From 7a6cf4b482dcebe1879aa119d7b5b8862058274d Mon Sep 17 00:00:00 2001 From: GitHub Action Date: Sun, 1 Oct 2023 03:48:35 +0000 Subject: [PATCH] Updated datasets 2023-10-01 UTC --- nasa_cmr_catalog.json | 494 ++++++++++++++++++++++++++++++++++++++++++ nasa_cmr_catalog.tsv | 38 ++++ 2 files changed, 532 insertions(+) diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index 4c2aed04b..44051c9b3 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -662,6 +662,32 @@ "description": "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The \"ACOS\" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the \"ACOS\" Level 2 production process.", "license": "not-provided" }, + { + "id": "ACR3L2DM.v1", + "title": "ACRIM III Level 2 Daily Mean Data V001", + "catalog": "LARC", + "state_date": "2000-04-05", + "end_date": "2013-11-09", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/ACR3L2DM.v1", + "description": "ACR3L2DM_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Daily Mean Data version 1 product consists of Level 2 total solar irradiance in the form of daily means gathered by the ACRIM III instrument on the ACRIMSAT satellite. The daily means are constructed from the shutter cycle results for each day.", + "license": "not-provided" + }, + { + "id": "ACR3L2SC.v1", + "title": "ACRIM III Level 2 Shutter Cycle Data V001", + "catalog": "LARC", + "state_date": "2000-04-05", + "end_date": "2013-11-09", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/ACR3L2SC.v1", + "description": "ACR3L2SC_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Shutter Cycle Data version 1 product contains Level 2 total solar irradiance in the form of shutter cycles gathered by the ACRIM instrument on the ACRIMSAT satellite.", + "license": "not-provided" + }, { "id": "ADAM.Surface.Reflectance.Database", "title": "ADAM Surface Reflectance Database v4.0", @@ -1663,6 +1689,19 @@ "description": "This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit).", "license": "not-provided" }, + { + "id": "ATSMIGEO.v002", + "title": "MISR Geometric Parameters subset for the ARCTAS region V002", + "catalog": "LARC", + "state_date": "2008-04-02", + "end_date": "2008-07-24", + "bbox": "-157, 54, -110, 71", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/ATSMIGEO.v002", + "description": "This file contains the Geometric Parameters subset for the ARCTAS region which measures the sun and view angles at the reference ellipsoid", + "license": "not-provided" + }, { "id": "AU_DySno_NRT_R02.v2", "title": "NRT AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent V2", @@ -2768,6 +2807,19 @@ "description": "Studies of change and variations on decadal timescales are essential for planning satellite missions that seek to improve our understanding of linkages among various components of the Earth System. Decadal predictions using a version of the GEOS-5 AOGCM were contributed to the CMIP5 project. The dataset include a three-member ensemble initialized on December 1 of each year from 1960 to 2010. These data are available, with the designation NASA GMAO, from the CMIP5 Archive at NASA NCCS.", "license": "not-provided" }, + { + "id": "GOMIGEO.v002", + "title": "MISR Geometric Parameters subset for the GoMACCS region V002", + "catalog": "LARC", + "state_date": "2006-07-30", + "end_date": "2006-10-17", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1625796320-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1625796320-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/GOMIGEO.v002", + "description": "Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR Geometric Parameters subset for the GoMACCS region V002 contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid.", + "license": "not-provided" + }, { "id": "Global_Microbial_Biomass_C_N_P_1264.v1", "title": "A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data", @@ -2872,6 +2924,149 @@ "description": "Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions.", "license": "not-provided" }, + { + "id": "IXBMIGEO.v2", + "title": "MISR Geometric Parameters subset for the INTEX-B region V002", + "catalog": "LARC", + "state_date": "2006-02-28", + "end_date": "2006-04-03", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/IXBMIGEO.v2", + "description": "This file contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid for the INTEXB_2006 theme.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000008.v1", + "title": "1998 Seismic Data, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1998-12-07", + "end_date": "1998-12-11", + "bbox": "-66.266667, -64.616667, -64.416667, -62.995", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244292774-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244292774-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000008.v1", + "description": "Korean Antarctic survey carried out as part of step 2 project in year 2 of 'the Antarctic Undersea Geological Survey' was conducted in the \u2161 region around the northwestern continent of the Antarctic Peninsula. This area is northwest of Anvers Island, including areas around the pericontinent from the continental shelf to the continental rise zone. The investigation period for this project took a total of 8 days for moving navigation, the survey of the side lines and drilling investigation. After seismic investigation, a surface drilling investigation was conducted in coring point was decided from the reference seismic section. 10 researcher from \u2018Korea Ocean Research and Development Institute\u2019 participated in the field survey. We took on lease Russian icebreaker \"Yuzhmorgeologiya\".", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000009.v1", + "title": "1997 Seismic Data, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1997-12-23", + "end_date": "1997-12-28", + "bbox": "-64.699722, -63.525, -62.157778, -62.041389", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244293126-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244293126-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000009.v1", + "description": "Korean Antarctic survey carried out as part of step 2 project in year 1 of \u2018The Antarctic Undersea Geological Survey\u2019 in 1997 was conducted in a continental shelf in the northwestern part of the Antarctic Peninsula. The research period took a total of 8 days, including 6 days for the seismic survey and 2 days for the drilling investigation. We took on lease Norway R/V 'Polar Duke' and 10 researchers from \u2018Korea Ocean Research and Development Institute\u2019 participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12 \u2013channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000011.v1", + "title": "1996 Seismic Data, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1996-12-17", + "end_date": "1996-12-26", + "bbox": "-62.766667, -63.583333, -60.233333, -62.733333", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244293499-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244293499-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000011.v1", + "description": "Korean Antarctic survey carried out as in year 3 project of 'the Antarctic Undersea Geological Survey' was conducted in the basin region of western part of the Bransfeed Strait between the Antarctic Peninsula and the South Shetland Islands . During the field investigation, the seismic investigation and the drilling investigation was conducted at the same time. The investigation period took 9 days. 10 researchers from \u2018Korea Ocean Research and Development Institute\u2019 and 3 academic personnel participated in the cruise as field investigation personnel. We took on lease Russian R/V \"Yuzhmorgeologiya\" which is marine geology, geophysical survey vessel and Icebreaker.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000012.v1", + "title": "1995 Seismic Data, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1995-12-13", + "end_date": "1995-12-18", + "bbox": "-58.335, -62.984444, -54.101944, -61.301111", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291641-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291641-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000012.v1", + "description": "Korean Antarctic survey carried out as in year 2 project of \"Antarctic submarine topography and sediment investigation\", The Field Survey of Antarctica was conducted at the end of 1995 was conducted the multi-channel Seismic Investigation and the drilling Investigation in the eastern part of the Bransfield Strait between the Antarctic Peninsula and the South Shetland Islands and near Sejong Station. We took on lease Russian R/V \"Yuzhmorgeologiya\" which is marine geology, geophysical survey vessel and Icebreaker for field investigation.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000014.v1", + "title": "1994 Seismic Data, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1994-12-19", + "end_date": "1994-12-27", + "bbox": "-59.352778, -63.060278, -56.167778, -62.030833", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291414-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291414-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000014.v1", + "description": "Korean Antarctic survey carried out as in year 1 of 'the Antarctic Undersea Geological Survey' was conducted at the end of 1994 was conducted Multi-channel Seismic Investgation and Drilling investigation in the central basin of the Bransfield Strait was located in between the Antarctic Peninsula and the South Shetland Islands and the Maxwell Bay area near Sejong Station. The field research was conducted wih other research at the same time. The research period was from 11 Dec. in 1994 to 23 Jan. in 1995 (13 days). - Korean Antarctic survey carried out as part of step 1 project in year 1 to investigate the possibility of oil resources in the Bransfield Strait of Antarctica. - Securing data for tectonic settings research in the same region. - Obtaining basic data for understanding marine geology and sedimentary layers in the same region.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000051.v1", + "title": "1994 Sediment Core, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1994-12-31", + "end_date": "1995-01-02", + "bbox": "-58.026667, -62.42, -57.739722, -62.32", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291543-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291543-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000051.v1", + "description": "For the first year of study \"The Antarctic Undersea Geological Survey\", The Field Survey of Antarctica was conducted at the end of 1994 was conducted multi-channel seismic Investigation and drilling Investigation in the central basin of the Bransfield Strait was located in between the south Shetland Islands and the Antarctic peninsula and Maxwell bay area near Sejong Station. The field investigation was conducted research projects at the same time took 13 days from 11 Dec. in 1994 to 23 Jan. in 1995. - Korean Antarctic survey carried out as part of step 1 project in year 1 to investigate the possibility of oil resources in the Bransfield Strait of Antarctica. - Securing data for tectonic settings research in the same region. - Obtaining basic data for understanding marine geology and sedimentary layers in the same region.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000052.v1", + "title": "1995 Sediment Core, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1995-12-19", + "end_date": "1995-12-23", + "bbox": "-55.951111, -61.969167, -55.051111, -61.951111", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291581-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291581-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000052.v1", + "description": "Korean Antarctic survey was conducted in the east basin of the Bransfield Strait between the Antarctic peninsula and south Shetland Islands and Maxwell Bay located at Sejong Station was conducted multi-channel seismic investigation and drilling investigation. We took on lease Russian \"Yuzhmorgeologiya\"(5500 ton, ice strengthed vessel) which is marine geology, geophysical survey vessel and Icebreaker for field investigation.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000053.v1", + "title": "1996 Sediment Core, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1996-12-16", + "end_date": "1996-12-16", + "bbox": "-60.151944, -62.100278, -59.717778, -62.051389", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291950-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244291950-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000053.v1", + "description": "Korean Antarctic survey was conducted in west of the Bransfeed Strait, a basin between the Antarctic Peninsula and the south Shetland Islands. It tooks 9 days. seismic investigation and drilling investigation were conducted at the same time during the field survey. We took on lease Russian R/V \"Yuzhmorgeologiya\" which is marine geology, geophysical survey vessel and Icebreaker and 10 researchers from \u2018Korea Ocean Research and Development Institute\u2019 and 3 academic personnel participated in the cruise as field investigation personnel.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000054.v1", + "title": "1997 Sediment Core, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1997-12-28", + "end_date": "1997-12-29", + "bbox": "-63.396667, -63.886111, -62.700833, -62.536389", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244292254-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244292254-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000054.v1", + "description": "Korean Antarctic survey was conducted in 1997 carried out in a continental shelf in the northwestern part of the Antarctic Peninsula. It took 2 days. We took on lease Norway R/V 'Polar Duke' and 11 researchers from \u2018Korea Ocean Research and Development Institute\u2019 participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12-channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling.", + "license": "not-provided" + }, + { + "id": "KOPRI-KPDC-00000055.v1", + "title": "1998 Sediment Core, Antarctica", + "catalog": "AMD_KOPRI", + "state_date": "1998-12-11", + "end_date": "1998-12-12", + "bbox": "-66.32, -63.95, -63.47, -62.943333", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2244294165-AMD_KOPRI.