diff --git a/datasets/WV01_Pan_L1B.v1.json b/datasets/WV01_Pan_L1B.v1.json index 5044650b8..4fce52902 100644 --- a/datasets/WV01_Pan_L1B.v1.json +++ b/datasets/WV01_Pan_L1B.v1.json @@ -34,6 +34,12 @@ "type": "application/json", "title": "2013 catalog" }, + { + "rel": "child", + "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV01_Pan_L1B.v1/2014", + "type": "application/json", + "title": "2014 catalog" + }, { "rel": "child", "href": "https://cmr.earthdata.nasa.gov/stac/CSDA/collections/WV01_Pan_L1B.v1/2017", diff --git a/nasa_cmr_catalog.json b/nasa_cmr_catalog.json index 529ec9148..b61e35e99 100644 --- a/nasa_cmr_catalog.json +++ b/nasa_cmr_catalog.json @@ -1,4 +1,30 @@ [ + { + "id": "0f4324af-fa0a-4aaf-9b97-89a4f3325ce1", + "title": "DESIS - Hyperspectral Images - Global", + "catalog": "FEDEO", + "state_date": "2018-08-30", + "end_date": "", + "bbox": "-180, -52, 180, 52", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2207458058-FEDEO.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2207458058-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/0f4324af-fa0a-4aaf-9b97-89a4f3325ce1", + "description": "The hyperspectral instrument DESIS (DLR Earth Sensing Imaging Spectrometer) is one of four possible payloads of MUSES (Multi-User System for Earth Sensing), which is mounted on the International Space Station (ISS). DLR developed and delivered a Visual/Near-Infrared Imaging Spectrometer to Teledyne Brown Engineering, which was responsible for integrating the instrument. Teledyne Brown designed and constructed, integrated and tested the platform before delivered to NASA. Teledyne Brown collaborates with DLR in several areas, including basic and applied research for use of data. DESIS is operated in the wavelength range from visible through the near infrared and enables precise data acquisition from Earth's surface for applications including fire-detection, change detection, maritime domain awareness, and atmospheric research. Three product types can be ordered, which are Level 1B (systematic and radiometric corrected), Level 1C (geometrically corrected) and Level 2A (atmospherically corrected). The spatial resolution is about 30m on ground. DESIS is sensitive between 400nm and 1000nm with a spectral resolution of about 3.3nm. DESIS data are delivered in tiles of about 30x30km. For more information concerning DESIS the reader is referred to https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-13614/", + "license": "not-provided" + }, + { + "id": "11c5f6df1abc41968d0b28fe36393c9d", + "title": "ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 3 aerosol products from MERIS (ALAMO algorithm), Version 2.2", + "catalog": "FEDEO", + "state_date": "2008-01-01", + "end_date": "2008-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2548143004-FEDEO.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2548143004-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/11c5f6df1abc41968d0b28fe36393c9d", + "description": "The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 3 aerosol daily and monthly gridded products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation.", + "license": "not-provided" + }, { "id": "12-hourly_interpolated_surface_position_from_buoys", "title": "12-Hourly Interpolated Surface Position from Buoys", @@ -259,6 +285,19 @@ "description": "Every day, three successive NOAA-AVHRR scenes are used to derive a synthesis product in stereographic projection known as the \"Normalized Difference Vegetation Index\" for Europe and North Africa. It is calculated by dividing the difference in technical albedos between measurements in the near infrared and visible red part of the spectrum by the sum of both measurements. This value provides important information about the \"greenness\" and density of vegetation. Weekly and monthly thematic synthesis products are also derived from this daily operational product, at each step becoming successively free of clouds. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/", "license": "not-provided" }, + { + "id": "7ae5a791-b667-4838-9733-a44e4cf2d715", + "title": "Cartosat-1 (IRS-P5) - Panchromatic Images (PAN) - Europe, Stereographic", + "catalog": "FEDEO", + "state_date": "2007-01-05", + "end_date": "", + "bbox": "-25, 30, 45, 80", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2207458042-FEDEO.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2207458042-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/7ae5a791-b667-4838-9733-a44e4cf2d715", + "description": "Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing.", + "license": "not-provided" + }, { "id": "802569b8-fb56-4d78-a2e8-3e4549ff475b", "title": "AVHRR - Sea Surface Temperature (SST) - Europe", @@ -428,6 +467,136 @@ "description": "This dataset provides estimates of soil geophysical properties derived from Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) P-band polarimetric synthetic aperture radar (PolSAR) data collected in August and October of 2014, 2015, and 2017 over 12 study sites (with some exceptions) across Northern Alaska. Soil properties reported include the active layer thickness (ALT), dielectric constant, soil moisture profile, surface roughness, and their respective uncertainty estimates at 30-m spatial resolution over the 12 flight transects. Most of the study sites are located within the continuous permafrost zone and where the aboveground vegetation consisting mainly of dwarf shrub and tussock/sedge/moss tundra has a minimal impact on P-band radar backscatter.", "license": "not-provided" }, + { + "id": "ACCLIP_AerosolCloud_AircraftRemoteSensing_WB57_Data.v1", + "title": "ACCLIP WB-57 Aerosol and Cloud Remotely Sensed Data", + "catalog": "LARC_ASDC", + "state_date": "2022-07-14", + "end_date": "2022-09-14", + "bbox": "-180, 16.6, 180, 61.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2655162569-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2655162569-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACCLIP_AerosolCloud_AircraftRemoteSensing_WB57_Data.v1", + "description": "ACCLIP_AerosolCloud_AircraftRemoteSensing_WB57_Data is the cloud and aerosol remote sensing data from the Roscoe lidar collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.", + "license": "not-provided" + }, + { + "id": "ACCLIP_Aerosol_AircraftInSitu_WB57_Data.v1", + "title": "ACCLIP WB-57 Aircraft In-Situ Aerosol Data", + "catalog": "LARC_ASDC", + "state_date": "2022-07-14", + "end_date": "2022-09-14", + "bbox": "-180, 16.6, 180, 61.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2609962127-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2609962127-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACCLIP_Aerosol_AircraftInSitu_WB57_Data.v1", + "description": "ACCLIP_Aerosol_AircraftInSitu_WB57_Data is the in-situ aerosol data collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Particle Analysis by Laser Mass Spectrometry - Next Generation (PALMS-NG), Single Particle Soot Photometer (SP2), Nucleation-Mode Aerosol Size Spectrometer (N-MASS), Printed Optical Particle Spectrometer (POPS), and the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) is featured in this collection. Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.", + "license": "not-provided" + }, + { + "id": "ACCLIP_MetNav_AircraftInSitu_WB57_Data.v1", + "title": "ACCLIP WB-57 Meteorological and Navigational Data", + "catalog": "LARC_ASDC", + "state_date": "2022-07-14", + "end_date": "2022-09-14", + "bbox": "-180, 16.6, 180, 61.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2566338281-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2566338281-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACCLIP_MetNav_AircraftInSitu_WB57_Data.v1", + "description": "ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.", + "license": "not-provided" + }, + { + "id": "ACCLIP_Model_WB57_Data.v1", + "title": "ACCLIP WB-57 Aircraft Model Data", + "catalog": "LARC_ASDC", + "state_date": "2022-07-14", + "end_date": "2022-09-14", + "bbox": "-180, 16.6, 180, 61.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2609869612-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2609869612-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACCLIP_Model_WB57_Data.v1", + "description": "ACCLIP_Model_WB57_Data contains modeled meteorological, chemical, and aerosol data along the flight tracks of the WB-57 aircraft during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.", + "license": "not-provided" + }, + { + "id": "ACCLIP_TraceGas_AircraftInSitu_WB57_Data.v1", + "title": "ACCLIP WB-57 Aircraft In-situ Trace Gas Data", + "catalog": "LARC_ASDC", + "state_date": "2022-07-14", + "end_date": "2022-09-14", + "bbox": "-180, 16.6, 180, 61.5", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2566342407-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2566342407-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACCLIP_TraceGas_AircraftInSitu_WB57_Data.v1", + "description": "ACCLIP_TraceGas_AircraftInSitu_WB57_Data is the in-situ trace gas data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Airborne Carbon Oxide Sulfide Spectrometer (ACOS), Carbon monOxide Measurement from Ames (COMA), Laser Induced Fluorescence - Nitrogen Oxide (LIF-NO), In Situ Airborne Formaldehyde (ISAF), Carbon Oxide Laser Detector 2 (COLD 2), and the NOAA UAS O3 Photometer (UASO3) is featured in this collection. Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere.", + "license": "not-provided" + }, + { + "id": "ACEPOL_AircraftRemoteSensing_AirHARP_Data.v1", + "title": "ACEPOL Airborne Hyper Angular Rainbow Polarimeter (AirHARP) Remotely Sensed Data Version 1", + "catalog": "LARC_ASDC", + "state_date": "2017-10-18", + "end_date": "2020-11-20", + "bbox": "-130, 25, -100, 45", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588261-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588261-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACEPOL_AircraftRemoteSensing_AirHARP_Data.v1", + "description": "ACEPOL Airborne Hyper Angular Rainbow Polarimeter (AirHARP) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_AirHARP_Data) are remotely sensed measurements collected by the Airborne Hyper Angular Rainbow Polarimeter (AirHARP) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA\u2019s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which is a valuable resource for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions.", + "license": "not-provided" + }, + { + "id": "ACEPOL_AircraftRemoteSensing_AirSPEX_Data.v1", + "title": "ACEPOL Airborne Spectrometer for Planetary Exploration (AirSPEX) Remotely Sensed Data Version 1", + "catalog": "LARC_ASDC", + "state_date": "2017-10-19", + "end_date": "2017-11-09", + "bbox": "-130, 25, -100, 45", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588281-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588281-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACEPOL_AircraftRemoteSensing_AirSPEX_Data.v1", + "description": "ACEPOL_AircraftRemoteSensing_AirSPEX_Data are remotely sensed measurements collected by the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA\u2019s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions.", + "license": "not-provided" + }, + { + "id": "ACEPOL_AircraftRemoteSensing_CPL_Data.v1", + "title": "ACEPOL Cloud Physics Lidar (CPL) Remotely Sensed Data Version 1", + "catalog": "LARC_ASDC", + "state_date": "2017-10-19", + "end_date": "2017-11-09", + "bbox": "-130, 25, -100, 45", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588308-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588308-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACEPOL_AircraftRemoteSensing_CPL_Data.v1", + "description": "ACEPOL Cloud Physics Lidar (CPL) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_CPL_Data) are remotely sensed measurements collected by the Cloud Physics Lidar (CPL) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA\u2019s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions.", + "license": "not-provided" + }, + { + "id": "ACEPOL_AircraftRemoteSensing_HSRL2_Data.v1", + "title": "ACEPOL High Spectral Resolution Lidar 2 (HSRL-2) Remotely Sensed Data", + "catalog": "LARC_ASDC", + "state_date": "2017-10-23", + "end_date": "2017-11-09", + "bbox": "-130, 25, -100, 45", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588330-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588330-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACEPOL_AircraftRemoteSensing_HSRL2_Data.v1", + "description": "ACEPOL High Spectral Resolution Lidar 2 (HSRL-2) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_HSRL2_Data) are remotely sensed measurements collected by the High-Spectral Resolution Lidar (HSRL-2) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA\u2019s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions.", + "license": "not-provided" + }, + { + "id": "ACEPOL_MetNav_AircraftInSitu_Data.v1", + "title": "ACEPOL ER-2 Meteorological and Navigational Data Version 1", + "catalog": "LARC_ASDC", + "state_date": "2017-10-19", + "end_date": "2017-11-09", + "bbox": "-130, 25, -100, 45", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588825-LARC_ASDC.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1758588825-LARC_ASDC.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LARC_ASDC/collections/ACEPOL_MetNav_AircraftInSitu_Data.v1", + "description": "ACEPOL_MetNav_AircraftInSitu_Data are in situ meteorological and navigational measurements collected onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA\u2019s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions.", + "license": "not-provided" + }, { "id": "ACIDD.v0", "title": "Across the Channel Investigating Diel Dynamics project", @@ -2040,6 +2209,19 @@ "description": "The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) NASA Level-2 (L2) Cloud Mask is one of two continuity products designed to sustain the long-term records of both Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS heritages. CLDMSK_L2_VIIRS_SNPP is the shortname for the SNPP VIIRS incarnation of the Cloud Mask continuity product derived from the MODIS-VIIRS cloud mask (MVCM) algorithm, which itself is based on the MODIS (MOD35) algorithm. MVCM describes a continuity algorithm that is central to both MODIS data (from Terra and Aqua missions) and VIIRS data (from SNPP and Joint Polar Satellite System missions). Please bear in mind that the term MVCM does not appear as an attribute within the product\u2019s metadata. Implemented to consistently handle MODIS and VIIRS inputs, the SNPP VIIRS collection-1 products use calibration-adjusted NASA VIIRS L1B as inputs. The nominal spatial resolution of the SNPP VIIRS L2 Cloud mask is 750 meters.", "license": "not-provided" }, + { + "id": "COARE_cm_er2.mas.v1", + "title": "MODIS Airborne Simulator (MAS) Measurements Taken Onboard the NASA ER-2 During the TOGA COARE Intensive Observing Period.", + "catalog": "LAADS", + "state_date": "1993-01-03", + "end_date": "1993-03-04", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1625703857-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1625703857-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/COARE_cm_er2.mas.v1", + "description": "The MODIS Airborne Simulator (MAS) Measurements, taken onboard the NASA ER-2 during the TOGA COARE Intensive Observing Period, are available upon request from NASA LAADS. Browse products are available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/mas/. The ER-2 navigation data are available from the same site in sub directory nasa_er2/nav. Browse imagery of the data may be viewed from the MAS Homepage at: https://mas.arc.nasa.gov/data/deploy_html/toga_home.html. MAS Level 1B data are available on 8500 density 8mm tape from TOGA COARE User Services at the Goddard DAAC. Each tape contains all the flight lines for one MAS flight (one day). The number of flight lines varies, but is generally between 10 and 20. The volume of data varies, but is generally 1 to 3 gigabytes per flight. Detailed instructions for reading MAS tapes is contained in MAS_Usr_Guide.ps. To obtain the data on tape, contact the DAAC User Services Office. For help with NASA TOGA COARE data residing at the GSFC DAAC, contact Pat Hrubiak at hrubiak@daac.gsfc.nasa.gov. BACK GROUND: TOGA COARE was a multidisciplinary, international research effort that investigated the scientific phenomena associated with the interaction between the atmosphere and the ocean in the warm pool region of the western Pacific. The field experiment phase of the program took place from 1 November 1992 through 28 February 1993 and involved the deployment of oceanographic ships and buoys, several ship and land based Doppler radars, multiple low and high level aircraft equipped with Doppler radar and other airborne sensors, as well as a variety of surface based instruments for in situ observations. The NASA component of TOGA COARE, while contributing directly to over all COARE objectives, emphasized scientific objectives associated with the Tropical Rainfall Measuring Mission (TRMM) and NASA's cloud and radiation program. AIRCRAFT INFORMATION: The NASA ER-2 is a high altitude, single pilot aircraft based at Ames Research Center, Moffett Field, CA, and deployed globally in support of a variety of atmospheric research projects. It has a maximum altitude of 70,000 feet (21 km), a range of 3000 nautical miles, a maximum flight duration of 8 hours (nominal 6.5 hours) and a top speed of 410 knots true air speed. The aircraft accommodates about 2700 pounds (1200 kg) of payload. For the TOGA COARE campaign, the ER-2 payload consisted of a variety of radiometers, a lidar, a conductivity probe and a camera. FLIGHT INFORMATION: The following table relates MAS data files to ER-2 and DC-8 flight numbers and to the UTC dates for the 13 mission flights of the NASA/TOGA COARE campaign and 2 additional flights of the ER-2 on which MAS data was acquired. The objectives (Obj) column is included for the convenience of the user; the mission objective defaulted to radiation (Rad) unless convection (Con) was forecast in the target area. Date (UTC) ER-2 Flight DC-8 Flight MAS TapeID Obj-Jan 11-12 93-053 93-01-06 93-053 RadJan 17-18 93-054 93-01-07 93-054 Con Jan 18-19 93-055 93-01-08 93-055 Con Jan 25-26 93-056 93-01-09 93-056 RadJan 28-29 93-057 93-057 Jan 31-Feb 1 93-058 93-01-10 93-058 Rad Feb 2 93-059 93-059 Feb 4 93-060 93-01-11 93-060 Con Feb 6 93-01-12 Con Feb 7 93-061 93-061 Feb 8-9 93-062 93-01-13 93-062 Con Feb 10-11 93-063 93-01-14 93-063 Con Feb 17-18 93-01-15 93-064 Con Feb 19-20 93-064 93-064 Feb 20-21 93-065 93-01-16 93-065 Con Feb 22-23 93-066 93-01-17 Con Feb 23-24 93-067 93-01-18 Rad. INSTRUMENT INFORMATION: The MODIS Airborne Simulator is a visible/infrared imaging radiometer that was mounted, for this campaign, in the right aft wing pod of the ER-2 aircraft. Through cross track scanning to the aircraft direction of flight, the MAS instrument builds a continuous sequence image of the atmosphere surface features under the aircraft. Wavelength channels of the instrument are selected for specific cloud and surface remote sensing applications. Also the channels are those which will be incorporated in measurements by the space borne MODIS instrument. The MAS instrument acquires eleven simultaneous wavelengths with 100 meters or better resolution at the surface. Principles of Operation: The MAS Spectrometer acquires high spatial resolution imagery in the wavelength range 0.55 to 14.3 microns. A total of 50 spectral bands are available in this range, and currently the digitize is configured before each mission to record in any 12 of these bands during flight. For all pre-1994 MAS missions, the 12-channel digitize was configured with four 10-bit channels and seven 8-bit channels. The MAS spectrometer is mated to a scanner sub-assembly which collects image data with an IFOV of 2.5 mrad, giving a ground resolution of 50 meters from 20,000 meters altitude,and a cross track scan width of 85.92 degrees. A 50 channel digitizer which records all 50 spectral bands at 12 bit resolution became operational in January 