Zyy!i-PmN}D{5#KVrXn-U~FY1GbWnj>zqc?l7
diff --git a/main/apple-touch-icon-76x76.png b/main/apple-touch-icon-76x76.png
index 1bcc463b8a0b0bf54cbf03a331f1acd88a14f8bb..0bd229535e34e66353140018290e69778dcd3353 100644
GIT binary patch
delta 71
zcmdmEyvKM#6^96?HWSNrcHNCltrDU}1|bHPRwl+)21eQj237_Jy8}10OqP+9!IU}0
L!(lPmS27;}$AJ>)
delta 71
zcmdmEyvKM#6^8&Xv+~@IwxEqotrDV!W+8^gRtCma#-`c^237_J&wu+zPnMCC!IYV{
L?ECY{zLNO>6CD;K
diff --git a/main/apple-touch-icon.png b/main/apple-touch-icon.png
index 2523c7c69a5c2c3531d655b6b740c24adf628f3a..1f84931af2b2d461a92bdc937b8cee97616b6e7b 100644
GIT binary patch
delta 73
zcmaDohw=3s#tBs%BAnXnC3`
Changelog
-
- Versions
-
diff --git a/main/articles/introduction.html b/main/articles/introduction.html
index e643ffa..8945541 100644
--- a/main/articles/introduction.html
+++ b/main/articles/introduction.html
@@ -54,14 +54,6 @@
Changelog
-
- Versions
-
@@ -91,11 +83,11 @@ Citation
Source: DESCRIPTION
Kuenzel T, Rufibach K, Stegherr R, Sabanés Bové D (2024).
-savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R.
+savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times.
R package version 0.1.0, https://openpharma.github.io/savvyr/.
@Manual{,
- title = {savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R},
+ title = {savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times},
author = {Thomas Kuenzel and Kaspar Rufibach and Regina Stegherr and Daniel {Sabanés Bové}},
year = {2024},
note = {R package version 0.1.0},
diff --git a/main/favicon-16x16.png b/main/favicon-16x16.png
index 968046663692dcd83ac211a61178f2fd9fa3cce8..33750fbbc52c0b1a43d8255e7f3062eeb4e8ccde 100644
GIT binary patch
delta 73
zcmX@ed609%T_z3@PHpa5?){ycpE9X4iW(V&7+6}F7+V<{Y8x0>85p<;uWFyH$RdL&
NW9}zpJvoRa9{}$I62$-j
delta 73
zcmX@ed609%T_z3zUS{pd!F&mupE9X4iW-`Q7#dp{7+aYbYa19?85s1vE3TNV$RdL&
N^MCW{Ba?$z@&W!#6^{S_
diff --git a/main/favicon-32x32.png b/main/favicon-32x32.png
index 0e277d2fcc74c5ab3b1f0c734f05f4b6b16d3e51..3130bbc832878fc4e2f8c3fc6289b53006754071 100644
GIT binary patch
delta 70
zcmZ1=yg+zD6^96?HqYaHEv=1BnH-`<1|bHPRwl+)hDO>3237_J<-a#bP2!Znlwe!N
Kv23y-XFdS3G7`=J
delta 70
zcmZ1=yg+zD6^8&XvktHM?86(IGC4#I%|Z-~tqhENVMrGamq;LlTkz
diff --git a/main/index.html b/main/index.html
index 2278f8a..8e5b6f7 100644
--- a/main/index.html
+++ b/main/index.html
@@ -5,7 +5,8 @@
-
-Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R • savvyr
+Survival Analysis for AdVerse Events with VarYing Follow-Up Times • savvyr
@@ -26,8 +27,9 @@
-
-
+
Changelog
-
- Versions
-
diff --git a/main/pkgdown.yml b/main/pkgdown.yml
index 8eb3033..a16415d 100644
--- a/main/pkgdown.yml
+++ b/main/pkgdown.yml
@@ -3,7 +3,7 @@ pkgdown: 2.0.7
pkgdown_sha: ~
articles:
introduction: introduction.html
-last_built: 2024-02-16T13:03Z
+last_built: 2024-02-20T09:43Z
urls:
reference: https://openpharma.github.io/savvyr/reference
article: https://openpharma.github.io/savvyr/articles
diff --git a/main/reference/aalen_johansen.html b/main/reference/aalen_johansen.html
index 0e2fec9..e67cd9a 100644
--- a/main/reference/aalen_johansen.html
+++ b/main/reference/aalen_johansen.html
@@ -36,14 +36,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/assert_ae_data.html b/main/reference/assert_ae_data.html
index b52f2f1..430c680 100644
--- a/main/reference/assert_ae_data.html
+++ b/main/reference/assert_ae_data.html
@@ -30,14 +30,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/generate_data.html b/main/reference/generate_data.html
index 9a37673..f708288 100644
--- a/main/reference/generate_data.html
+++ b/main/reference/generate_data.html
@@ -40,14 +40,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/inc_prop.html b/main/reference/inc_prop.html
index 72c43e9..1ca1eba 100644
--- a/main/reference/inc_prop.html
+++ b/main/reference/inc_prop.html
@@ -30,14 +30,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/index.html b/main/reference/index.html
index d437152..eb60cdd 100644
--- a/main/reference/index.html
+++ b/main/reference/index.html
@@ -30,14 +30,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/one_minus_kaplan_meier.html b/main/reference/one_minus_kaplan_meier.html
index 163a6ca..dbd9da2 100644
--- a/main/reference/one_minus_kaplan_meier.html
+++ b/main/reference/one_minus_kaplan_meier.html
@@ -36,14 +36,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/prop_trans_inc_dens.html b/main/reference/prop_trans_inc_dens.html
index bdb2b65..6714ce8 100644
--- a/main/reference/prop_trans_inc_dens.html
+++ b/main/reference/prop_trans_inc_dens.html
@@ -30,14 +30,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/prop_trans_inc_dens_ce.html b/main/reference/prop_trans_inc_dens_ce.html
index 12cbbbf..a2686fc 100644
--- a/main/reference/prop_trans_inc_dens_ce.html
+++ b/main/reference/prop_trans_inc_dens_ce.html
@@ -36,14 +36,6 @@
Changelog
-
- Versions
-
diff --git a/main/reference/savvyr-package.html b/main/reference/savvyr-package.html
index d4c1559..2a70609 100644
--- a/main/reference/savvyr-package.html
+++ b/main/reference/savvyr-package.html
@@ -1,8 +1,8 @@
savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R — savvyr-package • savvyrsavvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times — savvyr-package • savvyr
- Versions
-