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2244294165-AMD_KOPRI.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_KOPRI/collections/KOPRI-KPDC-00000055.v1", + "description": "Korean Antarctic survey was conducted in the continental margin (II region) of the northwestern Antarctic Peninsula. We took on lease Russian R/V \"Yuzhmorgeologiya\" (5500 ton, ice strengthed vessel) and 10 researchers participated in the cruise, including acquisition of multichannel seismic, gravity, and magnetometer as well as a detailed samplings (box cores, gravity cores, and grab samples). 1. Geophysical researches (Multichannel seismic and SBP surveys) 2. Paleoceanographic researches", + "license": "not-provided" + }, { "id": "KUKRI_He", "title": "(U-Th)/He ages from the Kukri Hills of southern Victoria Land", @@ -3067,6 +3262,71 @@ "description": "Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes.", "license": "not-provided" }, + { + "id": "MIANACP.v1", + "title": "MISR Aerosol Climatology Product V001", + "catalog": "LARC", + "state_date": "1999-11-22", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIANACP.v1", + "description": "MIANACP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Climatology Product version 1. It is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure aerosol to be compared with MISR observations; and 3) likelihood value assigned to each mode geographically. The ACP describes mixtures of up to three component aerosol types from a list of eight components, in varying proportions. ACP component aerosol particle data quality depends on the ACP input data, which are based on aerosol particles described in the literature, and consider MISR-specific sensitivity to particle size, single-scattering albedo, and shape, and shape - roughly: small, medium and large; dirty and clean; spherical and nonspherical [Kahn et al. , 1998; 2001]. Also reported in the ACP are the mixtures of these components used by the retrieval algorithm. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.", + "license": "not-provided" + }, + { + "id": "MIANCAGP.v1", + "title": "MISR Ancillary Geographic Product V001", + "catalog": "LARC", + "state_date": "1999-11-07", + "end_date": "2005-06-30", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIANCAGP.v1", + "description": "MIANCAGP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Geographic Product version 1. It is a set of 233 pre-computed files. Each AGP file pertains to a single Terra orbital path. MISR production software relies on information in the AGP, such as digital terrain elevation, as input to the algorithms which generate MISR products. The AGP contains eleven fields of geographical data. This product consists primarily of geolocation data on a Space Oblique Mercator (SOM) Grid. It has 233 parts, corresponding to the 233 repeat orbits of the EOS-AM1 Spacecraft. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.", + "license": "not-provided" + }, + { + "id": "MIANCARP.v2", + "title": "MISR Ancillary Radiometric Product V002", + "catalog": "LARC", + "state_date": "1999-12-28", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIANCARP.v2", + "description": "MIANCARP_2 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Radiometric Product version 2. It is composed of 4 files covering instrument characterization data, pre-flight calibration data, in-flight calibration data, and configuration parameters. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm.", + "license": "not-provided" + }, + { + "id": "MIRCCMF.v001", + "title": "MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001", + "catalog": "LARC", + "state_date": "2000-12-13", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C135857530-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C135857530-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MIRCCMF.v001", + "description": "Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001 contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs Radiometric Camera-by-camera Cloud mask Threshold (RCCT) from the previous time period. It is used to determine whether a scene is clear, cloudy or dusty (over ocean).", + "license": "not-provided" + }, + { + "id": "MISBR.v005", + "title": "MISR Browse data V005", + "catalog": "LARC", + "state_date": "1999-12-18", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C43677744-LARC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C43677744-LARC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC/collections/MISBR.v005", + "description": "This is the browse data associated with a particular granule.", + "license": "not-provided" + }, { "id": "MURI_Camouflage.v0", "title": "A Multi University Research Initiative (MURI) Camouflage Project", @@ -3457,6 +3717,71 @@ "description": "NRSCC_GLASS_BBE_MODIS_1KM", "license": "not-provided" }, + { + "id": "NSF-ANT05-37371", + "title": "A Broadband Seismic Experiment to Image the Lithosphere Beneath the Gamburtsev Mountains and Surrounding Areas, East Antarctica", + "catalog": "AMD_USAPDC", + "state_date": "2007-10-01", + "end_date": "2013-09-30", + "bbox": "40, -84, 140, -76", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069799-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069799-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT05-37371", + "description": "This award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach.", + "license": "not-provided" + }, + { + "id": "NSF-ANT10-43485.v1", + "title": "A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea", + "catalog": "AMD_USAPDC", + "state_date": "2011-07-01", + "end_date": "2015-06-30", + "bbox": "-160, -78, -150, -68", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT10-43485.v1", + "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. ", + "license": "not-provided" + }, + { + "id": "NSF-ANT10-43517", + "title": "A new reconstruction of the last West Antarctic Ice Sheet deglaciation in the Ross Sea", + "catalog": "AMD_USAPDC", + "state_date": "2011-07-01", + "end_date": "2015-06-30", + "bbox": "163.5, -78.32, 165.35, -77.57", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT10-43517", + "description": "This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation.", + "license": "not-provided" + }, + { + "id": "NSF-ANT10-43621", + "title": "A Comparison of Conjugate Auroral Electojet Indices", + "catalog": "AMD_USAPDC", + "state_date": "2011-06-01", + "end_date": "2013-05-31", + "bbox": "-180, -79.5, 180, -54.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069751-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532069751-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT10-43621", + "description": "The auroral electrojet index (AE) is used as an indicator of geomagnetic activity at high latitudes representing the strength of auroral electrojet currents in the Northern polar ionosphere. A similar AE index for the Southern hemisphere is not available due to lack of complete coverage the Southern auroral zone (half of which extends over the ocean) with continuous magnetometer observations. While in general global auroral phenomena are expected to be conjugate, differences have been observed in the conjugate observations from the ground and from the Earth's satellites. These differences indicate a need for an equivalent Southern auroral geomagnetic activity index. The goal of this award is to create the Southern AE (SAE) index that would accurately reflect auroral activity in that hemisphere. With this index, it would be possible to investigate the similarities and the cause of differences between the SAE and 'standard' AE index from the Northern hemisphere. It would also make it possible to identify when the SAE does not provide a reliable calculation of the Southern hemisphere activity, and to determine when it is statistically beneficial to consider the SAE index in addition to the standard AE while analyzing geospace data from the Northern and Southern polar regions. The study will address these questions by creating the SAE index and its 'near-conjugate' NAE index from collected Antarctic magnetometer data, and will analyze variations in the cross-correlation of these indices and their differences as a function of geomagnetic activity, season, Universal Time, Magnetic Local Time, and interplanetary magnetic field and solar wind plasma parameters. The broader impact resulting from the proposed effort is in its importance to the worldwide geospace scientific community that currently uses only the standard AE index in a variety of geospace models as necessary input. ", + "license": "not-provided" + }, + { + "id": "NSF-ANT13-55533.v1", + "title": "A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization", + "catalog": "AMD_USAPDC", + "state_date": "2013-10-01", + "end_date": "2015-09-30", + "bbox": "163, -78.5, 167, -78", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532070231-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532070231-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/NSF-ANT13-55533.v1", + "description": "Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis.", + "license": "not-provided" + }, { "id": "NSIDC-0326.v1", "title": "Ablation Rates of Taylor Glacier, Antarctica, Version 1", @@ -3704,6 +4029,162 @@ "description": "Measurements made in the Chesapeake Bay in 2004.", "license": "not-provided" }, + { + "id": "USAP-1543498.v1", + "title": "A Full Lifecycle Approach to Understanding Ad\u00e9lie Penguin Response to Changing Pack Ice Conditions in the Ross Sea", + "catalog": "AMD_USAPDC", + "state_date": "2016-06-01", + "end_date": "", + "bbox": "165, -78, -150, -60", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2532074621-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2532074621-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/USAP-1543498.v1", + "description": "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Ad\u00e9lie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and \"NestCheck\" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer.

The project will accomplish three major goals, all of which relate to how Ad\u00e9lie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual's lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region.", + "license": "not-provided" + }, + { + "id": "USAP-1643722.v1", + "title": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core", + "catalog": "AMD_USAPDC", + "state_date": "2017-02-01", + "end_date": "2019-01-31", + "bbox": "180, -90, 180, -90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2534799946-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2534799946-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/USAP-1643722.v1", + "description": "This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.", + "license": "not-provided" + }, + { + "id": "USAP-1744755.v1", + "title": "A mechanistic study of bio-physical interaction and air-sea carbon transfer in the Southern Ocean", + "catalog": "AMD_USAPDC", + "state_date": "2018-05-01", + "end_date": "2022-04-30", + "bbox": "-80, -70, -30, -45", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2545372297-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2545372297-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/USAP-1744755.v1", + "description": "Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. ", + "license": "not-provided" + }, + { + "id": "USAP-1744989.v1", + "title": "A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins", + "catalog": "AMD_USAPDC", + "state_date": "2018-07-15", + "end_date": "2022-06-30", + "bbox": "-180, -90, 180, -60", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/USAP-1744989.v1", + "description": "This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public.", + "license": "not-provided" + }, + { + "id": "USAP-2130663.v1", + "title": "2021 Antarctic Subsea Cable Workshop: High-Speed Connectivity Needs to Advance US Antarctic Science", + "catalog": "AMD_USAPDC", + "state_date": "2021-06-01", + "end_date": "2023-05-31", + "bbox": "-180, -90, 180, -60", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2556670196-AMD_USAPDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2556670196-AMD_USAPDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/AMD_USAPDC/collections/USAP-2130663.v1", + "description": "Current networking capacity at McMurdo Station is insufficient to even be considered broadband, with a summer population of up to 1000 people sharing what is equivalent to the connection enjoyed by a typical family of three in the United States. The changing Antarctic ice sheets and Southern Ocean are large, complex systems that require cutting edge technology to do cutting edge research, with remote technology becoming increasingly useful and even necessary to monitor changes at sufficient spatial and temporal scales. Antarctic science also often involves large data-transfer needs not currently met by existing satellite communication infrastructure. This workshop will gather representatives from across Antarctic science disciplinesfrom astronomy to zoologyas well as research and education networking experts to explore the scientific advances that would be enabled through dramatically increased real-time network connectivity, and also consider opportunities for subsea cable instrumentation. This workshop will assess the importance of a subsea fiber optic cable for high-capacity real-time connectivity in the US Antarctic Program, which is at the forefront of some of the greatest climate-related challenges facing our planet. The workshop will: (1) document unmet or poorly met current scientific and logistic needs for connectivity; (2) explore connectivity needs for planned future research and note the scientific advances that would be possible if the full value of modern cyberinfrastructure-empowered research could be brought to the Antarctic research community; and (3) identify scientific opportunities in planning a fully instrumented communication cable as a scientific observatory. Due to the ongoing COVID-19 pandemic, the workshop will be hosted and streamed online. While the workshop will be limited to invited personnel in order to facilitate a collaborative working environment, broad community input will be sought via survey and via comment on draft outputs. A workshop summary document and report will be delivered to NSF. Increasing US Antarctic connectivity by orders of magnitude will be transformative for science and logistics, and it may well usher in a new era of Antarctic science that is more accessible, efficient and sustainable. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P14_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Los Angeles Basin Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-119.63631, 32.7535, -117.52315, 34.17464", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P14_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 14 (Los Angeles Basin) are listed here by play number, type, and name: Number Type Name 1401 conventional Santa Monica Fault System and Las Cienegas Fault and Block 1402 conventional Southwestern Shelf and Adjacent Offshore State Lands 1403 conventional Newport-Inglewood Deformation Zone and Southwestern Flank of Central Syncline 1404 conventional Whittier Fault Zone and Fullerton Embayment 1405 conventional Northern Shelf and Northern Flank of Central Syncline 1406 conventional Anaheim Nose 1407 conventional Chino Marginal Basin, Puente and San Jose Hills, and San Gabriel Valley Marginal Basin", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P16_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Salton Trough Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-116.66911, 32.634293, -114.74501, 34.02059", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P16_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 16 (Salton Trough) are listed here by play number, type, and name.", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P17_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Idaho - Snake River Downwarp Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-117.24303, 41.99332, -111.04548, 49.00115", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550494-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550494-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P17_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 17 (Idaho - Snake River Downwarp) are listed here by play number, type, and name: Number Type Name 1701 conventional Miocene Lacustrine (Lake Bruneau) 1702 conventional Pliocene Lacustrine (Lake Idaho) 1703 conventional Pre-Miocene 1704 conventional Older Tertiary", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P19_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Eastern Great Basin Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-117.02622, 35.002083, -111.170425, 43.022377", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552402-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552402-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P19_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 19 (Eastern Great Basin) are listed here by play number, type, and name: Number Type Name 1901 conventional Unconformity \"A\" 1902 conventional Late Paleozoic 1903 conventional Early Tertiary - Late Cretaceous Sheep Pass and Equivalents 1905 conventional Younger Tertiary Basins 1906 conventional Late Paleozoic - Mesozoic (Central Nevada) Thrust Belt 1907 conventional Sevier Frontal Zone", + "license": "not-provided" + }, + { + "id": "USGS_DDS_P2_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Alaska Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-173.22636, 58.49761, -140.99017, 68.01999", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550471-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231550471-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_DDS_P2_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 2 (Central Alaska) are listed here by play number, type, and name: Number Type Name 201 conventional Central Alaska Cenozoic Gas 202 conventional Central Alaska Mesozoic Gas 203 conventional Central Alaska Paleozoic Oil 204 conventional Kandik Pre-Mid-Cretaceous Strata 205 conventional Kandik Upper Cretaceous and Tertiary Non-Marine Stata", + "license": "not-provided" + }, + { + "id": "USGS_P-11_cells", + "title": "1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Coastal Province", + "catalog": "CEOS_EXTRA", + "state_date": "1990-12-01", + "end_date": "1990-12-01", + "bbox": "-123.80987, 34.66294, -118.997696, 39.082233", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552077-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231552077-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_P-11_cells", + "description": "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 11 (Central Coastal) are listed here by play number, type, and name: Number Type Name 1101 conventional Point Arena Oil 1102 conventional Point Reyes Oil 1103 conventional Pescadero Oil 1104 conventional La Honda Oil 1105 conventional Bitterwater Oil 1106 conventional Salinas Oil 1107 conventional Western Cuyama Basin 1109 conventional Cox Graben", + "license": "not-provided" + }, + { + "id": "USGS_SOFIA_eco_hist_db1995-2007.vversion 7", + "title": "1995 - 2007 Ecosystem History of South Florida's Estuaries Database version 7", + "catalog": "CEOS_EXTRA", + "state_date": "1994-09-27", + "end_date": "2007-04-03", + "bbox": "-81.83, 24.75, -80, 26.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554288-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554288-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_SOFIA_eco_hist_db1995-2007.vversion 7", + "description": "The 1995 - 2007 Ecosystem History of South Florida's Estuaries Database contains listings of all sites (modern and core), modern monitoring site survey information (water chemistry, floral and faunal data, etc.), and published core data. Two general types of data are contained within this database: 1) Modern Field Data and 2) Core data - primarily faunal assemblages. Data are available for modern sites and cores in the general areas of Florida Bay, Biscayne Bay, and the southwest (Florida) coastal mangrove estuaries. Specific sites in the Florida Bay area include Taylor Creek, Bob Allen Key, Russell Bank, Pass Key, Whipray Basin, Rankin Bight, park Key, and Mud Creek core). Specific Biscayne Bay sites include Manatee Bay, Featherbed Bank, Card bank, No Name Bank, Middle Key, Black Point North, and Chicken Key. Sites on the southwest coast include Alligator Bay, Big Lostmans Bay, Broad River Bay, Roberts River mouth, Tarpon Bay, Lostmans River First and Second Bays, Harney River, Shark River near entrance to Ponce de Leon Bay, and Shark River channels. Modern field data contains (1) general information about the site, description, latitude and longitude, date of data collection, (2) water chemistry information, and (3) descriptive text of fauna and flora observed at the site. Core data contain either percent abundance data or actual counts of the distribution of mollusks, ostracodes, forams, and pollen within the cores collected in the estuaries. For some cores dinocyst or diatom data may be available.", + "license": "not-provided" + }, { "id": "USGS_cont1992", "title": "1992 Water-Table Contours of the Mojave River Ground-Water Basin, San Bernardino County, California", @@ -3717,6 +4198,19 @@ "description": "This data set consists of digital water-table contours for the Mojave River Basin. The U.S. Geological Survey, in cooperation with the Mojave Water Agency, constructed a water-table map of the Mojave River ground-water basin for ground-water levels measured in November 1992. Water-level data were collected from approximately 300 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,200 to 1,600 feet above sea level. [Summary provided by the USGS.]", "license": "not-provided" }, + { + "id": "USGS_cont1994", + "title": "1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California", + "catalog": "CEOS_EXTRA", + "state_date": "1970-01-01", + "end_date": "", + "bbox": "-117.07194, 34.095333, -115.98976, 34.64026", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554677-CEOS_EXTRA.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2231554677-CEOS_EXTRA.html", + "href": "https://cmr.earthdata.nasa.gov/stac/CEOS_EXTRA/collections/USGS_cont1994", + "description": "This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level. [Summary provided by the USGS.]", + "license": "not-provided" + }, { "id": "UTC_1990countyboundaries", "title": "1990 County Boundaries of the United States", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index fd3e7f4f0..1eac0c070 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -50,6 +50,8 @@ ACOS_L2S.v7.3 ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V7.3 (A ACOS_L2S.v9r ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V9r (ACOS_L2S) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633158704-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, ""ACOS"" data are still produced and improved, using approaches applied to the OCO-2 spectra. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: ""sounding_qual_flag"" - quality of input data provided to the retrieval processing ""outcome_flag"" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) " not-provided ACOS_L2_Lite_FP.v7.3 ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V7.3 (ACOS_L2_Lite_FP) at GES DISC GES_DISC 2009-04-21 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1339230298-GES_DISC.json "The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process." not-provided ACOS_L2_Lite_FP.v9r ACOS GOSAT/TANSO-FTS Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files V9r (ACOS_L2_Lite_FP) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1720416694-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. The ACOS Lite files contain bias-corrected XCO2 along with other select fields aggregated as daily files. Orbital granules of the ACOS Level 2 standard product (ACOS_L2S) are used as input. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process." not-provided +ACR3L2DM.v1 ACRIM III Level 2 Daily Mean Data V001 LARC 2000-04-05 2013-11-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179031504-LARC.json ACR3L2DM_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Daily Mean Data version 1 product consists of Level 2 total solar irradiance in the form of daily means gathered by the ACRIM III instrument on the ACRIMSAT satellite. The daily means are constructed from the shutter cycle results for each day. not-provided +ACR3L2SC.v1 ACRIM III Level 2 Shutter Cycle Data V001 LARC 2000-04-05 2013-11-09 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C61787524-LARC.json ACR3L2SC_1 is the Active Cavity Radiometer Irradiance Monitor (ACRIM) III Level 2 Shutter Cycle Data version 1 product contains Level 2 total solar irradiance in the form of shutter cycles gathered by the ACRIM instrument on the ACRIMSAT satellite. not-provided ADAM.Surface.Reflectance.Database ADAM Surface Reflectance Database v4.0 ESA 2005-01-01 2005-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1965336812-ESA.json ADAM enables generating typical monthly variations of the global Earth surface reflectance at 0.1° spatial resolution (Plate Carree projection) and over the spectral range 240-4000nm. The ADAM product is made of gridded monthly mean climatologies over land and ocean surfaces, and of a companion API toolkit that enables the calculation of hyperspectral (at 1 nm resolution over the whole 240-4000 nm spectral range) and multidirectional reflectances (i.e. in any illumination/viewing geometry) depending on user choices. The ADAM climatologies that feed the ADAM calculation tools are: For ocean: monthly chlorophyll concentration derived from SeaWiFS-OrbView-2 (1999-2009); it is used to compute the water column reflectance (which shows large spectral variations in the visible, but is insignificant in the near and mid infrared). monthly wind speed derived from SeaWinds-QuikSCAT-(1999-2009); it is used to calculate the ocean glint reflectance. For land: monthly normalized surface reflectances in the 7 MODIS narrow spectral bands derived from FondsdeSol processing chain of MOD09A1 products (derived from Aqua and Terra observations), on which relies the modelling of the hyperspectral/multidirectional surface (soil/vegetation/snow) reflectance. uncertainty variance-covariance matrix for the 7 spectral bands associated to the normalized surface reflectance. For sea-ice: Sea ice pixels (masked in the original MOD09A1 products) have been accounted for by a gap-filling approach relying on the spatial-temporal distribution of sea ice coverage provided by the CryoClim climatology for year 2005. not-provided ADEOS_OCTS_L3BM_GAC_OCC_1day ADEOS OCTS L3 GAC Binned Map Ocean Color (OCC) (1-Day) JAXA 1996-11-01 1997-07-06 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2698128761-JAXA.json "ADEOS OCTS L3BM GAC OCC 1day dataset is obtained from OCTS sensor onboard ADEOS and produced by NASDA (National Space Development Agency of Japan). Advanced Earth Observing Satellite (ADEOS) is sun-synchronous quasi-recurrent orbiter launched on August 17, 1996, and carries OCTS (Ocean Color and Temperature Scanner) and AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor.The main objectives of ADEOS (MIDORI) is to contribute to elucidation of phenomena of the earth system through integrated observation of geophysical parameters using a number of sensors. ADEOS operation on orbit was given up on June 30, 1997, because the generated power was lost due to the accident of the blanket of the solar array paddle breaking. OCTS observes the amount of chlorophyll and various