|
| 1 | +--- |
| 2 | +title: "Anova for MMRM" |
| 3 | +output: html_document |
| 4 | +editor_options: |
| 5 | + chunk_output_type: console |
| 6 | + markdown: |
| 7 | + wrap: 72 |
| 8 | +--- |
| 9 | + |
| 10 | + |
| 11 | +# Backgroun |
| 12 | + |
| 13 | +This [blog](https://www.r-bloggers.com/2011/03/anova-%E2%80%93-type-iiiiii-ss-explained/) has a nice summary of it. |
| 14 | +The original [post](http://goanna.cs.rmit.edu.au/fscholer/anova.php) is not accessible now. |
| 15 | + |
| 16 | +And we can also refer to this [page](https://agstats.io/tutorials/sas-proc-mixed) |
| 17 | + |
| 18 | +Some available code from [glmmTMB](https://github.com/glmmTMB/glmmTMB/blob/master/glmmTMB/R/Anova.R) |
| 19 | + |
| 20 | +SAS also has some paper on this topic, but from a different angle. |
| 21 | +It uses estimable functions to construct the three types of hypothesis. |
| 22 | + |
| 23 | +See paper https://doi.org/10.1080/03610928008827869 and https://support.sas.com/documentation/onlinedoc/stat/131/introglmest.pdf. |
| 24 | + |
| 25 | +## SAS results |
| 26 | + |
| 27 | +Using `anova.sas` we have the following results. |
| 28 | +Please note that type 1 result is dependent on the order of testing so it is not included here for simplicity. |
| 29 | +Type 2 and 3 tests are independent of the order of model parameter provided to the procedure. |
| 30 | + |
| 31 | + |
| 32 | +| type 2 | df| ddf | F value | Pr > F | |
| 33 | +|--------------|---|------------------|-------------------|----------------------| |
| 34 | +| ARMCD | 1 | 177.578206251403 | 33.1870413448661 | 3.62415957242791e-08 | |
| 35 | +| AVISIT | 3 | 336.480231426766 | 116.732733882531 | 7.97333625254255e-52 | |
| 36 | +| AVISIT*ARMCD | 3 | 335.929182055453 | 0.345902681482862 | 0.792143200158668 | |
| 37 | + |
| 38 | + |
| 39 | +| type 3 | df| ddf | F value | Pr > F | |
| 40 | +|--------------|---|------------------|-------------------|----------------------| |
| 41 | +| ARMCD | 1 | 177.848284237308 | 33.0036689632883 | 3.91621392761811e-08 | |
| 42 | +| AVISIT | 3 | 335.929182055453 | 116.539400933677 | 9.71251157971289e-52 | |
| 43 | +| AVISIT*ARMCD | 3 | 335.368828514443 | 0.345902681482865 | 0.792143224823356 | |
| 44 | + |
| 45 | + |
| 46 | +## emmeans joint_tests |
| 47 | + |
| 48 | +```{r} |
| 49 | +library(mmrm) |
| 50 | +fit <- mmrm(FEV1 ~ ARMCD + AVISIT + ARMCD * AVISIT + ar1(AVISIT | USUBJID), data = fev_data) |
| 51 | +emmeans::joint_tests(fit) |
| 52 | +``` |
| 53 | + |
| 54 | + |
| 55 | +however, the result do not agree well between SAS and R. |
| 56 | + |
| 57 | +Using "satterthwaite df" the F statistic is close, but the d.f. is not. |
| 58 | + |
| 59 | +``` |
| 60 | + model term df1 df2 F.ratio p.value |
| 61 | + ARMCD 1 177.85 33.004 <.0001 |
