diff --git a/lib/functions/function_plot_measures.R b/lib/functions/function_plot_measures.R index 2c87cbf..d45fd75 100644 --- a/lib/functions/function_plot_measures.R +++ b/lib/functions/function_plot_measures.R @@ -76,7 +76,7 @@ plot_measures <- function( scale_colour_manual(values = c( "navy", "red", "#3cb44b", "#ff00ff", "#f58231", - "#dcdc00", "#911eb4", "#469990", "#8000009d", "grey50" + "#dcdc00", "#911eb4", "#469990", "#8000009d", "grey" ), na.value = "grey50") # Automatically change y scale depending selected value diff --git a/reports/pharmacy_first_report.Rmd b/reports/pharmacy_first_report.Rmd index 89d7c0a..f35c54d 100644 --- a/reports/pharmacy_first_report.Rmd +++ b/reports/pharmacy_first_report.Rmd @@ -36,7 +36,7 @@ if (Sys.getenv("OPENSAFELY_BACKEND") != "") { pf_measures_name_dict <- list( consultation_service = "Consultation Service", pharmacy_first_service = "Pharmacy First Service", - # combined_service = "Pharmacy First Services", + combined_pf_service = "Pharmacy First Services", acute_otitis_media = "Acute Otitis Media", herpes_zoster = "Herpes Zoster", acute_sinusitis = "Acute Sinusitis", @@ -49,7 +49,7 @@ pf_measures_name_dict <- list( pf_measures_name_mapping <- list( consultation_service = "clinical_service", pharmacy_first_service = "clinical_service", - # combined_pf_service = "pharmacy_first_services", + combined_pf_service = "pharmacy_first_services", acute_otitis_media = "clinical_condition", herpes_zoster = "clinical_condition", acute_sinusitis = "clinical_condition", @@ -148,8 +148,8 @@ plot_measures( select_interval_date = interval_end, colour_var = NULL, guide_nrow = 1, - facet_wrap = FALSE, - facet_var = NULL, + facet_wrap = TRUE, + facet_var = measure, title = "Number of consultations for each clinical service per month", y_label = "Number of codes for consultations", ) @@ -160,7 +160,7 @@ plot_measures( ```{r, message=FALSE, warning=FALSE, fig.height=8, fig.width=8} # Select measures and breakdown df_measures_selected <- df_measures %>% - filter(measure_desc == "clinical_service") %>% + filter(measure_desc == "pharmacy_first_services") %>% filter(group_by == "Age band") # Create visualisation @@ -174,7 +174,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical service by age band per month", y_label = "Number of codes for consultations", -) + scale_color_manual(values = c("#FFCCCC", "#fa7070", "#fc0e0e", "#9c0000", "#4c0000", "grey")) +) + scale_color_manual(values = c("#001F4D", "#0056B3", "#007BFF", "#66B3E2", "#A4D8E1", "grey")) ``` @@ -183,7 +183,7 @@ plot_measures( ```{r, message=FALSE, warning=FALSE, fig.height=8, fig.width=8} # Select measures and breakdown df_measures_selected <- df_measures %>% - filter(measure_desc == "clinical_service") %>% + filter(measure_desc == "pharmacy_first_services") %>% filter(group_by == "Sex") # Create visualisation @@ -197,7 +197,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical service by sex per month", y_label = "Number of codes for consultations", -) +) + scale_color_manual(values = c("red", "blue")) ``` ### Breakdown by IMD @@ -205,7 +205,7 @@ plot_measures( ```{r, message=FALSE, warning=FALSE, fig.height=8, fig.width=8} # Select measures and breakdown df_measures_selected <- df_measures %>% - filter(measure_desc == "clinical_service") %>% + filter(measure_desc == "pharmacy_first_services") %>% filter(group_by == "IMD") # Create visualisation @@ -227,7 +227,7 @@ plot_measures( ```{r, message=FALSE, warning=FALSE, fig.height=8, fig.width=8} # Select measures and breakdown df_measures_selected <- df_measures %>% - filter(measure_desc == "clinical_service") %>% + filter(measure_desc == "pharmacy_first_services") %>% filter(group_by == "Region") # Create visualisation @@ -241,7 +241,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical service by region per month", y_label = "Number of codes for consultations", -) +) + scale_color_manual(values = c("red", "navy", "#018701", "#ffa600ca", "purple", "brown", "#f4a5b2", "cyan", "green", "grey")) ``` ### Clinical Services by ethnicity @@ -249,7 +249,7 @@ plot_measures( ```{r, message=FALSE, warning=FALSE} # Select measures and breakdown df_measures_selected <- df_measures %>% - filter(measure_desc == "clinical_service") %>% + filter(measure_desc == "pharmacy_first_services") %>% filter(group_by == "Ethnicity") # Create visualisation @@ -263,7 +263,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical service by ethnicity per month", y_label = "Number of codes for consultations", -) +) + scale_color_manual(values = c("#42db0188", "#0056B3", "#ff0000c2", "#a52a2a5a", "purple", "grey")) ``` ## Clinical Condition @@ -285,8 +285,8 @@ plot_measures( select_value = numerator, select_interval_date = interval_end, guide_nrow = 1, - facet_wrap = FALSE, - facet_var = NULL, + facet_wrap = TRUE, + facet_var = measure, title = "Number of consultations for each clinical condition per month", y_label = "Number of codes for consultations", ) @@ -311,8 +311,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical condition by age band per month", y_label = "Number of codes for consultations", -) + scale_color_manual(values = c("#FFCCCC", "#fa7070", "#fc0e0e", "#9c0000", "#4c0000", "grey")) - +) + scale_color_manual(values = c("#001F4D", "#0056B3", "#007BFF", "#66B3E2", "#A4D8E1", "grey")) ``` ### Breakdown by sex @@ -334,7 +333,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical condition by sex per month", y_label = "Number of codes for consultations", -) +) + scale_color_manual(values = c("red", "blue")) ``` ### Breakdown by IMD @@ -378,7 +377,7 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical condition by region per month", y_label = "Number of codes for consultations", -) +) + scale_color_manual(values = c("red", "navy", "#018701", "#ffa600ca", "purple", "brown", "#f4a5b2", "cyan", "green", "grey")) ``` ### Clinical Conditions by ethnicity @@ -400,5 +399,5 @@ plot_measures( facet_var = measure, title = "Number of consultations for each clinical condition by ethnicity per month", y_label = "Number of codes for consultations", -) +) + scale_color_manual(values = c("#42db0188", "#0056B3", "#ff0000c2", "#a52a2a5a", "purple", "grey")) ```