@@ -58,14 +50,14 @@
-
The SAVVY project is a consortium of academic and pharmaceutical industry partners that aims to improve the analyses of adverse event (AE) data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) doi:10.1186/s13063-021-05354-x
+
The SAVVY (Survival Analysis for AdVerse Events with VarYing Follow-Up Times) project is a consortium of academic and pharmaceutical industry partners that aims to improve the analyses of adverse event (AE) data in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) doi:10.1186/s13063-021-05354-x
. Although statistical methodologies have advanced, in AE analyses often the incidence proportion, the incidence density or a non-parametric Kaplan-Meier estimator are used, which either ignore censoring or competing events. This package contains functions to easily conduct the proposed improved AE analyses.
diff --git a/main/search.json b/main/search.json
index 98883ee..4609943 100644
--- a/main/search.json
+++ b/main/search.json
@@ -1 +1 @@
-[{"path":"https://openpharma.github.io/savvyr/main/articles/introduction.html","id":"example-using-dummy-data","dir":"Articles","previous_headings":"","what":"Example using dummy data","title":"Introduction to `savvyr`","text":"generate dataset \\(S1\\) Stegherr, Beyersmann, et al. (2021) using parameter values Arm . First define sample size range censoring times. set hazard three event types (adverse event, death/hard competing event soft competing event). dataset generated, set \\(\\tau\\) maximum event time. structure dataset looks follows: dataset compute estimators used comparisons Stegherr, Schmoor, Beyersmann, et al. (2021) Stegherr, Schmoor, Lübbert, et al. (2021). start estimators account competing events (incidence proportion, incidence density, Inverse Kaplan Meier), incidence proportion accounting competing events Aalen-Johansen (first death hard competing event, using competing events): AE risks look follows: Finally, estimated probabilities competing events based Aalen-Johansen estimators:","code":"n <- 200 min_cens <- 0 max_cens <- 1000 set.seed(2020) dat1 <- generate_data( n, cens = c(min_cens, max_cens), haz_ae = 0.00265, haz_death = 0.00151, haz_soft = 0.00227 ) tau <- max(dat1[, \"time_to_event\"]) kable(head(dat1, 10), align = c(\"crcr\")) ip <- inc_prop(dat1, tau) id <- prop_trans_inc_dens(dat1, tau) km <- one_minus_kaplan_meier(dat1, tau) idce_2 <- prop_trans_inc_dens_ce(dat1, ce = 2, tau) aj_2 <- aalen_johansen(dat1, ce = 2, tau) idce_3 <- prop_trans_inc_dens_ce(dat1, ce = 3, tau) aj_3 <- aalen_johansen(dat1, ce = 3, tau) tab <- rbind(ip, id, km, idce_2, aj_2[1:2], idce_3, aj_3[1:2]) colnames(tab) <- c( \"estimated AE probability\", \"variance of estimation\" ) rownames(tab) <- c( \"incidence proportion\", \"probability transform incidence density ignoring competing event\", \"1 - Kaplan-Meier\", \"probability transform incidence density (death only)\", \"Aalen-Johansen (death only), AE risk\", \"probability transform incidence density (all CEs)\", \"Aalen-Johansen (all CEs), AE risk\" ) kable(tab, digits = c(3, 5)) tab <- rbind(aj_2[3:4], aj_3[3:4]) colnames(tab) <- c( \"estimated probability\", \"variance of estimation\" ) rownames(tab) <- c( \"Aalen-Johansen (death only), CE risk\", \"Aalen-Johansen (all CEs), CE risk\" ) kable(tab, digits = c(3, 5))"},{"path":[]},{"path":"https://openpharma.github.io/savvyr/main/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Thomas Kuenzel. Author, maintainer. Kaspar Rufibach. Author. Regina Stegherr. Author. Daniel Sabanés Bové. Author. F. Hoffmann-La Roche AG. Copyright holder, funder. Universität Ulm. Copyright holder, funder.","code":""},{"path":"https://openpharma.github.io/savvyr/main/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Kuenzel T, Rufibach K, Stegherr R, Sabanés Bové D (2024). savvyr: Survival Analysis AdVerse Events VarYing Follow-Times R. R package version 0.1.0, https://openpharma.github.io/savvyr/main/.","code":"@Manual{, title = {savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R}, author = {Thomas Kuenzel and Kaspar Rufibach and Regina Stegherr and Daniel {Sabanés Bové}}, year = {2024}, note = {R package version 0.1.0}, url = {https://openpharma.github.io/savvyr/main/}, }"},{"path":"https://openpharma.github.io/savvyr/main/index.html","id":"savvyr-","dir":"","previous_headings":"","what":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R","text":"SAVVY project consortium academic pharmaceutical industry partners aims improve analyses adverse event (AE) data clinical trials use survival techniques appropriately dealing varying follow-times competing events. Although statistical methodologies advanced, AE analyses often incidence proportion, incidence density non-parametric Kaplan-Meier estimator used, either ignore censoring competing events. savvyr package contains functions easily conduct proposed improved AE analyses.","code":""},{"path":[]},{"path":"https://openpharma.github.io/savvyr/main/index.html","id":"release","dir":"","previous_headings":"Installation","what":"Release","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R","text":"can install current release version CRAN :","code":"install.packages(\"savvyr\")"},{"path":"https://openpharma.github.io/savvyr/main/index.html","id":"development","dir":"","previous_headings":"Installation","what":"Development","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R","text":"can install development version savvyr GitHub :","code":"if (!require(\"remotes\")) { install.packages(\"remotes\") } remotes::install_github(\"openpharma/savvyr\")"},{"path":"https://openpharma.github.io/savvyr/main/index.html","id":"getting-started","dir":"","previous_headings":"","what":"Getting Started","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R","text":"See introductory vignette get started.","code":""},{"path":"https://openpharma.github.io/savvyr/main/index.html","id":"citing-savvyr","dir":"","previous_headings":"","what":"Citing savvyr","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R","text":"cite savvyr please see .","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/aalen_johansen.html","id":null,"dir":"Reference","previous_headings":"","what":"Aalen Johansen Estimator — aalen_johansen","title":"Aalen Johansen Estimator — aalen_johansen","text":"function calculates Aalen Johansen estimator adverse events observed [0, tau]. Please also refer Stegherr et al. (2021) .","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/aalen_johansen.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Aalen Johansen Estimator — aalen_johansen","text":"","code":"aalen_johansen(data, ce, tau)"},{"path":"https://openpharma.github.io/savvyr/main/reference/aalen_johansen.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Aalen Johansen Estimator — aalen_johansen","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. ce (number) code competing event. tau (number) milestone Aalen-Johansen computed.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/aalen_johansen.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Aalen Johansen Estimator — aalen_johansen","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate. ce_prob: Estimated probability competing events. ce_prob_var: Variance competing events.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/aalen_johansen.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Aalen Johansen Estimator — aalen_johansen","text":"Stegherr R, Schmoor C, Lübbert M, Friede T, Beyersmann J (2021). “Estimating comparing adverse event probabilities presence varying follow-times competing events.” Pharmaceutical Statistics, 20(6), 1125--1146. doi:10.1002/pst.2130 , https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.2130.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/aalen_johansen.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Aalen Johansen Estimator — aalen_johansen","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) aalen_johansen(dat, ce = 2, tau = 4) #> ae_prob ae_prob_var ce_prob ce_prob_var #> 0.200 0.032 0.800 0.032"},{"path":"https://openpharma.github.io/savvyr/main/reference/assert_ae_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Assertion of Adverse Event Data — assert_ae_data","title":"Assertion of Adverse Event Data — assert_ae_data","text":"Custom assertion check adverse event data sets.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/assert_ae_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assertion of Adverse Event Data — assert_ae_data","text":"","code":"assert_ae_data(data)"},{"path":"https://openpharma.github.io/savvyr/main/reference/assert_ae_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assertion of Adverse Event Data — assert_ae_data","text":"data data.frame checked time_to_event type_of_event columns.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/assert_ae_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assertion of Adverse Event Data — assert_ae_data","text":"None.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/generate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Example Data — generate_data","title":"Generate Example Data — generate_data","text":"generates dataset denoted S1 Table 4 Stegherr et al. (2021) , .e. assume constant hazards adverse event (AE) hazard, hazard competing event death, hazard \"soft\" competing events. Censoring uniform given range.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/generate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Example Data — generate_data","text":"","code":"generate_data(n, cens, haz_ae, haz_death, haz_soft)"},{"path":"https://openpharma.github.io/savvyr/main/reference/generate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Example Data — generate_data","text":"n (count) number patients. cens (numeric) minimum maximum censoring time. haz_ae (number) constant hazard AE. haz_death (number) constant hazard death. haz_soft (number) constant hazard soft competing event.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/generate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Example Data — generate_data","text":"(data.frame) data.frame following columns: id: Patient ID. time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. cens: Censoring time.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/generate_data.