1995. DATA ORGANIZATION Data Format: The archive tapes are created by writing each output data file (1 straight-line flight track) to tape in fixed-length blocks of 16384 bytes, in time ascending order. One end-of-file (EOF) mark is written at the end of the data blocks for each file, and an extra EOF is written at the end of the data on the tape. The last block of each file has good data at the start of the block and unused bytes (filled with null characters) at the end. Information on the length of the file is encoded in the header when the file is created. No file name,protection, or ownership information is written onto the archive tape. All information necessary to identify the file is stored in the file itself. Documentation: In addition to this document, please obtain Volume 3, MODIS Airborne Simulator Level 1B Data Users Guide, resident in this directory in postscript file MAS_Usr_Guide.ps. Browse Products: There are 2 GIF image files per flight line, named 93ddd??v.gif and 93ddd??i.gif, where 93 is the year, ddd the Julian day of the flight, ?? the flight line number, and v or i, indicating respectively visible (VIS) or Infrared (IR) imagery. Images from each flight, accompanied by a flight statistics summary file, reside in a sub directory named with the date of the flight (02feb93) under mas/images.", + "license": "not-provided" + }, { "id": "CWIC_REG.v1.0", "title": "Radarsat-2 Scenes, Natural Resources Canada", @@ -2196,6 +2378,32 @@ "description": "The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m (ECO_L2_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECOSTRESS Level 2 cloud product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. The corresponding ECO_L1B_GEO (https://doi.org/10.5067/ECOSTRESS/ECO_L1B_GEO.002) data product is required to georeference the ECO_L2_CLOUD data product. The ECO_L2_CLOUD Version 2 data product contains two cloud mask layers: Brightness temperature LUT test and Final cloud mask. Information on how to interpret the bit fields in the cloud mask is provided in Table 7 of the User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4 and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. ", "license": "not-provided" }, + { + "id": "EN1_MDSI_MER_FRS_1P.v4", + "title": "Full Resolution Full Swath Geolocated and Calibrated TOA Radiance", + "catalog": "LAADS", + "state_date": "2002-05-17", + "end_date": "2012-04-08", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2151211533-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2151211533-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/EN1_MDSI_MER_FRS_1P.v4", + "description": "The Medium Resolution Imaging Spectrometer (MERIS) is one of 10 sensors deployed in March of 2002 on board the polar-orbiting Envisat-1 environmental research satellite by the European Space Agency (ESA). The MERIS instrument is a moderate-resolution wide field-of-view push-broom imaging spectroradiometer capable of sensing in the 390 nm to 1040 nm spectral range. Being a programmable instrument, it had the unique capability of selectively adjusting the width and location of its 15 bands through ground command. The instrument has a 68.5-degree field of view and a swath width of 1150 meters, providing a global coverage every 3 days at 300 m resolution. Communication with the Envisat-1 satellite was lost suddenly on the 8th of April, 2012, just weeks after celebrating its 10th year in orbit. All attempts to re-establish contact were unsuccessful, and the end of the mission was declared on May 9th, 2012. The 4th reprocessing cycle, in 2020, has produced both the full-resolution and reduced-resolution L1 and L2 MERIS products. EN1_MDSI_MER_FRS_1P is the short-name for the MERIS Level-1 full resolution, full swath, geolocated and calibrated top-of-atmosphere (TOA) radiance product. This product contains the TOA upwelling spectral radiance measurements. The in-band reference irradiances for the 15 MERIS bands are computed by averaging the in-band solar irradiance for each pixel. Each pixel\u2019s in-band solar irradiance is computed by integrating the reference solar spectrum with the band-pass of each pixel. The Level-1 product contains 22 data files: 15 files contain radiances for each band (one band per file) along with associated error estimates, and 7 annotation data files. It also includes a Manifest file that provides metadata information describing the product.", + "license": "not-provided" + }, + { + "id": "EN1_MDSI_MER_FRS_2P.v4", + "title": "Full Resolution Full Swath Geophysical Product for Ocean, Land and Atmosphere", + "catalog": "LAADS", + "state_date": "2003-01-01", + "end_date": "2012-04-08", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2151219110-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2151219110-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/EN1_MDSI_MER_FRS_2P.v4", + "description": "The Medium Resolution Imaging Spectrometer (MERIS) is one of 10 sensors deployed in March of 2002 on board the polar-orbiting Envisat-1 environmental research satellite by the European Space Agency (ESA). The MERIS instrument is a moderate-resolution wide field-of-view push-broom imaging spectroradiometer capable of sensing in the 390 nm to 1040 nm spectral range. Being a programmable instrument, it had the unique capability of selectively adjusting the width and location of its 15 bands through ground command. The instrument has a 68.5-degree field of view and a swath width of 1150 meters, providing a global coverage every 3 days at 300 m resolution. Communication with the Envisat-1 satellite was lost suddenly on the 8th of April, 2012, just weeks after celebrating its 10th year in orbit. All attempts to re-establish contact were unsuccessful, and the end of the mission was declared on May 9th, 2012. The 4th reprocessing cycle, in 2020, has produced both the full-resolution and reduced-resolution L1 and L2 MERIS products. EN1_MDSI_MER_FRS_2P is the short-name for the MERIS Level-2 full resolution, geophysical product for ocean, land, and atmosphere. This Level-2 product comes in a netCDF4 package that contains both instrument and science measurements, and a Manifest file that provides metadata information describing the product. Each Level-2 product contains 64 measurement files that break down thus: 13 files containing water-leaving reflectance, 13 files containing land surface reflectance and 13 files containing the TOA reflectance (for all bands except those dedicated to measuring atmospheric gas - M11 and M15), and several files containing additional measurements on ocean, land, and atmosphere parameters.", + "license": "not-provided" + }, { "id": "EO:EUM:CM:METOP:ASCSZFR02.v2014-10-07", "title": "ASCAT L1 SZF Climate Data Record Release 2 - Metop", @@ -2976,6 +3184,32 @@ "description": "The Level 2A aerosol/cloud optical products of the Aeolus mission include geo-located consolidated backscatter and extinction profiles, backscatter-to-extinction coefficient, LIDAR ratio, scene classification, heterogeneity index and attenuated backscatter signals. Resolution - Horizontal resolution of L2A optical properties at observation scale (~87 km); Exceptions are group properties (horizontal accumulation of measurements from ~3 km to ~87 km) and attenuated backscatters (~3 km); Note: the resolution of \"groups\" in the L2A can only go down to 5 measurements at the moment, i.e. ~15 km horizontal resolution. This could be configured to go to 1 measurement - Vertical resolution 250-2000 m (Defined by Range Bin Settings https://earth.esa.int/eogateway/instruments/aladin/overview-of-the-main-wind-rbs-changes).", "license": "not-provided" }, + { + "id": "MCD06COSP_D3_MODIS.v6.1", + "title": "MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid", + "catalog": "LAADS", + "state_date": "2002-07-04", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1887589686-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1887589686-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MCD06COSP_D3_MODIS.v6.1", + "description": "The combined MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product\u2019s short-name. The \u201cCOSP\u201d acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. This product is an aggregation of combined MODIS Level-2 inputs from both the Terra and Aqua incarnations (MOD35/MOD06 and MYD35/MYD06, respectively), and employs an aggregation methodology consistent with the MOD08 and MYD08 products. Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters).", + "license": "not-provided" + }, + { + "id": "MCD06COSP_M3_MODIS.v6.1", + "title": "MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid", + "catalog": "LAADS", + "state_date": "2002-07-01", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1888024429-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1888024429-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MCD06COSP_M3_MODIS.v6.1", + "description": "The combined MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product\u2019s short-name. The \u201cCOSP\u201d acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. The L3 monthly product is derived by aggregating the daily-produced Aqua+Terra/MODIS D3 Cloud Properties product (MCD06COSP_D3_MODIS). Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters).", + "license": "not-provided" + }, { "id": "MCD14DL_C5_NRT.v005", "title": "MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1km FIRMS V005 NRT", @@ -3119,6 +3353,19 @@ "description": "The 250 meter MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 2 discrete bands located in the 0.62 to 0.88 micron region of the electromagnetic spectrum. These data are generated from the MODIS Level 1A scans of raw radiance and in the process converted to geophysical units of W / (m^2 um sr). In addition, the Earth Bi-directional Reflectance Distribution Function (BRDF) may be determined for these solar reflective bands through knowledge of the solar irradiance (e.g., determined from MODIS solar diffuser data, and from the target illumination geometry). Additional data are provided including quality flags, error estimates and calibration data. Channel locations for the MODIS 250 meter data are as follows: Band Center Wavelength (um) Primary Use ---- ---------------------- ----------- 1 0.620 - 0.670 Land/Cloud Boundaries 2 0.841 - 0.876 Land/Cloud Boundaries Separate L1B products are available for the five 500 m resolution channels (MYD02HKM) and the twenty-nine 1 km resolution channels (MYD021KM). For the 500 m product, there are actually seven channels available since the data from the two 250 m channels have been aggregated to 500 m resolution. Similarly, for the 1 km product, all 36 MODIS channels are available since the data from the two 250 m and five 500 m channels have been aggregated into equivalent 1 km pixel values. Spatial resolution for pixels at nadir is 250 m, degrading to 1.2 km in the along-scan direction and 0.5 km in the along-track direction for pixels located at the scan extremes. A 55 degree scanning pattern at the EOS orbit of 705 km results in a 2330 km orbital swath width and provides global coverage every one to two days. A single MODIS Level 1B 250 m granule will contain a scene built from 203 scans sampled 5416 times in the cross-track direction, corresponding to approximately 5 minutes worth of data; thus 288 granules will be produced per day. Since an individual MODIS scan will contain 40 along-track spatial elements for the 250 m channels, the scene will be composed of (5416 x 8120) pixels, resulting in a spatial coverage of (2330 km x 2040 km). Due to the MODIS scan geometry, there will be increasing scan overlap beyond about 17 degrees scan angle. To summarize, the MODIS L1B 250 m data product consists of: 1. Calibrated radiances and uncertainties for (2) 250 m reflected solar bands 2. Subsampled geolocation at every 4th 250 m pixel across and along track, i.e., a geolocation point every kilometer 3. Satellite and solar angles subsampled at the above frequency 4. Calibration data for all channels (scale and offset) 5. Comprehensive set of file-level metadata summarizing the spatial, temporal and parameter attributes of the data, as well as auxiliary information pertaining to instrument status and data quality characterization The MODIS L1B 250 m data are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) which is an extension of HDF as developed by the National Center for Supercomputer Applications (NCSA) at the University of Illinois. A typical file size will be approximately 170 MB. Environmental information derived from MODIS L1B measurements will offer a comprehensive and unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world. The Shortname for this product is MYD02QKM", "license": "not-provided" }, + { + "id": "MYD04_3K.v6.1", + "title": "MODIS/Aqua Aerosol 5-Min L2 Swath 3km", + "catalog": "LAADS", + "state_date": "2002-07-04", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1443528505-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1443528505-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MYD04_3K.v6.1", + "description": "The new Collection 6.1 (C61) MODIS/Aqua Aerosol 5 Min L2 Swath 3km (MYD04_3K) product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5, and earlier collections, there was only one aerosol product (MYD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MYD04_3k) intended for the air quality community. The MYD04_3K product is based on the same algorithm and Look up Tables as the standard Dark Target aerosol product. Because of finer resolution, subtle differences are made in selecting pixels for retrieval and in determining QA. The only differences between the existing 10km algorithm and the new 3km algorithm are: 1) the size of the pixel-arrays defining each retrieval box ( 6x6 retrieval boxes of 36 pixels at 0.5km resolution for 3km algorithm as oppose to 20x20 retrieval boxes of 400 pixels at 0.5km resolution for 10km product); 2) the minimum percentage of \"good\" pixels required for a retrieval (a minimum of 5 pixels over ocean and 6 pixels over land instead of a minimum of 10 pixels over ocean or 12 pixels over land for 10km product retrieval); 3) the 10km algorithm attempts a \"poor quality\" retrieval while 3km algorithm does not. Everything else is the same between two products. For more information on C6.1 changes and updates, visit the MODIS Atmosphere website at: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61", + "license": "not-provided" + }, { "id": "MYD04_3K.v6.1NRT", "title": "MODIS/Aqua Aerosol 5-Min L2 Swath 3km - NRT", @@ -3132,6 +3379,19 @@ "description": "The new Collection 6.1 (C61) MYD04_3K product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5, and earlier collections, there was only one aerosol product (MOD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MOD04_3k) intended for the air quality community. The MOD04_3K product is based on the same algorithm and Look up Tables as the standard Dark Target aerosol product. Because of finer resolution, subtle differences are made in selecting pixels for retrieval and in determining QA. The only differences between the existing 10km algorithm and the 3km algorithm are: 1) the size of the pixel-arrays defining each retrieval box (6x6 retrieval boxes of 36 pixels at 0.5km resolution for 3km algorithm as oppose to 20x20 retrieval boxes of 400 pixels at 0.5km resolution for 10km product); 2) the minimum percentage of good pixels required for a retrieval (a minimum of 5 pixels over ocean and 6 pixels over land instead of a minimum of 10 pixels over ocean or 12 pixels over land for 10km product retrieval); 3) the 10km algorithm attempts a poor quality retrieval while 3km algorithm does not. Everything else is same in two products. For more information on C6.1 changes and updates, visit the MODIS Atmosphere website at: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61", "license": "not-provided" }, + { + "id": "MYD04_L2.v6.1", + "title": "MODIS/Aqua Aerosol 5-Min L2 Swath 10km", + "catalog": "LAADS", + "state_date": "2002-07-04", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1443533683-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1443533683-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MYD04_L2.v6.1", + "description": "The MODIS/Aqua Aerosol 5-Min L2 Swath 10km product (MYD04_L2) provides full global coverage of aerosol properties from the Dark Target (DT) and Deep Blue (DB) algorithms. The DT algorithm is applied over ocean and dark land (e.g., vegetation), while the DB algorithm now covers the entire land areas including both dark and bright surfaces. Both results are provided on a 10x10 pixel scale (10 km at nadir). Each MYD04_L2 product file covers a five-minute time interval. The output grid is 135 pixels in width by 203 pixels in length. Every tenth file has an output grid size of 135 by 204 pixels. MYD04_L2 product files are stored in Hierarchical Data Format (HDF-EOS). The new Collection 6.1 (C61) MYD04_L2 product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5 and in earlier collections, there was only one aerosol product (MYD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MYD04_3k) intended for the air quality community. For more information visit the MODIS Atmosphere website at: https://modis-atmos.gsfc.nasa.gov/products/aerosol And, for C6.1 changes and updates, visit: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61", + "license": "not-provided" + }, { "id": "MYD04_L2.v6.1NRT", "title": "MODIS/Aqua Aerosol 5-Min L2 Swath 10km - NRT", @@ -3145,6 +3405,32 @@ "description": "The new Collection 6.1 (C61) MYD04_L2 product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5, and earlier collections, there was only one aerosol product (MYD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MYD04_3k) intended for the air quality community. For more information visit the MODIS Atmosphere website at: https://modis-atmos.gsfc.nasa.gov/products/aerosol And, for C6.1 changes and updates, visit: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61", "license": "not-provided" }, + { + "id": "MYD08_D3.v6.1", + "title": "MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG", + "catalog": "LAADS", + "state_date": "2002-07-04", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1443729298-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1443729298-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MYD08_D3.v6.1", + "description": "The MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG product (MYD08_D3) contains daily 1 x 1 degree grid average values of atmospheric parameters related to atmospheric aerosol particle properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties, and atmospheric stability indices. This product also provides standard deviations, quality assurance weighted means and other statistically derived quantities for each parameter. The MYD08_D3 contains roughly 600 statistical datasets that are derived from approximately 80 scientific parameters from four Level-2 MODIS Atmosphere Products: MOD04_L2, MOD05_L2, MOD06_L2, and MOD07_L2. Statistics are computed over a 1 degree equal-angle lat-lon grid that spans a 24-hour (0000 to 2400 Greenwich Mean Time) interval. Since the grid cells are 1 degree by 1 degree, the output grid is always 360 pixels in width and 180 pixels in length. MYD08_D3 product files are stored in Hierarchical Data Format (HDF-EOS). Each gridded global parameter is stored as Scientific Data Sets (SDS) within the file. The MODIS Daily Product will be used in the simultaneously study of clouds, water vapor, aerosol , trace gases, land surface and oceanic properties, as well as the interaction between them and their effect on the Earth's energy budget and climate. This product will also be used to investigate seasonal and inter-annual changes in cirrus (semi-transparent) global cloud cover and cloud phase with multispectral observations at high spatial resolution. For more information about the MYD08_D3 product, please visit the MODIS-Atmosphere site at: https://modis-atmos.gsfc.nasa.gov/products/daily", + "license": "not-provided" + }, + { + "id": "MYD08_E3.v6.1", + "title": "MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG", + "catalog": "LAADS", + "state_date": "2002-07-04", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1443743314-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1443743314-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MYD08_E3.v6.1", + "description": "The MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG product (MYD08_E3) contains 8-Day 1 degree x 1 degree grid average values of atmospheric parameters related to atmospheric aerosol particle properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties, and atmospheric stability indices. This product also provides standard deviations, quality assurance weighted means and other statistically derived quantities for each parameter. The MYD08_E3 contains nearly 1000 statistical datasets (SDS's) that are derived from the Level-3 MODIS Atmosphere Daily Global Product. Statistics are computed over a 1 degree equal-angle lat-lon grid that spans an 8-Day interval. Since the grid cells are 1 degree by 1 degree, the output grid is always 360 pixels in width and 180 pixels in length. MYD08_E3 product files are stored in Hierarchical Data Format (HDF-EOS). Each gridded global parameter is stored as Scientific Data Sets (SDS) within the file. The MODIS 8-Day Product will be used in the simultaneously study of clouds, water vapor, aerosol , trace gases, land surface and oceanic properties, as well as the interaction between them and their effect on the Earth's energy budget and climate. This product will also be used to investigate seasonal and inter-annual changes in cirrus (semi-transparent) global cloud cover and cloud phase with multispectral observations at high spatial resolution. For more information about the MYD08_E3 product, please visit the MODIS-Atmosphere site at: https://modis-atmos.gsfc.nasa.gov/products/eight-day", + "license": "not-provided" + }, { "id": "MYD09.v6.1NRT", "title": "MODIS/Aqua Atmospherically Corrected Surface Reflectance 5-Min L2 Swath 250m, 500m, 1km NRT", @@ -3171,6 +3457,19 @@ "description": "The MODIS/Aqua Aerosol Optical Thickness Daily L3 Global 0.05-Deg CMA Near Real Time (NRT), short name MYD09CMA, is a daily level 3 global product. It is in linear latitude and longitude (Plate Carre) projection with a 0.05Deg spatial resolution. This product is derived from MYD09IDN, MYD09IDT and MYD09IDS for each orbit by compositing the data on the basis of minimum band 3 (459 - 479 nm band) values (after excluding pixels flagged for clouds and high solar zenith angles).", "license": "not-provided" }, + { + "id": "MYDCSR_B.v6.1", + "title": "MODIS/Aqua 8-Day Clear Sky Radiance Bias Daily L3 Global 1Deg Zonal Bands", + "catalog": "LAADS", + "state_date": "2002-07-04", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C1444160046-LAADS.