-
Notifications
You must be signed in to change notification settings - Fork 40
/
concept_net_narsese.py
executable file
·197 lines (188 loc) · 8.21 KB
/
concept_net_narsese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
"""
* The MIT License
*
* Copyright 2021 The OpenNARS authors.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* """
# >ConceptNet knowledge channel which queries for additional knowledge
# Usage: python3 concept_net_narsese.py [maxConceptNetQueries] [queryOnBeliefs] [allRelations]
# whereby maxConceptNetQueries indicates how many query results per
# relationship are utilized for each atomic term in the input Narsese
# and QueryOnbeliefs allows to make queries for belief input too
import re
import requests
import codecs
import sys
import nltk
from nltk.corpus import brown
from collections import Counter
sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach())
nltk.download('brown')
wordcounts = Counter(brown.words())
def toNarsese(subject_relation_predicate):
(subject, relation, predicate) = subject_relation_predicate
if relation == "IsA":
if subject[0].isupper():
return "<{" + subject + "} --> " + predicate + ">."
else:
return "<" + subject + " --> " + predicate + ">."
if relation == "InstanceOf":
if subject[0].islower():
return "<" + subject + " --> " + predicate + ">."
else:
return "<{" + subject + "} --> " + predicate + ">."
if relation == "HasProperty":
return "<" + subject + " --> [" + predicate + "]>."
if relation == "DistinctFrom":
return "(--,<" + subject + " <-> " + predicate + ">)."
if relation == "SimilarTo":
return "<" + subject + " <-> " + predicate + ">."
if relation == "Causes":
return "<" + subject + " =/> " + predicate + ">."
return "<(" + subject + " * " + predicate + ") --> " + relation.replace("PartOf", "part_of").replace("HasA", "have").replace("MadeOf", "make_of").replace("Desires", "want").lower() + ">."
def unwrap(rel):
parts = rel.split("[")[1].split("]")[0].replace("/c/en/", "").replace("/n/", "").replace("/r/", "").replace("/", "").split(",");
return (parts[1], parts[0], parts[2])
def queryConceptNet(maxAmount, term, side, relation):
ret = []
req = requests.get("http://api.conceptnet.io/query?" + side + "=/c/en/" + term + "&rel=/r/" + relation + "&limit=" + str(maxAmount))
edges = req.json()["edges"]
for edge in edges:
(s,v,p) = unwrap(edge["@id"])
if (s == term or p == term) and "_" not in s and "_" not in p:
count = wordcounts[p] if s == term else wordcounts[s]
ret.append((toNarsese((s,v,p)),count))
return ret
def queryMeaning(term, maxAmount, selectAmount, isEvent, querySpecificQuestion, question):
ret = []
Relations = ["IsA", "InstanceOf", "HasProperty", "SimilarTo"] + ["DistinctFrom", "PartOf", "HasA", "MadeOf", "Causes", "Desires"]
if querySpecificQuestion:
if "} --> [" in question:
Relations = ["HasProperty"]
elif " --> [" in question:
Relations = ["HasProperty"]
elif "} --> " in question:
Relations = ["InstanceOf"]
elif " <-> " in question:
Relations = ["SimilarTo"]
elif "!" in question and " --> " in question:
Relations = ["DistinctFrom"]
elif " --> part_of" in question:
Relations = ["PartOf"]
elif " --> have" in question:
Relations = ["HasA"]
elif " --> make_of" in question:
Relations = ["MadeOf"]
elif " --> want" in question:
Relations = ["Desires"]
elif " =/> " in question:
Relations = ["causes"]
elif " --> " in question:
Relations = ["IsA"]
for rel in Relations:
for side in ["end", "start"]: #extension and intenstion query
ret.extend(queryConceptNet(maxAmount, term, side, rel))
ret.sort(key = lambda T: -T[1])
if not querySpecificQuestion:
ret = ret[:selectAmount]
selected = 0
returnlist = []
for T in ret:
queryPart = re.escape(question.replace(" ","")).replace("\?1","([a-zA-Z0-9]|_)*")
pattern = T[0].replace(" ", "")
#print("//MATCH ATTEMPT " + queryPart + " " + pattern + str(bool(re.search(queryPart, pattern))))
if not querySpecificQuestion or re.search(queryPart, pattern):
returnlist += [T[0] + (" :|:" if isEvent else "")]
selected +=1
if selected >= selectAmount:
break
return returnlist
def extractAtomicTerms(inp):
L = []
atomicTerm = ""
for x in inp:
if x >= "a" and x <= "z" or x >= "A" and x <= "Z" or x >= "0" and x <= "9":
atomicTerm += x
else:
if len(atomicTerm) > 0:
L += [atomicTerm]
atomicTerm = ""
return L
maxAmount = 5
selectAmount = 5
for arg in sys.argv:
if arg.startswith("maxAmount="):
maxAmount = int(arg.split("maxAmount=")[1])
elif arg.startswith("selectAmount="):
maxAmount = int(arg.split("selectAmount=")[1])
maxAmount = 5 if len(sys.argv) <= 1 else int(sys.argv[1]) #per relation
selectAmount = 1 if len(sys.argv) <= 2 else int(sys.argv[2]) #in total
queryOnBeliefs = "queryOnBeliefs=true" in sys.argv
queryOnQuestions = "queryOnQuestions=false" not in sys.argv
querySpecificQuestion = "querySpecificQuestion=false" not in sys.argv
if querySpecificQuestion:
maxAmount = max(maxAmount, 30) #at least 30 results are fine to make sure the specifically asked relation will be included
while True:
try:
line = input()
except:
exit(0)
isCommand = line.startswith("*") or line.startswith("//") or line.isdigit()
isNarsese = line.startswith('(') or line.startswith('<')
isQuestion = line.strip().endswith("? :|:") or line.strip().endswith("?")
isEvent = " :|:" in line
if line.startswith("*queryOnBeliefs=true"):
queryOnBeliefs = True
elif line.startswith("*queryOnBeliefs=false"):
queryOnBeliefs = False
elif line.startswith("*queryOnQuestions=true"):
queryOnQuestions = True
elif line.startswith("*queryOnQuestions=false"):
queryOnQuestions = False
elif line.startswith("*querySpecificQuestion=true"):
querySpecificQuestion = True
elif line.startswith("*querySpecificQuestion=false"):
querySpecificQuestion = False
elif line.startswith("*maxConceptNetQueries="):
maxAmount = int(line.strip().split("*maxConceptNetQueries=")[1])
continue
if isCommand:
print(line)
sys.stdout.flush()
continue
if isNarsese and ((queryOnQuestions and isQuestion) or (queryOnBeliefs and not isQuestion)):
atoms = extractAtomicTerms(line)
cnt = 0
queryResults = set([])
for atom in atoms:
question = line.split(">.")[0].split(").")[0].split(")?")[0].split(">?")[0]
print(("//Querying concept " + atom + " for relationships") if not querySpecificQuestion else ("//Querying concept " + atom + " for relationship " + question + ">"))
returnlist = queryMeaning(atom, maxAmount, selectAmount, isEvent, querySpecificQuestion, question)
for x in returnlist:
queryResults.add(x)
cnt += 1
if cnt >= 2:
break
for x in queryResults:
print(x)
sys.stdout.flush()
print("//Querying complete")
if isNarsese:
print(line)