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Generate Example Data — generate_data","text":"Stegherr R, Schmoor C, Lübbert M, Friede T, Beyersmann J (2021). “Estimating comparing adverse event probabilities presence varying follow-times competing events.” Pharmaceutical Statistics, 20(6), 1125--1146. doi:10.1002/pst.2130 , https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.2130.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/generate_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate Example Data — generate_data","text":"","code":"set.seed(123) generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) #> id time_to_event type_of_event cens #> 1 1 0.084345726 2 4.032712 #> 2 2 0.057661027 2 3.717900 #> 3 3 0.132905487 2 2.308774 #> 4 4 0.003157736 2 4.699475 #> 5 5 0.005621098 1 2.738263"},{"path":"https://openpharma.github.io/savvyr/main/reference/inc_prop.html","id":null,"dir":"Reference","previous_headings":"","what":"Computing the Incidence Proportion — inc_prop","title":"Computing the Incidence Proportion — inc_prop","text":"Computing Incidence Proportion","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/inc_prop.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Computing the Incidence Proportion — inc_prop","text":"","code":"inc_prop(data, tau)"},{"path":"https://openpharma.github.io/savvyr/main/reference/inc_prop.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Computing the Incidence Proportion — inc_prop","text":"data (data.frame) columns including: time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. tau (numeric) milestone incidence proportion computed.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/inc_prop.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Computing the Incidence Proportion — inc_prop","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/inc_prop.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Computing the Incidence Proportion — inc_prop","text":"","code":"set.seed(123) dat <- generate_data( n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5 ) inc_prop(dat, tau = 4) #> ae_prob ae_prob_var #> 0.200 0.032"},{"path":"https://openpharma.github.io/savvyr/main/reference/one_minus_kaplan_meier.html","id":null,"dir":"Reference","previous_headings":"","what":"One Minus Kaplan-Meier — one_minus_kaplan_meier","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"function calculates one minus Kaplan-Meier estimator adverse events (censoring competing events) observed [0, tau]. Please also refer formula (4) Stegherr et al. (2021) .","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/one_minus_kaplan_meier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"","code":"one_minus_kaplan_meier(data, tau)"},{"path":"https://openpharma.github.io/savvyr/main/reference/one_minus_kaplan_meier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. tau (number) milestone One Minus Kaplan-Meier computed.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/one_minus_kaplan_meier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/one_minus_kaplan_meier.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"Stegherr R, Beyersmann J, Jehl V, Rufibach K, Leverkus F, Schmoor C, Friede T (2021). “Survival analysis AdVerse events VarYing follow-times (SAVVY): Rationale statistical concept meta-analytic study.” Biometrical Journal, 63(3), 650-670. doi:10.1002/bimj.201900347 , https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.201900347, https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201900347.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/one_minus_kaplan_meier.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) one_minus_kaplan_meier(dat, tau = 4) #> ae_prob ae_prob_var #> 0.250000 0.046875"},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens.html","id":null,"dir":"Reference","previous_headings":"","what":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"Computing Probability Transform Incidence Density","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"","code":"prop_trans_inc_dens(data, tau)"},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. tau (number) milestone Probability Transform Incidence Density computed.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) prop_trans_inc_dens(dat, tau = 4) #> ae_prob ae_prob_var #> 9.999992e-01 1.125795e-10"},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens_ce.html","id":null,"dir":"Reference","previous_headings":"","what":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"function calculates incidence density adverse events specified competing events observed [0, tau] combines transforms incidence densities probability scale. Please also refer formulas (4) (5) Stegherr et al. (2021) .","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens_ce.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"","code":"prop_trans_inc_dens_ce(data, ce, tau)"},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens_ce.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. ce (number) code competing event. tau (number) milestone Probability Transform Incidence Density computed.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens_ce.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens_ce.