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C1444160046-LAADS.html", + "href": "https://cmr.earthdata.nasa.gov/stac/LAADS/collections/MYDCSR_B.v6.1", + "description": "The MODIS/Aqua 8-Day Clear Sky Radiance Bias Daily L3 Global 1Deg Zonal Bands (MYDCSR_B) product consists of 1-degree zonal mean clear-sky biases (observed minus calculated radiance differences) and associated statistics for bands 31 and 33-36 for each day from the previous eight-day period. Zonal means (5-zone moving averages) are created from the eight-day, 25-km radiance differences for daytime land, nighttime land, and ocean data separately. Day and night land data are combined south of -60 degrees latitude due to poor clear-sky sampling and the difficulty of discriminating between clear and cloudy conditions in this region. The zonal mean biases are utilized to correct clear-sky radiance calculations in the cloud top pressure (CO2 slicing) algorithm. The files are in Hierarchical Data Format (HDF).", + "license": "not-provided" + }, { "id": "MYDGB0.v6.1NRT", "title": "MODIS/Aqua 5-minute GBAD data in L0 format - NRT", @@ -3184,6 +3483,19 @@ "description": "MODIS/Aqua Near Real Time (NRT) 5-minute GBAD data in L0 format.", "license": "not-provided" }, + { + "id": "Marine Debris Dataset for Object Detection in Planetscope Imagery.v1", + "title": "Marine Debris Dataset for Object Detection in Planetscope Imagery", + "catalog": "MLHUB", + "state_date": "2016-09-28", + "end_date": "2019-04-18", + "bbox": "-88.2971191, 5.4683637, 34.5300293, 39.1087514", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2196591903-MLHUB.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2196591903-MLHUB.html", + "href": "https://cmr.earthdata.nasa.gov/stac/MLHUB/collections/Marine Debris Dataset for Object Detection in Planetscope Imagery.v1", + "description": "Floating marine debris is a global pollution problem which leads to the loss of marine and terrestrial biodiversity. Large swaths of marine debris are also navigational hazards to ocean vessels. The use of Earth observation data and artificial intelligence techniques can revolutionize the detection of floating marine debris on satellite imagery and pave the way to a global monitoring system for controlling and preventing the accumulation of marine debris in oceans. This dataset consists of images of marine debris which are 256 by 256 pixels in size and labels which are bounding boxes with geographical coordinates. The images were obtained from PlanetScope optical imagery which has a spatial resolution of approximately 3 meters. In this dataset, marine debris consists of floating objects on the ocean surface which can belong to one or more classes namely plastics, algae, sargassum, wood, and other artificial items. Several studies were used for data collection and validation. While a small percentage of the dataset represents the coastlines of Ghana and Greece, most of the observations surround the Bay Islands in Honduras. The marine debris detection models created and the relevant code for using this dataset can be found here. https://github.com/NASA-IMPACT/marine_debris_ML", + "license": "not-provided" + }, { "id": "NEX-DCP30.v1", "title": "Downscaled 30 Arc-Second CMIP5 Climate Projections for Studies of Climate Change Impacts in the United States", @@ -3691,6 +4003,19 @@ "description": "Field season report of these programs: 1988/89 Summer Season surveying and mapping North Prince Charles Mountains; ...mapping program Northern PCM's - Mawson Doppler Translocation Support; ....mapping program Voyage 6 stopover Davis. Includes maps and mapsheet layouts. See the report for full details on the program. Contents are: Introduction Preparation Voytage to Antarctica 1988/89 Summer Season Surveying and Mapping Program, Northern Prince Charles Mountains 1988/89 Summer Season Surveying and Mapping Program, Voyage 6 Stopover, Davis Performance of Equipment Station Marking Field Camping Climatic Conditions Conclusion Appendices ", "license": "not-provided" }, + { + "id": "Tropical Cyclone Wind Estimation Model.v1", + "title": "Tropical Cyclone Wind Estimation Model", + "catalog": "MLHUB", + "state_date": "2000-01-01", + "end_date": "", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2260133500-MLHUB.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2260133500-MLHUB.html", + "href": "https://cmr.earthdata.nasa.gov/stac/MLHUB/collections/Tropical Cyclone Wind Estimation Model.v1", + "description": "This is a PyTorch model trained on the Tropical Cyclone Wind Estimation Competition dataset with v0.1 of the TorchGeo package. The model is a resnet18 model pretrained on ImageNet then trained with a MSE loss. The data were randomly split 80/20 by storm ID and an early stop was used based on performance.", + "license": "not-provided" + }, { "id": "Turbid9.v0", "title": "2004 Measurements made in the Chesapeake Bay", @@ -3951,6 +4276,19 @@ "description": "This dataset provides daily historical Water Balance Model outputs from a Thornthwaite-type, single bucket model. Climate inputs to the model are from GridMet daily temperature and precipitation for the Continental United States (CONUS). The Water Balance Model output variables include the following: Potential Evapotranspiration (PET, mm), Actual Evapotranspiration (AET, mm), Moisture Deficit (Deficit, mm), Soil Water (soilwater, mm), Runoff (mm), Rain (mm), and Accumulated Snow Water Equivalent (accumswe, mm). The dataset covers the period from January 1 to December 31 for years 1980 through 2021 for the CONUS. Water Balance Model variables are provided as individual files, by variable and year, at a 1 km x 1 km spatial resolution and a daily temporal resolution. Data are in a North America Lambert Conformal Conic projection and are distributed in a standardized Climate and Forecast (CF)-compliant NetCDF file format.", "license": "not-provided" }, + { + "id": "a6efcb0868664248b9cb212aba44313d", + "title": "ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 2 aerosol products from MERIS (ALAMO algorithm), Version 2.2", + "catalog": "FEDEO", + "state_date": "2008-01-01", + "end_date": "2008-12-31", + "bbox": "-180, -90, 180, 90", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2548142742-FEDEO.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2548142742-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/a6efcb0868664248b9cb212aba44313d", + "description": "The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation.", + "license": "not-provided" + }, { "id": "aamhcpex.v1", "title": "AAMH CPEX V1", @@ -4146,6 +4484,19 @@ "description": "2013 Chesapeake Bay measurements.", "license": "not-provided" }, + { + "id": "ef6a9266-a210-4431-a4af-06cec4274726", + "title": "Cartosat-1 (IRS-P5) - Panchromatic Images (PAN) - Europe, Monographic", + "catalog": "FEDEO", + "state_date": "2015-02-10", + "end_date": "", + "bbox": "-25, 30, 45, 80", + "url": "https://cmr.earthdata.nasa.gov/search/concepts/C2207457985-FEDEO.json", + "metadata": "https://cmr.earthdata.nasa.gov/search/concepts/C2207457985-FEDEO.html", + "href": "https://cmr.earthdata.nasa.gov/stac/FEDEO/collections/ef6a9266-a210-4431-a4af-06cec4274726", + "description": "Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. However, this collection contains the monoscopic data.", + "license": "not-provided" + }, { "id": "envidat-lwf-34.v2019-03-06", "title": "10-HS Pfynwald", diff --git a/nasa_cmr_catalog.tsv b/nasa_cmr_catalog.tsv index a00690935..933d6689f 100644 --- a/nasa_cmr_catalog.tsv +++ b/nasa_cmr_catalog.tsv @@ -1,4 +1,6 @@ id title catalog state_date end_date bbox url description license +0f4324af-fa0a-4aaf-9b97-89a4f3325ce1 DESIS - Hyperspectral Images - Global FEDEO 2018-08-30 -180, -52, 180, 52 https://cmr.earthdata.nasa.gov/search/concepts/C2207458058-FEDEO.json The hyperspectral instrument DESIS (DLR Earth Sensing Imaging Spectrometer) is one of four possible payloads of MUSES (Multi-User System for Earth Sensing), which is mounted on the International Space Station (ISS). DLR developed and delivered a Visual/Near-Infrared Imaging Spectrometer to Teledyne Brown Engineering, which was responsible for integrating the instrument. Teledyne Brown designed and constructed, integrated and tested the platform before delivered to NASA. Teledyne Brown collaborates with DLR in several areas, including basic and applied research for use of data. DESIS is operated in the wavelength range from visible through the near infrared and enables precise data acquisition from Earth's surface for applications including fire-detection, change detection, maritime domain awareness, and atmospheric research. Three product types can be ordered, which are Level 1B (systematic and radiometric corrected), Level 1C (geometrically corrected) and Level 2A (atmospherically corrected). The spatial resolution is about 30m on ground. DESIS is sensitive between 400nm and 1000nm with a spectral resolution of about 3.3nm. DESIS data are delivered in tiles of about 30x30km. For more information concerning DESIS the reader is referred to https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-13614/ not-provided +11c5f6df1abc41968d0b28fe36393c9d ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 3 aerosol products from MERIS (ALAMO algorithm), Version 2.2 FEDEO 2008-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548143004-FEDEO.json The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 3 aerosol daily and monthly gridded products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation. not-provided 12-hourly_interpolated_surface_position_from_buoys 12-Hourly Interpolated Surface Position from Buoys SCIOPS 1979-01-01 2009-12-01 -180, 60, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1214600619-SCIOPS.json This data set contains Arctic Ocean daily buoy positions interpolated to hours 0Z and 12Z. not-provided 12-hourly_interpolated_surface_velocity_from_buoys 12-Hourly Interpolated Surface Velocity from Buoys SCIOPS 1979-01-01 2009-12-02 -180, 74, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1214600621-SCIOPS.json This data set contains 12-hourly interpolated surface velocity data from buoys. Point grid: Latitude 74N to 90N - 4 degree increment Longitude 0E to 320E - 20 and 40 degree increment. not-provided 12_hourly_interpolated_surface_air_pressure_from_buoys 12 Hourly Interpolated Surface Air Pressure from Buoys SCIOPS 1979-01-01 2007-11-30 -180, 70, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1214600618-SCIOPS.json Optimally interpolated atmospheric surface pressure over the Arctic Ocean Basin. Temporal format - twice daily (0Z and 12Z) Spatial format - 2 degree latitude x 10 degree longitude - latitude: 70 N - 90 N - longitude: 0 E - 350 E not-provided @@ -19,6 +21,7 @@ id title catalog state_date end_date bbox url description license 3DIMG_L2B_SST INSAT-3D Imager Level-2B Sea Surface Temperature ISRO 2013-10-01 0.843296, -81.04153, 163.15671, 81.04153 https://cmr.earthdata.nasa.gov/search/concepts/C1214622565-ISRO.json INSAT-3D Imager Level-2B Sea Surface Temperature in HDF-5 Format not-provided 3DIMG_L2B_UTH INSAT-3D Imager Level-2B Upper Tropospheric Humidity ISRO 2013-10-01 0.843296, -81.04153, 163.15671, 81.04153 https://cmr.earthdata.nasa.gov/search/concepts/C1214622539-ISRO.json INSAT-3D Imager Level-2B Upper Tropospheric Humidity (UTH) in HDF-5 Format not-provided 3fe263d2-99ed-4751-b937-d26a31ab0606 AVHRR - Vegetation Index (NDVI) - Europe FEDEO 1994-07-01 -24, 28, 57, 78 https://cmr.earthdata.nasa.gov/search/concepts/C2207458021-FEDEO.json "Every day, three successive NOAA-AVHRR scenes are used to derive a synthesis product in stereographic projection known as the ""Normalized Difference Vegetation Index"" for Europe and North Africa. It is calculated by dividing the difference in technical albedos between measurements in the near infrared and visible red part of the spectrum by the sum of both measurements. This value provides important information about the ""greenness"" and density of vegetation. Weekly and monthly thematic synthesis products are also derived from this daily operational product, at each step becoming successively free of clouds. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/" not-provided +7ae5a791-b667-4838-9733-a44e4cf2d715 Cartosat-1 (IRS-P5) - Panchromatic Images (PAN) - Europe, Stereographic FEDEO 2007-01-05 -25, 30, 45, 80 https://cmr.earthdata.nasa.gov/search/concepts/C2207458042-FEDEO.json Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. not-provided 802569b8-fb56-4d78-a2e8-3e4549ff475b AVHRR - Sea Surface Temperature (SST) - Europe FEDEO 1994-08-01 -35, 47.5, 51, 73 https://cmr.earthdata.nasa.gov/search/concepts/C2207458053-FEDEO.json The AVHRR Mulitchannel Sea Surface Temperature Map (MCSST) was the first result of DLR's AVHRR pathfinder activities. The goal of the product is to provide the user with actual Sea Surface Temperature (SST) maps in a defined format easy to access with the highest possible reliability on the thematic quality. After a phase of definition, the operational production chain was launched in March 1993 covering the entire Mediterranean Sea and the Black Sea. Since then, daily, weekly, and monthly data sets have been available until September 13, 1994, when the AVHRR on board the NOAA-11 spacecraft failed. The production of daily, weekly and monthly SST maps was resumed in February, 1995, based on NOAA-14 AVHRR data. The NOAA-14 AVHRR sensor became some technical difficulties, so the generation was stopped on October 3, 2001. Since March 2002, NOAA-16 AVHRR SST maps are available again. With the beginning of January 2004, the data of AVHRR on board of NOAA-16 exhibited some anormal features showing strips in the scenes. Facing the “bar coded” images of NOAA16-AVHRR which occurred first in September 2003, continued in January 2004 for the second time and appeared in April 2004 again, DFD has decided to stop the reception of NOAA16 data on April 6th, 2004, and to start the reception of NOAA-17 data on this day. On April 7th, 2004, the production of all former NOAA16-AVHRR products as e.g. the SST composites was successully established. NOAA-17 is an AM sensor which passes central Europe about 2 hours earlier than NOAA-16 (about 10:00 UTC instead of 12:00 UTC for NOAA-16). In spring 2007, the communication system of NOAA-17 has degraded or is operating with limitations. Therefore, DFD has decided to shift the production of higher level products (NDVI, LST and SST) from NOAA-17 to NOAA-18 in April 2007. In order to test the performance of our processing chains, we processed simultaneously all NOAA-17 and NOAA-18 data from January 1st, 2007 till March 29th, 2007. All products are be available via EOWEB. Please remember that NOAA-18 is a PM sensor which passes central Europe about 1.5 hours later than NOAA-17 (about 11:30 UTC instead of 10:00 UTC for NOAA17). The SST product is intended for climate modelers, oceanographers, and all geo science-related disciplines dealing with ocean surface parameters. In addition, SST maps covering the North Atlantic, the Baltic Sea, the North Sea and the Western Atlantic equivalent to the Mediterranean MCSST maps are available since August 1994. The most important aspects of the MCSST maps are a) correct image registration and b) reasonable cloud screening to ensure that only cloud free pixels are taken for the later processing and compositing c) for deriving MCSST, only channel 4 and 5 are used.. The SST product consists of one 8 bit channel. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/ not-provided 936b319d-5253-425d-bd29-4b6ebce067ff AVHRR - Land Surface Temperature (LST) - Europe, Nighttime FEDEO 1998-02-23 -24, 28, 57, 78 https://cmr.earthdata.nasa.gov/search/concepts/C2207458046-FEDEO.json "The ""Land Surface Temperature derived from NOAA-AVHRR data (LST_AVHRR)"" is a fixed grid map (in stereographic projection) with a spatial resolution of 1.1 km. The total size covering Europe is 4100 samples by 4300 lines. Within 24 hours of acquiring data from the satellite, day-time and night-time LSTs are calculated. In general, the products utilise data from all six of the passes that the satellite makes over Europe in each 24 hour period. For the daily day-time LST maps, the compositing criterion for the three day-time passes is maximum NDVI value and for daily night-time LST maps, the criterion is the maximum night-time LST value of the three night-time passes. Weekly and monthly day-time or night-time LST composite products are also produced by averaging daily day-time or daily night-time LST values, respectively. The range of LST values is scaled between –39.5°C and +87°C with a radiometric resolution of 0.5°C. A value of –40°C is used for water. Clouds are masked out as bad values. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/" not-provided AAOT.v0 Acqua Alta Oceanographic Tower (AAOT) OB_DAAC 1999-08-03 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360084-OB_DAAC.json Measurements made by the Acqua Alta Oceanographic Tower (AAOT), an Italian installation off the coast of Venice in the Adriatic Sea from 1999 to 2002. not-provided @@ -32,6 +35,16 @@ ABoVE_ASCENDS_Merge_2114.v1 ABoVE/ASCENDS: Merged Atmospheric CO2, CH4, and Mete ABoVE_ASCENDS_XCO2_2050.v1 ABoVE/ASCENDS: Active Sensing of CO2, CH4, and Water Vapor, Alaska and Canada, 2017 ORNL_CLOUD 2017-07-20 2017-08-08 -165.68, 34.59, -98.1, 71.28 https://cmr.earthdata.nasa.gov/search/concepts/C2264340976-ORNL_CLOUD.json This dataset provides in situ airborne measurements of atmospheric carbon dioxide (CO2), methane (CH4), and water vapor concentrations, plus air temperature, pressure, relative humidity, and wind speed values over Alaska and the Yukon and Northwest Territories of Canada during 2017-07-20 to 2017-08-08. Measurements were taken onboard a DC-8 aircraft during this Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) airborne deployment over portions of the Arctic-Boreal Vulnerability Experiment (ABoVE) domain. CO2 and CH4 were measured with NASA's Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument. Water vapor and relative humidity were measured with Diode Laser Hydrometer. Measurements of column-averaged dry-air mixing ratio CO2 measurements (XCO2) were taken with the CO2 Sounder Lidar instrument. The airborne CO2 Sounder is a pulsed, multi-wavelength Integrated Path Differential Absorption lidar. It estimates XCO2 in the nadir path from the aircraft to the scattering surface by measuring the shape of the 1572.33 nm CO2 absorption line. The data were collected in order to capture the spatial and temporal dynamics of the northern high latitude carbon cycle as part of ABoVE and are provided in ICARTT file format. not-provided ABoVE_Concise_Experiment_Plan_1617.v1.1 A Concise Experiment Plan for the Arctic-Boreal Vulnerability Experiment ORNL_CLOUD 2014-01-01 2021-12-31 -176.12, 39.42, -66.92, 81.61 https://cmr.earthdata.nasa.gov/search/concepts/C2162145735-ORNL_CLOUD.json This document presents the Concise Experiment Plan for NASA's Arctic-Boreal Vulnerability Experiment (ABoVE) to serve as a guide to the Program as it identifies the research to be conducted under this study. Research for ABoVE will link field-based, process-level studies with geospatial data products derived from airborne and satellite remote sensing, providing a foundation for improving the analysis and modeling capabilities needed to understand and predict ecosystem responses and societal implications. The ABoVE Concise Experiment Plan (ACEP) outlines the conceptual basis for the Field Campaign and expresses the compelling rationale explaining the scientific and societal importance of the study. It presents both the science questions driving ABoVE research as well as the top-level requirements for a study design to address them. not-provided ABoVE_PBand_SAR_1657.v1 ABoVE: Active Layer and Soil Moisture Properties from AirMOSS P-band SAR in Alaska ORNL_CLOUD 2014-08-16 2017-10-10 -167.94, 64.71, -150.25, 70.88 https://cmr.earthdata.nasa.gov/search/concepts/C2170972048-ORNL_CLOUD.json This dataset provides estimates of soil geophysical properties derived from Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) P-band polarimetric synthetic aperture radar (PolSAR) data collected in August and October of 2014, 2015, and 2017 over 12 study sites (with some exceptions) across Northern Alaska. Soil properties reported include the active layer thickness (ALT), dielectric constant, soil moisture profile, surface roughness, and their respective uncertainty estimates at 30-m spatial resolution over the 12 flight transects. Most of the study sites are located within the continuous permafrost zone and where the aboveground vegetation consisting mainly of dwarf shrub and tussock/sedge/moss tundra has a minimal impact on P-band radar backscatter. not-provided +ACCLIP_AerosolCloud_AircraftRemoteSensing_WB57_Data.v1 ACCLIP WB-57 Aerosol and Cloud Remotely Sensed Data LARC_ASDC 2022-07-14 2022-09-14 -180, 16.6, 180, 61.5 https://cmr.earthdata.nasa.gov/search/concepts/C2655162569-LARC_ASDC.json ACCLIP_AerosolCloud_AircraftRemoteSensing_WB57_Data is the cloud and aerosol remote sensing data from the Roscoe lidar collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere. not-provided +ACCLIP_Aerosol_AircraftInSitu_WB57_Data.v1 ACCLIP WB-57 Aircraft In-Situ Aerosol Data LARC_ASDC 2022-07-14 2022-09-14 -180, 16.6, 180, 61.5 https://cmr.earthdata.nasa.gov/search/concepts/C2609962127-LARC_ASDC.json ACCLIP_Aerosol_AircraftInSitu_WB57_Data is the in-situ aerosol data collected during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Particle Analysis by Laser Mass Spectrometry - Next Generation (PALMS-NG), Single Particle Soot Photometer (SP2), Nucleation-Mode Aerosol Size Spectrometer (N-MASS), Printed Optical Particle Spectrometer (POPS), and the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) is featured in this collection. Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere. not-provided +ACCLIP_MetNav_AircraftInSitu_WB57_Data.v1 ACCLIP WB-57 Meteorological and Navigational Data LARC_ASDC 2022-07-14 2022-09-14 -180, 16.6, 180, 61.5 https://cmr.earthdata.nasa.gov/search/concepts/C2566338281-LARC_ASDC.json ACCLIP_MetNav_AircraftInSitu_WB57_Data is the in-situ meteorology and navigational data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Meteorological Measurement System (MMS) and Diode Laser Hygrometer (DLH) is featured in this collection. Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere. not-provided +ACCLIP_Model_WB57_Data.v1 ACCLIP WB-57 Aircraft Model Data LARC_ASDC 2022-07-14 2022-09-14 -180, 16.6, 180, 61.5 https://cmr.earthdata.nasa.gov/search/concepts/C2609869612-LARC_ASDC.json ACCLIP_Model_WB57_Data contains modeled meteorological, chemical, and aerosol data along the flight tracks of the WB-57 aircraft during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere. not-provided +ACCLIP_TraceGas_AircraftInSitu_WB57_Data.v1 ACCLIP WB-57 Aircraft In-situ Trace Gas Data LARC_ASDC 2022-07-14 2022-09-14 -180, 16.6, 180, 61.5 https://cmr.earthdata.nasa.gov/search/concepts/C2566342407-LARC_ASDC.json ACCLIP_TraceGas_AircraftInSitu_WB57_Data is the in-situ trace gas data collection during the Asian Summer Monsoon Chemical & Climate Impact Project (ACCLIP). Data from the Airborne Carbon Oxide Sulfide Spectrometer (ACOS), Carbon monOxide Measurement from Ames (COMA), Laser Induced Fluorescence - Nitrogen Oxide (LIF-NO), In Situ Airborne Formaldehyde (ISAF), Carbon Oxide Laser Detector 2 (COLD 2), and the NOAA UAS O3 Photometer (UASO3) is featured in this collection. Data collection for this product is complete. ACCLIP is an international, multi-organizational suborbital campaign that aims to study aerosols and chemical transport that is associated with the Asian Summer Monsoon (ASM) in the Western Pacific region from 15 July 2022 to 31 August 2022. The ASM is the largest meteorological pattern in the Northern Hemisphere (NH) during the summer and is associated with persistent convection and large anticyclonic flow patterns in the upper troposphere and lower stratosphere (UTLS). This leads to significant enhancements in the UTLS of trace species that originate from pollution or biomass burning. Convection connected to the ASM occurs over South, Southeast, and East Asia, a region with complex and rapidly changing emissions due to its high population density and economic growth. Pollution that reaches the UTLS from this region can have significant effects on the climate and chemistry of the atmosphere, making it important to have an accurate representation and understanding of ASM transport, chemical, and microphysical processes for chemistry-climate models to characterize these interactions and for predicting future impacts on climate. The ACCLIP campaign is conducted by the National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) with the primary goal of investigating the impacts of Asian gas and aerosol emissions on global chemistry and climate. The NASA WB-57 and NCAR G-V aircraft are outfitted with state-of-the-art sensors to accomplish this. ACCLIP seeks to address four scientific objectives related to its main goal. The first is to investigate the transport pathways of ASM uplifted air from inside of the anticyclone to the global UTLS. Another objective is to sample the chemical content of air processed in the ASM in order to quantify the role of the ASM in transporting chemically active species and short-lived climate forcing agents to the UTLS to determine their impact on stratospheric ozone chemistry and global climate. Third, information is obtained on aerosol size, mass, and chemical composition that is necessary for determining the radiative effects of the ASM to constrain models of aerosol formation and for contrasting the organic-rich ASM UTLS aerosol population with that of the background aerosols. Last, ACCLIP seeks to measure the water vapor distribution associated with the monsoon dynamical structure to evaluate transport across the tropopause and determine the role of the ASM in water vapor transport in the stratosphere. not-provided +ACEPOL_AircraftRemoteSensing_AirHARP_Data.v1 ACEPOL Airborne Hyper Angular Rainbow Polarimeter (AirHARP) Remotely Sensed Data Version 1 LARC_ASDC 2017-10-18 2020-11-20 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588261-LARC_ASDC.json ACEPOL Airborne Hyper Angular Rainbow Polarimeter (AirHARP) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_AirHARP_Data) are remotely sensed measurements collected by the Airborne Hyper Angular Rainbow Polarimeter (AirHARP) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which is a valuable resource for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided +ACEPOL_AircraftRemoteSensing_AirSPEX_Data.v1 ACEPOL Airborne Spectrometer for Planetary Exploration (AirSPEX) Remotely Sensed Data Version 1 LARC_ASDC 2017-10-19 2017-11-09 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588281-LARC_ASDC.json ACEPOL_AircraftRemoteSensing_AirSPEX_Data are remotely sensed measurements collected by the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided +ACEPOL_AircraftRemoteSensing_CPL_Data.v1 ACEPOL Cloud Physics Lidar (CPL) Remotely Sensed Data Version 1 LARC_ASDC 2017-10-19 2017-11-09 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588308-LARC_ASDC.json ACEPOL Cloud Physics Lidar (CPL) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_CPL_Data) are remotely sensed measurements collected by the Cloud Physics Lidar (CPL) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided +ACEPOL_AircraftRemoteSensing_HSRL2_Data.v1 ACEPOL High Spectral Resolution Lidar 2 (HSRL-2) Remotely Sensed Data LARC_ASDC 2017-10-23 2017-11-09 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588330-LARC_ASDC.json ACEPOL High Spectral Resolution Lidar 2 (HSRL-2) Remotely Sensed Data (ACEPOL_AircraftRemoteSensing_HSRL2_Data) are remotely sensed measurements collected by the High-Spectral Resolution Lidar (HSRL-2) onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided +ACEPOL_MetNav_AircraftInSitu_Data.v1 ACEPOL ER-2 Meteorological and Navigational Data Version 1 LARC_ASDC 2017-10-19 2017-11-09 -130, 25, -100, 45 https://cmr.earthdata.nasa.gov/search/concepts/C1758588825-LARC_ASDC.json ACEPOL_MetNav_AircraftInSitu_Data are in situ meteorological and navigational measurements collected onboard the ER-2 during ACEPOL. In order to improve our understanding of the effect of aerosols on climate and air quality, measurements of aerosol chemical composition, size distribution, height profile, and optical properties are of crucial importance. In terms of remotely sensed instrumentation, the most extensive set of aerosol properties can be obtained by combining passive multi-angle, multi-spectral measurements of intensity and polarization with active measurements performed by a High Spectral Resolution Lidar. During Fall 2017, the Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign, jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON), performed aerosol and cloud measurements over the United States from the NASA high altitude ER-2 aircraft. Six instruments were deployed on the aircraft. Four of these instruments were multi-angle polarimeters: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary Exploration (SPEX Airborne) and the Research Scanning Polarimeter (RSP). The other two instruments were lidars: the High Spectral Resolution Lidar 2 (HSRL-2) and the Cloud Physics Lidar (CPL). The ACEPOL operation was based at NASA’s Armstrong Flight Research Center in Palmdale California, which enabled observations of a wide variety of scene types, including urban, desert, forest, coastal ocean and agricultural areas, with clear, cloudy, polluted and pristine atmospheric conditions. The primary goal of ACEPOL was to assess the capabilities of the different polarimeters for retrieval of aerosol and cloud microphysical and optical parameters, as well as their capabilities to derive aerosol layer height (near-UV polarimetry, O2 A-band). ACEPOL also focused on the development and evaluation of aerosol retrieval algorithms that combine data from both active (lidar) and passive (polarimeter) instruments. ACEPOL data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion, which make them valuable resources for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. not-provided ACIDD.v0 Across the Channel Investigating Diel Dynamics project OB_DAAC 2017-12-16 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360091-OB_DAAC.json The ACIDD (Across the Channel Investigating Diel Dynamics) project, in the Santa Barbara Channel, was initially designed to characterize daily variations in phytoplankton populations, but with the Thomas Fire in the Santa Barbara Hills December 2017, this project evolved into a study to characterize the effects of smoke and ash on the mixed layer in the Santa Barbara Channel. not-provided ACOS_L2S.v7.3 ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V7.3 (ACOS_L2S) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1339230297-GES_DISC.json "Version 7.3 is the current version of the data set. Version 3.5 is no longer available and has been superseded by Version 7.3. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, ""ACOS"" data are still produced and improved, using approaches applied to the OCO-2 spectra. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: ""warn_level"" - Provides a value that summarizes each sounding's acceptability to a larger set of quality filters. A high warn level predicts that the sounding would fail most data filters applied to it. A low warn level suggests that the sounding would pass most quality filters that might be applied. ""sounding_qual_flag"" - quality of input data provided to the retrieval processing ""outcome_flag"" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) ""master_quality_flag"" - four possible values: ""Good"", ""Caution"" and ""Bad"", and ""Failed"", as determined from other flags in the L2 productThe short name for this data type is ACOS_L2S." not-provided ACOS_L2S.v9r ACOS GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V9r (ACOS_L2S) at GES DISC GES_DISC 2009-04-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633158704-GES_DISC.json "Version 9r is the current version of the data set. Older versions will no longer be available and are superseded by Version 9r. This data set is currently provided by the OCO (Orbiting Carbon Observatory) Project. In expectation of the OCO-2 launch, the algorithm was developed by the Atmospheric CO2 Observations from Space (ACOS) Task as a preparatory project, using GOSAT TANSO-FTS spectra. After the OCO-2 launch, ""ACOS"" data are still produced and improved, using approaches applied to the OCO-2 spectra. The ""ACOS"" data set contains Carbon Dioxide (CO2) column averaged dry air mole fraction for all soundings for which retrieval was attempted. These are the highest-level products made available by the OCO Project, using TANSO-FTS spectral radiances, and algorithm build version 7.3. The GOSAT team at JAXA produces GOSAT TANSO-FTS Level 1B (L1B) data products for internal use and for distribution to collaborative partners, such as ESA and NASA. These calibrated products are augmented by the OCO Project with additional geolocation information and further corrections. Thus produced Level 1B products (with calibrated radiances and geolocation) are the input to the ""ACOS"" Level 2 production process. Even though the GES DISC is not publicly distributing Level 1B ACOS products, it should be known that changes in this version are affecting both Level 1B and Level 2 data. An important enhancement in Level1B will address the degradation in the number of quality-passed soundings. Elimination of many systematic biases, and better agreement with TCCON (Total Carbon Column Observing Network), is expected in Level 2 retrievals. The key changes to the L2 algorithm include scaling the O2-A band spectroscopy (reducing XCO2 bias by 4 or 5 ppm); using interpolation with the instrument lineshape [ ILS ] (reducing XCO2 bias by 1.5 ppm); and fitting a zero level offset to the A-band. Users have to also carefully familiarize themselves with the disclaimer in the new documentation. An important element to note are the updates on data screening. Although a Master Quality Flag is provided in the data product, further analysis of a larger set of data has allowed the science team to provide an updated set of screening criteria. These are listed in the data user's guide, and are recommended instead of the Master Quality Flag. Lastly, users should continue to carefully observe and weigh information from three important flags: ""sounding_qual_flag"" - quality of input data provided to the retrieval processing ""outcome_flag"" - retrieval quality based upon certain internal thresholds (not thoroughly evaluated) " not-provided @@ -156,6 +169,7 @@ CIESIN_SEDAC_ESI_2005.v2005.00 2005 Environmental Sustainability Index (ESI) SED CIESIN_SEDAC_USPAT_USUEXT2015.v1.00 2015 Urban Extents from VIIRS and MODIS for the Continental U.S. Using Machine Learning Methods SEDAC 2015-01-01 2015-12-31 -180, -56, 180, 84 https://cmr.earthdata.nasa.gov/search/concepts/C1648035940-SEDAC.json The 2015 Urban Extents from VIIRS and MODIS for the Continental U.S. Using Machine Learning Methods data set models urban settlements in the Continental United States (CONUS) as of 2015. When applied to the combination of daytime spectral and nighttime lights satellite data, the machine learning methods achieved high accuracy at an intermediate-resolution of 500 meters at large spatial scales. The input data for these models were two types of satellite imagery: Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light (NTL) data from the Day/Night Band (DNB), and Moderate Resolution Imaging Spectroradiometer (MODIS) corrected daytime Normalized Difference Vegetation Index (NDVI). Although several machine learning methods were evaluated, including Random Forest (RF), Gradient Boosting Machine (GBM), Neural Network (NN), and the Ensemble of RF, GBM, and NN (ESB), the highest accuracy results were achieved with NN, and those results were used to delineate the urban extents in this data set. not-provided CLDMSK_L2_VIIRS_NOAA20_NRT.v1 VIIRS/NOAA-20 Cloud Mask L2 6-Min Swath 750m (NRT) ASIPS 2020-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2003160566-ASIPS.json The NOAA-20 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA Level-2 (L2) Cloud Mask is one of two continuity products designed to sustain the long-term records of both Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS heritages. CLDMSK_L2_VIIRS_NOAA20_NRT is the shortname for the NOAA-20 VIIRS Near Real-time incarnation of the Cloud Mask continuity product derived from the MODIS-VIIRS cloud mask (MVCM) algorithm, which itself is based on the MODIS (MOD35) algorithm. MVCM describes a continuity algorithm that is central to both MODIS data (from Terra and Aqua missions) and VIIRS data (from SNPP and Joint Polar Satellite System missions). Please bear in mind that the term MVCM does not appear as an attribute within the product’s metadata. Implemented to consistently handle MODIS and VIIRS inputs, the NOAA-20 VIIRS collection-1 products use calibration-adjusted NASA VIIRS L1B as