| 62 | + AVISIT 3 309.60 116.540 <.0001 |
| 63 | + ARMCD:AVISIT 3 309.60 0.346 0.7921 |
| 64 | +``` |
| 65 | + |
| 66 | +## Finding suitable contrasts |
| 67 | + |
| 68 | +similar to emmeans::joint_tests() obtain a contrasts. In `emmeans` the contrasts can be obtained for Type 3, and |
| 69 | +use these contrasts to send to `df_md` we get exactly the same results with SAS. |
| 70 | + |
| 71 | +```{r} |
| 72 | +args <- emmeans:::.zap.args(object = fit, cov.reduce = emmeans:::meanint, omit = "submodel") |
| 73 | +object <- do.call(emmeans:::ref_grid, args) |
| 74 | +by <- NULL |
| 75 | +facs <- setdiff(names(object@levels), c(by, "1")) |
| 76 | +emm <- emmeans::emmeans(fit, facs[2], by = by) |
| 77 | +emmgrid <- emmeans::contrast(emm, interaction = "consec", by = union(by, NULL)) |
| 78 | +tst <- emmeans::test(emmgrid, by = by, joint = TRUE, status = TRUE) |
| 79 | +ef <- attr(tst, "est.fcns") |
| 80 | +``` |
| 81 | + |
| 82 | +``` |
| 83 | +$ARMCD |
| 84 | + [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] |
| 85 | +[1,] 0 -0.9176629 0 0 0 -0.2294157 -0.2294157 -0.2294157 |
| 86 | +
|
| 87 | +$`ARMCD:AVISIT` |
| 88 | + [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] |
| 89 | +[1,] 0 0 0 0 0 -1 0 0 |
| 90 | +[2,] 0 0 0 0 0 0 -1 0 |
| 91 | +[3,] 0 0 0 0 0 0 0 -1 |
| 92 | +
|
| 93 | +$AVISIT |
| 94 | + [,1] [,2] [,3] [,4] [,5] [,6] [,7] |
| 95 | +[1,] 0 0 -0.8944272 0.0000000 0.0000000 -0.4472136 0.0000000 |
| 96 | +[2,] 0 0 0.0000000 -0.8944272 0.0000000 0.0000000 -0.4472136 |
| 97 | +[3,] 0 0 0.0000000 0.0000000 -0.8944272 0.0000000 0.0000000 |
| 98 | + [,8] |
| 99 | +[1,] 0.0000000 |
| 100 | +[2,] 0.0000000 |
| 101 | +[3,] -0.4472136 |
| 102 | +``` |
| 103 | + |
| 104 | +### Obtain the contrasts |
| 105 | + |
| 106 | +``` |
| 107 | +df_md(fit, contrasts) |
| 108 | +``` |
| 109 | + |
| 110 | +### Initial thoughts |
| 111 | + |
| 112 | +Using doolittle method to obtain the contrasts seems plausible? but this is initial. |
| 113 | + |
| 114 | +```{r} |
| 115 | +doolittle <- function(m) { |
| 116 | + assert_matrix(m) |
| 117 | + for (i in seq_len(nrow(m))) { |
| 118 | + for (j in seq_len(i - 1)) { |
| 119 | + m[i, ] <- m[i, ] - m[i, j] * m[j, ] |
| 120 | + } |
| 121 | + if (m[i, i] == 0) { |
| 122 | + m[i, ] <- 0 |
| 123 | + } else { |
| 124 | + m[i, ] <- m[i, ] / m[i, i] |
| 125 | + } |
| 126 | + } |
| 127 | + return(m) |
| 128 | +} |
| 129 | +
|
| 130 | +normalize_mat <- function(m) { |
| 131 | + m / rowSums(m^2) |
| 132 | +} |
| 133 | +
|
| 134 | +mx <- model.matrix(fit) |
| 135 | +dl <- doolittle(t(mx) %*% mx) |
| 136 | +df_md(fit, dl[6:8, ]) |
| 137 | +df_md(fit, normalize_mat(dl[6:8, ])) |
| 138 | +df_md(fit, dl[2, ]) # d.f. do not match, stat matches a lot () |
| 139 | +``` |
0 commit comments