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"Stegherr R, Schmoor C, Beyersmann J, Rufibach K, Jehl V, Brückner , Eisele L, Künzel T, Kupas K, Langer F, Leverkus F, Loos , Norenberg C, Voss F, Friede T (2021). “Survival analysis AdVerse events VarYing follow-times (SAVVY)—estimation adverse event risks.” Trials, 22(1), 420. ISSN 1745-6215, doi:10.1186/s13063-021-05354-x .","code":""},{"path":"https://openpharma.github.io/savvyr/main/reference/prop_trans_inc_dens_ce.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) prop_trans_inc_dens_ce(dat, ce = 2, tau = 4) #> ae_prob ae_prob_var #> 0.200 0.032"},{"path":"https://openpharma.github.io/savvyr/main/reference/savvyr-package.html","id":null,"dir":"Reference","previous_headings":"","what":"savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R — savvyr-package","title":"savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R — savvyr-package","text":"SAVVY project consortium academic pharmaceutical industry partners aims improve analyses adverse event (AE) data clinical trials use survival techniques appropriately dealing varying follow-times competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) doi:10.1186/s13063-021-05354-x . Although statistical methodologies advanced, AE analyses often incidence proportion, incidence density non-parametric Kaplan-Meier estimator used, either ignore censoring competing events. package contains functions easily conduct proposed improved AE analyses.","code":""},{"path":[]},{"path":"https://openpharma.github.io/savvyr/main/reference/savvyr-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times in R — savvyr-package","text":"Maintainer: Thomas Kuenzel thomas.kuenzel@roche.com Authors: Kaspar Rufibach kaspar.rufibach@roche.com Regina Stegherr regina.stegherr@uni-ulm.de Daniel Sabanés Bové daniel.sabanes_bove@roche.com contributors: F. Hoffmann-La Roche AG [copyright holder, funder] Universität Ulm [copyright holder, funder]","code":""},{"path":"https://openpharma.github.io/savvyr/main/news/index.html","id":"savvyr-010","dir":"Changelog","previous_headings":"","what":"savvyr 0.1.0","title":"savvyr 0.1.0","text":"First CRAN version package. package provides functions easily conduct improved AE analyses proposed SAVVY framework.","code":""},{"path":"https://openpharma.github.io/savvyr/main/news/index.html","id":"new-features-0-1-0","dir":"Changelog","previous_headings":"","what":"New Features","title":"savvyr 0.1.0","text":"Estimators account competing events (incidence proportion, incidence density, Inverse Kaplan Meier). Estimators accounting competing events (incidence proportion accounting competing events Aalen-Johansen, first death hard competing event, using competing events).","code":""}]
+[{"path":"https://openpharma.github.io/savvyr/articles/introduction.html","id":"example-using-dummy-data","dir":"Articles","previous_headings":"","what":"Example using dummy data","title":"Introduction to `savvyr`","text":"generate dataset \\(S1\\) Stegherr, Beyersmann, et al. (2021) using parameter values Arm . First define sample size range censoring times. set hazard three event types (adverse event, death/hard competing event soft competing event). dataset generated, set \\(\\tau\\) maximum event time. structure dataset looks follows: dataset compute estimators used comparisons Stegherr, Schmoor, Beyersmann, et al. (2021) Stegherr, Schmoor, Lübbert, et al. (2021). start estimators account competing events (incidence proportion, incidence density, Inverse Kaplan Meier), incidence proportion accounting competing events Aalen-Johansen (first death hard competing event, using competing events): AE risks look follows: Finally, estimated probabilities competing events based Aalen-Johansen estimators:","code":"n <- 200 min_cens <- 0 max_cens <- 1000 set.seed(2020) dat1 <- generate_data( n, cens = c(min_cens, max_cens), haz_ae = 0.00265, haz_death = 0.00151, haz_soft = 0.00227 ) tau <- max(dat1[, \"time_to_event\"]) kable(head(dat1, 10), align = c(\"crcr\")) ip <- inc_prop(dat1, tau) id <- prop_trans_inc_dens(dat1, tau) km <- one_minus_kaplan_meier(dat1, tau) idce_2 <- prop_trans_inc_dens_ce(dat1, ce = 2, tau) aj_2 <- aalen_johansen(dat1, ce = 2, tau) idce_3 <- prop_trans_inc_dens_ce(dat1, ce = 3, tau) aj_3 <- aalen_johansen(dat1, ce = 3, tau) tab <- rbind(ip, id, km, idce_2, aj_2[1:2], idce_3, aj_3[1:2]) colnames(tab) <- c( \"estimated AE probability\", \"variance of estimation\" ) rownames(tab) <- c( \"incidence proportion\", \"probability transform incidence density ignoring competing event\", \"1 - Kaplan-Meier\", \"probability transform incidence density (death only)\", \"Aalen-Johansen (death only), AE risk\", \"probability transform incidence density (all CEs)\", \"Aalen-Johansen (all CEs), AE risk\" ) kable(tab, digits = c(3, 5)) tab <- rbind(aj_2[3:4], aj_3[3:4]) colnames(tab) <- c( \"estimated probability\", \"variance of estimation\" ) rownames(tab) <- c( \"Aalen-Johansen (death only), CE risk\", \"Aalen-Johansen (all CEs), CE risk\" ) kable(tab, digits = c(3, 5))"},{"path":[]},{"path":"https://openpharma.github.io/savvyr/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Thomas Kuenzel. Author, maintainer. Kaspar Rufibach. Author. Regina Stegherr. Author. Daniel Sabanés Bové. Author. F. Hoffmann-La