inputs. The nominal spatial resolution of the NOAA-20 VIIRS L2 Cloud mask is 750 meters. not-provided CLDMSK_L2_VIIRS_SNPP_NRT.v1 VIIRS/SNPP Cloud Mask L2 6-Min Swath 750m (NRT) ASIPS 2019-04-18 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1607563719-ASIPS.json The Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) NASA Level-2 (L2) Cloud Mask is one of two continuity products designed to sustain the long-term records of both Moderate Resolution Imaging Spectroradiometer (MODIS) and VIIRS heritages. CLDMSK_L2_VIIRS_SNPP is the shortname for the SNPP VIIRS incarnation of the Cloud Mask continuity product derived from the MODIS-VIIRS cloud mask (MVCM) algorithm, which itself is based on the MODIS (MOD35) algorithm. MVCM describes a continuity algorithm that is central to both MODIS data (from Terra and Aqua missions) and VIIRS data (from SNPP and Joint Polar Satellite System missions). Please bear in mind that the term MVCM does not appear as an attribute within the product’s metadata. Implemented to consistently handle MODIS and VIIRS inputs, the SNPP VIIRS collection-1 products use calibration-adjusted NASA VIIRS L1B as inputs. The nominal spatial resolution of the SNPP VIIRS L2 Cloud mask is 750 meters. not-provided +COARE_cm_er2.mas.v1 MODIS Airborne Simulator (MAS) Measurements Taken Onboard the NASA ER-2 During the TOGA COARE Intensive Observing Period. LAADS 1993-01-03 1993-03-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1625703857-LAADS.json The MODIS Airborne Simulator (MAS) Measurements, taken onboard the NASA ER-2 during the TOGA COARE Intensive Observing Period, are available upon request from NASA LAADS. Browse products are available at https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/mas/. The ER-2 navigation data are available from the same site in sub directory nasa_er2/nav. Browse imagery of the data may be viewed from the MAS Homepage at: https://mas.arc.nasa.gov/data/deploy_html/toga_home.html. MAS Level 1B data are available on 8500 density 8mm tape from TOGA COARE User Services at the Goddard DAAC. Each tape contains all the flight lines for one MAS flight (one day). The number of flight lines varies, but is generally between 10 and 20. The volume of data varies, but is generally 1 to 3 gigabytes per flight. Detailed instructions for reading MAS tapes is contained in MAS_Usr_Guide.ps. To obtain the data on tape, contact the DAAC User Services Office. For help with NASA TOGA COARE data residing at the GSFC DAAC, contact Pat Hrubiak at hrubiak@daac.gsfc.nasa.gov. BACK GROUND: TOGA COARE was a multidisciplinary, international research effort that investigated the scientific phenomena associated with the interaction between the atmosphere and the ocean in the warm pool region of the western Pacific. The field experiment phase of the program took place from 1 November 1992 through 28 February 1993 and involved the deployment of oceanographic ships and buoys, several ship and land based Doppler radars, multiple low and high level aircraft equipped with Doppler radar and other airborne sensors, as well as a variety of surface based instruments for in situ observations. The NASA component of TOGA COARE, while contributing directly to over all COARE objectives, emphasized scientific objectives associated with the Tropical Rainfall Measuring Mission (TRMM) and NASA's cloud and radiation program. AIRCRAFT INFORMATION: The NASA ER-2 is a high altitude, single pilot aircraft based at Ames Research Center, Moffett Field, CA, and deployed globally in support of a variety of atmospheric research projects. It has a maximum altitude of 70,000 feet (21 km), a range of 3000 nautical miles, a maximum flight duration of 8 hours (nominal 6.5 hours) and a top speed of 410 knots true air speed. The aircraft accommodates about 2700 pounds (1200 kg) of payload. For the TOGA COARE campaign, the ER-2 payload consisted of a variety of radiometers, a lidar, a conductivity probe and a camera. FLIGHT INFORMATION: The following table relates MAS data files to ER-2 and DC-8 flight numbers and to the UTC dates for the 13 mission flights of the NASA/TOGA COARE campaign and 2 additional flights of the ER-2 on which MAS data was acquired. The objectives (Obj) column is included for the convenience of the user; the mission objective defaulted to radiation (Rad) unless convection (Con) was forecast in the target area. Date (UTC) ER-2 Flight DC-8 Flight MAS TapeID Obj-Jan 11-12 93-053 93-01-06 93-053 RadJan 17-18 93-054 93-01-07 93-054 Con Jan 18-19 93-055 93-01-08 93-055 Con Jan 25-26 93-056 93-01-09 93-056 RadJan 28-29 93-057 93-057 Jan 31-Feb 1 93-058 93-01-10 93-058 Rad Feb 2 93-059 93-059 Feb 4 93-060 93-01-11 93-060 Con Feb 6 93-01-12 Con Feb 7 93-061 93-061 Feb 8-9 93-062 93-01-13 93-062 Con Feb 10-11 93-063 93-01-14 93-063 Con Feb 17-18 93-01-15 93-064 Con Feb 19-20 93-064 93-064 Feb 20-21 93-065 93-01-16 93-065 Con Feb 22-23 93-066 93-01-17 Con Feb 23-24 93-067 93-01-18 Rad. INSTRUMENT INFORMATION: The MODIS Airborne Simulator is a visible/infrared imaging radiometer that was mounted, for this campaign, in the right aft wing pod of the ER-2 aircraft. Through cross track scanning to the aircraft direction of flight, the MAS instrument builds a continuous sequence image of the atmosphere surface features under the aircraft. Wavelength channels of the instrument are selected for specific cloud and surface remote sensing applications. Also the channels are those which will be incorporated in measurements by the space borne MODIS instrument. The MAS instrument acquires eleven simultaneous wavelengths with 100 meters or better resolution at the surface. Principles of Operation: The MAS Spectrometer acquires high spatial resolution imagery in the wavelength range 0.55 to 14.3 microns. A total of 50 spectral bands are available in this range, and currently the digitize is configured before each mission to record in any 12 of these bands during flight. For all pre-1994 MAS missions, the 12-channel digitize was configured with four 10-bit channels and seven 8-bit channels. The MAS spectrometer is mated to a scanner sub-assembly which collects image data with an IFOV of 2.5 mrad, giving a ground resolution of 50 meters from 20,000 meters altitude,and a cross track scan width of 85.92 degrees. A 50 channel digitizer which records all 50 spectral bands at 12 bit resolution became operational in January 1995. DATA ORGANIZATION Data Format: The archive tapes are created by writing each output data file (1 straight-line flight track) to tape in fixed-length blocks of 16384 bytes, in time ascending order. One end-of-file (EOF) mark is written at the end of the data blocks for each file, and an extra EOF is written at the end of the data on the tape. The last block of each file has good data at the start of the block and unused bytes (filled with null characters) at the end. Information on the length of the file is encoded in the header when the file is created. No file name,protection, or ownership information is written onto the archive tape. All information necessary to identify the file is stored in the file itself. Documentation: In addition to this document, please obtain Volume 3, MODIS Airborne Simulator Level 1B Data Users Guide, resident in this directory in postscript file MAS_Usr_Guide.ps. Browse Products: There are 2 GIF image files per flight line, named 93ddd??v.gif and 93ddd??i.gif, where 93 is the year, ddd the Julian day of the flight, ?? the flight line number, and v or i, indicating respectively visible (VIS) or Infrared (IR) imagery. Images from each flight, accompanied by a flight statistics summary file, reside in a sub directory named with the date of the flight (02feb93) under mas/images. not-provided CWIC_REG.v1.0 Radarsat-2 Scenes, Natural Resources Canada CCMEO 2008-04-27 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2204659831-CCMEO.json The collection represents browse images and metadata for systematically georeferenced Radarsat-2 Synthetic Aperture Radar(SAR) satellite scenes. The browse scenes are not geometrically enhanced using ground control points, but are systematically corrected using sensor parameters. Full resolution precision geocoded scenes(corrected using ground control points) which correspond to the browse images can be ordered from MacDonald Dettwiler and Associates Ltd., Vancouver, Canada. Metadata discovery is achieved using the online catalog http://neodf.nrcan.gc.ca OR by using the CWIC OGC CSW service URL : http://cwic.csiss.gmu.edu/cwicv1/discovery. The imaging frequency is C Band SAR : 5405.0000 MHz. RADARSAT-2 is in a polar, sun-synchronous orbit with a period of approximately 101 minutes. The RADARSAT-2 orbit will be maintained at +\/- 1 km in across track direction. This orbit maintenance is suitable for InSAR data collection. The geo-location accuracy of RADARSAT-2 products varies with product type. It is currently estimated at +\/- 30 m for Standard beam products. The revisit period for RADARSAT-2 depends on the beam mode, incidence angle and geographic location of the area of interest. In general, revisit is more frequent at the poles than the equator and the wider swath modes have higher revisit than t he narrow swath modes. not-provided CWIC_REG_RCM.v1.0 RCM (Radarsat Constellation Mission ) Products, Natural Resources Canada CCMEO 2019-06-12 2026-06-12 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2204659595-CCMEO.json The collection represents products and metadata for georeferenced Radarsat Constellation Mission ( RCM ) satellite scenes. Metadata discovery and product ordering is achieved using the online catalog https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html OR by using the CWIC OpenSearch OSDD : http://cwic.csiss.gmu.edu/cwicv1/discovery. not-provided CWIC_REG_Radarsat-1.v1.0 Radarsat-1 Scenes, Natural Resources Canada CCMEO 1996-01-11 2013-03-29 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2204658925-CCMEO.json The collection represents browse images and metadata for systematically georeferenced Radarsat-1 Synthetic Aperture Radar(SAR) satellite scenes. The browse scenes are not geometrically enhanced using ground control points, but are systematically corrected using sensor parameters. Full resolution precision geocoded scenes(corrected using ground control points) which correspond to the browse images can be ordered from MacDonald Dettwiler and Associates Ltd., Vancouver, Canada. Metadata discovery is achieved using the online catalog https://neodf.nrcan.gc.ca/neodf_cat3 OR by using the CWIC OGC CSW service URL : http://cwic.csiss.gmu.edu/cwicv1/discovery. Radarsat-1 operates at 5.3 GHz. (C-Band). It is in a sun-synchronous orbit. Image resolution is in the range 8-100 meters. not-provided @@ -168,6 +182,8 @@ ECO_L1CG_RAD.v002 ECOSTRESS Gridded Top of Atmosphere Calibrated Radiance Instan ECO_L2G_CLOUD.v002 ECOSTRESS Gridded Cloud Mask Instantaneous L2 Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076113561-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Cloud Mask Instantaneous L2 Global 70 m (ECO_L2G_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECO_L2G_CLOUD product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. This data product is a gridded version of the ECO_L2_CLOUD Version 2 product that was resampled using nearest neighbor, projected to a globally snapped 0.0006° grid, and repackaged as the ECO_L2G_CLOUD Version 2 data product. The ECO_L2G_CLOUD Version 2 data product contains two cloud mask layers: cloud confidence and final cloud mask. Information on how to interpret the cloud confidence and cloud mask layers is provided in Table 7 of the ECO_L2_CLOUD Version 2 User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided ECO_L2G_LSTE.v002 ECOSTRESS Gridded Land Surface Temperature and Emissivity Instantaneous L2 Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076113037-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Gridded Land Surface Temperature and Emissivity Instantaneous Level 2 Global 70 m (ECO_L2G_LSTE) Version 2 data product provides atmospherically corrected land surface temperature and emissivity (LST&E) values derived from five thermal infrared (TIR) bands. The ECO_L2G_LSTE data product was derived using a physics-based Temperature and Emissivity Separation (TES) algorithm. This data product is a gridded version of the ECO_L2_LSTE (https://doi.org/10.5067/ECOSTRESS/ECO_L2_LSTE.002) Version 2 data product that was resampled using nearest neighbor, projected to a globally snapped 0.0006° grid, and repackaged as the ECO_L2G_LSTE data product. The ECO_L2G_LSTE product is provided as gridded data and has a spatial resolution of 70 meters (m). The ECO_L2G_LSTE Version 2 data product contains 8 layers distributed in an HDF5 format file including LST, LST error, wideband emissivity, height, view zenith angle, quality flags, and cloud and water masks. For acquisitions after May 15, 2019, data products contain data values for TIR bands 2, 4, and 5 only. TIR bands 1 and 3 contain fill values to accommodate direct streaming of data from the ISS, as mentioned in the Known Issues section. LST data generated after May 15, 2019, will use only the three available bands; accuracy may be affected when compared to the LST data that utilized all five bands. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4, and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided ECO_L2_CLOUD.v002 ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m V002 LPCLOUD 2018-07-09 -180, -54, 180, 54 https://cmr.earthdata.nasa.gov/search/concepts/C2076115306-LPCLOUD.json The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission measures the temperature of plants to better understand how much water plants need and how they respond to stress. ECOSTRESS is attached to the International Space Station (ISS) and collects data globally as well as key biomes and agricultural zones around the world and selected FLUXNET (http://fluxnet.fluxdata.org/about/) validation sites. A map of the acquisition coverage can be found on the ECOSTRESS website (https://ecostress.jpl.nasa.gov/science). The ECOSTRESS Swath Cloud Mask Instantaneous L2 Global 70 m (ECO_L2_CLOUD) Version 2 data product is derived using a single-channel Bayesian cloud threshold with a look-up-table (LUT) approach. The ECOSTRESS Level 2 cloud product provides a cloud mask that can be used to determine cloud cover for accurate land surface temperature and evapotranspiration estimation. The corresponding ECO_L1B_GEO (https://doi.org/10.5067/ECOSTRESS/ECO_L1B_GEO.002) data product is required to georeference the ECO_L2_CLOUD data product. The ECO_L2_CLOUD Version 2 data product contains two cloud mask layers: Brightness temperature LUT test and Final cloud mask. Information on how to interpret the bit fields in the cloud mask is provided in Table 7 of the User Guide. Known Issues: *Data acquisition gap: ECOSTRESS was launched on June 29, 2018, and moved to autonomous science operations on August 20, 2018, following a successful in-orbit checkout period. On September 29, 2018, ECOSTRESS experienced an anomaly with its primary mass storage unit (MSU). ECOSTRESS has a primary and secondary MSU (A and B). On December 5, 2018, the instrument was switched to the secondary MSU and science operations resumed. On March 14, 2019, the secondary MSU experienced a similar anomaly, temporarily halting science acquisitions. On May 15, 2019, a new data acquisition approach was implemented, and science acquisitions resumed. To optimize the new acquisition approach TIR bands 2, 4 and 5 are being downloaded. The data products are as previously, except the bands not downloaded contain fill values (L1 radiance and L2 emissivity). This approach was implemented from May 15, 2019, through April 28, 2023. *Data acquisition gap: From February 8 to February 16, 2020, an ECOSTRESS instrument issue resulted in a data anomaly that created striping in band 4 (10.5 micron). These data products have been reprocessed and are available for download. No ECOSTRESS data were acquired on February 17, 2020, due to the instrument being in SAFEHOLD. Data acquired following the anomaly have not been affected. *Data acquisition: ECOSTRESS has now successfully returned to 5-band mode after being in 3-band mode since 2019. This feature was successfully enabled following a Data Processing Unit firmware update (version 4.1) to the payload on April 28, 2023. To better balance contiguous science data scene variables, 3-band collection is currently being interleaved with 5-band acquisitions over the orbital day/night periods. not-provided +EN1_MDSI_MER_FRS_1P.v4 Full Resolution Full Swath Geolocated and Calibrated TOA Radiance LAADS 2002-05-17 2012-04-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2151211533-LAADS.json The Medium Resolution Imaging Spectrometer (MERIS) is one of 10 sensors deployed in March of 2002 on board the polar-orbiting Envisat-1 environmental research satellite by the European Space Agency (ESA). The MERIS instrument is a moderate-resolution wide field-of-view push-broom imaging spectroradiometer capable of sensing in the 390 nm to 1040 nm spectral range. Being a programmable instrument, it had the unique capability of selectively adjusting the width and location of its 15 bands through ground command. The instrument has a 68.5-degree field of view and a swath width of 1150 meters, providing a global coverage every 3 days at 300 m resolution. Communication with the Envisat-1 satellite was lost suddenly on the 8th of April, 2012, just weeks after celebrating its 10th year in orbit. All attempts to re-establish contact were unsuccessful, and the end of the mission was declared on May 9th, 2012. The 4th reprocessing cycle, in 2020, has produced both the full-resolution and reduced-resolution L1 and L2 MERIS products. EN1_MDSI_MER_FRS_1P is the short-name for the MERIS Level-1 full resolution, full swath, geolocated and calibrated top-of-atmosphere (TOA) radiance product. This product contains the TOA upwelling spectral radiance measurements. The in-band reference irradiances for the 15 MERIS bands are computed by averaging the in-band solar irradiance for each pixel. Each pixel’s in-band solar irradiance is computed by integrating the reference solar spectrum with the band-pass of each pixel. The Level-1 product contains 22 data files: 15 files contain radiances for each band (one band per file) along with associated error estimates, and 7 annotation data files. It also includes a Manifest file that provides metadata information describing the product. not-provided +EN1_MDSI_MER_FRS_2P.v4 Full Resolution Full Swath Geophysical Product for Ocean, Land and Atmosphere LAADS 2003-01-01 2012-04-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2151219110-LAADS.json The Medium Resolution Imaging Spectrometer (MERIS) is one of 10 sensors deployed in March of 2002 on board the polar-orbiting Envisat-1 environmental research satellite by the European Space Agency (ESA). The MERIS instrument is a moderate-resolution wide field-of-view push-broom imaging spectroradiometer capable of sensing in the 390 nm to 1040 nm spectral range. Being a programmable instrument, it had the unique capability of selectively adjusting the width and location of its 15 bands through ground command. The instrument has a 68.5-degree field of view and a swath width of 1150 meters, providing a global coverage every 3 days at 300 m resolution. Communication with the Envisat-1 satellite was lost suddenly on the 8th of April, 2012, just weeks after celebrating its 10th year in orbit. All attempts to re-establish contact were unsuccessful, and the end of the mission was declared on May 9th, 2012. The 4th reprocessing cycle, in 2020, has produced both the full-resolution and reduced-resolution L1 and L2 MERIS products. EN1_MDSI_MER_FRS_2P is the short-name for the MERIS Level-2 full resolution, geophysical product for ocean, land, and atmosphere. This Level-2 product comes in a netCDF4 package that contains both instrument and science measurements, and a Manifest file that provides metadata