducted at the same time during the field survey. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker and 10 researchers from ‘Korea Ocean Research and Development Institute’ and 3 academic personnel participated in the cruise as field investigation personnel." not-provided KOPRI-KPDC-00000054.v1 1997 Sediment Core, Antarctica AMD_KOPRI 1997-12-28 1997-12-29 -63.396667, -63.886111, -62.700833, -62.536389 https://cmr.earthdata.nasa.gov/search/concepts/C2244292254-AMD_KOPRI.json Korean Antarctic survey was conducted in 1997 carried out in a continental shelf in the northwestern part of the Antarctic Peninsula. It took 2 days. We took on lease Norway R/V 'Polar Duke' and 11 researchers from ‘Korea Ocean Research and Development Institute’ participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12-channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling. not-provided KOPRI-KPDC-00000055.v1 1998 Sediment Core, Antarctica AMD_KOPRI 1998-12-11 1998-12-12 -66.32, -63.95, -63.47, -62.943333 https://cmr.earthdata.nasa.gov/search/concepts/C2244294165-AMD_KOPRI.json "Korean Antarctic survey was conducted in the continental margin (II region) of the northwestern Antarctic Peninsula. We took on lease Russian R/V ""Yuzhmorgeologiya"" (5500 ton, ice strengthed vessel) and 10 researchers participated in the cruise, including acquisition of multichannel seismic, gravity, and magnetometer as well as a detailed samplings (box cores, gravity cores, and grab samples). 1. Geophysical researches (Multichannel seismic and SBP surveys) 2. Paleoceanographic researches" not-provided -KUKRI_He (U-Th)/He ages from the Kukri Hills of southern Victoria Land SCIOPS 1970-01-01 162.7, -77.7, 162.7, -77.7 https://cmr.earthdata.nasa.gov/search/concepts/C1214587974-SCIOPS.json The data set consists of (U-Th)/He ages collected from three vertical profiles from the the Kukri Hills (north side of the Ferrar Glacier) of Southern Victoria Land. The data set provides information on the cooling history and hence the denduation history of the Transantarctic Mountains in this area. Analyses were all carried out at the (U-Th)/He lab of Ken Farley at the Californai Institute of Technology. not-provided L1B_Wind_Products Aeolus preliminary HLOS (horizontal line-of-sight) wind observations for Rayleigh and Mie receivers ESA 2020-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689596-ESA.json The Level 1B wind product of the Aeolus mission contains the preliminary HLOS (horizontal line-of-sight) wind observations for Rayleigh and Mie receivers, which are generated in Near Real Time. Standard atmospheric correction (Rayleigh channel), receiver response and bias correction is applied. The product is generated within 3 hours after data acquisition. not-provided L2B_Wind_Products Aeolus Scientific L2B Rayleigh/Mie wind product ESA 2020-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689544-ESA.json The Level 2B wind product of the Aeolus mission is a geo-located consolidated HLOS (horizontal line-of-sight) wind observation with actual atmospheric correction applied to Rayleigh channel. The product is generated by within 3 hours after data acquisition. not-provided L2C_Wind_products Aeolus Level 2C assisted wind fields resulting from NWP Numerical Weather Prediction assimilation processing ESA 2020-07-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2619280864-ESA.json The Level 2C wind product of the Aeolus mission provides ECMWF analysis horizontal wind vectors at the geolocations of assimilated L2B HLOS wind components. The L2C can therefore be described as an Aeolus-assisted horizontal wind vector product. The L2C is a distinct product, however the L2C and L2B share a common Earth Explorer file template, with the L2C being a superset of the L2B. The L2C consists of extra datasets appended to the L2B product with information which are relevant to the data assimilation of the L2B winds. not-provided @@ -247,11 +235,6 @@ Level_2A_aerosol_cloud_optical_products Aeolus L2A Aerosol/Cloud optical product MCD06COSP_D3_MODIS.v6.1 MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1887589686-LAADS.json The combined MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product’s short-name. The “COSP” acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. This product is an aggregation of combined MODIS Level-2 inputs from both the Terra and Aqua incarnations (MOD35/MOD06 and MYD35/MYD06, respectively), and employs an aggregation methodology consistent with the MOD08 and MYD08 products. Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters). not-provided MCD06COSP_M3_MODIS.v6.1 MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid LAADS 2002-07-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1888024429-LAADS.json The combined MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product’s short-name. The “COSP” acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. The L3 monthly product is derived by aggregating the daily-produced Aqua+Terra/MODIS D3 Cloud Properties product (MCD06COSP_D3_MODIS). Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters). not-provided MCD14DL_C5_NRT.v005 MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1km FIRMS V005 NRT LM_FIRMS 2014-01-28 -180, -80, 180, 80 https://cmr.earthdata.nasa.gov/search/concepts/C1219768065-LM_FIRMS.json Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes. not-provided -MIANACP.v1 MISR Aerosol Climatology Product V001 LARC 1999-11-22 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.json MIANACP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Climatology Product version 1. It is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure aerosol to be compared with MISR observations; and 3) likelihood value assigned to each mode geographically. The ACP describes mixtures of up to three component aerosol types from a list of eight components, in varying proportions. ACP component aerosol particle data quality depends on the ACP input data, which are based on aerosol particles described in the literature, and consider MISR-specific sensitivity to particle size, single-scattering albedo, and shape, and shape - roughly: small, medium and large; dirty and clean; spherical and nonspherical [Kahn et al. , 1998; 2001]. Also reported in the ACP are the mixtures of these components used by the retrieval algorithm. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided -MIANCAGP.v1 MISR Ancillary Geographic Product V001 LARC 1999-11-07 2005-06-30 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.json MIANCAGP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Geographic Product version 1. It is a set of 233 pre-computed files. Each AGP file pertains to a single Terra orbital path. MISR production software relies on information in the AGP, such as digital terrain elevation, as input to the algorithms which generate MISR products. The AGP contains eleven fields of geographical data. This product consists primarily of geolocation data on a Space Oblique Mercator (SOM) Grid. It has 233 parts, corresponding to the 233 repeat orbits of the EOS-AM1 Spacecraft. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided -MIANCARP.v2 MISR Ancillary Radiometric Product V002 LARC 1999-12-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.json MIANCARP_2 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Radiometric Product version 2. It is composed of 4 files covering instrument characterization data, pre-flight calibration data, in-flight calibration data, and configuration parameters. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided -MIRCCMF.v001 MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001 LARC 2000-12-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C135857530-LARC.json Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001 contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs Radiometric Camera-by-camera Cloud mask Threshold (RCCT) from the previous time period. It is used to determine whether a scene is clear, cloudy or dusty (over ocean). not-provided -MISBR.v005 MISR Browse data V005 LARC 1999-12-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C43677744-LARC.json This is the browse data associated with a particular granule. not-provided MURI_Camouflage.v0 A Multi University Research Initiative (MURI) Camouflage Project OB_DAAC 2010-06-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360494-OB_DAAC.json A Multi University Research Initiative was funded to study the biological response to the dynamic, polarized light field in distinct water types. During June 2010, a campaign was undertaken in the coastal waters off Port Aransas, Texas to study the angular/temporal distribution of polarization in multiple environment types (eutrophic sediment laden coastal waters, oligotrophic off-shore), as well as the polarization-reflectance responses of several organisms. In addition to radiometric polarization measurements, water column IOPs, Rrs, benthic reflectance, and pigment concentration measurements were collected. Later campaigns expanded this research in the coastal waters off the Florida Keys. not-provided MURI_HI.v0 A Multi University Research Initiative (MURI) near the Hawaiian Islands OB_DAAC 2012-05-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360508-OB_DAAC.json Measurements taken by the RV Kilo Moana in 2012 near the Hawaiian Islands. not-provided MYD021KM.v6.1NRT MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426616847-LANCEMODIS.json The MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 36 discrete bands located in the 0.4 to 14.4 micron region of electromagentic spectrum. These data are generated from the MODIS Level 1A scans of raw radiance and in the process converted to geophysical units of W/(m^2 um sr). In addition, the Earth Bi-directional Reflectance Distribution Function (BRDF) may be determined for the solar reflective bands (1-19, 26) through knowledge of the solar irradiance (e.g., determined from MODIS solar diffuser data, and from the target illumination geometry). Additional data are provided including quality flags, error estimates and calibration data. Visible, shortwave infrared, and near infrared measurements are only made during the daytime, while radiances for the thermal infrared region (bands 20-25, 27-36) are measured continuously. Channel locations for MODIS are as follows: Band Center Wavelength (um) Primary Use---- ---------------------- -----------1 0.620 - 0.670 Land/Cloud Boundaries2 0.841 - 0.876 Land/Cloud Boundaries3 0.459 - 0.479 Land/Cloud Properties4 0.545 - 0.565 Land/Cloud Properties5 1.230 - 1.250 Land/Cloud Properties6 1.628 - 1.652 Land/Cloud Properties7 2.105 - 2.155 Land/Cloud Properties8 0.405 - 0.420 Ocean Color/Phytoplankton9 0.438 - 0.448 Ocean Color/Phytoplankton10 0.483 - 0.493 Ocean Color/Phytoplankton11 0.526 - 0.536 Ocean Color/Phytoplankton12 0.546 - 0.556 Ocean Color/Phytoplankton13 0.662 - 0.672 Ocean Color/Phytoplankton14 0.673 - 0.683 Ocean Color/Phytoplankton15 0.743 - 0.753 Ocean Color/Phytoplankton16 0.862 - 0.877 Ocean Color/Phytoplankton17 0.890 - 0.920 Atmospheric Water Vapor18 0.931 - 0.941 Atmospheric Water Vapor19 0.915 - 0.965 Atmospheric Water Vapor20 3.660 - 3.840 Surface/Cloud Temperature21 3.929 - 3.989 Surface/Cloud Temperature22 3.929 - 3.989 Surface/Cloud Temperature23 4.020 - 4.080 Surface/Cloud Temperature24 4.433 - 4.498 Atmospheric Temperature25 4.482 - 4.549 Atmospheric Temperature26 1.360 - 1.390 Cirrus Clouds27 6.535 - 6.895 Water Vapor Profile28 7.175 - 7.475 Water Vapor Profile29 8.400 - 8.700 Water Vapor Profile30 9.580 - 9.880 Ozone Overburden31 10.780 - 11.280 Surface/Cloud Temperature32 11.770 - 12.270 Surface/Cloud Temperature33 13.185 - 13.485 Cloud Top Altitude34 13.485 - 13.785 Cloud Top Altitude35 13.785 - 14.085 Cloud Top Altitude36 14.085 - 14.385 Cloud Top Altitude Channels 1 and 2 have 250 m resolution, channels 3 through 7 have 500m resolution, and the rest have 1 km resolution. However, for the MODIS