Roche AG. Copyright holder, funder. Universität Ulm. Copyright holder, funder.","code":""},{"path":"https://openpharma.github.io/savvyr/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Kuenzel T, Rufibach K, Stegherr R, Sabanés Bové D (2024). savvyr: Survival Analysis AdVerse Events VarYing Follow-Times. R package version 0.1.0, https://openpharma.github.io/savvyr/.","code":"@Manual{, title = {savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times}, author = {Thomas Kuenzel and Kaspar Rufibach and Regina Stegherr and Daniel {Sabanés Bové}}, year = {2024}, note = {R package version 0.1.0}, url = {https://openpharma.github.io/savvyr/}, }"},{"path":"https://openpharma.github.io/savvyr/index.html","id":"savvyr-","dir":"","previous_headings":"","what":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times","text":"SAVVY project consortium academic pharmaceutical industry partners aims improve analyses adverse event (AE) data clinical trials use survival techniques appropriately dealing varying follow-times competing events. Although statistical methodologies advanced, AE analyses often incidence proportion, incidence density non-parametric Kaplan-Meier estimator used, either ignore censoring competing events. savvyr package contains functions easily conduct proposed improved AE analyses.","code":""},{"path":[]},{"path":"https://openpharma.github.io/savvyr/index.html","id":"release","dir":"","previous_headings":"Installation","what":"Release","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times","text":"can install current release version CRAN :","code":"install.packages(\"savvyr\")"},{"path":"https://openpharma.github.io/savvyr/index.html","id":"development","dir":"","previous_headings":"Installation","what":"Development","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times","text":"can install development version savvyr GitHub :","code":"if (!require(\"remotes\")) { install.packages(\"remotes\") } remotes::install_github(\"openpharma/savvyr\")"},{"path":"https://openpharma.github.io/savvyr/index.html","id":"getting-started","dir":"","previous_headings":"","what":"Getting Started","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times","text":"See introductory vignette get started.","code":""},{"path":"https://openpharma.github.io/savvyr/index.html","id":"citing-savvyr","dir":"","previous_headings":"","what":"Citing savvyr","title":"Survival Analysis for AdVerse Events with VarYing Follow-Up Times","text":"cite savvyr please see .","code":""},{"path":"https://openpharma.github.io/savvyr/reference/aalen_johansen.html","id":null,"dir":"Reference","previous_headings":"","what":"Aalen Johansen Estimator — aalen_johansen","title":"Aalen Johansen Estimator — aalen_johansen","text":"function calculates Aalen Johansen estimator adverse events observed [0, tau]. Please also refer Stegherr et al. (2021) .","code":""},{"path":"https://openpharma.github.io/savvyr/reference/aalen_johansen.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Aalen Johansen Estimator — aalen_johansen","text":"","code":"aalen_johansen(data, ce, tau)"},{"path":"https://openpharma.github.io/savvyr/reference/aalen_johansen.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Aalen Johansen Estimator — aalen_johansen","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. ce (number) code competing event. tau (number) milestone Aalen-Johansen computed.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/aalen_johansen.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Aalen Johansen Estimator — aalen_johansen","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate. ce_prob: Estimated probability competing events. ce_prob_var: Variance competing events.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/aalen_johansen.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Aalen Johansen Estimator — aalen_johansen","text":"Stegherr R, Schmoor C, Lübbert M, Friede T, Beyersmann J (2021). “Estimating comparing adverse event probabilities presence varying follow-times competing events.” Pharmaceutical Statistics, 20(6), 1125--1146. doi:10.1002/pst.2130 , https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.2130.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/aalen_johansen.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Aalen Johansen Estimator — aalen_johansen","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) aalen_johansen(dat, ce = 2, tau = 4) #> ae_prob ae_prob_var ce_prob ce_prob_var #> 0.200 0.032 0.800 0.032"},{"path":"https://openpharma.github.io/savvyr/reference/assert_ae_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Assertion of Adverse Event Data — assert_ae_data","title":"Assertion of Adverse Event Data — assert_ae_data","text":"Custom assertion check adverse event data sets.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/assert_ae_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assertion of Adverse Event Data — assert_ae_data","text":"","code":"assert_ae_data(data)"},{"path":"https://openpharma.github.io/savvyr/reference/assert_ae_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assertion of Adverse Event Data — assert_ae_data","text":"data data.frame checked time_to_event type_of_event columns.