information describing the product. Each Level-2 product contains 64 measurement files that break down thus: 13 files containing water-leaving reflectance, 13 files containing land surface reflectance and 13 files containing the TOA reflectance (for all bands except those dedicated to measuring atmospheric gas - M11 and M15), and several files containing additional measurements on ocean, land, and atmosphere parameters. not-provided EO:EUM:CM:METOP:ASCSZFR02.v2014-10-07 ASCAT L1 SZF Climate Data Record Release 2 - Metop EUMETSAT 2007-01-01 2014-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901388-EUMETSAT.json Reprocessed L1B data from the Advanced Scatterometer (ASCAT) on METOP-A, resampled at full resolution (SZF). Normalized radar cross section (NRCS) of the Earth surface together with measurement time, location (latitude and longitude) and geometrical information (incidence and azimuth angles). The prime objective of the Advanced SCATterometer (ASCAT) is to measure wind speed and direction over the oceans, and the main operational application is the assimilation of ocean winds in NWP models. Other operational applications, based on the use of measurements of the backscattering coefficient, are sea ice edge detection and monitoring, monitoring sea ice, snow cover, soil moisture and surface parameters. This product is also available at 12.5 and 25 km Swath Grids. This is a Fundamental Climate Data Record (FCDR). not-provided EO:EUM:CM:METOP:ASCSZOR02.v2014-10-07 ASCAT L1 SZO Climate Data Record Release 2 - Metop EUMETSAT 2007-01-01 2014-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901391-EUMETSAT.json Reprocessed L1B data from the Advanced Scatterometer (ASCAT) on METOP-A, resampled at 25 km Swath Grid (SZO). Normalized radar cross section (NRCS) triplets of the Earth surface together with measurement time, location (latitude and longitude) and geometrical information (incidence and azimuth angles). The prime objective of the Advanced SCATterometer (ASCAT) is to measure wind speed and direction over the oceans, and the main operational application is the assimilation of ocean winds in NWP models. Other operational applications, based on the use of measurements of the backscattering coefficient, are sea ice edge detection and monitoring, monitoring sea ice, snow cover, soil moisture and surface parameters. This product is also available at full resolution and at 12.5 km Swath Grid. This is a Fundamental Climate Data Record (FCDR). not-provided EO:EUM:CM:METOP:ASCSZRR02.v2014-10-07 ASCAT L1 SZR Climate Data Record Release 2 - Metop EUMETSAT 2007-01-01 2014-03-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1588901394-EUMETSAT.json Reprocessed L1B data from the Advanced Scatterometer (ASCAT) on METOP-A, resampled at 12.5 km Swath Grid (SZR). Normalized radar cross section (NRCS) triplets of the Earth surface together with measurement time, location (latitude and longitude) and geometrical information (incidence and azimuth angles). The prime objective of the Advanced SCATterometer (ASCAT) is to measure wind speed and direction over the oceans, and the main operational application is the assimilation of ocean winds in NWP models. Other operational applications, based on the use of measurements of the backscattering coefficient, are sea ice edge detection and monitoring, monitoring sea ice, snow cover, soil moisture and surface parameters. This product is also available at full resolution and at 25 km Swath Grid. This is a Fundamental Climate Data Record (FCDR). not-provided @@ -228,6 +244,8 @@ LEAF_CARBON_NUTRIENTS_1106.v1 A Global Database of Carbon and Nutrient Concentra LEAF_PHOTOSYNTHESIS_TRAITS_1224.v1 A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area ORNL_DAAC 1993-01-01 2010-12-31 -122.4, -43.2, 176.13, 58.42 https://cmr.earthdata.nasa.gov/search/concepts/C179126725-ORNL_DAAC.json This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum rate of carboxylation), Jmax (maximum rate of electron transport), leaf nitrogen content (N), leaf phosphorus content (P), and specific leaf area (SLA) data from both experimental and ambient field conditions, for a total of 325 species and treatment combinations. Both the original published Vcmax and Jmax values as well as estimates at standard temperature are reported. The maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax) are primary determinants of photosynthetic rates in plants, and modeled carbon fluxes are highly sensitive to these parameters. Previous studies have shown that Vcmax and Jmax correlate with leaf nitrogen across species and regions, and locally across species with leaf phosphorus and specific leaf area, yet no universal relationship suitable for global-scale models is currently available. These data are suitable for exploring the general relationships of Vcmax and Jmax with each other and with leaf N, P and SLA. This data set contains one *.csv file. not-provided LGB_10m_traverse.v1 10 m firn temperature data: LGB traverses 1990-95 AU_AADC 1989-11-01 1995-02-28 54, -77, 78, -69 https://cmr.earthdata.nasa.gov/search/concepts/C1214313574-AU_AADC.json The Lambert Glacier Basin (LGB) series of five oversnow traverses were conducted from 1989-95. Ten metre depth (10 m) firn temperatures, as a proxy indicator of annual mean surface temperature at a site, were recorded approximately every 30 km along the 2014 km main traverse route from LGB00 (68.6543 S, 61.1201 E) near Mawson Station, to LGB72 (69.9209 S, 76.4933 E) near Davis Station. 10 m depth firn temperatures were recorded manually in field notebooks and the data transferred to spreadsheet files (MS Excel). Summary data (30 km spatial resolution) can be obtained from CRC Research Note No.09 'Surface Mass Balance and Snow Surface Properties from the Lambert Glacier Basin Traverses 1990-94'. This work was completed as part of ASAC projects 3 and 2216. Some of this data have been stored in a very old format. The majority of files have been updated to current formats, but some files (kaleidograph files in particular) were not able to be modified due to a lack of appropriate software. However, these files are simply figures, and can be regenerated from the raw data (also provided). The fields in this dataset are: Latitutde Longitude Height Cane Distance Elevation Density Mass Accumulation Year Delta Oxygen-18 Grain Size Ice Crusts Depth Hoar not-provided Level_2A_aerosol_cloud_optical_products Aeolus L2A Aerosol/Cloud optical product ESA 2021-05-26 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2207498185-ESA.json "The Level 2A aerosol/cloud optical products of the Aeolus mission include geo-located consolidated backscatter and extinction profiles, backscatter-to-extinction coefficient, LIDAR ratio, scene classification, heterogeneity index and attenuated backscatter signals. Resolution - Horizontal resolution of L2A optical properties at observation scale (~87 km); Exceptions are group properties (horizontal accumulation of measurements from ~3 km to ~87 km) and attenuated backscatters (~3 km); Note: the resolution of ""groups"" in the L2A can only go down to 5 measurements at the moment, i.e. ~15 km horizontal resolution. This could be configured to go to 1 measurement - Vertical resolution 250-2000 m (Defined by Range Bin Settings https://earth.esa.int/eogateway/instruments/aladin/overview-of-the-main-wind-rbs-changes)." not-provided +MCD06COSP_D3_MODIS.v6.1 MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1887589686-LAADS.json The combined MODIS (Aqua/Terra) Cloud Properties Level 3 daily, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product’s short-name. The “COSP” acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. This product is an aggregation of combined MODIS Level-2 inputs from both the Terra and Aqua incarnations (MOD35/MOD06 and MYD35/MYD06, respectively), and employs an aggregation methodology consistent with the MOD08 and MYD08 products. Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters). not-provided +MCD06COSP_M3_MODIS.v6.1 MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid LAADS 2002-07-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1888024429-LAADS.json The combined MODIS (Aqua/Terra) Cloud Properties Level 3 monthly, 1x1 degree grid product represents a new addition that is especially geared to facilitate climate scientists who deal with both models and observations. MCD06COSP_D3_MODIS represents the daily product’s short-name. The “COSP” acronym in its short-name stands for Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package. The L3 monthly product is derived by aggregating the daily-produced Aqua+Terra/MODIS D3 Cloud Properties product (MCD06COSP_D3_MODIS). Provided in netCDF4 format, it contains 23 aggregated science data sets (SDS/parameters). not-provided MCD14DL_C5_NRT.v005 MODIS/Aqua+Terra Thermal Anomalies/Fire locations 1km FIRMS V005 NRT LM_FIRMS 2014-01-28 -180, -80, 180, 80 https://cmr.earthdata.nasa.gov/search/concepts/C1219768065-LM_FIRMS.json Near Real-Time (NRT) MODIS Thermal Anomalies / Fire locations processed by FIRMS (Fire Information for Resource Management System) - Land Atmosphere Near real time Capability for EOS (LANCE), using swath products (MOD14/MYD14) rather than the tiled MOD14A1 and MYD14A1 products. The thermal anomalies / active fire represent the center of a 1km pixel that is flagged by the MODIS MOD14/MYD14 Fire and Thermal Anomalies algorithm (Giglio 2003) as containing one or more fires within the pixel. This is the most basic fire product in which active fires and other thermal anomalies, such as volcanoes, are identified.MCD14DL are available in the following formats: TXT, SHP, KML, WMS. These data are also provided through the FIRMS Fire Email Alerts. Please note only the TXT and SHP files contain all the attributes. not-provided MIANACP.v1 MISR Aerosol Climatology Product V001 LARC 1999-11-22 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C185127378-LARC.json MIANACP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Aerosol Climatology Product version 1. It is 1) the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based; 2) mixtures of pure aerosol to be compared with MISR observations; and 3) likelihood value assigned to each mode geographically. The ACP describes mixtures of up to three component aerosol types from a list of eight components, in varying proportions. ACP component aerosol particle data quality depends on the ACP input data, which are based on aerosol particles described in the literature, and consider MISR-specific sensitivity to particle size, single-scattering albedo, and shape, and shape - roughly: small, medium and large; dirty and clean; spherical and nonspherical [Kahn et al. , 1998; 2001]. Also reported in the ACP are the mixtures of these components used by the retrieval algorithm. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided MIANCAGP.v1 MISR Ancillary Geographic Product V001 LARC 1999-11-07 2005-06-30 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C183897339-LARC.json MIANCAGP_1 is the Multi-angle Imaging SpectroRadiometer (MISR) Ancillary Geographic Product version 1. It is a set of 233 pre-computed files. Each AGP file pertains to a single Terra orbital path. MISR production software relies on information in the AGP, such as digital terrain elevation, as input to the algorithms which generate MISR products. The AGP contains eleven fields of geographical data. This product consists primarily of geolocation data on a Space Oblique Mercator (SOM) Grid. It has 233 parts, corresponding to the 233 repeat orbits of the EOS-AM1 Spacecraft. The MISR instrument consists of nine pushbroom cameras which measure radiance in four spectral bands. Global coverage is achieved in nine days. The cameras are arranged with one camera pointing toward the nadir, four cameras pointing forward, and four cameras pointing aftward. It takes seven minutes for all nine cameras to view the same surface location. The view angles relative to the surface reference ellipsoid, are 0, 26.1, 45.6, 60.0, and 70.5 degrees. The spectral band shapes are nominally Gaussian, centered at 443, 555, 670, and 865 nm. not-provided @@ -239,11 +257,17 @@ MURI_HI.v0 A Multi University Research Initiative (MURI) near the Hawaiian Islan MYD021KM.v6.1NRT MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426616847-LANCEMODIS.json The MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 36 discrete bands located in the 0.4 to 14.4 micron region of electromagentic spectrum. These data are generated from the MODIS Level 1A scans of raw radiance and in the process converted to geophysical units of W/(m^2 um sr). In addition, the Earth Bi-directional Reflectance Distribution Function (BRDF) may be determined for the solar reflective bands (1-19, 26) through knowledge of the solar irradiance (e.g., determined from MODIS solar diffuser data, and from the target illumination geometry). Additional data are provided including quality flags, error estimates and calibration data. Visible, shortwave infrared, and near infrared measurements are only made during the daytime, while radiances for the thermal infrared region (bands 20-25, 27-36) are measured continuously. Channel locations for MODIS are as follows: Band Center Wavelength (um) Primary Use---- ---------------------- -----------1 0.620 - 0.670 Land/Cloud Boundaries2 0.841 - 0.876 Land/Cloud Boundaries3 0.459 - 0.479 Land/Cloud Properties4 0.545 - 0.565 Land/Cloud Properties5 1.230 - 1.250 Land/Cloud Properties6 1.628 - 1.652 Land/Cloud Properties7 2.105 - 2.155 Land/Cloud Properties8 0.405 - 0.420 Ocean Color/Phytoplankton9 0.438 - 0.448 Ocean Color/Phytoplankton10 0.483 - 0.493 Ocean Color/Phytoplankton11 0.526 - 0.536 Ocean Color/Phytoplankton12 0.546 - 0.556 Ocean Color/Phytoplankton13 0.662 - 0.672 Ocean Color/Phytoplankton14 0.673 - 0.683 Ocean Color/Phytoplankton15 0.743 - 0.753 Ocean Color/Phytoplankton16 0.862 - 0.877 Ocean Color/Phytoplankton17 0.890 - 0.920 Atmospheric Water Vapor18 0.931 - 0.941 Atmospheric Water Vapor19 0.915 - 0.965 Atmospheric Water Vapor20 3.660 - 3.840 Surface/Cloud Temperature21 3.929 - 3.989 Surface/Cloud Temperature22 3.929 - 3.989 Surface/Cloud Temperature23 4.020 - 4.080 Surface/Cloud Temperature24 4.433 - 4.498 Atmospheric Temperature25 4.482 - 4.549 Atmospheric Temperature26 1.360 - 1.390 Cirrus Clouds27 6.535 - 6.895 Water Vapor Profile28 7.175 - 7.475 Water Vapor Profile29 8.400 - 8.700 Water Vapor Profile30 9.580 - 9.880 Ozone Overburden31 10.780 - 11.280 Surface/Cloud Temperature32 11.770 - 12.270 Surface/Cloud Temperature33 13.185 - 13.485 Cloud Top Altitude34 13.485 - 13.785 Cloud Top Altitude35 13.785 - 14.085 Cloud Top Altitude36 14.085 - 14.385 Cloud Top Altitude Channels 1 and 2 have 250 m resolution, channels 3 through 7 have 500m resolution, and the rest have 1 km resolution. However, for the MODIS L1B 1 km product, the 250 m and 500 m band radiance data and their associated uncertainties have been aggregated to 1km resolution. Thus the entire channel data set is referenced to the same spatial and geolocation scales. Separate L1B products are available for the 250 m channels (MYD02QKM) and 500 m channels (MYD02HKM) that preserve the original resolution of the data. Spatial resolution for pixels at nadir is 1 km, degrading to 4.8 km in the along-scan direction at the scan extremes. However, thanks to the overlapping of consecutive swaths and respectively pixels there, the resulting resolution at the scan extremes is about 2km. A 55 degree scanning pattern at the EOS orbit of 705 km results in a 2330km orbital swath width and provides global coverage every one to two days. A single MODIS Level 1B granule will nominally contain a scene built from 203 scans (or swaths) sampled 1354 times in the cross-track direction, corresponding to approximately 5 minutes worth of data. Since an individual MODIS scan (or swath) will contain 10 along-track spatial elements, the scene will be composed of (1354 x 2030) pixels, resulting in a spatial coverage of (2330 km x 2030 km). Due to the MODIS scan geometry, there will be increasing overlap occurring beyond about 25 degrees scan angle. To summarize, the MODIS L1B 1 km data product consists of: 1. Calibrated radiances and uncertainties for (2) 250 m reflected solar bands aggregated to 1km resolution 2. Calibrated radiances and uncertainties for (5) 500 m reflected solar bands aggregated to 1 km resolution 3. Calibrated radiances and uncertainties for (13) 1 km reflected solar bands and (16) infrared emissive bands 4. Geolocation subsampled at every 5th pixel across and along track 5. Satellite and solar angles subsampled at the above frequency 6. Comprehensive set of file-level metadata summarizing the spatial, temporal and parameter attributes of the data, as well as auxiliary information pertaining to instrument status and data quality characterization. The MODIS L1B data are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) which is an extension of HDF as developed by the National Center for Supercomputer Applications (NCSA) at the University of Illinois. A typical file size will be approximately 260 MB. Environmental information derived from MODIS L1B measurements will offer a comprehensive and unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world. The Shortname for this product is MYD021KM not-provided MYD02HKM.v6.1NRT MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 500m - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426617060-LANCEMODIS.json The 500 meter MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 7 discrete bands located in the 0.45 to 2.20 micron region of the electromagnetic spectrum. These data are generated from the MODIS Level 1A scans of raw radiance and in the process converted to geophysical units of W/(m^2 um sr). In addition, the Earth Bi-directional Reflectance Distribution Function (BRDF) may be determined for these solar reflective bands through knowledge of the solar irradiance (e.g., determined from MODIS solar diffuser data, and from the target illumination geometry). Additional data are provided including quality flags, error estimates and calibration data. Visible, shortwave infrared, and near infrared measurements are only made during the daytime, while radiances for the thermal infrared region (bands 20-25, 27-36) are measured continuously. Channel locations for the MODIS 500 meter data are as follows: Band Center Wavelength (um) Primary Use ---- ---------------------- ----------- 1 0.620 - 0.670 Land/Cloud Boundaries 2 0.841 - 0.876 Land/Cloud Boundaries 3 0.459 - 0.479 Land/Cloud Properties 4 0.545 - 0.565 Land/Cloud Properties 5 1.230 - 1.250 Land/Cloud Properties 6 1.628 - 1.652 Land/Cloud Properties 7 2.105 - 2.155 Land/Cloud Properties Channels 1 and 2 have 250 m resolution, channels 3 through 7 have 500 m resolution. However, for the MODIS L1B 500 m product, the 250 m band radiance data and their associated uncertainties have been aggregated to 500 m resolution. Thus the entire channel data set has been co-registered to the same spatial scale in the 500 m product. Separate L1B products are available for the 250 m resolution channels (MYD02QKM) and 1 km resolution channels (MYD021KM). For the latter product, the 250 m and 500 m channel data (bands 1 through 7) have been aggregated into equivalent 1 km pixel values. Spatial resolution for pixels at nadir is 500 km, degrading to 2.4 km in the along-scan direction at the scan extremes. However, thanks to the overlapping of consecutive swaths and respectively pixels there, the resulting resolution at the scan extremes is about 1 km. A 55 degree scanning pattern at the EOS orbit of 705 km results in a 2330 km orbital swath width and provides global coverage every one to two days. A single MODIS Level 1B 500 m granule will contain a scene built from 203 scans sampled 2708 times in the cross-track direction, corresponding to approximately 5 minutes worth of data; thus 288 granules will be produced per day. Since an individual MODIS scan will contain 20 along-track spatial elements for the 500 m channels, the scene will be composed of (2708 x 4060) pixels, resulting in a spatial coverage of (2330 km x 2040 km). Due to the MODIS scan geometry, there will be increasing scan overlap beyond about 20 degrees scan angle. To summarize, the MODIS L1B 500 m data product consists of: 1. Calibrated radiances, uncertainties and number of samples for (2) 250 m reflected solar bands aggregated to 500 m resolution 2. Calibrated radiances and uncertainties for (5) 500 m reflected solar bands 3. Geolocation for 1km pixels, that must be interpolated to get 500 m pixel locations. For the relationship of 1km pixels to 500m pixels, see the Geolocation ATBD http://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf . 4. Calibration data for all channels (scale and offset) 5. Comprehensive set of file-level metadata summarizing the spatial, temporal and parameter attributes of the data, as well as auxiliary information pertaining to instrument status and data quality characterization The MODIS L1B 500 m data are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) which is an extension of HDF as developed by the National Center for Supercomputer Applications (NCSA) at the University of Illinois. A typical file size will be approximately 170 MB. Environmental information derived from MODIS L1B measurements will offer a comprehensive and unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world. The Shortname for this product is MYD02HKM not-provided MYD02QKM.v6.1NRT MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 250m - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426621826-LANCEMODIS.json The 250 meter MODIS Level 1B Near Real Time (NRT) data set contains calibrated and geolocated at-aperture radiances for 2 discrete bands located in the 0.62 to 0.88 micron region of the electromagnetic spectrum. These data are generated from the MODIS Level 1A scans of raw radiance and in the process converted to geophysical units of W / (m^2 um sr). In addition, the Earth Bi-directional Reflectance Distribution Function (BRDF) may be determined for these solar reflective bands through knowledge of the solar irradiance (e.g., determined from MODIS solar diffuser data, and from the target illumination geometry). Additional data are provided including quality flags, error estimates and calibration data. Channel locations for the MODIS 250 meter data are as follows: Band Center Wavelength (um) Primary Use ---- ---------------------- ----------- 1 0.620 - 0.670 Land/Cloud Boundaries 2 0.841 - 0.876 Land/Cloud Boundaries Separate L1B products are available for the five 500 m resolution channels (MYD02HKM) and the twenty-nine 1 km resolution channels (MYD021KM). For the 500 m product, there are actually seven channels available since the data from the two 250 m channels have been aggregated to 500 m resolution. Similarly, for the 1 km product, all 36 MODIS channels are available since the data from the two 250 m and five 500 m channels have been aggregated into equivalent 1 km pixel values. Spatial resolution for pixels at nadir is 250 m, degrading to 1.2 km in the along-scan direction and 0.5 km in the along-track direction for pixels located at the scan extremes. A 55 degree scanning pattern at the EOS orbit of 705 km results in a 2330 km orbital swath width and provides global coverage every one to two days. A single MODIS Level 1B 250 m granule will contain a scene built from 203 scans sampled 5416 times in the cross-track direction, corresponding to approximately 5 minutes worth of data; thus 288 granules will be produced per day. Since an individual MODIS scan will contain 40 along-track spatial elements for the 250 m channels, the scene will be composed of (5416 x 8120) pixels, resulting in a spatial coverage of (2330 km x 2040 km). Due to the MODIS scan geometry, there will be increasing scan overlap beyond about 17 degrees scan angle. To summarize, the MODIS L1B 250 m data product consists of: 1. Calibrated radiances and uncertainties for (2) 250 m reflected solar bands 2. Subsampled geolocation at every 4th 250 m pixel across and along track, i.e., a geolocation point every kilometer 3. Satellite and solar angles subsampled at the above frequency 4. Calibration data for all channels (scale and offset) 5. Comprehensive set of file-level metadata summarizing the spatial, temporal and parameter attributes of the data, as well as auxiliary information pertaining to instrument status and data quality characterization The MODIS L1B 250 m data are stored in the Earth Observing System Hierarchical Data Format (HDF-EOS) which is an extension of HDF as developed by the National Center for Supercomputer Applications (NCSA) at the University of Illinois. A typical file size will be approximately 170 MB. Environmental information derived from MODIS L1B measurements will offer a comprehensive and unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world. The Shortname for this product is MYD02QKM not-provided +MYD04_3K.v6.1 MODIS/Aqua Aerosol 5-Min L2 Swath 3km LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1443528505-LAADS.json "The new Collection 6.1 (C61) MODIS/Aqua Aerosol 5 Min L2 Swath 3km (MYD04_3K) product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5, and earlier collections, there was only one aerosol product (MYD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MYD04_3k) intended for the air quality community. The MYD04_3K product is based on the same algorithm and Look up Tables as the standard Dark Target aerosol product. Because of finer resolution, subtle differences are made in selecting pixels for retrieval and in determining QA. The only differences between the existing 10km algorithm and the new 3km algorithm are: 1) the size of the pixel-arrays defining each retrieval box ( 6x6 retrieval boxes of 36 pixels at 0.5km resolution for 3km algorithm as oppose to 20x20 retrieval boxes of 400 pixels at 0.5km resolution for 10km product); 2) the minimum percentage of ""good"" pixels required for a retrieval (a minimum of 5 pixels over ocean and 6 pixels over land instead of a minimum of 10 pixels over ocean or 12 pixels over land for 10km product retrieval); 3) the 10km algorithm attempts a ""poor quality"" retrieval while 3km algorithm does not. Everything else is the same between two products. For more information on C6.1 changes and updates, visit the MODIS Atmosphere website at: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61" not-provided MYD04_3K.v6.1NRT MODIS/Aqua Aerosol 5-Min L2 Swath 3km - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426717545-LANCEMODIS.json The new Collection 6.1 (C61) MYD04_3K product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5, and earlier collections, there was only one aerosol product (MOD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MOD04_3k) intended for the air quality community. The MOD04_3K product is based on the same algorithm and Look up Tables as the standard Dark Target aerosol product. Because of finer resolution, subtle differences are made in selecting pixels for retrieval and in determining QA. The only differences between the existing 10km algorithm and the 3km algorithm are: 1) the size of the pixel-arrays defining each retrieval box (6x6 retrieval boxes of 36 pixels at 0.5km resolution for 3km algorithm as oppose to 20x20 retrieval boxes of 400 pixels at 0.5km resolution for 10km product); 2) the minimum percentage of good pixels required for a retrieval (a minimum of 5 pixels over ocean and 6 pixels over land instead of a minimum of 10 pixels over ocean or 12 pixels over land for 10km product retrieval); 3) the 10km algorithm attempts a poor quality retrieval while 3km algorithm does not. Everything else is same in two products. For more information on C6.1 changes and updates, visit the MODIS Atmosphere website at: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61 not-provided +MYD04_L2.v6.1 MODIS/Aqua Aerosol 5-Min L2 Swath 10km LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1443533683-LAADS.json The MODIS/Aqua Aerosol 5-Min L2 Swath 10km product (MYD04_L2) provides full global coverage of aerosol properties from the Dark Target (DT) and Deep Blue (DB) algorithms. The DT algorithm is applied over ocean and dark land (e.g., vegetation), while the DB algorithm now covers the entire land areas including both dark and bright surfaces. Both results are provided on a 10x10 pixel scale (10 km at nadir). Each MYD04_L2 product file covers a five-minute time interval. The output grid is 135 pixels in width by 203 pixels in length. Every tenth file has an output grid size of 135 by 204 pixels. MYD04_L2 product files are stored in Hierarchical Data Format (HDF-EOS). The new Collection 6.1 (C61) MYD04_L2 product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5 and in earlier collections, there was only one aerosol product (MYD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MYD04_3k) intended for the air quality community. For more information visit the MODIS Atmosphere website at: https://modis-atmos.gsfc.nasa.gov/products/aerosol And, for C6.1 changes and updates, visit: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61 not-provided MYD04_L2.v6.1NRT MODIS/Aqua Aerosol 5-Min L2 Swath 10km - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1426751946-LANCEMODIS.json The new Collection 6.1 (C61) MYD04_L2 product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and uncertainty estimates for Deep Blue (DB) Aerosol retrievals. The MODIS level-2 atmospheric aerosol product provides retrieved ambient aerosol optical properties, quality assurance, and other parameters, globally over ocean and land. In Collection 5, and earlier collections, there was only one aerosol product (MYD04_L2) at 10km (at nadir) spatial resolution. Starting from C6, the Dark Target (DT) Aerosol algorithm team provided a new 3 km spatial resolution product (MYD04_3k) intended for the air quality community. For more information visit the MODIS Atmosphere website at: https://modis-atmos.gsfc.nasa.gov/products/aerosol And, for C6.1 changes and updates, visit: https://modis-atmosphere.gsfc.nasa.gov/documentation/collection-61 not-provided +MYD08_D3.v6.1 MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1443729298-LAADS.json The MODIS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3 Global 1Deg CMG product (MYD08_D3) contains daily 1 x 1 degree grid average values of atmospheric parameters related to atmospheric aerosol particle properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties, and atmospheric stability indices. This product also provides standard deviations, quality assurance weighted means and other statistically derived quantities for each parameter. The MYD08_D3 contains roughly 600 statistical datasets that are derived from approximately 80 scientific parameters from four Level-2 MODIS Atmosphere Products: MOD04_L2, MOD05_L2, MOD06_L2, and MOD07_L2. Statistics are computed over a 1 degree equal-angle lat-lon grid that spans a 24-hour (0000 to 2400 Greenwich Mean Time) interval. Since the grid cells are 1 degree by 1 degree, the output grid is always 360 pixels in width and 180 pixels in length. MYD08_D3 product files are stored in Hierarchical Data Format (HDF-EOS). Each gridded global parameter is stored as Scientific Data Sets (SDS) within the file. The MODIS Daily Product will be used in the simultaneously study of clouds, water vapor, aerosol , trace gases, land surface and oceanic properties, as well as the interaction between them and their effect on the Earth's energy budget and climate. This product will also be used to investigate seasonal and inter-annual changes in cirrus (semi-transparent) global cloud cover and cloud phase with multispectral observations at high spatial resolution. For more information about the MYD08_D3 product, please visit the MODIS-Atmosphere site at: https://modis-atmos.gsfc.nasa.gov/products/daily not-provided +MYD08_E3.v6.1 MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1443743314-LAADS.json The MODIS/Aqua Aerosol Cloud Water Vapor Ozone 8-Day L3 Global 1Deg CMG product (MYD08_E3) contains 8-Day 1 degree x 1 degree grid average values of atmospheric parameters related to atmospheric aerosol particle properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties, and atmospheric stability indices. This product also provides standard deviations, quality assurance weighted means and other statistically derived quantities for each parameter. The MYD08_E3 contains nearly 1000 statistical datasets (SDS's) that are derived from the Level-3 MODIS Atmosphere Daily Global Product. Statistics are computed over a 1 degree equal-angle lat-lon grid that spans an 8-Day interval. Since the grid cells are 1 degree by 1 degree, the output grid is always 360 pixels in width and 180 pixels in length. MYD08_E3 product files are stored in Hierarchical Data Format (HDF-EOS). Each gridded global parameter is stored as Scientific Data Sets (SDS) within the file. The MODIS 8-Day Product will be used in the simultaneously study of clouds, water vapor, aerosol , trace gases, land surface and oceanic properties, as well as the interaction between them and their effect on the Earth's energy budget and climate. This product will also be used to investigate seasonal and inter-annual changes in cirrus (semi-transparent) global cloud cover and cloud phase with multispectral observations at high spatial resolution. For more information about the MYD08_E3 product, please visit the MODIS-Atmosphere site at: https://modis-atmos.gsfc.nasa.gov/products/eight-day not-provided MYD09.v6.1NRT MODIS/Aqua Atmospherically Corrected Surface Reflectance 5-Min L2 Swath 250m, 500m, 1km NRT LANCEMODIS 2021-02-07 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2007652303-LANCEMODIS.json The MODIS/Aqua Atmospherically Corrected Surface Reflectance 5-Min L2 Swath 250m, 500m, 1km NRT, short name MYD09, is computed from the MODIS Level 1B land bands 1, 2, 3, 4, 5, 6, and 7 (centered at 648 nm, 858 nm, 470 nm, 555 nm, 1240 nm, 1640 nm, and 2130 nm, respectively). The product is an estimate of the surface spectral reflectance for each band as it would have been measured at ground level if there were no atmospheric scattering or absorption. The surface-reflectance product is the input for product generation for several land products: vegetation Indices (VIs), BRDF, thermal anomaly, snow/ice, and Fraction of Photosynthetically Active Radiation/Leaf Area Index (FPAR/LAI). not-provided MYD09CMA.v6.1NRT MODIS/Aqua Aerosol Optical Thickness Daily L3 Global 0.05-Deg CMA NRT LANCEMODIS 2021-02-07 -180, -81, 180, 81 https://cmr.earthdata.nasa.gov/search/concepts/C2007652084-LANCEMODIS.json The MODIS/Aqua Aerosol Optical Thickness Daily L3 Global 0.05-Deg CMA Near Real Time (NRT), short name MYD09CMA, is a daily level 3 global product. It is in linear latitude and longitude (Plate Carre) projection with a 0.05Deg spatial resolution. This product is derived from MYD09IDN, MYD09IDT and MYD09IDS for each orbit by compositing the data on the basis of minimum band 3 (459 - 479 nm band) values (after excluding pixels flagged for clouds and high solar zenith angles). not-provided +MYDCSR_B.v6.1 MODIS/Aqua 8-Day Clear Sky Radiance Bias Daily L3 Global 1Deg Zonal Bands LAADS 2002-07-04 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1444160046-LAADS.json The MODIS/Aqua 8-Day Clear Sky Radiance Bias Daily L3 Global 1Deg Zonal Bands (MYDCSR_B) product consists of 1-degree zonal mean clear-sky biases (observed minus calculated radiance differences) and associated statistics for bands 31 and 33-36 for each day from the previous eight-day period. Zonal means (5-zone moving averages) are created from the eight-day, 25-km radiance differences for daytime land, nighttime land, and ocean data separately. Day and night land data are combined south of -60 degrees latitude due to poor clear-sky sampling and the difficulty of discriminating between clear and cloudy conditions in this region. The zonal mean biases are utilized to correct clear-sky radiance calculations in the cloud top pressure (CO2 slicing) algorithm. The files are in Hierarchical Data Format (HDF). not-provided MYDGB0.v6.1NRT MODIS/Aqua 5-minute GBAD data in L0 format - NRT LANCEMODIS 2017-10-20 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1427015288-LANCEMODIS.json MODIS/Aqua Near Real Time (NRT) 5-minute GBAD data in L0 format. not-provided +Marine Debris Dataset for Object Detection in Planetscope Imagery.v1 Marine Debris Dataset for Object Detection in Planetscope Imagery MLHUB 2016-09-28 2019-04-18 -88.2971191, 5.4683637, 34.5300293, 39.1087514 https://cmr.earthdata.nasa.gov/search/concepts/C2196591903-MLHUB.json Floating marine debris is a global pollution problem which leads to the loss of marine and terrestrial biodiversity. Large swaths of marine debris are also navigational hazards to ocean vessels. The use of Earth observation data and artificial intelligence techniques can revolutionize the detection of floating marine debris on satellite imagery and pave the way to a global monitoring system for controlling and preventing the accumulation of marine debris in oceans. This dataset consists of images of marine debris which are 256 by 256 pixels in size and labels which are bounding boxes with geographical coordinates. The images were obtained from PlanetScope optical imagery which has a spatial resolution of approximately 3 meters. In this dataset, marine debris consists of floating objects on the ocean surface which can belong to one or more classes namely plastics, algae, sargassum, wood, and other artificial items. Several studies were used for data collection and validation. While a small percentage of the dataset represents the coastlines of Ghana and Greece, most of the observations surround the Bay Islands in Honduras. The marine debris detection models created and the relevant code for using this dataset can be found here. https://github.com/NASA-IMPACT/marine_debris_ML not-provided NEX-DCP30.v1 Downscaled 30 Arc-Second CMIP5 Climate Projections for Studies of Climate Change Impacts in the United States NCCS 1950-01-01 2099-12-31 -125.0208333, 24.0625, -66.4791667, 49.9375 https://cmr.earthdata.nasa.gov/search/concepts/C1542175061-NCCS.json This NASA dataset is provided to assist the science community in conducting studies of climate change impacts at local to regional scales, and to enhance public understanding of possible future climate patterns and climate impacts at the scale of individual neighborhoods and communities. This dataset is intended for use in scientific research only, and use of this dataset for other purposes, such as commercial applications, and engineering or design studies is not recommended without consultation with a qualified expert. Community feedback to improve and validate the dataset for modeling usage is appreciated. Email comments to bridget@climateanalyticsgroup.org. Dataset File Name: NASA Earth Exchange (NEX) Downscaled Climate Projections (NEXDCP30), https://portal.nccs.nasa.gov/portal_home/published/NEX.html not-provided NEX-GDDP.v1 NASA Earth Exchange Global Daily Downscaled Projections NCCS 1950-01-01 2100-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1374483929-NCCS.json The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate scenarios for the globe that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs). The CMIP5 GCM runs were developed in support of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The NEX-GDDP dataset includes downscaled projections for RCP 4.5 and RCP 8.5 from the 21 models and scenarios for which daily scenarios were produced and distributed under CMIP5. Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100. The spatial resolution of the dataset is 0.25 degrees (~25 km x 25 km). The NEX-GDDP dataset is provided to assist the science community in conducting studies of climate change impacts at local to regional scales, and to enhance public understanding of possible future global climate patterns at the spatial scale of individual towns, cities, and watersheds. Each of the climate projections includes monthly averaged maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2005 (Retrospective Run) and from 2006 to 2099 (Prospective Run). not-provided NIPR_UAP_ELF_SYO 1-100Hz ULF/ELF Electromagnetic Wave Observation at Syowa Station SCIOPS 2000-01-01 39.6, -69, 39.6, -69 https://cmr.earthdata.nasa.gov/search/concepts/C1214590112-SCIOPS.json 1-100Hz ULF/ELF Electromagnetic Wave Observation at Syowa Station not-provided @@ -283,6 +307,7 @@ QB02_Pan_L1B.v1 QuickBird Level 1B Panchromatic Satellite Imagery CSDA 2001-10-1 SEAGLIDER_GUAM_2019.vV1 Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (Guam 2019-2020) POCLOUD 2019-10-03 2020-01-15 143.63035, 13.39476, 144.613, 14.71229 https://cmr.earthdata.nasa.gov/search/concepts/C2151536874-POCLOUD.json This dataset was produced by the Adaptive Sampling of Rain and Ocean Salinity from Autonomous Seagliders (NASA grant NNX17AK07G) project, an investigation to develop tools and strategies to better measure the structure and variability of upper-ocean salinity in rain-dominated environments. From October 2019 to January 2020, three Seagliders were deployed near Guam (14°N 144°E). The Seaglider is an autonomous profiler measuring salinity and temperature in the upper ocean. The three gliders sampled in an adaptive formation to capture the patchiness of the rain and the corresponding oceanic response in real time. The location was chosen because of the likelihood of intense tropical rain events and the availability of a NEXRAD (S-band) rain radar at the Guam Airport. Spacing between gliders varies from 1 to 60 km. Data samples are gridded by profile and on regular depth bins from 0 to 1000 m. The time interval between profiles was about 3 hours, and they are typically about 1.5 km apart. These profiles are available at Level 2 (basic gridding) and Level 3 (despiked and interpolated). All Seaglider data files are in netCDF format with standards compliant metadata. The project was led by a team from the Applied Physics Laboratory at the University of Washington. not-provided SRDB_V5_1827.v5 A Global Database of Soil Respiration Data, Version 5.0 ORNL_CLOUD 1961-01-01 2017-12-31 -163.71, -78.02, 175.9, 81.8 https://cmr.earthdata.nasa.gov/search/concepts/C2216864433-ORNL_CLOUD.json The Soil Respiration Database (SRDB) is a near-universal compendium of published soil respiration (Rs) data. The database encompasses published studies that report at least one of the following data measured in the field (not laboratory): annual soil respiration, mean seasonal soil respiration, a seasonal or annual partitioning of soil respiration into its source fluxes, soil respiration temperature response (Q10), or soil respiration at 10 degrees C. The SRDB's orientation is to seasonal and annual fluxes, not shorter-term or chamber-specific measurements, and the database is dominated by temperate, well-drained forest measurement locations. Version 5 (V5) is the compilation of 2,266 published studies with measurements taken between 1961-2017. V5 features more soil respiration data published in Russian and Chinese scientific literature for better global spatio-temporal coverage and improved global climate-space representation. The database is also restructured to have better interoperability with other datasets related to carbon-cycle science. not-provided Survey_1988_89_Mawson_npcms.v1 1988/89 Summer season, surveying and mapping program, Mawson - North Prince Charles Mountains - Davis AU_AADC 1988-10-01 1989-02-28 62, -70, 79, -66 https://cmr.earthdata.nasa.gov/search/concepts/C1214313847-AU_AADC.json Field season report of these programs: 1988/89 Summer Season surveying and mapping North Prince Charles Mountains; ...mapping program Northern PCM's - Mawson Doppler Translocation Support; ....mapping program Voyage 6 stopover Davis. Includes maps and mapsheet layouts. See the report for full details on the program. Contents are: Introduction Preparation Voytage to Antarctica 1988/89 Summer Season Surveying and Mapping Program, Northern Prince Charles Mountains 1988/89 Summer Season Surveying and Mapping Program, Voyage 6 Stopover, Davis Performance of Equipment Station Marking Field Camping Climatic Conditions Conclusion Appendices not-provided +Tropical Cyclone Wind Estimation Model.v1 Tropical Cyclone Wind Estimation Model MLHUB 2000-01-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2260133500-MLHUB.json This is a PyTorch model trained on the Tropical Cyclone Wind Estimation Competition dataset with v0.1 of the TorchGeo package. The model is a resnet18 model pretrained on ImageNet then trained with a MSE loss. The data were randomly split 80/20 by storm ID and an early stop was used based on performance. not-provided Turbid9.v0 2004 Measurements made in the Chesapeake Bay OB_DAAC 2004-10-01 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360689-OB_DAAC.json Measurements made in the Chesapeake Bay in 2004. not-provided USAP-1543498.v1 A Full Lifecycle Approach to Understanding Adélie Penguin Response to Changing Pack Ice Conditions in the Ross Sea AMD_USAPDC 2016-06-01 165, -78, -150, -60 https://cmr.earthdata.nasa.gov/search/concepts/C2532074621-AMD_USAPDC.json "The Ross Sea region of the Southern Ocean is experiencing growing sea ice cover in both extent and duration. These trends contrast those of the well-studied, western Antarctic Peninsula area, where sea ice has been disappearing. Unlike the latter, little is known about how expanding sea ice coverage might affect the regional Antarctic marine ecosystem. This project aims to better understand some of the potential effects of the changing ice conditions on the marine ecosystem using the widely-recognized indicator species - the Adélie Penguin. A four-year effort will build on previous results spanning 19 seasons at Ross Island to explore how successes or failures in each part of the penguin's annual cycle are effected by ice conditions and how these carry over to the next annual recruitment cycle, especially with respect to the penguin's condition upon arrival in the spring. Education and public outreach activities will continually be promoted through the PenguinCam and PenguinScience websites (sites with greater than 1 million hits a month) and ""NestCheck"" (a site that is logged-on by >300 classrooms annually that allows students to follow penguin families in their breeding efforts). To encourage students in pursuing educational and career pathways in the Science Technology Engineering and Math fields, the project will also provide stories from the field in a Penguin Journal, develop classroom-ready activities aligned with New Generation Science Standards, increase the availability of instructional presentations as powerpoint files and short webisodes. The project will provide additional outreach activities through local, state and national speaking engagements about penguins, Antarctic science and climate change. The annual outreach efforts are aimed at reaching over 15,000 students through the website, 300 teachers through presentations and workshops, and 500 persons in the general public. The project also will train four interns (undergraduate and graduate level), two post-doctoral researchers, and a science writer/photographer.

The project will accomplish three major goals, all of which relate to how Adélie Penguins adapt to, or cope with environmental change. Specifically the project seeks to determine 1) how changing winter sea ice conditions in the Ross Sea region affect penguin migration, behavior and survival and alter the carry-over effects (COEs) to subsequent reproduction; 2) the interplay between extrinsic and intrinsic factors influencing COEs over multiple years of an individual's lifetime; and 3) how local environmental change may affect population change via impacts to nesting habitat, interacting with individual quality and COEs. Retrospective analyses will be conducted using 19 years of colony based data and collect additional information on individually marked, known-age and known-history penguins, from new recruits to possibly senescent individuals. Four years of new information will be gained from efforts based at two colonies (Cape Royds and Crozier), using radio frequency identification tags to automatically collect data on breeding and foraging effort of marked, known-history birds to explore penguin response to resource availability within the colony as well as between colonies (mates, nesting material, habitat availability). Additional geolocation/time-depth recorders will be used to investigate travels and foraging during winter of these birds. The combined efforts will allow an assessment of the effects of penguin behavior/success in one season on its behavior in the next (e.g. how does winter behavior affect arrival time and body condition on subsequent breeding). It is at the individual level that penguins are responding successfully, or not, to ongoing marine habitat change in the Ross Sea region." not-provided USAP-1643722.v1 A High Resolution Atmospheric Methane Record from the South Pole Ice Core AMD_USAPDC 2017-02-01 2019-01-31 180, -90, 180, -90 https://cmr.earthdata.nasa.gov/search/concepts/C2534799946-AMD_USAPDC.json This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project. not-provided @@ -303,6 +328,7 @@ WV01_Pan_L1B.v1 WorldView-1 Level 1B Panchromatic Satellite Imagery CSDA 2007-10 WV02_MSI_L1B.v1 WorldView-2 Level 1B Multispectral 8-Band Satellite Imagery CSDA 2009-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497404794-CSDA.json The WorldView-2 Level 1B Multispectral 8-Band Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This satellite imagery is in the visible and near-infrared waveband range with data in the coastal, blue, green, yellow, red, red edge, and near-infrared (2 bands) wavelengths. It has a spatial resolution of 1.85m at nadir and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided WV02_Pan_L1B.v1 WorldView-2 Level 1B Panchromatic Satellite Imagery CSDA 2009-10-08 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2497398128-CSDA.json The WorldView-2 Level 1B Panchromatic Imagery collection contains satellite imagery acquired from Maxar Technologies (formerly known as DigitalGlobe) by the Commercial Smallsat Data Acquisition (CSDA) Program. Imagery is collected by the DigitalGlobe WorldView-2 satellite using the WorldView-110 camera across the global land surface from October 2009 to the present. This data product includes panchromatic imagery with a spatial resolution of 0.46m and a temporal resolution of approximately 1.1 days. The data are provided in National Imagery Transmission Format (NITF) and GeoTIFF formats. This level 1B data is sensor corrected and is an un-projected (raw) product. The data potentially serve a wide variety of applications that require high resolution imagery. Data access is restricted based on a National Geospatial-Intelligence Agency (NGA) license, and investigators must be approved by the CSDA Program. not-provided WaterBalance_Daily_Historical_GRIDMET.v1.5 Daily Historical Water Balance Products for the CONUS LPCLOUD 1980-01-01 2021-12-31 -131.70607, 21.115301, -60.530453, 55.457306 https://cmr.earthdata.nasa.gov/search/concepts/C2674694066-LPCLOUD.json This dataset provides daily historical Water Balance Model outputs from a Thornthwaite-type, single bucket model. Climate inputs to the model are from GridMet daily temperature and precipitation for the Continental United States (CONUS). The Water Balance Model output variables include the following: Potential Evapotranspiration (PET, mm), Actual Evapotranspiration (AET, mm), Moisture Deficit (Deficit, mm), Soil Water (soilwater, mm), Runoff (mm), Rain (mm), and Accumulated Snow Water Equivalent (accumswe, mm). The dataset covers the period from January 1 to December 31 for years 1980 through 2021 for the CONUS. Water Balance Model variables are provided as individual files, by variable and year, at a 1 km x 1 km spatial resolution and a daily temporal resolution. Data are in a North America Lambert Conformal Conic projection and are distributed in a standardized Climate and Forecast (CF)-compliant NetCDF file format. not-provided +a6efcb0868664248b9cb212aba44313d ESA Aerosol Climate Change Initiative (Aerosol CCI): Level 2 aerosol products from MERIS (ALAMO algorithm), Version 2.2 FEDEO 2008-01-01 2008-12-31 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C2548142742-FEDEO.json The ESA Climate Change Initiative Aerosol project has produced a number of global aerosol Essential Climate Variable (ECV) products from a set of European satellite instruments with different characteristics. This dataset comprises the Level 2 aerosol products from MERIS for 2008, using the ALAMO algorithm, version 2.2. The data have been provided by Hygeos.For further details about these data products please see the linked documentation. not-provided aamhcpex.v1 AAMH CPEX V1 GHRC_DAAC 2017-05-26 2017-07-16 154.716, 0.6408, -19.5629, 44.9689 https://cmr.earthdata.nasa.gov/search/concepts/C2645106424-GHRC_DAAC.json The AAMH CPEX dataset contains products obtained from the MetOp-A, MetOp-B, NOAA-18, and NOAA-19 satellites. These data were collected in support of the NASA Convective Processes Experiment (CPEX) field campaign. The CPEX field campaign took place in the North Atlantic-Gulf of Mexico-Caribbean Sea region from 25 May-25 June 2017. CPEX conducted a total of sixteen DC-8 missions from 27 May-24 June. The CPEX campaign collected data to help explain convective storm initiation, organization, growth, and dissipation in the North Atlantic-Gulf of Mexico-Caribbean Oceanic region during the early summer of 2017. These data are available from May 26, 2017 through July 15, 2017 and are available in netCDF-4 format. not-provided aces1am.v1 ACES Aircraft and Mechanical Data V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977826980-GHRC_DAAC.json The ACES Aircraft and Mechanical Data consist of aircraft (e.g. pitch, roll, yaw) and mechanical (e.g. aircraft engine speed, tail commands, fuel levels) data recorded by the Altus II Unmanned Aerial Vehicle (Altus II UAV) system during the Altus Cumulus Electrification Study (ACES) based at the Naval Air Facility Key West in Florida. ACES aimed to provide extensive observations of the cloud electrification process and its effects by using the Altus II UAV to collect cloud top observations of thunderstorms. The campaign also worked to validate satellite lightning measurements. The Altus II aircraft and mechanical data files are available from July 10 through August 30, 2002 in MATLAB data format (.mat). not-provided aces1cont.v1 ACES CONTINUOUS DATA V1 GHRC_DAAC 2002-07-10 2002-08-30 -85, 23, -81, 26 https://cmr.earthdata.nasa.gov/search/concepts/C1977847043-GHRC_DAAC.json The ALTUS Cloud Electrification Study (ACES) was based at the Naval Air Facility Key West in Florida. During August, 2002, ACES researchers conducted overflights of thunderstorms over the southwestern corner of Florida. For the first time in NASA research, an uninhabited aerial vehicle (UAV) named ALTUS was used to collect cloud electrification data. Carrying field mills, optical sensors, electric field sensors and other instruments, ALTUS allowed scientists to collect cloudelectrification data for the first time from above the storm, from its birth through dissipation. This experiment allowed scientists to achieve the dual goals of gathering weather data safely and testing new aircraft technology. This dataset consists of data collected from seven instruments: the Slow/Fast antenna, Electric Field Mill, Dual Optical Pulse Sensor, Searchcoil Magnetometer, Accelerometers, Gerdien Conductivity Probe, and the Fluxgate Magnetometer. Data consists of sensor reads at 50HZ throughout the flight from all 64 channels. not-provided @@ -318,6 +344,7 @@ aster_global_dem ASTER Global DEM USGS_LTA 1970-01-01 -180, -90, 180, 90 https: b673f41b-d934-49e4-af6b-44bbdf164367 AVHRR - Land Surface Temperature (LST) - Europe, Daytime FEDEO 1998-02-23 -24, 28, 57, 78 https://cmr.earthdata.nasa.gov/search/concepts/C2207458008-FEDEO.json "The ""Land Surface Temperature derived from NOAA-AVHRR data (LST_AVHRR)"" is a fixed grid map (in stereographic projection ) with a spatial resolution of 1.1 km. The total size covering Europe is 4100 samples by 4300 lines. Within 24 hours of acquiring data from the satellite, day-time and night-time LSTs are calculated. In general, the products utilise data from all six of the passes that the satellite makes over Europe in each 24 hour period. For the daily day-time LST maps, the compositing criterion for the three day-time passes is maximum NDVI value and for daily night-time LST maps, the criterion is the maximum night-time LST value of the three night-time passes. Weekly and monthly day-time or night-time LST composite products are also produced by averaging daily day-time or daily night-time LST values, respectively. The range of LST values is scaled between –39.5°C and +87°C with a radiometric resolution of 0.5°C. A value of –40°C is used for water. Clouds are masked out as bad values. For additional information, please see: https://wdc.dlr.de/sensors/avhrr/" not-provided blue_ice_core_DML2004_AS 101.1 m long horizontal blue ice core collected from Scharffenbergbotnen, DML, Antarctica, in 2003/2004 SCIOPS 1970-01-01 -180, -90, 180, -62.83 https://cmr.earthdata.nasa.gov/search/concepts/C1214614210-SCIOPS.json Horizontal blue ice core collected from the surface of a blue ice area in Scharffenbergbotnen, Heimefrontfjella, DML. Samples were collected in austral summer 2003/2004 and transported to Finland for chemical analyses. The blue ice core is estimated to represent a 1000-year period of climate history 20 - 40 kyr B.P.. The results of the analyses will be available in 2005. not-provided chesapeake_val_2013.v0 2013 Chesapeake Bay measurements OB_DAAC 2013-04-11 -180, -90, 180, 90 https://cmr.earthdata.nasa.gov/search/concepts/C1633360188-OB_DAAC.json 2013 Chesapeake Bay measurements. not-provided +ef6a9266-a210-4431-a4af-06cec4274726 Cartosat-1 (IRS-P5) - Panchromatic Images (PAN) - Europe, Monographic FEDEO 2015-02-10 -25, 30, 45, 80 https://cmr.earthdata.nasa.gov/search/concepts/C2207457985-FEDEO.json Indian Remote Sensing satellites (IRS) are a series of Earth Observation satellites, built, launched and maintained by Indian Space Research Organisation. The IRS series provides many remote sensing services to India and international ground stations. The satellite has two panchromatic cameras that were especially designed for in flight stereo viewing. However, this collection contains the monoscopic data. not-provided envidat-lwf-34.v2019-03-06 10-HS Pfynwald SCIOPS 2019-01-01 2019-01-01 7.61211, 46.30279, 7.61211, 46.30279 https://cmr.earthdata.nasa.gov/search/concepts/C1647993129-SCIOPS.json Continuous measurement of soil water content at 10 and 80 cm depth (3 replications) with 10-HS soil moisture probes (Decagon Incorporation, Pullman, WA, USA). ### Purpose: ### Monitoring of the soil water matrix potential ### Paper Citation: ### * Dobbertin, M.; Eilmann, B.; Bleuler, P.; Giuggiola, A.; Graf Pannatier, E.; Landolt, W.; Schleppi, P.; Rigling, A., 2010: Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiology, 30, 3: 346-360. [doi: 10.1093/treephys/tpp123](http://doi.org/10.1093/treephys/tpp123) not-provided gov.noaa.nodc:0000029 1990, 1991, 1992 and 1995 CRETM/LMER Zooplankton Data Sets (NCEI Accession 0000029) NOAA_NCEI 1990-09-26 1995-05-26 -124.041667, 0.766667, -16.25, 46.263167 https://cmr.earthdata.nasa.gov/search/concepts/C2089372282-NOAA_NCEI.json Not provided not-provided gov.noaa.nodc:0000035 1996 - Early 1998 CRETM/LMER Phytoplankton Data (NCEI Accession 0000035) NOAA_NCEI 1996-07-09 1998-03-06 -124.003, 46.179833, -123.183167, 46.261667 https://cmr.earthdata.nasa.gov/search/concepts/C2089372325-NOAA_NCEI.json Pump cast sampling, and associated CTD casts took place from a fixed vessel during one 28-35 day cruise per year in 1990, 1991, 1992, 1995, and 1996. In 1997 there were 2 week cruises in May, July, and October. not-provided