L1B 1 km product, the 250 m and 500 m band radiance data and their associated uncertainties have been aggregated to 1km resolution. Thus the entire channel data set is referenced to the same spatial and geolocation scales. Separate L1B products are available for the 250 m channels (MYD02QKM) and 500 m channels (MYD02HKM) that preserve the original resolution of the data. Spatial resolution for pixels at nadir is 1 km, degrading to 4.8 km in the along-scan direction at the scan extremes. However, thanks to the overlapping of consecutive swaths and respectively pixels there, the resulting resolution at the scan extremes is about 2km. A 55 degree scanning pattern at the EOS orbit of 705 km results in a 2330km orbital swath width and provides global coverage every one to two days. A single MODIS Level 1B granule will nominally contain a scene built from 203 scans (or swaths) sampled 1354 times in the cross-track direction, corresponding to approximately 5 minutes worth of data. Since an individual MODIS scan (or swath) will contain 10 along-track spatial elements, the scene will be composed of (1354 x 2030) pixels, resulting in a spatial coverage of (2330 km x 2030 km). Due to the MODIS scan geometry, there will be increasing overlap occurring beyond about 25 degrees scan angle. To summarize, the MODIS L1B 1 km data product consists of: 1. Calibrated radiances and uncertainties for (2) 250 m reflected solar bands aggregated to 1km resolution 2. Calibrated radiances and uncertainties for (5) 500 m reflected solar bands aggregated to 1 km resolution 3. Calibrated radiances and uncertainties for (13) 1 km reflected solar bands and (16) infrared emissive bands 4. Geolocation subsampled at every 5th pixel across and along track 5. Satellite and solar angles subsampled at the above frequency 6. Comprehensive set of file-level metadata summarizing the spatial, temporal and parameter attributes of the data, as well as auxiliary information pertaining to instrument status and data quality characterization. The MODIS L1B data are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) which is an extension of HDF as developed by the National Center for Supercomputer Applications (NCSA) at the University of Illinois. A typical file size will be approximately 260 MB. Environmental information derived from MODIS L1B measurements will offer a comprehensive and unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world. The Shortname for this product is MYD021KM not-provided @@ -270,7 +253,6 @@ MYDGB0.v6.1NRT MODIS/Aqua 5-minute GBAD data in L0 format - NRT LANCEMODIS 2017- Marine Debris Dataset for Object Detection in Planetscope Imagery.v1 Marine Debris Dataset for Object Detection in Planetscope Imagery MLHUB 2016-09-28 2019-04-18 -88.2971191, 5.4683637, 34.5300293, 39.1087514 https://cmr.earthdata.nasa.gov/search/concepts/C2196591903-MLHUB.json Floating marine debris is a global pollution problem which leads to the loss of marine and terrestrial biodiversity. Large swaths of marine debris are also navigational hazards to ocean vessels. The use of Earth observation data and artificial intelligence techniques can revolutionize the detection of floating marine debris on satellite imagery and pave the way to a global monitoring system for controlling and preventing the accumulation of marine debris in oceans. This dataset consists of images of marine debris which are 256 by 256 pixels in size and labels which are bounding boxes with geographical coordinates. The images were obtained from PlanetScope optical imagery which has a spatial resolution of approximately 3 meters. In this dataset, marine debris consists of floating objects on the ocean surface which can belong to one or more classes namely plastics, algae, sargassum, wood, and other artificial items. Several studies were used for data collection and validation. While a small percentage of the dataset represents the coastlines of Ghana and Greece, most of the observations surround the Bay Islands in Honduras. The marine debris detection models created and the relevant code for using this dataset can be found here. https://github.com/NASA-IMPACT/marine_debris_ML not-provided NEX-DCP30.v1 Downscaled 30 Arc-Second CMIP5 Climate Projections for Studies of Climate Change Impacts in the United States NCCS 1950-01-01 2099-12-31 -125.0208333, 24.0625, -66.4791667, 49.9375 https://cmr.earthdata.nasa.gov/search/concepts/C1542175061-NCCS.json This NASA dataset is provided to assist the science community in conducting studies of climate change impacts at local to regional scales, and to enhance public understanding of possible future climate patterns and climate impacts at the scale of individual neighborhoods and communities. This dataset is intended for use in scientific research only, and use of this dataset for other purposes, such as commercial applications, and engineering or design studies is not recommended without consultation with a qualified expert. Community feedback to improve and validate the dataset for modeling usage is appreciated. Email comments to bridget@climateanalyticsgroup.org. Dataset File Name: NASA Earth Exchange (NEX) Downscaled Climate Projections (NEXDCP30), https://portal.nccs.nasa.gov/portal_home/published/NEX.html not-provided NEX-GDDP.v1 NASA Earth Exchange Global Daily Downscaled Projections NCCS 1950-01-01 2100-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1374483929-NCCS.json The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate scenarios for the globe that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs). The CMIP5 GCM runs were developed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The NEX-GDDP dataset includes downscaled projections for RCP 4.5 and RCP 8.5 from the 21 models and scenarios for which daily scenarios were produced and distributed under CMIP5. Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100. The spatial resolution of the dataset is 0.25 degrees (~25 km x 25 km). The NEX-GDDP dataset is provided to assist the science community in conducting studies of climate change impacts at local to regional scales, and to enhance public understanding of possible future global climate patterns at the spatial scale of individual towns, cities, and watersheds. Each of the climate projections includes monthly averaged maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2005 (Retrospective Run) and from 2006 to 2099 (Prospective Run). not-provided -NIPR_UAP_ELF_SYO 1-100Hz ULF/ELF Electromagnetic Wave Observation at Syowa Station SCIOPS 2000-01-01 39.6, -69, 39.6, -69 https://cmr.earthdata.nasa.gov/search/concepts/C1214590112-SCIOPS.json 1-100Hz ULF/ELF Electromagnetic Wave Observation at Syowa Station not-provided NMMIEAI-L2-NRT.v2 OMPS-NPP L2 NM Aerosol Index swath orbital NRT OMINRT 2011-11-07 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1657477341-OMINRT.json The OMPS-NPP L2 NM Aerosol Index swath orbital V2 for Near Real Time. For the standard product see the OMPS_NPP_NMMIEAI_L2 product in CMR .The aerosol index is derived from normalized radiances using 2 wavelength pairs at 340 and 378.5 nm. Additionally, this data product contains measurements of normalized radiances, reflectivity, cloud fraction, reflectivity, and other ancillary variables. not-provided NMSO2-PCA-L2-NRT.v2 OMPS/NPP PCA SO2 Total Column 1-Orbit L2 Swath 50x50km NRT OMINRT 2011-10-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1439293808-OMINRT.json The OMPS-NPP L2 NM Sulfur Dioxide (SO2) Total and Tropospheric Column swath orbital collection 2 version 2.0 product contains the retrieved sulfur dioxide (SO2) measured by the Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) sensor on the Suomi-NPP satellite. A Principle Component Analysis (PCA) algorithm is used to retrieve the SO2 total column amount and column amounts in the lower (centered at 2.5 km), middle (centered at 7.5 km) and upper (centered at 11 km) troposphere, as well as the lower stratosphere (centered at 16 km). Each granule contains data from the daylight portion for a single orbit or about 50 minutes. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14 orbits per day each with a swath width of 2600 km. There are 35 pixels in the cross-track direction, with a pixel resolution of about 50 km x 50 km at nadir. The files are written using the Hierarchical Data Format Version 5 or HDF5. not-provided NMTO3NRT.v2 OMPS-NPP L2 NM Ozone (O3) Total Column swath orbital NRT OMINRT 2011-10-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1439272084-OMINRT.json The OMPS-NPP L2 NM Ozone (O3) Total Column swath orbital product provides total ozone measurements from the Ozone Mapping and Profiling Suite (OMPS) Nadir-Mapper (NM) instrument on the Suomi-NPP satellite.The total column ozone amount is derived from normalized radiances using 2 wavelength pairs 317.5 and 331.2 nm under most conditions, and 331.2 and 360 nm for high ozone and high solar zenith angle conditions. Additionally, this data product contains measurements of UV aerosol index and reflectivity at 331 nm.Each granule contains data from the daylight portion of each orbit measured for a full day. Spatial coverage is global (-90 to 90 degrees latitude), and there are about 14.5 orbits per day, each has typically 400 swaths. The swath width of the NM is about 2800 km with 36 scenes, or pixels, with a footprint size of 50 km x 50 km at nadir. The L2 NM Ozone data are written using the Hierarchical Data Format Version 5 or HDF5. not-provided @@ -286,8 +268,6 @@ NRSCC_GLASS_BBE_AVHRR.v11 NRSCC_GLASS_BBE_AVHRR NRSCC 1982-01-01 2017-12-31 -180 NRSCC_GLASS_BBE_MODIS_0.05D.v11 NRSCC_GLASS_BBE_MODIS_0.05D NRSCC 2000-02-18 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351185-NRSCC.json The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from MODIS. The horizontal resolution is 0.05 Degree. not-provided NRSCC_GLASS_BBE_MODIS_1KM.v11 NRSCC_GLASS_BBE_MODIS_1KM NRSCC 2000-02-18 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351153-NRSCC.json NRSCC_GLASS_BBE_MODIS_1KM not-provided NSF-ANT05-37371 A Broadband Seismic Experiment to Image the Lithosphere Beneath the Gamburtsev Mountains and Surrounding Areas, East Antarctica AMD_USAPDC 2007-10-01 2013-09-30 40, -84, 140, -76 https://cmr.earthdata.nasa.gov/search/concepts/C2532069799-AMD_USAPDC.json This award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach. not-provided -NSF-ANT10-43485.v1 A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea AMD_USAPDC 2011-07-01 2015-06-30 -160, -78, -150, -68 https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.json This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. not-provided -NSF-ANT10-43517 A new reconstruction of the last West Antarctic Ice Sheet deglaciation in the Ross Sea AMD_USAPDC 2011-07-01 2015-06-30 163.5, -78.32, 165.35, -77.57 https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.json This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. not-provided NSF-ANT10-43621 A Comparison of Conjugate Auroral Electojet Indices AMD_USAPDC 2011-06-01 2013-05-31 -180, -79.5, 180, -54.5 https://cmr.earthdata.nasa.gov/search/concepts/C2532069751-AMD_USAPDC.json The auroral electrojet index (AE) is used as an indicator of geomagnetic activity at high latitudes representing the strength of auroral electrojet currents in the Northern polar ionosphere. A similar AE index for the Southern hemisphere is not available due to lack of complete coverage the Southern auroral zone (half of which extends over the ocean) with continuous magnetometer observations. While in general global auroral phenomena are expected to be conjugate, differences have been observed in the conjugate observations from the ground and from the Earth's satellites. These differences indicate a need for an equivalent Southern auroral geomagnetic activity index. The goal of this award is to create the Southern AE (SAE) index that would accurately reflect auroral activity in that hemisphere. With this index, it would be possible