substances contained in the sea, sea surface temperature, cloud formation process, etc by receiving 12 bands of wavelengths from the visible light region to the thermal infrared region. The observation field of OCTS is about 1400km, and it is possible to scan in the north-south direction. Those sensors aim at collecting global data for mainly understanding the state of the ocean and its phenomena. This product is daily L3BM, Level 3 Binned map GAC (Global Area Coverage) OCC (Ocean Color-Chlorophyll-a concentration) product. Level 3 Binned map products are generated from Level 3 Binned products and classified into three subproducts: ocean color, vegetation, and sea surface temperature. GAG OCC product is daily or weekly, monthly, annually integrated. This product is one of the Ocean Color product stores, and these parameters are array of chlorophyll a concentration and palette data. The unit of geophysical quantity in this product is ""mg/m-3"". The provided format is HDF4 format. The image data object, 13m-data, in each binned map product is a byte-valued, 4,096 * 2,048 array of an Equal-Area Rectangular projection of the globe." not-provided ADEOS_OCTS_L3BM_GAC_OCC_1month ADEOS OCTS L3 GAC Binned Map Ocean Color (OCC) (1-Month) JAXA 1996-11-01 1997-07-06 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2698129571-JAXA.json "ADEOS OCTS L3BM GAC OCC 1month dataset is obtained from OCTS sensor onboard ADEOS and produced by NASDA (National Space Development Agency of Japan). Advanced Earth Observing Satellite (ADEOS) is sun-synchronous quasi-recurrent orbiter launched on August 17, 1996, and carries OCTS (Ocean Color and Temperature Scanner) and AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor.The main objectives of ADEOS (MIDORI) is to contribute to elucidation of phenomena of the earth system through integrated observation of geophysical parameters using a number of sensors. ADEOS operation on orbit was given up on June 30, 1997, because the generated power was lost due to the accident of the blanket of the solar array paddle breaking. OCTS observes the amount of chlorophyll and various substances contained in the sea, sea surface temperature, cloud formation process, etc by receiving 12 bands of wavelengths from the visible light region to the thermal infrared region. The observation field of OCTS is about 1400km, and it is possible to scan in the north-south direction. Those sensors aim at collecting global data for mainly understanding the state of the ocean and its phenomena. This product is monthly L3BM, Level 3 Binned map GAC (Global Area Coverage) OCC (Ocean Color-Chlorophyll-a concentration) product. Level 3 Binned map products are generated from Level 3 Binned products and classified into three subproducts: ocean color, vegetation, and sea surface temperature. GAG OCC product is daily or weekly, monthly, annually integrate. This product is one of the Ocean Color product stores, and these parameters are array of chlorophyll a concentration and palette data. The unit of geophysical quantity in this product is ""mg/m-3"". The provided format is HDF4 format. The image data object, 13m-data, in each binned map product is a byte-valued, 4,096 * 2,048 array of an Equal-Area Rectangular projection of the globe." not-provided @@ -127,6 +129,7 @@ ATL09.v005 ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric La ATL09.v006 ATLAS/ICESat-2 L3A Calibrated Backscatter Profiles and Atmospheric Layer Characteristics V006 NSIDC_CPRD 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2649212495-NSIDC_CPRD.json This data set (ATL09) contains calibrated, attenuated backscatter profiles, layer integrated attenuated backscatter, and other parameters including cloud layer height and atmospheric characteristics obtained from the data. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory. not-provided ATL13.v005 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V005 NSIDC_CPRD 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2153575088-NSIDC_CPRD.json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). not-provided ATL13.v006 ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data V006 NSIDC_CPRD 2018-10-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2684928243-NSIDC_CPRD.json This data set (ATL13) contains along-track surface water products for inland water bodies. Inland water bodies include lakes, reservoirs, rivers, bays, estuaries and a 7km near-shore buffer. Principal data products include the along-track water surface height and standard deviation, subsurface signal (532 nm) attenuation, significant wave height, wind speed, and coarse depth to bottom topography (where data permit). not-provided +ATSMIGEO.v002 MISR Geometric Parameters subset for the ARCTAS region V002 LARC 2008-04-02 2008-07-24 -157, 54, -110, 71 https://cmr.earthdata.nasa.gov/search/concepts/C1000000541-LARC.json This file contains the Geometric Parameters subset for the ARCTAS region which measures the sun and view angles at the reference ellipsoid not-provided AU_DySno_NRT_R02.v2 NRT AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent V2 LANCEAMSR2 2021-04-15 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2052622563-LANCEAMSR2.json The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument on the Global Change Observation Mission - Water 1 (GCOM-W1) provides global passive microwave measurements of terrestrial, oceanic, and atmospheric parameters for the investigation of global water and energy cycles. Near real-time (NRT) products are generated within 3 hours of the last observations in the file, by the Land Atmosphere Near real-time Capability for EOS (LANCE) at the AMSR Science Investigator-led Processing System (AMSR SIPS), which is collocated with the Global Hydrology Resource Center (GHRC) DAAC. The NRT AMSR2 Unified L3 Global Daily Snow Water Equivalent data set contains snow water equivalent (SWE) data and quality assurance flags mapped to Northern and Southern Hemisphere 25 km Equal-Area Scalable Earth Grids (EASE-Grids). Data are stored in HDF-EOS5 format and are available via HTTP from the EOSDIS LANCE system at https://lance.nsstc.nasa.gov/amsr2-science/data/level3/daysnow/. If data latency is not a primary concern, please consider using science quality products. Science products are created using the best available ancillary, calibration and ephemeris information. Science quality products are an internally consistent, well-calibrated record of the Earth's geophysical properties to support science. not-provided AU_Land_NRT_R02.v2 NRT AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture Beta V2 LANCEAMSR2 2018-04-11 -180, -89.24, 180, 89.24 https://cmr.earthdata.nasa.gov/search/concepts/C1514684539-LANCEAMSR2.json The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument on the Global Change Observation Mission - Water 1 (GCOM-W1) provides global passive microwave measurements of terrestrial, oceanic, and atmospheric parameters for the investigation of global water and energy cycles. Near real-time (NRT) products are generated within 3 hours of the last observations in the file, by the Land Atmosphere Near real-time Capability for EOS (LANCE) at the AMSR Science Investigator-led Processing System (AMSR SIPS), which is collocated with the Global Hydrology Resource Center (GHRC) DAAC. The GCOM-W1 NRT AMSR2 Unified L2B Half-Orbit 25 km EASE-Grid Surface Soil Moisture product is a daily measurement of surface soil moisture produced by two retrieval algorithms using resampled Tb (Level-1R) data provided by JAXA: the Normalized Polarization Difference (NPD) algorithm developed by JPL and the Single Channel Algorithm (SCA) developed by USDA. Ancillary data include time, geolocation, and quality assessment. Data are stored in HDF-EOS5 and netCDF4 formats and are available via HTTPS from the EOSDIS LANCE system at https://lance.nsstc.nasa.gov/amsr2-science/data/level2/land/. If data latency is not a primary concern, please consider using science quality products. Science products are created using the best available ancillary, calibration and ephemeris information. Science quality products are an internally consistent, well-calibrated record of the Earth's geophysical properties to support science. The AMSR SIPS produces AMSR2 standard science quality data products and they are available at the NSIDC DAAC. Note: This is the same algorithm that generates the corresponding standard science products in the AMSR SIPS. With this beta release, we are generating NRT products in both HDF-EOS5 and netCDF with CF metadata. Version 2 corrects these issues from the previous release: a boundary condition error that resulted in the failure of a small number of version 1 product files and an error in the number of low resolution scans processed which caused only the first half of each scan to be processed. not-provided AU_Ocean.v1 AMSR-E/AMSR2 Unified L2B Global Swath Ocean Products V001 NSIDC_ECS 2002-06-01 -180, -89.24, 180, 89.24 https://cmr.earthdata.nasa.gov/search/concepts/C2176472016-NSIDC_ECS.json This AMSR Unified global ocean data set reports integrated water vapor and cloud liquid water content in the atmospheric column, plus 10-meter sea surface wind speeds. The data are derived from AMSR-E and AMSR2 brightness temperature observations that have been resampled by the Japan Aerospace Exploration Agency (JAXA) to facilitate an intercalibrated (i.e., “unified”) AMSR-E/AMSR2 data record. Ancillary files, including product history, quality assessment (QA), and file-specific metadata are also available. not-provided @@ -212,6 +215,7 @@ GGD632.v1 Active-Layer and Permafrost Temperatures, Soendre Stroemfjord, Greenla GISS-CMIP5.v1 GISS ModelE2 contributions to the CMIP5 archive NCCS 0850-01-01 2100-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1542315069-NCCS.json We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980-2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics. not-provided GLOBAL_LITTER_CARBON_NUTRIENTS_1244.v1 A Global Database of Litterfall Mass and Litter Pool Carbon and Nutrients ORNL_DAAC 1827-01-01 1997-12-31 -156.7, -54.5, 176.2, 72.5 https://cmr.earthdata.nasa.gov/search/concepts/C1227811476-ORNL_DAAC.json Measurement data of aboveground litterfall and littermass and litter carbon, nitrogen, and nutrient concentrations were extracted from 685 original literature sources and compiled into a comprehensive database to support the analysis of global patterns of carbon and nutrients in litterfall and litter pools. Data are included from sources dating from 1827 to 1997. The reported data include the literature reference, general site information (description, latitude, longitude, and elevation), site climate data (mean annual temperature and precipitation), site vegetation characteristics (management, stand age, ecosystem and vegetation-type codes), annual quantities of litterfall (by class, kg m-2 yr-1), litter pool mass (by class and litter layer, kg m-2), and concentrations of nitrogen (N), phosphorus (P), and base cations for the litterfall (g m-2 yr-1) and litter pool components (g m-2). The investigators intent was to compile a comprehensive data set of individual direct field measurements as reported by researchers. While the primary emphasis was on acquiring C data, measurements of N, P, and base cations were also obtained, although the database is sparse for elements other than C and N. Each of the 1,497 records in the database represents a measurement site. Replicate measurements were averaged according to conventions described in Section 5 and recorded for each site in the database. The sites were at 575 different locations. not-provided GMAO-CMIP5.v1 GMAO Decadal Analysis & Prediction for CMIP5 NCCS 1961-01-01 2019-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1542704969-NCCS.json Studies of change and variations on decadal timescales are essential for planning satellite missions that seek to improve our understanding of linkages among various components of the Earth System. Decadal predictions using a version of the GEOS-5 AOGCM were contributed to the CMIP5 project. The dataset include a three-member ensemble initialized on December 1 of each year from 1960 to 2010. These data are available, with the designation NASA GMAO, from the CMIP5 Archive at NASA NCCS. not-provided +GOMIGEO.v002 MISR Geometric Parameters subset for the GoMACCS region V002 LARC 2006-07-30 2006-10-17 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1625796320-LARC.json Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR Geometric Parameters subset for the GoMACCS region V002 contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid. not-provided Global_Microbial_Biomass_C_N_P_1264.v1 A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data ORNL_CLOUD 1977-11-16 2012-06-01 -180, -90, 177.9, 79 https://cmr.earthdata.nasa.gov/search/concepts/C2216863966-ORNL_CLOUD.json This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total phosphorus at biome and global scales. The data were compiled from a comprehensive survey of publications from the late 1970s to 2012 and include 3,422 data points from 315 papers. These data are from soil samples collected primarily at 0-15 cm depth with some from 0-30 cm. In addition, data were compiled for soil microbial biomass concentrations from soil profile samples to depths of 100 cm. Sampling site latitude and longitude were available for the majority of the samples that enabled assembling additional soil properties, site characteristics, vegetation distributions, biomes, and long-term climate data from several global sources of soil, land-cover, and climate data. These site attributes are included with the microbial biomass data. This data set contains two *.csv files of the soil microbial biomass C, N, P data. The first provides all compiled results emphasizing the full spatial extent of the data, while the second is a subset that provides only data from a series of profile samples emphasizing the vertical distribution of microbial biomass