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/assert_ae_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assertion of Adverse Event Data — assert_ae_data","text":"None.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/generate_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate Example Data — generate_data","title":"Generate Example Data — generate_data","text":"generates dataset denoted S1 Table 4 Stegherr et al. (2021) , .e. assume constant hazards adverse event (AE) hazard, hazard competing event death, hazard \"soft\" competing events. Censoring uniform given range.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/generate_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate Example Data — generate_data","text":"","code":"generate_data(n, cens, haz_ae, haz_death, haz_soft)"},{"path":"https://openpharma.github.io/savvyr/reference/generate_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate Example Data — generate_data","text":"n (count) number patients. cens (numeric) minimum maximum censoring time. haz_ae (number) constant hazard AE. haz_death (number) constant hazard death. haz_soft (number) constant hazard soft competing event.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/generate_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate Example Data — generate_data","text":"(data.frame) data.frame following columns: id: Patient ID. time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. cens: Censoring time.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/generate_data.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Generate Example Data — generate_data","text":"Stegherr R, Schmoor C, Lübbert M, Friede T, Beyersmann J (2021). “Estimating comparing adverse event probabilities presence varying follow-times competing events.” Pharmaceutical Statistics, 20(6), 1125--1146. doi:10.1002/pst.2130 , https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.2130.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/generate_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate Example Data — generate_data","text":"","code":"set.seed(123) generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) #> id time_to_event type_of_event cens #> 1 1 0.084345726 2 4.032712 #> 2 2 0.057661027 2 3.717900 #> 3 3 0.132905487 2 2.308774 #> 4 4 0.003157736 2 4.699475 #> 5 5 0.005621098 1 2.738263"},{"path":"https://openpharma.github.io/savvyr/reference/inc_prop.html","id":null,"dir":"Reference","previous_headings":"","what":"Computing the Incidence Proportion — inc_prop","title":"Computing the Incidence Proportion — inc_prop","text":"Computing Incidence Proportion","code":""},{"path":"https://openpharma.github.io/savvyr/reference/inc_prop.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Computing the Incidence Proportion — inc_prop","text":"","code":"inc_prop(data, tau)"},{"path":"https://openpharma.github.io/savvyr/reference/inc_prop.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Computing the Incidence Proportion — inc_prop","text":"data (data.frame) columns including: time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. tau (numeric) milestone incidence proportion computed.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/inc_prop.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Computing the Incidence Proportion — inc_prop","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/inc_prop.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Computing the Incidence Proportion — inc_prop","text":"","code":"set.seed(123) dat <- generate_data( n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5 ) inc_prop(dat, tau = 4) #> ae_prob ae_prob_var #> 0.200 0.032"},{"path":"https://openpharma.github.io/savvyr/reference/one_minus_kaplan_meier.html","id":null,"dir":"Reference","previous_headings":"","what":"One Minus Kaplan-Meier — one_minus_kaplan_meier","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"function calculates one minus Kaplan-Meier estimator adverse events (censoring competing events) observed [0, tau]. Please also refer formula (4) Stegherr et al. (2021) .","code":""},{"path":"https://openpharma.github.io/savvyr/reference/one_minus_kaplan_meier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"","code":"one_minus_kaplan_meier(data, tau)"},{"path":"https://openpharma.github.io/savvyr/reference/one_minus_kaplan_meier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. tau (number) milestone One Minus Kaplan-Meier computed.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/one_minus_kaplan_meier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/one_minus_kaplan_meier.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"Stegherr R, Beyersmann J, Jehl V, Rufibach K, Leverkus F, Schmoor C, Friede T (2021). “Survival analysis AdVerse events VarYing follow-times (SAVVY): Rationale statistical concept meta-analytic study.” Biometrical Journal, 63(3), 650-670. doi:10.1002/bimj.201900347 , https://onlinelibrary.wiley.com/doi/pdf/10.1002/bimj.201900347, https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.201900347.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/one_minus_kaplan_meier.