to investigate the similarities and the cause of differences between the SAE and 'standard' AE index from the Northern hemisphere. It would also make it possible to identify when the SAE does not provide a reliable calculation of the Southern hemisphere activity, and to determine when it is statistically beneficial to consider the SAE index in addition to the standard AE while analyzing geospace data from the Northern and Southern polar regions. The study will address these questions by creating the SAE index and its 'near-conjugate' NAE index from collected Antarctic magnetometer data, and will analyze variations in the cross-correlation of these indices and their differences as a function of geomagnetic activity, season, Universal Time, Magnetic Local Time, and interplanetary magnetic field and solar wind plasma parameters. The broader impact resulting from the proposed effort is in its importance to the worldwide geospace scientific community that currently uses only the standard AE index in a variety of geospace models as necessary input. not-provided NSF-ANT13-55533.v1 A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization AMD_USAPDC 2013-10-01 2015-09-30 163, -78.5, 167, -78 https://cmr.earthdata.nasa.gov/search/concepts/C2532070231-AMD_USAPDC.json Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis. not-provided NSIDC-0326.v1 Ablation Rates of Taylor Glacier, Antarctica, Version 1 NSIDCV0 2002-11-19 2011-01-12 160.1, -77.9, 162.2, -77.6 https://cmr.earthdata.nasa.gov/search/concepts/C1386250376-NSIDCV0.json This data set provides glacier surface ablation rates for a network of approximately 250 sites on Taylor Glacier, spanning a period from 2003 to 2011. Here sublimation is the dominant ablation mechanism, though a few sites have accumulation. Ablation data are provided in meters water equivalent per year. Data are available via FTP in space-delimited ASCII format. not-provided @@ -312,7 +292,6 @@ Turbid9.v0 2004 Measurements made in the Chesapeake Bay OB_DAAC 2004-10-01 -180 USAP-1543498.v1 A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea AMD_USAPDC 2016-06-01 165, -78, -150, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2532074621-AMD_USAPDC.json "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and ""NestCheck"" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer.

The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual's lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region." not-provided USAP-1643722.v1 A High Resolution Atmospheric Methane Record from the South Pole Ice Core AMD_USAPDC 2017-02-01 2019-01-31 180, -90, 180, -90 https://cmr.earthdata.nasa.gov/search/concepts/C2534799946-AMD_USAPDC.json This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project. not-provided USAP-1744755.v1 A mechanistic study of bio-physical interaction and air-sea carbon transfer in the Southern Ocean AMD_USAPDC 2018-05-01 2022-04-30 -80, -70, -30, -45 https://cmr.earthdata.nasa.gov/search/concepts/C2545372297-AMD_USAPDC.json Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. not-provided -USAP-1744989.v1 A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins AMD_USAPDC 2018-07-15 2022-06-30 -180, -90, 180, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.json This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. not-provided USAP-2130663.v1 2021 Antarctic Subsea Cable Workshop: High-Speed Connectivity Needs to Advance US Antarctic Science AMD_USAPDC 2021-06-01 2023-05-31 -180, -90, 180, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2556670196-AMD_USAPDC.json Current networking capacity at McMurdo Station is insufficient to even be considered broadband, with a summer population of up to 1000 people sharing what is equivalent to the connection enjoyed by a typical family of three in the United States. The changing Antarctic ice sheets and Southern Ocean are large, complex systems that require cutting edge technology to do cutting edge research, with remote technology becoming increasingly useful and even necessary to monitor changes at sufficient spatial and temporal scales. Antarctic science also often involves large data-transfer needs not currently met by existing satellite communication infrastructure. This workshop will gather representatives from across Antarctic science disciplinesfrom astronomy to zoologyas well as research and education networking experts to explore the scientific advances that would be enabled through dramatically increased real-time network connectivity, and also consider opportunities for subsea cable instrumentation. This workshop will assess the importance of a subsea fiber optic cable for high-capacity real-time connectivity in the US Antarctic Program, which is at the forefront of some of the greatest climate-related challenges facing our planet. The workshop will: (1) document unmet or poorly met current scientific and logistic needs for connectivity; (2) explore connectivity needs for planned future research and note the scientific advances that would be possible if the full value of modern cyberinfrastructure-empowered research could be brought to the Antarctic research community; and (3) identify scientific opportunities in planning a fully instrumented communication cable as a scientific observatory. Due to the ongoing COVID-19 pandemic, the workshop will be hosted and streamed online. While the workshop will be limited to invited personnel in order to facilitate a collaborative working environment, broad community input will be sought via survey and via comment on draft outputs. A workshop summary document and report will be delivered to NSF. Increasing US Antarctic connectivity by orders of magnitude will be transformative for science and logistics, and it may well usher in a new era of Antarctic science that is more accessible, efficient and sustainable. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. not-provided USGS_DDS_P14_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Los Angeles Basin Province CEOS_EXTRA 1990-12-01 1990-12-01 -119.63631, 32.7535, -117.52315, 34.17464 https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 14 (Los Angeles Basin) are listed here by play number, type, and name: Number Type Name 1401 conventional Santa Monica Fault System and Las Cienegas Fault and Block 1402 conventional Southwestern Shelf and Adjacent Offshore State Lands 1403 conventional Newport-Inglewood Deformation Zone and Southwestern Flank of Central Syncline 1404 conventional Whittier Fault Zone and Fullerton Embayment 1405 conventional Northern Shelf and Northern Flank of Central Syncline 1406 conventional Anaheim Nose 1407 conventional Chino Marginal Basin, Puente and San Jose Hills, and San Gabriel Valley Marginal Basin not-provided USGS_DDS_P16_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Salton Trough Province CEOS_EXTRA 1990-12-01 1990-12-01 -116.66911, 32.634293, -114.74501, 34.02059 https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 16 (Salton Trough) are listed here by play number, type, and name. not-provided @@ -342,10 +321,8 @@ amsua16sp.v1 ADVANCED MICROWAVE SOUNDING UNIT-A (AMSU-A) SWATH FROM NOAA-16 V1 G asas Advanced Solid-state Array Spectroradiometer (ASAS) USGS_LTA 1988-06-26 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220566261-USGS_LTA.json The Advanced Solid-state Array Spectroradiometer (ASAS) data collection contains data collected by the ASAS sensor flown aboard NASA aircraft. A fundamental use of ASAS data is to characterize and understand the directional variability in solar energy scattered by various land surface cover types (e.g.,crops, forests, prairie grass, snow, or bare soil). The sensor's Bidirectional Reflectance Distribution Function determines the variation in the reflectance of a surface as a function of both the view zenith angle and solar illumination angle. The ASAS sensor is a hyperspectral, multiangle, airborne remote sensing instrument maintained and operated by the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The ASAS instrument is mounted on the underside of either NASA C-130 or NASA P-3 aircraft and is capable of off-nadir pointing from approximately 70 degrees forward to 55 degrees aft along the direction of flight. The aircraft is flown at an altitude of 5000 - 6000 meters (approximately 16,000 - 20,000 ft.). Data in the ASAS collection primarily cover areas over the continental United States, but some ASAS data are also available over areas in Canada and western Africa. The ASAS data were collected between 1988 and 1994. not-provided aster_global_dem ASTER Global DEM USGS_LTA 1970-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1220567908-USGS_LTA.json ASTER is capable of collecting in-track stereo using nadir- and aft-looking near infrared cameras. Since 2001, these stereo pairs have been used to produce single-scene (60- x 60-kilomenter (km)) digital elevation models (DEM) having vertical (root-mean-squared-error) accuracies generally between 10- and 25-meters (m). The methodology used by Japan's Sensor Information Laboratory Corporation (SILC) to produce the ASTER GDEM involves automated processing of the entire ASTER Level-1A archive. Stereo-correlation is used to produce over one million individual scene-based ASTER DEMs, to which cloud masking is applied to remove cloudy pixels. All cloud-screened DEMS are stacked and residual bad values and outliers are removed. Selected data are averaged to create final pixel values, and residual anomalies are corrected before partitioning the data into 1 degree (°) x 1° tiles. The ASTER GDEM covers land surfaces between 83°N and 83°S and is comprised of 22,702 tiles. Tiles that contain at least 0.01% land area are included. The ASTER GDEM is distributed as Geographic Tagged Image File Format (GeoTIFF) files with geographic coordinates (latitude, longitude). The data are posted on a 1 arc-second (approximately 30–m at the equator) grid and referenced to the 1984 World Geodetic System (WGS84)/ 1996 Earth Gravitational Model (EGM96) geoid. not-provided b673f41b-d934-49e4-af6b-44bbdf164367 AVHRR - Land Surface Temperature (LST) - Europe, Daytime FEDEO 1998-02-23 -24, 28, 57, 78 https://cmr.earthdata.nasa.gov/search/concepts/C2207458008-FEDEO.json "The ""Land Surface Temperature derived from NOAA-AVHRR data (LST_AVHRR)"" is a fixed grid map (in stereographic projection ) with a spatial resolution of 1.1 km. The total size covering Europe is 4100 samples by 4300 lines. Within 24 hours of acquiring data from the satellite, day-time and night-time LSTs are calculated. In general, the products utilise data from all six of the passes that the satellite makes over Europe in each 24 hour period. For the daily day-time LST maps, the compositing criterion for the three day-time passes is maximum NDVI value and for daily night-time LST maps, the criterion is the maximum night-time LST value of the three night-time passes. Weekly and monthly day-time or night-time LST composite products are also produced by averaging daily day-time or daily night-time LST values, respectively. The range of LST values is scaled between –39.5°C and +87°C with a radiometric resolution of 0.5°C. A value of –40°C is used for water. Clouds are masked out as bad values. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/" not-provided -blue_ice_core_DML2004_AS 101.1 m long horizontal blue ice core collected from Scharffenbergbotnen, DML, Antarctica, in 2003/2004 SCIOPS 1970-01-01 -180, -90, 180, -62.83 https://cmr.earthdata.nasa.gov/search/concepts/C1214614210-SCIOPS.json Horizontal blue ice core collected from the surface of a blue ice area in Scharffenbergbotnen, Heimefrontfjella, DML. Samples were collected in austral summer 2003/2004 and transported to Finland for chemical analyses. The blue ice core is estimated to represent a 1000-year period of climate history 20 - 40 kyr B.P.. The results of the analyses will be available in 2005. not-provided chesapeake_val_2013.v0 2013 Chesapeake Bay measurements OB_DAAC 2013-04-11 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360188-OB_DAAC.json 2013 Chesapeake Bay measurements. not-provided ef6a9266-a210-4431-a4af-06cec4274726 Cartosat-1 (IRS-P5) - Panchromatic Images (PAN) - Europe, Monographic FEDEO 2015-02-10 -25, 30, 45, 80 https://cmr.earthdata.nasa.gov/search/concepts/C2207457985-FEDEO.json Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. However, this collection contains the monoscopic data. not-provided -envidat-lwf-34.v2019-03-06 10-HS Pfynwald SCIOPS 2019-01-01 2019-01-01 7.61211, 46.30279, 7.61211, 46.30279 https://cmr.earthdata.nasa.gov/search/concepts/C1647993129-SCIOPS.json Continuous measurement of soil water content at 10 and 80 cm depth (3 replications) with 10-HS soil moisture probes (Decagon Incorporation, Pullman, WA, USA). ### Purpose: ### Monitoring of the soil water matrix potential ### Paper Citation: ### * Dobbertin, M.; Eilmann, B.; Bleuler, P.; Giuggiola, A.; Graf Pannatier, E.; Landolt, W.; Schleppi, P.; Rigling, A., 2010: Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30, 3: 346-360. [doi: 10.1093/treephys/tpp123](http://doi.org/10.1093/treephys/tpp123) not-provided gov.noaa.nodc:0000029 1990, 1991, 1992 and 1995 CRETM/LMER Zooplankton Data Sets (NCEI Accession 0000029) NOAA_NCEI 1990-09-26 1995-05-26 -124.041667, 0.766667, -16.25, 46.263167 https://cmr.earthdata.nasa.gov/search/concepts/C2089372282-NOAA_NCEI.json Not provided not-provided gov.noaa.nodc:0000035 1996 - Early 1998 CRETM/LMER Phytoplankton Data (NCEI Accession 0000035) NOAA_NCEI 1996-07-09 1998-03-06 -124.003, 46.179833, -123.183167, 46.261667 https://cmr.earthdata.nasa.gov/search/concepts/C2089372325-NOAA_NCEI.json Pump cast sampling, and associated CTD casts took place from a fixed vessel during one 28-35 day cruise per year in 1990, 1991, 1992, 1995, and 1996. In 1997 there were 2 week cruises in May, July, and October. not-provided gov.noaa.nodc:0000052 1988 Resurrection Bay Zooplankton Data Set from 01 March 1988 to 28 June 1988 (NCEI Accession 0000052) NOAA_NCEI 1988-03-01 1988-06-28 -149.4083, 59.9117, -149.3583, 60.02 https://cmr.earthdata.nasa.gov/search/concepts/C2089372461-NOAA_NCEI.json Zooplantkon and beach tar data were collected using plankton net casts in the Gulf of Alaska from the ALPHA HELIX. Data were collected from 01 March 1988 to 28 June 1988 by University of Alaska in Fairbanks; Institute of Marine Science with support from the Gulf of Alaska - 1 (GAK-1) project. not-provided @@ -360,7 +337,6 @@ gov.noaa.nodc:GHRSST-OISST_UHR_NRT-GOS-L4-BLK.v2.0 Black Sea Ultra High Resoluti gov.noaa.nodc:GHRSST-REMSS-L2P_GRIDDED_25-TMI.v4.0 GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1) GHRSSTCWIC 1998-01-01 2015-04-06 -180, -40, 180, 40 https://cmr.earthdata.nasa.gov/search/concepts/C2213645156-GHRSSTCWIC.json "The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower frequency channels required for sea surface temperature (SST) retrievals. The TRMM is a joint venture between NASA and the Japan Aerospace Exploration Agency (JAXA) to measure precipitation, water vapor, SST and wind in the global tropical regions and was launched in November 1997. The TRMM satellite travels west to east in a 402 km altitude semi-equatorial precessing orbit that results in day-to-day changes in the observation time of any given earth location between 38S and 38N. In contrast to infrared SST observations, microwave retrievals can be measured through most clouds, and are also insensitive to water vapor and aerosols. Remote Sensing Systems is the producer of these gridded TMI SST data for the Group for High Resolution Sea Surface Temperature (GHRSST) Project. Although the product designation is ""L2P_GRIDDED"" it is in actuality a Level 3 Collated (L3C) product as defined in the GHRSST Data Processing Specification (GDS) version 2.0. Its ""L2P_GRIDDED"" name derives from a deprecated specification in the early Pilot Project phase of GHRSST (pre 2008) and has remained for file naming continuity. In this dataset, both ascending (daytime) and descending (daytime) gridded orbital passes on packaged into the same daily file." not-provided gov.noaa.nodc:GHRSST-VIIRS_NPP-NAVO-L2P.v3.0 GHRSST Level 2P 1 m Depth Global Sea Surface Temperature version 3.0 from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi NPP satellite (GDS version 2) GHRSSTCWIC 2013-06-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2213644303-GHRSSTCWIC.json A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS). This sensor resides on the Suomi National Polar-orbiting Partnership (Suomi_NPP) satellite launched on 28 October 2011. VIIRS is a whiskbroom scanning radiometer which takes measurements in the cross-track direction within a field of regard of 112.56 degrees using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3060 km, providing full daily coverage both on the day and night side of the Earth. The VIIRS instrument is a 22-band, multi-spectral scanning radiometer that builds on the heritage of the MODIS, AVHRR and SeaWiFS sensors for sea surface temperature (SST) and ocean color. For the infrared bands for SST the effective pixel size is 750 meters at nadir and the pixel size variation across the swath is constrained to no more than 1600 meters at the edge of the swath. This L2P SST v3.0 is upgraded from the v2.0 with several significant improvements in processing algorithms, including contamination detection, cloud detection, and data format upgrades. It contains the global near daily-coverage Sea Surface Temperature at 1-meter depth with 750 m (along) x 750 m (cross) spatial resolution in swath coordinates. Each netCDF file has 768 x 3200 pixels in size, in compliance with the GHRSST Data Processing Specification (GDS) version 2 format specifications. not-provided lake_erie_aug_2014.v0 2014 Lake Erie measurements OB_DAAC 2014-08-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360418-OB_DAAC.json 2014 Lake Erie measurements. not-provided -latent-reserves-in-the-swiss-nfi.v1.0 'Latent reserves' within the Swiss NFI SCIOPS 2020-01-01 2020-01-01 5.95587, 45.81802, 10.49203, 47.80838 https://cmr.earthdata.nasa.gov/search/concepts/C1931110427-SCIOPS.json "The files refer to the data used in Portier et al. ""‘Latent reserves’: a hidden treasure in National Forest Inventories"" (2020) *Journal of Ecology*. **'Latent reserves'** are defined as plots in National Forest Inventories (NFI) that have been free of human influence for >40 to >70 years. They can be used to investigate and acquire a deeper understanding of attributes and processes of near-natural forests using existing long-term data. To determine which NFI sample plots could be considered ‘latent reserves’, criteria were defined based on the information available in the Swiss NFI database: * Shrub forests were excluded. * Plots must have been free of any kind of management, including salvage logging or sanitary cuts, for a minimum amount of time. Thresholds of 40, 50, 60 and 70 years without intervention were tested. * To ensure that species composition was not influenced by past management, plots where potential vegetation was classified as deciduous by Ellenberg & Klötzli (1972) had to have an observed proportion of deciduous trees matching the theoretical proportion expected in a natural deciduous forest, as defined by Kienast, Brzeziecki, & Wildi (1994). * Plots had to originate from natural regeneration. * Intensive livestock grazing must never have occurred on the plots. The tables stored here were derived from the first, second and third campaigns of the Swiss NFI. The raw data from the Swiss NFI can be provided free of charge within the scope of a contractual agreement (http://www.lfi.ch/dienstleist/daten-en.php). **** The files 'Data figure 2' to 'Data figure 8' are publicly available and contain the data used to produce the figures published in the paper. The files 'Plot-level data for characterisation of 'latent reserves' and 'Tree-level data for characterisation of 'latent reserves' contain all the data required to reproduce the section of the article concerning the characterisation of 'latent reserves' and the comparison to managed forests. The file 'Data for mortality analyses' contains the data required to reproduce the section of the article concerning tree mortality in 'latent reserves'. The access to these three files is restricted as they contain some raw data from the Swiss NFI, submitted to the Swiss law and only accessible upon contractual agreement. " not-provided law_dome_annual_msa.v1 150 year MSA sea ice proxy record from Law Dome, Antarctica AU_AADC 1841-01-01 1995-12-31 112.806946, -66.76972, 112.806946, -66.76972 https://cmr.earthdata.nasa.gov/search/concepts/C1214313532-AU_AADC.json "This MSA record (1841-1995) is from a Law Dome ice core called ""DSS"" in East Antarctica. It was calibrated against satellite sea ice records and used to reconstruct sea ice extent prior to the satellite era. The following is taken from the abstract of the paper (Curran et al., 2003). The instrumental record of Antarctic sea ice in recent decades does not reveal a clear signature of warming despite observational evidence from coastal Antarctica. This work shows a significant correlation (P less than 0.002) between methanesulphonic acid (MSA) concentrations from a Law Dome ice core and 22 years of satellite-derived sea ice extent (SIE) for the 80 degrees E to 140 degrees E sector. Applying this instrumental calibration to longer term MSA data (1841 to 1995 A.D.) suggests that there has been a 20% decline in SIE since about 1950. The decline is not uniform, showing large cyclical variations, with periods of about 11 years, that confuse trend detection over the relatively short satellite era. This work was completed as part of ASAC project 757 (ASAC_757)." not-provided mbs_wilhelm_msa_hooh.v1 15 year Wilhelm II Land MSA and HOOH shallow ice core record from Mount Brown South (MBS) AU_AADC 1984-01-01 1998-12-31 86.082, -69.13, 86.084, -69.12 https://cmr.earthdata.nasa.gov/search/concepts/C1214313640-AU_AADC.json This work presents results from a short firn core spanning 15 years collected from near Mount Brown, Wilhelm II Land, East Antarctica. Variations of methanesulphonic acid (MSA) at Mount Brown were positively correlated with sea-ice extent from the coastal region surrounding Mount Brown (60-1208 E) and from around the entire Antarctic coast (0-3608 E). Previous results from Law Dome identified this MSA-sea-ice relationship and proposed it as an Antarctic sea-ice proxy (Curran and others, 2003), with the strongest results found for the local Law Dome region. Our data provide supporting evidence for the Law Dome proxy (at another site in East Antarctica), but a deeper Mount Brown ice core is required to confirm the sea-ice decline suggested by Curran and others (2003). Results also indicate that this deeper record may also provide a more circum-Antarctic sea-ice proxy. This work was completed as part of ASAC project 757 (ASAC_757). not-provided urn:ogc:def:EOP:VITO:VGT_S10.v1 10 Days Synthesis of SPOT VEGETATION Images (VGT-S10) FEDEO 1998-04-01 2014-05-31 -180, -56, 180, 75 https://cmr.earthdata.nasa.gov/search/concepts/C2207472890-FEDEO.json The VGT-S10 are near-global or continental, 10-daily composite images which are synthesised from the 'best available' observations registered in the course of every 'dekad' by the orbiting earth observation system SPOT-VEGETATION. The products provide data from all spectral bands (SWIR, NIR, RED, BLUE), the NDVI and auxiliary data on image acquisition parameters. The VEGETATION system allows operational and near real-time applications, at global, continental and regional scales, in very broad environmentally and socio-economically critical fields. The VEGETATION instrument is operational since April 1998, first with VGT1, from March 2003 onwards, with VGT2. More information is available on: https://docs.terrascope.be/#/DataProducts/SPOT-VGT/Level3/Level3 not-provided