concentrations.There is a companion file, also in .csv format, of the references for the surveyed publications. A reference_number relates the data to the respective publication.The concentrations of soil microbial biomass, in combination with other soil databases, were used to estimate the global storage of soil microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles. These storage estimates were combined with a spatial map of 12 major biomes (boreal forest, temperate coniferous forest, temperate broadleaf forest, tropical and subtropical forests, mixed forest, grassland, shrub, tundra, desert, natural wetland, cropland, and pasture) at 0.05-degree by 0.5-degree spatial resolution. The biome map and six estimates of C and N storage and C:N ration in soil microbial biomass are provided in a single netCDF format file. not-provided Global_Phosphorus_Hedley_Fract_1230.v1 A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation ORNL_CLOUD 1985-01-01 2010-12-31 -117.86, -42.5, 117.6, 63.23 https://cmr.earthdata.nasa.gov/search/concepts/C2216863440-ORNL_CLOUD.json This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley and Stewart, 1982). This database contains estimates of different forms of naturally occurring soil phosphorus, including labile inorganic P, organic P, occluded P, secondary mineral P, apatite P, and total P, based on the analyses of the various Hedley soil fractions.The recent literature survey (Yang and Post, 2011) was restricted to studies of natural, unfertilized, and uncultivated soils since 1995. Ninety measurements of soil P fractions were identified. These were added to the 88 values from soils in natural ecosystems that Cross and Schlesinger (1995) had compiled. Cross and Schlesinger provided a comprehensive survey on Hedley P data prior to 1995. Measurement data are provided for studies published from 1985 through 2010. In addition to the Hedley P fraction measurement data Yang and Post (2011) also compiled information on soil order, soil pH, organic carbon and nitrogen content, as well as the geographic location (longitude and latitude) of the measurement sites. not-provided Global_RTSG_Flux_1078.v1 A Global Database of Gas Fluxes from Soils after Rewetting or Thawing, Version 1.0 ORNL_CLOUD 1956-01-01 2009-12-31 -149.63, -36.45, 160.52, 74.5 https://cmr.earthdata.nasa.gov/search/concepts/C2216863284-ORNL_CLOUD.json This database contains information compiled from published studies on gas flux from soil following rewetting or thawing. The resulting database includes 222 field and laboratory observations focused on rewetting of dry soils, and 116 field laboratory observations focused on thawing of frozen soils studies conducted from 1956 to 2010. Fluxes of carbon dioxide, methane, nitrous oxide, nitrogen oxide, and ammonia (CO2, CH4, N2O, NO and NH3) were compiled from the literature and the flux rates were normalized for ease of comparison. Field observations of gas flux following rewetting of dry soils include events caused by natural rainfall, simulated rainfall in natural ecosystems, and irrigation in agricultural lands. Similarly, thawing of frozen soils include field observations of natural thawing, simulated freezing-thawing events (i.e., thawing of simulated frozen soil by snow removal), and thawing of seasonal ice in temperate and high latitude regions (Kim et al., 2012). Reported parameters include experiment type, location, site type, vegetation, climate, soil properties, rainfall, soil moisture, soil gas flux after wetting and thawing, peak soil gas flux properties, and the corresponding study references. There is one comma-delimited data file. not-provided @@ -220,6 +224,17 @@ IKONOS_MSI_L1B.v1 IKONOS Level 1B Multispectral 4-Band Satellite Imagery CSDA 19 IKONOS_Pan_L1B.v1 IKONOS Level 1B Panchromatic Satellite Imagery CSDA 1999-10-24 2015-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497468825-CSDA.json The IKONOS Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery was collected by the IKONOS satellite using the Optical Sensor Assembly instrument across the global land surface from October 1999 to March 2015. This data product includes panchromatic imagery with a spatial resolution of 0.82m at nadir and a temporal resolution of approximately 3 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided IMS1_HYSI_GEO.v1.0 IMS-1 HYSI TOA Radiance and Reflectance Product ISRO 2008-06-22 2012-09-10 -6.0364, -78.8236, 152.6286, 78.6815 https://cmr.earthdata.nasa.gov/search/concepts/C1214622602-ISRO.json The data received from IMS1, HySI which operates in 64 spectral bands in VNIR bands(400-900nm) with 500 meter spatial resolution and swath of 128 kms. not-provided ISERV.v1 International Space Station SERVIR Environmental Research and Visualization System V1 USGS_EROS 2013-03-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1379906336-USGS_EROS.json Abstract: The ISS SERVIR Environmental Research and Visualization System (ISERV) acquired images of the Earth's surface from the International Space Station (ISS). The goal was to improve automatic image capturing and data transfer. ISERV's main component was the optical assembly which consisted of a 9.25 inch Schmidt-Cassegrain telescope, a focal reducer (field of view enlarger), a digital single lens reflex camera, and a high precision focusing mechanism. A motorized 2-axis pointing mount allowed pointing at targets approximately 23 degrees from nadir in both along- and across-track directions. not-provided +IXBMIGEO.v2 MISR Geometric Parameters subset for the INTEX-B region V002 LARC 2006-02-28 2006-04-03 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1000000301-LARC.json This file contains the Geometric Parameters which measure the sun and view angles at the reference ellipsoid for the INTEXB_2006 theme. not-provided +KOPRI-KPDC-00000008.v1 1998 Seismic Data, Antarctica AMD_KOPRI 1998-12-07 1998-12-11 -66.266667, -64.616667, -64.416667, -62.995 https://cmr.earthdata.nasa.gov/search/concepts/C2244292774-AMD_KOPRI.json "Korean Antarctic survey carried out as part of step 2 project in year 2 of 'the Antarctic Undersea Geological Survey' was conducted in the Ⅱ region around the northwestern continent of the Antarctic Peninsula. This area is northwest of Anvers Island, including areas around the pericontinent from the continental shelf to the continental rise zone. The investigation period for this project took a total of 8 days for moving navigation, the survey of the side lines and drilling investigation. After seismic investigation, a surface drilling investigation was conducted in coring point was decided from the reference seismic section. 10 researcher from ‘Korea Ocean Research and Development Institute’ participated in the field survey. We took on lease Russian icebreaker ""Yuzhmorgeologiya""." not-provided +KOPRI-KPDC-00000009.v1 1997 Seismic Data, Antarctica AMD_KOPRI 1997-12-23 1997-12-28 -64.699722, -63.525, -62.157778, -62.041389 https://cmr.earthdata.nasa.gov/search/concepts/C2244293126-AMD_KOPRI.json Korean Antarctic survey carried out as part of step 2 project in year 1 of ‘The Antarctic Undersea Geological Survey’ in 1997 was conducted in a continental shelf in the northwestern part of the Antarctic Peninsula. The research period took a total of 8 days, including 6 days for the seismic survey and 2 days for the drilling investigation. We took on lease Norway R/V 'Polar Duke' and 10 researchers from ‘Korea Ocean Research and Development Institute’ participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12 –channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling. not-provided +KOPRI-KPDC-00000011.v1 1996 Seismic Data, Antarctica AMD_KOPRI 1996-12-17 1996-12-26 -62.766667, -63.583333, -60.233333, -62.733333 https://cmr.earthdata.nasa.gov/search/concepts/C2244293499-AMD_KOPRI.json "Korean Antarctic survey carried out as in year 3 project of 'the Antarctic Undersea Geological Survey' was conducted in the basin region of western part of the Bransfeed Strait between the Antarctic Peninsula and the South Shetland Islands . During the field investigation, the seismic investigation and the drilling investigation was conducted at the same time. The investigation period took 9 days. 10 researchers from ‘Korea Ocean Research and Development Institute’ and 3 academic personnel participated in the cruise as field investigation personnel. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker." not-provided +KOPRI-KPDC-00000012.v1 1995 Seismic Data, Antarctica AMD_KOPRI 1995-12-13 1995-12-18 -58.335, -62.984444, -54.101944, -61.301111 https://cmr.earthdata.nasa.gov/search/concepts/C2244291641-AMD_KOPRI.json "Korean Antarctic survey carried out as in year 2 project of ""Antarctic submarine topography and sediment investigation"", The Field Survey of Antarctica was conducted at the end of 1995 was conducted the multi-channel Seismic Investigation and the drilling Investigation in the eastern part of the Bransfield Strait between the Antarctic Peninsula and the South Shetland Islands and near Sejong Station. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker for field investigation." not-provided +KOPRI-KPDC-00000014.v1 1994 Seismic Data, Antarctica AMD_KOPRI 1994-12-19 1994-12-27 -59.352778, -63.060278, -56.167778, -62.030833 https://cmr.earthdata.nasa.gov/search/concepts/C2244291414-AMD_KOPRI.json Korean Antarctic survey carried out as in year 1 of 'the Antarctic Undersea Geological Survey' was conducted at the end of 1994 was conducted Multi-channel Seismic Investgation and Drilling investigation in the central basin of the Bransfield Strait was located in between the Antarctic Peninsula and the South Shetland Islands and the Maxwell Bay area near Sejong Station. The field research was conducted wih other research at the same time. The research period was from 11 Dec. in 1994 to 23 Jan. in 1995 (13 days). - Korean Antarctic survey carried out as part of step 1 project in year 1 to investigate the possibility of oil resources in the Bransfield Strait of Antarctica. - Securing data for tectonic settings research in the same region. - Obtaining basic data for understanding marine geology and sedimentary layers in the same region. not-provided +KOPRI-KPDC-00000051.v1 1994 Sediment Core, Antarctica AMD_KOPRI 1994-12-31 1995-01-02 -58.026667, -62.42, -57.739722, -62.32 https://cmr.earthdata.nasa.gov/search/concepts/C2244291543-AMD_KOPRI.json "For the first year of study ""The Antarctic Undersea Geological Survey"", The Field Survey of Antarctica was conducted at the end of 1994 was conducted multi-channel seismic Investigation and drilling Investigation in the central basin of the Bransfield Strait was located in between the south Shetland Islands and the Antarctic peninsula and Maxwell bay area near Sejong Station. The field investigation was conducted research projects at the same time took 13 days from 11 Dec. in 1994 to 23 Jan. in 1995. - Korean Antarctic survey carried out as part of step 1 project in year 1 to investigate the possibility of oil resources in the Bransfield Strait of Antarctica. - Securing data for tectonic settings research in the same region. - Obtaining basic data for understanding marine geology and sedimentary layers in the same region." not-provided +KOPRI-KPDC-00000052.v1 1995 Sediment Core, Antarctica AMD_KOPRI 1995-12-19 1995-12-23 -55.951111, -61.969167, -55.051111, -61.951111 https://cmr.earthdata.nasa.gov/search/concepts/C2244291581-AMD_KOPRI.json "Korean Antarctic survey was conducted in the east basin of the Bransfield Strait between the Antarctic peninsula and south Shetland Islands and Maxwell Bay located at Sejong Station was conducted multi-channel seismic investigation and drilling investigation. We took on lease Russian ""Yuzhmorgeologiya""(5500 ton, ice strengthed vessel) which is marine geology, geophysical survey vessel and Icebreaker for field investigation." not-provided +KOPRI-KPDC-00000053.v1 1996 Sediment Core, Antarctica AMD_KOPRI 1996-12-16 1996-12-16 -60.151944, -62.100278, -59.717778, -62.051389 https://cmr.earthdata.nasa.gov/search/concepts/C2244291950-AMD_KOPRI.json "Korean Antarctic survey was conducted in west of the Bransfeed Strait, a basin between the Antarctic Peninsula and the south Shetland Islands. It tooks 9 days. seismic investigation and drilling investigation were conducted at the same time during the field survey. We took on lease Russian R/V ""Yuzhmorgeologiya"" which is marine geology, geophysical survey vessel and Icebreaker and 10 researchers from ‘Korea Ocean Research and Development Institute’ and 3 academic personnel participated in the cruise as field investigation personnel." not-provided +KOPRI-KPDC-00000054.v1 1997 Sediment Core, Antarctica AMD_KOPRI 1997-12-28 1997-12-29 -63.396667, -63.886111, -62.700833, -62.536389 https://cmr.earthdata.nasa.gov/search/concepts/C2244292254-AMD_KOPRI.json Korean Antarctic survey was conducted in 1997 carried out in a continental shelf in the northwestern part of the Antarctic Peninsula. It took 2 days. We took on lease Norway R/V 'Polar Duke' and 11 researchers from ‘Korea Ocean Research and Development Institute’ participated as field investigation personnel. The Teac single-channel recorder, EPC Recorder, Q/C MicroMax system etc. was used mainly by Sleeve gun used as a sound source, compressor for creating compressed air, DFS-V Recorder for multi-channel Seismic record, 12-channel geophone of seismic streamers. Additional Gravity Core was used for sediment research through drilling. not-provided +KOPRI-KPDC-00000055.v1 1998 Sediment Core, Antarctica AMD_KOPRI 1998-12-11 1998-12-12 -66.32, -63.95, -63.47, -62.943333 https://cmr.earthdata.nasa.gov/search/concepts/C2244294165-AMD_KOPRI.json "Korean Antarctic survey was conducted in the continental margin (II region) of the northwestern Antarctic Peninsula. We took on lease Russian R/V ""Yuzhmorgeologiya"" (5500 ton, ice strengthed vessel) and 10 researchers participated in the cruise, including acquisition of multichannel seismic, gravity, and magnetometer as well as a detailed samplings (box cores, gravity cores, and grab samples). 