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"One Minus Kaplan-Meier — one_minus_kaplan_meier","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) one_minus_kaplan_meier(dat, tau = 4) #> ae_prob ae_prob_var #> 0.250000 0.046875"},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens.html","id":null,"dir":"Reference","previous_headings":"","what":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"Computing Probability Transform Incidence Density","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"","code":"prop_trans_inc_dens(data, tau)"},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. tau (number) milestone Probability Transform Incidence Density computed.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Computing the Probability Transform Incidence Density — prop_trans_inc_dens","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) prop_trans_inc_dens(dat, tau = 4) #> ae_prob ae_prob_var #> 9.999992e-01 1.125795e-10"},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens_ce.html","id":null,"dir":"Reference","previous_headings":"","what":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"function calculates incidence density adverse events specified competing events observed [0, tau] combines transforms incidence densities probability scale. Please also refer formulas (4) (5) Stegherr et al. (2021) .","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens_ce.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"","code":"prop_trans_inc_dens_ce(data, ce, tau)"},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens_ce.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"data (data.frame) columns including time_to_event: Time first AE, death soft competing event. type_of_event: 0 censored, 1 AE, 2 death, 3 soft competing event. ce (number) code competing event. tau (number) milestone Probability Transform Incidence Density computed.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens_ce.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"(vector) following entries: ae_prob: Estimated probability AE. ae_prob_var: Variance estimate.","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens_ce.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"Stegherr R, Schmoor C, Beyersmann J, Rufibach K, Jehl V, Brückner , Eisele L, Künzel T, Kupas K, Langer F, Leverkus F, Loos , Norenberg C, Voss F, Friede T (2021). “Survival analysis AdVerse events VarYing follow-times (SAVVY)—estimation adverse event risks.” Trials, 22(1), 420. ISSN 1745-6215, doi:10.1186/s13063-021-05354-x .","code":""},{"path":"https://openpharma.github.io/savvyr/reference/prop_trans_inc_dens_ce.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Probability Transform Incidence Density Accounting for Competing Events — prop_trans_inc_dens_ce","text":"","code":"set.seed(123) dat <- generate_data(n = 5, cens = c(2, 5), haz_ae = 2, haz_death = 3, haz_soft = 5) prop_trans_inc_dens_ce(dat, ce = 2, tau = 4) #> ae_prob ae_prob_var #> 0.200 0.032"},{"path":"https://openpharma.github.io/savvyr/reference/savvyr-package.html","id":null,"dir":"Reference","previous_headings":"","what":"savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times — savvyr-package","title":"savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times — savvyr-package","text":"SAVVY (Survival Analysis AdVerse Events VarYing Follow-Times) project consortium academic pharmaceutical industry partners aims improve analyses adverse event (AE) data clinical trials use survival techniques appropriately dealing varying follow-times competing events, see Stegherr, Schmoor, Beyersmann, et al. (2021) doi:10.1186/s13063-021-05354-x . Although statistical methodologies advanced, AE analyses often incidence proportion, incidence density non-parametric Kaplan-Meier estimator used, either ignore censoring competing events. package contains functions easily conduct proposed improved AE analyses.","code":""},{"path":[]},{"path":"https://openpharma.github.io/savvyr/reference/savvyr-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"savvyr: Survival Analysis for AdVerse Events with VarYing Follow-Up Times — savvyr-package","text":"Maintainer: Thomas Kuenzel thomas.kuenzel@roche.com Authors: Kaspar Rufibach kaspar.rufibach@roche.com Regina Stegherr regina.stegherr@uni-ulm.de Daniel Sabanés Bové daniel.sabanes_bove@roche.com contributors: F. Hoffmann-La Roche AG [copyright holder, funder] Universität Ulm [copyright holder, funder]","code":""},{"path":"https://openpharma.github.io/savvyr/news/index.html","id":"savvyr-010","dir":"Changelog","previous_headings":"","what":"savvyr 0.1.0","title":"savvyr 0.1.0","text":"First CRAN version package. package provides functions easily conduct improved AE analyses proposed SAVVY framework.","code":""},{"path":"https://openpharma.github.io/savvyr/news/index.html","id":"new-features-0-1-0","dir":"Changelog","previous_headings":"","what":"New Features","title":"savvyr 0.1.0","text":"Estimators account competing events (incidence proportion, incidence density, Inverse Kaplan Meier). Estimators accounting competing events (incidence proportion accounting competing events Aalen-Johansen, first death hard competing event, using competing events).","code":""}]