1. Geophysical researches (Multichannel seismic and SBP surveys) 2. Paleoceanographic researches" not-provided KUKRI_He (U-Th)/He ages from the Kukri Hills of southern Victoria Land SCIOPS 1970-01-01 162.7, -77.7, 162.7, -77.7 https://cmr.earthdata.nasa.gov/search/concepts/C1214587974-SCIOPS.json The data set consists of (U-Th)/He ages collected from three vertical profiles from the the Kukri Hills (north side of the Ferrar Glacier) of Southern Victoria Land. The data set provides information on the cooling history and hence the denduation history of the Transantarctic Mountains in this area. Analyses were all carried out at the (U-Th)/He lab of Ken Farley at the Californai Institute of Technology. not-provided L1B_Wind_Products Aeolus preliminary HLOS (horizontal line-of-sight) wind observations for Rayleigh and Mie receivers ESA 2020-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689596-ESA.json The Level 1B wind product of the Aeolus mission contains the preliminary HLOS (horizontal line-of-sight) wind observations for Rayleigh and Mie receivers, which are generated in Near Real Time. Standard atmospheric correction (Rayleigh channel), receiver response and bias correction is applied. The product is generated within 3 hours after data acquisition. not-provided L2B_Wind_Products Aeolus Scientific L2B Rayleigh/Mie wind product ESA 2020-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2119689544-ESA.json The Level 2B wind product of the Aeolus mission is a geo-located consolidated HLOS (horizontal line-of-sight) wind observation with actual atmospheric correction applied to Rayleigh channel. The product is generated by within 3 hours after data acquisition. not-provided @@ -235,6 +250,11 @@ M1_AVH13C1.v6 METOP-B AVHRR Atmospherically Corrected Normalized Difference Vege MCD06COSP_D3_MODIS.v6.1 MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1887589686-LAADS.json The combined MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product’s short-name. The “COSP” acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. This product is an aggregation of combined MODIS Level-2 inputs from both the Terra and Aqua incarnations (MOD35/MOD06 and MYD35/MYD06, respectively), and employs an aggregation methodology consistent with the MOD08 and MYD08 products. Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters). not-provided MCD06COSP_M3_MODIS.v6.1 MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid LAADS 2002-07-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1888024429-LAADS.json The combined MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product’s short-name. The “COSP” acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. The L3 monthly product is derived by aggregating the daily-produced Aqua+Terra/MODIS D3 Cloud Properties product (MCD06COSP_D3_MODIS). Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters). not-provided MCD14DL_C5_NRT.v005 MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1km FIRMS V005 NRT LM_FIRMS 2014-01-28 -180, -80, 180, 80 https://cmr.earthdata.nasa.gov/search/concepts/C1219768065-LM_FIRMS.json Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes. not-provided +MIANACP.v1 MISR Aerosol Climatology Product V001 LARC 1999-11-22 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.json MIANACP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Climatology Product version 1. It is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure aerosol to be compared with MISR observations; and 3) likelihood value assigned to each mode geographically. The ACP describes mixtures of up to three component aerosol types from a list of eight components, in varying proportions. ACP component aerosol particle data quality depends on the ACP input data, which are based on aerosol particles described in the literature, and consider MISR-specific sensitivity to particle size, single-scattering albedo, and shape, and shape - roughly: small, medium and large; dirty and clean; spherical and nonspherical [Kahn et al. , 1998; 2001]. Also reported in the ACP are the mixtures of these components used by the retrieval algorithm. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided +MIANCAGP.v1 MISR Ancillary Geographic Product V001 LARC 1999-11-07 2005-06-30 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.json MIANCAGP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Geographic Product version 1. It is a set of 233 pre-computed files. Each AGP file pertains to a single Terra orbital path. MISR production software relies on information in the AGP, such as digital terrain elevation, as input to the algorithms which generate MISR products. The AGP contains eleven fields of geographical data. This product consists primarily of geolocation data on a Space Oblique Mercator (SOM) Grid. It has 233 parts, corresponding to the 233 repeat orbits of the EOS-AM1 Spacecraft. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided +MIANCARP.v2 MISR Ancillary Radiometric Product V002 LARC 1999-12-28 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C179031521-LARC.json MIANCARP_2 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Radiometric Product version 2. It is composed of 4 files covering instrument characterization data, pre-flight calibration data, in-flight calibration data, and configuration parameters. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided +MIRCCMF.v001 MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001 LARC 2000-12-13 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C135857530-LARC.json Multi-angle Imaging SpectroRadiometer (MISR) is an instrument designed to view Earth with cameras pointed in 9 different directions. As the instrument flies overhead, each piece of Earth's surface below is successively imaged by all 9 cameras, in each of 4 wavelengths (blue, green, red, and near-infrared). The goal of MISR is to improve our understanding of the fate of sunlight in Earth environment, as well as distinguish different types of clouds, particles and surfaces. Specifically, MISR monitors the monthly, seasonal, and long-term trends in three areas: 1) amount and type of atmospheric particles (aerosols), including those formed by natural sources and by human activities; 2) amounts, types, and heights of clouds, and 3) distribution of land surface cover, including vegetation canopy structure. MISR FIRSTLOOK radiometric camera-by-camera Cloud Mask V001 contains the FIRSTLOOK Radiometric camera-by-camera Cloud Mask (RCCM) dataset produced using ancillary inputs Radiometric Camera-by-camera Cloud mask Threshold (RCCT) from the previous time period. It is used to determine whether a scene is clear, cloudy or dusty (over ocean). not-provided +MISBR.v005 MISR Browse data V005 LARC 1999-12-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C43677744-LARC.json This is the browse data associated with a particular granule. not-provided MURI_Camouflage.v0 A Multi University Research Initiative (MURI) Camouflage Project OB_DAAC 2010-06-14 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360494-OB_DAAC.json A Multi University Research Initiative was funded to study the biological response to the dynamic, polarized light field in distinct water types. During June 2010, a campaign was undertaken in the coastal waters off Port Aransas, Texas to study the angular/temporal distribution of polarization in multiple environment types (eutrophic sediment laden coastal waters, oligotrophic off-shore), as well as the polarization-reflectance responses of several organisms. In addition to radiometric polarization measurements, water column IOPs, Rrs, benthic reflectance, and pigment concentration measurements were collected. Later campaigns expanded this research in the coastal waters off the Florida Keys. not-provided MURI_HI.v0 A Multi University Research Initiative (MURI) near the Hawaiian Islands OB_DAAC 2012-05-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360508-OB_DAAC.json Measurements taken by the RV Kilo Moana in 2012 near the Hawaiian Islands. not-provided MYD021KM.v6.1NRT MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426616847-LANCEMODIS.json The MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 36 discrete bands located in the 0.4 to 14.4 micron region of electromagentic spectrum. These data are generated from the MODIS Level 1A scans of raw radiance and in the process converted to geophysical units of W/(m^2 um sr). In addition, the Earth Bi-directional Reflectance Distribution Function (BRDF) may be determined for the solar reflective bands (1-19, 26) through knowledge of the solar irradiance (e.g., determined from MODIS solar diffuser data, and from the target illumination geometry). Additional data are provided including quality flags, error estimates and calibration data. Visible, shortwave infrared, and near infrared measurements are only made during the daytime, while radiances for the thermal infrared region (bands 20-25, 27-36) are measured continuously. Channel locations for MODIS are as follows: Band Center Wavelength (um) Primary Use---- ---------------------- -----------1 0.620 - 0.670 Land/Cloud Boundaries2 0.841 - 0.876 Land/Cloud Boundaries3 0.459 - 0.479 Land/Cloud Properties4 0.545 - 0.565 Land/Cloud Properties5 1.230 - 1.250 Land/Cloud Properties6 1.628 - 1.652 Land/Cloud Properties7 2.105 - 2.155 Land/Cloud Properties8 0.405 - 0.420 Ocean Color/Phytoplankton9 0.438 - 0.448 Ocean Color/Phytoplankton10 0.483 - 0.493 Ocean Color/Phytoplankton11 0.526 - 0.536 Ocean Color/Phytoplankton12 0.546 - 0.556 Ocean Color/Phytoplankton13 0.662 - 0.672 Ocean Color/Phytoplankton14 0.673 - 0.683 Ocean Color/Phytoplankton15 0.743 - 0.753 Ocean Color/Phytoplankton16 0.862 - 0.877 Ocean Color/Phytoplankton17 0.890 - 0.920 Atmospheric Water Vapor18 0.931 - 0.941 Atmospheric Water Vapor19 0.915 - 0.965 Atmospheric Water Vapor20 3.660 - 3.840 Surface/Cloud Temperature21 3.929 - 3.989 Surface/Cloud Temperature22 3.929 - 3.989 Surface/Cloud Temperature23 4.020 - 4.080 Surface/Cloud Temperature24 4.433 - 4.498 Atmospheric Temperature25 4.482 - 4.549 Atmospheric Temperature26 1.360 - 1.390 Cirrus Clouds27 6.535 - 6.895 Water Vapor Profile28 7.175 - 7.475 Water Vapor Profile29 8.400 - 8.700 Water Vapor Profile30 9.580 - 9.880 Ozone Overburden31 10.780 - 11.280 Surface/Cloud Temperature32 11.770 - 12.270 Surface/Cloud Temperature33 13.185 - 13.485 Cloud Top Altitude34 13.485 - 13.785 Cloud Top Altitude35 13.785 - 14.085 Cloud Top Altitude36 14.085 - 14.385 Cloud Top Altitude Channels 1 and 2 have 250 m resolution, channels 3 through 7 have 500m resolution, and the rest have 1 km resolution. However, for the MODIS L1B 1 km product, the 250 m and 500 m band radiance data and their associated uncertainties have been aggregated to 1km resolution. Thus the entire channel data set is referenced to the same spatial and geolocation scales. Separate L1B products are available for the 250 m channels (MYD02QKM) and 500 m channels (MYD02HKM) that preserve the original resolution of the data. Spatial resolution for pixels at nadir is 1 km, degrading to 4.8 km in the along-scan direction at the scan extremes. However, thanks to the overlapping of consecutive swaths and respectively pixels there, the resulting resolution at the scan extremes is about 2km. A 55 degree scanning pattern at the EOS orbit of 705 km results in a 2330km orbital swath width and provides global coverage every one to two days. A single MODIS Level 1B granule will nominally contain a scene built from 203 scans (or swaths) sampled 1354 times in the cross-track direction, corresponding to approximately 5 minutes worth of data. Since an individual MODIS scan (or swath) will contain 10 along-track spatial elements, the scene will be composed of (1354 x 2030) pixels, resulting in a spatial coverage of (2330 km x 2030 km). Due to the MODIS scan geometry, there will be increasing overlap occurring beyond about 25 degrees scan angle. To summarize, the MODIS L1B 1 km data product consists of: 1. Calibrated radiances and uncertainties for (2) 250 m reflected solar bands aggregated to 1km resolution 2. Calibrated radiances and uncertainties for (5) 500 m reflected solar bands aggregated to 1 km resolution 3. Calibrated radiances and uncertainties for (13) 1 km reflected solar bands and (16) infrared emissive bands 4. Geolocation subsampled at every 5th pixel across and along track 5. Satellite and solar angles subsampled at the above frequency 6. Comprehensive set of file-level metadata summarizing the spatial, temporal and parameter attributes of the data, as well as auxiliary information pertaining to instrument status and data quality characterization. The MODIS L1B data are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) which is an extension of HDF as developed by the National Center for Supercomputer Applications (NCSA) at the University of Illinois. A typical file size will be approximately 260 MB. Environmental information derived from MODIS L1B measurements will offer a comprehensive and unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world. The Shortname for this product is MYD021KM not-provided @@ -265,6 +285,11 @@ NRSCC_GLASS_Albedo_MODIS_1KM.v11 NRSCC_GLASS_Albedo_MODIS_1KM NRSCC 2000-01-01 2 NRSCC_GLASS_BBE_AVHRR.v11 NRSCC_GLASS_BBE_AVHRR NRSCC 1982-01-01 2017-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351148-NRSCC.json The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from AVHRR. not-provided NRSCC_GLASS_BBE_MODIS_0.05D.v11 NRSCC_GLASS_BBE_MODIS_0.05D NRSCC 2000-02-18 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351185-NRSCC.json The Global LAnd Surface Satellite (GLASS) broadband emissivity (BBE) product derived from MODIS. The horizontal resolution is 0.05 Degree. not-provided NRSCC_GLASS_BBE_MODIS_1KM.v11 NRSCC_GLASS_BBE_MODIS_1KM NRSCC 2000-02-18 2018-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2205351153-NRSCC.json NRSCC_GLASS_BBE_MODIS_1KM not-provided +NSF-ANT05-37371 A Broadband Seismic Experiment to Image the Lithosphere Beneath the Gamburtsev Mountains and Surrounding Areas, East Antarctica AMD_USAPDC 2007-10-01 2013-09-30 40, -84, 140, -76 https://cmr.earthdata.nasa.gov/search/concepts/C2532069799-AMD_USAPDC.json This award supports a seismological study of the Gamburtsev Subglacial Mountains (GSM), a Texas-sized mountain range buried beneath the ice sheets of East Antarctica. The project will perform a passive seismic experiment deploying twenty-three seismic stations over the GSM to characterize the structure of the crust and upper mantle, and determine the processes driving uplift. The outcomes will also offer constraints on the terrestrial heat flux, a key variable in modeling ice sheet formation and behavior. Virtually unexplored, the GSM represents the largest unstudied area of crustal uplift on earth. As well, the region is the starting point for growth of the Antarctic ice sheets. Because of these outstanding questions, the GSM has been identified by the international Antarctic science community as a research focus for the International Polar Year (2007-2009). In addition to this seismic experiment, NSF is also supporting an aerogeophysical survey of the GSM under award number 0632292. Major international partners in the project include Germany, China, Australia, and the United Kingdom. For more information see IPY Project #67 at IPY.org. In terms of broader impacts, this project also supports postdoctoral and graduate student research, and various forms of outreach. not-provided +NSF-ANT10-43485.v1 A New Reconstruction of the Last West Antarctic Ice Sheet Deglaciation in the Ross Sea AMD_USAPDC 2011-07-01 2015-06-30 -160, -78, -150, -68 https://cmr.earthdata.nasa.gov/search/concepts/C2532069944-AMD_USAPDC.json This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. not-provided +NSF-ANT10-43517 A new reconstruction of the last West Antarctic Ice Sheet deglaciation in the Ross Sea AMD_USAPDC 2011-07-01 2015-06-30 163.5, -78.32, 165.35, -77.57 https://cmr.earthdata.nasa.gov/search/concepts/C2532070432-AMD_USAPDC.json This award supports a project to develop a better understanding of the response of the WAIS to climate change. The timing of the last deglaciation of the western Ross Sea will be improved using in situ terrestrial cosmogenic nuclides (3He, 10Be, 14C, 26Al, 36Cl) to date glacial erratics at key areas and elevations along the western Ross Sea coast. A state-of-the art ice sheet-shelf model will be used to identify mechanisms of deglaciation of the Ross Sea sector of WAIS. The model results and forcing will be compared with observations including the new cosmogenic data proposed here, with the aim of better determining and understanding the history and causes of WAIS deglaciation in the Ross Sea. There is considerable uncertainty, however, in the history of grounding line retreat from its last glacial maximum position, and virtually nothing is known about the timing of ice- surface lowering prior to ~10,000 years ago. Given these uncertainties, we are currently unable to assess one of the most important questions regarding the last deglaciation of the global ice sheets, namely as to whether the Ross Sea sector of WAIS contributed significantly to meltwater pulse 1A (MWP-1A), an extraordinarily rapid (~500-year duration) episode of ~20 m sea-level rise that occurred ~14,500 years ago. The intellectual merit of this project is that recent observations of startling changes at the margins of the Greenland and Antarctic ice sheets indicate that dynamic responses to warming may play a much greater role in the future mass balance of ice sheets than considered in current numerical projections of sea level rise. The broader impacts of this work are that it has direct societal relevance to developing an improved understanding of the response of the West Antarctic ice sheet to current and possible future environmental changes including the sea-level response to glacier and ice sheet melting due to global warming. The PI will communicate results from this project to a variety of audiences through the publication of peer-reviewed papers and by giving talks to public audiences. Finally the project will support a graduate student and undergraduate students in all phases of field-work, laboratory work and data interpretation. not-provided +NSF-ANT10-43621 A Comparison of Conjugate Auroral Electojet Indices AMD_USAPDC 2011-06-01 2013-05-31 -180, -79.5, 180, -54.5 https://cmr.earthdata.nasa.gov/search/concepts/C2532069751-AMD_USAPDC.json The auroral electrojet index (AE) is used as an indicator of geomagnetic activity at high latitudes representing the strength of auroral electrojet currents in the Northern polar ionosphere. A similar AE index for the Southern hemisphere is not available due to lack of complete coverage the Southern auroral zone (half of which extends over the ocean) with continuous magnetometer observations. While in general global auroral phenomena are expected to be conjugate, differences have been observed in the conjugate observations from the ground and from the Earth's satellites. These differences indicate a need for an equivalent Southern auroral geomagnetic activity index. The goal of this award is to create the Southern AE (SAE) index that would accurately reflect auroral activity in that hemisphere. With this index, it would be possible to investigate the similarities and the cause of differences between the SAE and 'standard' AE index from the Northern hemisphere. It would also make it possible to identify when the SAE does not provide a reliable calculation of the Southern hemisphere activity, and to determine when it is statistically beneficial to consider the SAE index in addition to the standard AE while analyzing geospace data from the Northern and Southern polar regions. The study will address these questions by creating the SAE index and its 'near-conjugate' NAE index from collected Antarctic magnetometer data, and will analyze variations in the cross-correlation of these indices and their differences as a function of geomagnetic activity, season, Universal Time, Magnetic Local Time, and interplanetary magnetic field and solar wind plasma parameters. The broader impact resulting from the proposed effort is in its importance to the worldwide geospace scientific community that currently uses only the standard AE index in a variety of geospace models as necessary input. not-provided +NSF-ANT13-55533.v1 A Multi-decadal Record of Antarctic Benthos: Image Analysis to Maximize Data Utilization AMD_USAPDC 2013-10-01 2015-09-30 163, -78.5, 167, -78 https://cmr.earthdata.nasa.gov/search/concepts/C2532070231-AMD_USAPDC.json Antarctic benthic communities are characterized by many species of sponges (Phylum Porifera), long thought to exhibit extremely slow demographic patterns of settlement, growth and reproduction. This project will analyze many hundreds of diver and remotely operated underwater vehicle photographs documenting a unique, episodic settlement event that occurred between 2000 and 2010 in McMurdo Sound that challenges this paradigm of slow growth. Artificial structures were placed on the seafloor between 1967 and 1974 at several sites, but no sponges were observed to settle on these structures until 2004. By 2010 some 40 species of sponges had settled and grown to be surprisingly large. Given the paradigm of slow settlement and growth supported by the long observation period (37 years, 1967-2004), this extraordinary large-scale settlement and rapid growth over just a 6-year time span is astonishing. This project utilizes image processing software (ImageJ) to obtain metrics (linear dimensions to estimate size, frequency, percent cover) for sponges and other fauna visible in the photographs. It uses R to conduct multidimensional scaling to ordinate community data and ANOSIM to test for differences of community data among sites and times and structures. It will also use SIMPER and ranked species abundances to discriminate species responsible for any differences. This work focuses on Antarctic sponges, but the observations of massive episodic recruitment and growth are important to understanding seafloor communities worldwide. Ecosystems are composed of populations, and populations are ecologically described by their distribution and abundance. A little appreciated fact is that sponges often dominate marine communities, but because sponges are so hard to study, most workers focus on other groups such as corals, kelps, or bivalves. Because most sponges settle and grow slowly their life history is virtually unstudied. The assumption of relative stasis of the Antarctic seafloor community is common, and this project will shatter this paradigm by documenting a dramatic episodic event. Finally, the project takes advantage of old transects from the 1960s and 1970s and compares them with extensive 2010 surveys of the same habitats and sometimes the same intact transect lines, offering a long-term perspective of community change. The investigators will publish these results in peer-reviewed journals, give presentations to the general public and will involve students from local outreach programs, high schools, and undergraduates at UCSD to help with the analysis. not-provided NSIDC-0326.v1 Ablation Rates of Taylor Glacier, Antarctica, Version 1 NSIDCV0 2002-11-19 2011-01-12 160.1, -77.9, 162.2, -77.6 https://cmr.earthdata.nasa.gov/search/concepts/C1386250376-NSIDCV0.json This data set provides glacier surface ablation rates for a network of approximately 250 sites on Taylor Glacier, spanning a period from 2003 to 2011. Here sublimation is the dominant ablation mechanism, though a few sites have accumulation. Ablation data are provided in meters water equivalent per year. Data are available via FTP in space-delimited ASCII format. not-provided NSIDC-0539.v1 Abrupt Change in Atmospheric CO2 During the Last Ice Age, Version 1 NSIDCV0 2009-01-01 2012-12-31 -148.82, -81.66, -119.83, -80.01 https://cmr.earthdata.nasa.gov/search/concepts/C1386205485-NSIDCV0.json During the last glacial period atmospheric carbon dioxide and temperature in Antarctica varied in a similar fashion on millennial time scales, but previous work indicates that these changes were gradual. In a detailed analysis of one event, we now find that approximately half of the CO2 increase that occurred during the 1500 year cold period between Dansgaard-Oeschger (DO) Events 8 and 9 happened rapidly, over less than two centuries. This rise in CO2 was synchronous with, or slightly later than, a rapid increase of Antarctic temperature inferred from stable isotopes. not-provided NSIDC-0596.v1 17O Excess from WAIS Divide, 0 to 25 ka BP, Version 1 NSIDCV0 2007-11-01 2012-02-01 -158.72, -81.67, -112.08, -77.79 https://cmr.earthdata.nasa.gov/search/concepts/C1386205647-NSIDCV0.json This data set contains the VSMOW-SLAP d17O, d18O, and 17O-excess data from the WAIS Divide Ice Core Project, Siple Dome and Taylor Dome, along with the published and VSMOW-SLAP normalized d17O, d18O, and 17O-excess for Vostok [Landais et al. 2008], EPICA Dome C and Talos Dome [Winkler et al., 2012]. The data cover the Last Glacial Maximum (25-20 ka), through the Early Holocene (12-9 ka) and into present-day (past 2 kyr) not-provided @@ -284,7 +309,20 @@ SRDB_V5_1827.v5 A Global Database of Soil Respiration Data, Version 5.0 ORNL_CLO Survey_1988_89_Mawson_npcms.v1 1988/89 Summer season, surveying and mapping program, Mawson - North Prince Charles Mountains - Davis AU_AADC 1988-10-01 1989-02-28 62, -70, 79, -66 https://cmr.earthdata.nasa.gov/search/concepts/C1214313847-AU_AADC.json Field season report of these programs: 1988/89 Summer Season surveying and mapping North Prince Charles Mountains; ...mapping program Northern PCM's - Mawson Doppler Translocation Support; ....mapping program Voyage 6 stopover Davis. Includes maps and mapsheet layouts. See the report for full details on the program. Contents are: Introduction Preparation Voytage to Antarctica 1988/89 Summer Season Surveying and Mapping Program, Northern Prince Charles Mountains 1988/89 Summer Season Surveying and Mapping Program, Voyage 6 Stopover, Davis Performance of Equipment Station Marking Field Camping Climatic Conditions Conclusion Appendices not-provided Tropical Cyclone Wind Estimation Model.v1 Tropical Cyclone Wind Estimation Model MLHUB 2000-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2260133500-MLHUB.json This is a PyTorch model trained on the Tropical Cyclone Wind Estimation Competition dataset with v0.1 of the TorchGeo package. The model is a resnet18 model pretrained on ImageNet then trained with a MSE loss. The data were randomly split 80/20 by storm ID and an early stop was used based on performance. not-provided Turbid9.v0 2004 Measurements made in the Chesapeake Bay OB_DAAC 2004-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360689-OB_DAAC.json Measurements made in the Chesapeake Bay in 2004. not-provided +USAP-1543498.v1 A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea AMD_USAPDC 2016-06-01 165, -78, -150, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2532074621-AMD_USAPDC.json "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and ""NestCheck"" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer.

The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual's lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region." not-provided +USAP-1643722.v1 A High Resolution Atmospheric Methane Record from the South Pole Ice Core AMD_USAPDC 2017-02-01 2019-01-31 180, -90, 180, -90 https://cmr.earthdata.nasa.gov/search/concepts/C2534799946-AMD_USAPDC.json This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project. not-provided +USAP-1744755.v1 A mechanistic study of bio-physical interaction and air-sea carbon transfer in the Southern Ocean AMD_USAPDC 2018-05-01 2022-04-30 -80, -70, -30, -45 https://cmr.earthdata.nasa.gov/search/concepts/C2545372297-AMD_USAPDC.json Current generation of coupled climate models, that are used to make climate projections, lack the resolution to adequately resolve ocean mesoscale (10 - 100km) processes, exhibiting significant biases in the ocean carbon uptake. Mesoscale processes include many features including jets, fronts and eddies that are crucial for bio-physical interactions, air-sea CO2 exchange and the supply of iron to the surface ocean. This modeling project will support the eddy resolving regional simulations to understand the mechanisms that drives bio-physical interaction and air-sea exchange of carbon dioxide. not-provided +USAP-1744989.v1 A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor Penguins AMD_USAPDC 2018-07-15 2022-06-30 -180, -90, 180, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2705787178-AMD_USAPDC.json This project on emperor penguin populations will quantify penguin presence/absence, and colony size and trajectory, across the entire Antarctic continent using high-resolution satellite imagery. For a subset of the colonies, population estimates derived from high-resolution satellite images will be compared with those determined by aerial surveys - these results have been uploaded to MAPPPD (penguinmap.com) and are freely available for use. This validated information will be used to determine population estimates for all emperor penguin colonies through iterations of supervised classification and maximum likelihood calculations on the high-resolution imagery. The effect of spatial, geophysical, and environmental variables on population size and decadal-scale trends will be assessed using generalized linear models. This research will result in a first ever empirical result for emperor penguin population trends and habitat suitability, and will leverage currently-funded NSF infrastructure and hosting sites to publish results in near-real time to the public. not-provided +USAP-2130663.v1 2021 Antarctic Subsea Cable Workshop: High-Speed Connectivity Needs to Advance US Antarctic Science AMD_USAPDC 2021-06-01 2023-05-31 -180, -90, 180, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2556670196-AMD_USAPDC.json Current networking capacity at McMurdo Station is insufficient to even be considered broadband, with a summer population of up to 1000 people sharing what is equivalent to the connection enjoyed by a typical family of three in the United States. The changing Antarctic ice sheets and Southern Ocean are large, complex systems that require cutting edge technology to do cutting edge research, with remote technology becoming increasingly useful and even necessary to monitor changes at sufficient spatial and temporal scales. Antarctic science also often involves large data-transfer needs not currently met by existing satellite communication infrastructure. This workshop will gather representatives from across Antarctic science disciplinesfrom astronomy to zoologyas well as research and education networking experts to explore the scientific advances that would be enabled through dramatically increased real-time network connectivity, and also consider opportunities for subsea cable instrumentation. This workshop will assess the importance of a subsea fiber optic cable for high-capacity real-time connectivity in the US Antarctic Program, which is at the forefront of some of the greatest climate-related challenges facing our planet. The workshop will: (1) document unmet or poorly met current scientific and logistic needs for connectivity; (2) explore connectivity needs for planned future research and note the scientific advances that would be possible if the full value of modern cyberinfrastructure-empowered research could be brought to the Antarctic research community; and (3) identify scientific opportunities in planning a fully instrumented communication cable as a scientific observatory. Due to the ongoing COVID-19 pandemic, the workshop will be hosted and streamed online. While the workshop will be limited to invited personnel in order to facilitate a collaborative working environment, broad community input will be sought via survey and via comment on draft outputs. A workshop summary document and report will be delivered to NSF. Increasing US Antarctic connectivity by orders of magnitude will be transformative for science and logistics, and it may well usher in a new era of Antarctic science that is more accessible, efficient and sustainable. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. not-provided +USGS_DDS_P14_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Los Angeles Basin Province CEOS_EXTRA 1990-12-01 1990-12-01 -119.63631, 32.7535, -117.52315, 34.17464 https://cmr.earthdata.nasa.gov/search/concepts/C2231552049-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 14 (Los Angeles Basin) are listed here by play number, type, and name: Number Type Name 1401 conventional Santa Monica Fault System and Las Cienegas Fault and Block 1402 conventional Southwestern Shelf and Adjacent Offshore State Lands 1403 conventional Newport-Inglewood Deformation Zone and Southwestern Flank of Central Syncline 1404 conventional Whittier Fault Zone and Fullerton Embayment 1405 conventional Northern Shelf and Northern Flank of Central Syncline 1406 conventional Anaheim Nose 1407 conventional Chino Marginal Basin, Puente and San Jose Hills, and San Gabriel Valley Marginal Basin not-provided +USGS_DDS_P16_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Salton Trough Province CEOS_EXTRA 1990-12-01 1990-12-01 -116.66911, 32.634293, -114.74501, 34.02059 https://cmr.earthdata.nasa.gov/search/concepts/C2231548651-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 16 (Salton Trough) are listed here by play number, type, and name. not-provided +USGS_DDS_P17_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Idaho - Snake River Downwarp Province CEOS_EXTRA 1990-12-01 1990-12-01 -117.24303, 41.99332, -111.04548, 49.00115 https://cmr.earthdata.nasa.gov/search/concepts/C2231550494-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 17 (Idaho - Snake River Downwarp) are listed here by play number, type, and name: Number Type Name 1701 conventional Miocene Lacustrine (Lake Bruneau) 1702 conventional Pliocene Lacustrine (Lake Idaho) 1703 conventional Pre-Miocene 1704 conventional Older Tertiary not-provided +USGS_DDS_P19_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Eastern Great Basin Province CEOS_EXTRA 1990-12-01 1990-12-01 -117.02622, 35.002083, -111.170425, 43.022377 https://cmr.earthdata.nasa.gov/search/concepts/C2231552402-CEOS_EXTRA.json "The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 19 (Eastern Great Basin) are listed here by play number, type, and name: Number Type Name 1901 conventional Unconformity ""A"" 1902 conventional Late Paleozoic 1903 conventional Early Tertiary - Late Cretaceous Sheep Pass and Equivalents 1905 conventional Younger Tertiary Basins 1906 conventional Late Paleozoic - Mesozoic (Central Nevada) Thrust Belt 1907 conventional Sevier Frontal Zone" not-provided +USGS_DDS_P2_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Alaska Province CEOS_EXTRA 1990-12-01 1990-12-01 -173.22636, 58.49761, -140.99017, 68.01999 https://cmr.earthdata.nasa.gov/search/concepts/C2231550471-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 2 (Central Alaska) are listed here by play number, type, and name: Number Type Name 201 conventional Central Alaska Cenozoic Gas 202 conventional Central Alaska Mesozoic Gas 203 conventional Central Alaska Paleozoic Oil 204 conventional Kandik Pre-Mid-Cretaceous Strata 205 conventional Kandik Upper Cretaceous and Tertiary Non-Marine Stata not-provided +USGS_P-11_cells 1995 National Oil and Gas Assessment 1/4-Mile Cells within the Central Coastal Province CEOS_EXTRA 1990-12-01 1990-12-01 -123.80987, 34.66294, -118.997696, 39.082233 https://cmr.earthdata.nasa.gov/search/concepts/C2231552077-CEOS_EXTRA.json The purpose of the cell map is to display the exploration maturity, type of production, and distribution of production in quarter-mile cells in each of the oil and gas plays and each of the provinces defined for the 1995 U.S. National Oil and Gas Assessment. Cell maps for each oil and gas play were created by the USGS as a method for illustrating the degree of exploration, type of production, and distribution of production in a play or province. Each cell represents a quarter-mile square of the land surface, and the cells are coded to represent whether the wells included within the cell are predominantly oil-producing, gas-producing, both oil and gas-producing, or dry. The well information was initially retrieved from the Petroleum Information (PI) Well History Control System (WHCS), which is a proprietary, commercial database containing information for most oil and gas wells in the U.S. Cells were developed as a graphic solution to overcome the problem of displaying proprietary WHCS data. No proprietary data are displayed or included in the cell maps. The data from WHCS were current as of December 1990 when the cell maps were created in 1994. Oil and gas plays within province 11 (Central Coastal) are listed here by play number, type, and name: Number Type Name 1101 conventional Point Arena Oil 1102 conventional Point Reyes Oil 1103 conventional Pescadero Oil 1104 conventional La Honda Oil 1105 conventional Bitterwater Oil 1106 conventional Salinas Oil 1107 conventional Western Cuyama Basin 1109 conventional Cox Graben not-provided +USGS_SOFIA_eco_hist_db1995-2007.vversion 7 1995 - 2007 Ecosystem History of South Florida's Estuaries Database version 7 CEOS_EXTRA 1994-09-27 2007-04-03 -81.83, 24.75, -80, 26.5 https://cmr.earthdata.nasa.gov/search/concepts/C2231554288-CEOS_EXTRA.json The 1995 - 2007 Ecosystem History of South Florida's Estuaries Database contains listings of all sites (modern and core), modern monitoring site survey information (water chemistry, floral and faunal data, etc.), and published core data. Two general types of data are contained within this database: 1) Modern Field Data and 2) Core data - primarily faunal assemblages. Data are available for modern sites and cores in the general areas of Florida Bay, Biscayne Bay, and the southwest (Florida) coastal mangrove estuaries. Specific sites in the Florida Bay area include Taylor Creek, Bob Allen Key, Russell Bank, Pass Key, Whipray Basin, Rankin Bight, park Key, and Mud Creek core). Specific Biscayne Bay sites include Manatee Bay, Featherbed Bank, Card bank, No Name Bank, Middle Key, Black Point North, and Chicken Key. Sites on the southwest coast include Alligator Bay, Big Lostmans Bay, Broad River Bay, Roberts River mouth, Tarpon Bay, Lostmans River First and Second Bays, Harney River, Shark River near entrance to Ponce de Leon Bay, and Shark River channels. Modern field data contains (1) general information about the site, description, latitude and longitude, date of data collection, (2) water chemistry information, and (3) descriptive text of fauna and flora observed at the site. Core data contain either percent abundance data or actual counts of the distribution of mollusks, ostracodes, forams, and pollen within the cores collected in the estuaries. For some cores dinocyst or diatom data may be available. not-provided USGS_cont1992 1992 Water-Table Contours of the Mojave River Ground-Water Basin, San Bernardino County, California CEOS_EXTRA 1970-01-01 -117.652695, 34.364513, -116.55357, 35.081955 https://cmr.earthdata.nasa.gov/search/concepts/C2231553864-CEOS_EXTRA.json This data set consists of digital water-table contours for the Mojave River Basin. The U.S. Geological Survey, in cooperation with the Mojave Water Agency, constructed a water-table map of the Mojave River ground-water basin for ground-water levels measured in November 1992. Water-level data were collected from approximately 300 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,200 to 1,600 feet above sea level. [Summary provided by the USGS.] not-provided +USGS_cont1994 1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California CEOS_EXTRA 1970-01-01 -117.07194, 34.095333, -115.98976, 34.64026 https://cmr.earthdata.nasa.gov/search/concepts/C2231554677-CEOS_EXTRA.json This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water basin for ground-water levels measured during the period January-October 1994. Water-level data were collected from 248 wells to construct the contours. The water-table contours were digitized from the paper map which was published at a scale of 1:125,000. The contour interval ranges from 3,400 to 1,500 feet above sea level. [Summary provided by the USGS.] not-provided UTC_1990countyboundaries 1990 County Boundaries of the United States CEOS_EXTRA 1972-01-01 1990-12-31 -177.1, 13.71, -61.48, 76.63 https://cmr.earthdata.nasa.gov/search/concepts/C2231550562-CEOS_EXTRA.json This data set portrays the 1990 State and county boundaries of the United States, Puerto Rico, and the U.S. Virgin Islands. The data set was created by extracting county polygon features from the individual 1:2,000,000-scale State boundary Digital Line Graph (DLG) files produced by the U.S. Geological Survey. These files were then merged into a single file and the boundaries were modified to what they were in 1990. This is a revised version of the March 2000 data set. not-provided WV01_Pan_L1B.v1 WorldView-1 Level 1B Panchromatic Satellite Imagery CSDA 2007-10-10 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497387766-CSDA.json The WorldView-1 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Panchromatic imagery is collected by the DigitalGlobe WorldView-1 satellite using the WorldView-60 camera across the global land surface from September 2007 to the present. Data have a spatial resolution of 0.5 meters at nadir and a temporal resolution of approximately 1.7 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided WV02_MSI_L1B.v1 WorldView-2 Level 1B Multispectral 8-Band Satellite Imagery CSDA 2009-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497404794-CSDA.json The WorldView-2 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided