forked from jmckaskill/c-capnproto
-
Notifications
You must be signed in to change notification settings - Fork 41
/
capnp_c.h
451 lines (407 loc) · 13.8 KB
/
capnp_c.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/* vim: set sw=8 ts=8 sts=8 noet: */
/* capnp_c.h
*
* Copyright (C) 2013 James McKaskill
* Copyright (C) 2014 Steve Dee
*
* This software may be modified and distributed under the terms
* of the MIT license. See the LICENSE file for details.
*/
#ifndef CAPNP_C_H
#define CAPNP_C_H
#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#if defined(unix) && !defined(__APPLE__) && !defined(__FreeBSD__)
#include <endian.h>
#elif defined(__FreeBSD__)
#include <sys/endian.h>
#endif
/* ssize_t is a POSIX type, not an ISO C one...
* Windows seems to only have SSIZE_T in BaseTsd.h
*/
#ifdef _MSC_VER
typedef intmax_t ssize_t;
#else
#include <stddef.h>
#endif
// Cross-platform macro ALIGNED_(x) aligns a struct by `x` bytes.
#ifdef _MSC_VER
#define ALIGNED_(x) __declspec(align(x))
#endif
#ifdef __GNUC__
#define ALIGNED_(x) __attribute__ ((aligned(x)))
#endif
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__cplusplus) || (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L)
#define CAPN_INLINE static inline
#else
#define CAPN_INLINE static
#endif
#define CAPN_VERSION 1
/* struct capn is a common structure shared between segments in the same
* session/context so that far pointers between segments will be created.
*
* lookup is used to lookup segments by id when derefencing a far pointer
*
* create is used to create or lookup an alternate segment that has at least
* sz available (ie returned seg->len + sz <= seg->cap)
*
* create_local is used to create a segment for the copy tree and should be
* allocated in the local memory space.
*
* Allocated segments must be zero initialized.
*
* create and lookup can be NULL if you don't need multiple segments and don't
* want to support copying
*
* seglist and copylist are linked lists which can be used to free up segments
* on cleanup, but should not be modified by the user.
*
* lookup, create, create_local, and user can be set by the user. Other values
* should be zero initialized.
*/
struct capn {
/* user settable */
struct capn_segment *(*lookup)(void* /*user*/, uint32_t /*id */);
struct capn_segment *(*create)(void* /*user*/, uint32_t /*id */, int /*sz*/);
struct capn_segment *(*create_local)(void* /*user*/, int /*sz*/);
void *user;
/* zero initialized, user should not modify */
uint32_t segnum;
struct capn_tree *copy;
struct capn_tree *segtree;
struct capn_segment *seglist, *lastseg;
struct capn_segment *copylist;
};
/* struct capn_tree is a rb tree header used internally for the segment id
* lookup and copy tree */
struct capn_tree {
struct capn_tree *parent, *link[2];
unsigned int red : 1;
};
struct capn_tree *capn_tree_insert(struct capn_tree *root, struct capn_tree *n);
/* struct capn_segment contains the information about a single segment.
*
* capn points to a struct capn that is shared between segments in the
* same session
*
* id specifies the segment id, used for far pointers
*
* data specifies the segment data. This should not move after creation.
*
* len specifies the current segment length. This is 0 for a blank
* segment.
*
* cap specifies the segment capacity.
*
* When creating new structures len will be incremented until it reaches cap,
* at which point a new segment will be requested via capn->create. The
* create callback can either create a new segment or expand an existing
* one by incrementing cap and returning the expanded segment.
*
* data, len, and cap must all be 8 byte aligned, hence the ALIGNED_(8) macro
* on the struct definition.
*
* data, len, cap, and user should all be set by the user. Other values
* should be zero initialized.
*/
struct ALIGNED_(8) capn_segment {
struct capn_tree hdr;
struct capn_segment *next;
struct capn *capn;
uint32_t id;
/* user settable */
char *data;
size_t len, cap;
void *user;
};
enum CAPN_TYPE {
CAPN_NULL = 0,
CAPN_STRUCT = 1,
CAPN_LIST = 2,
CAPN_PTR_LIST = 3,
CAPN_BIT_LIST = 4,
CAPN_FAR_POINTER = 5,
};
struct capn_ptr {
unsigned int type : 4;
unsigned int has_ptr_tag : 1;
unsigned int is_list_member : 1;
unsigned int is_composite_list : 1;
unsigned int datasz : 19;
unsigned int ptrs : 16;
int len;
char *data;
struct capn_segment *seg;
};
struct capn_text {
int len;
const char *str;
struct capn_segment *seg;
};
typedef struct capn_ptr capn_ptr;
typedef struct capn_text capn_text;
typedef struct {capn_ptr p;} capn_data;
typedef struct {capn_ptr p;} capn_list1;
typedef struct {capn_ptr p;} capn_list8;
typedef struct {capn_ptr p;} capn_list16;
typedef struct {capn_ptr p;} capn_list32;
typedef struct {capn_ptr p;} capn_list64;
struct capn_msg {
struct capn_segment *seg;
uint64_t iface;
uint16_t method;
capn_ptr args;
};
/* capn_append_segment appends a segment to a session */
void capn_append_segment(struct capn*, struct capn_segment*);
capn_ptr capn_root(struct capn *c);
void capn_resolve(capn_ptr *p);
#define capn_len(list) ((list).p.type == CAPN_FAR_POINTER ? (capn_resolve(&(list).p), (list).p.len) : (list).p.len)
/* capn_getp|setp functions get/set ptrs in list/structs
* off is the list index or pointer index in a struct
* capn_setp will copy the data, create far pointers, etc if the target
* is in a different segment/context.
* Both of these will use/return inner pointers for composite lists.
*/
capn_ptr capn_getp(capn_ptr p, int off, int resolve);
int capn_setp(capn_ptr p, int off, capn_ptr tgt);
capn_text capn_get_text(capn_ptr p, int off, capn_text def);
capn_data capn_get_data(capn_ptr p, int off);
int capn_set_text(capn_ptr p, int off, capn_text tgt);
/* there is no set_data -- use capn_new_list8 + capn_setv8 instead
* and set data.p = list.p */
/* capn_get* functions get data from a list
* The length of the list is given by p->size
* off specifies how far into the list to start
* sz indicates the number of elements to get
* The function returns the number of elements read or -1 on an error.
* off must be byte aligned for capn_getv1
*/
int capn_get1(capn_list1 p, int off);
uint8_t capn_get8(capn_list8 p, int off);
uint16_t capn_get16(capn_list16 p, int off);
uint32_t capn_get32(capn_list32 p, int off);
uint64_t capn_get64(capn_list64 p, int off);
int capn_getv1(capn_list1 p, int off, uint8_t *data, int sz);
int capn_getv8(capn_list8 p, int off, uint8_t *data, int sz);
int capn_getv16(capn_list16 p, int off, uint16_t *data, int sz);
int capn_getv32(capn_list32 p, int off, uint32_t *data, int sz);
int capn_getv64(capn_list64 p, int off, uint64_t *data, int sz);
/* capn_set* functions set data in a list
* off specifies how far into the list to start
* sz indicates the number of elements to write
* The function returns the number of elemnts written or -1 on an error.
* off must be byte aligned for capn_setv1
*/
int capn_set1(capn_list1 p, int off, int v);
int capn_set8(capn_list8 p, int off, uint8_t v);
int capn_set16(capn_list16 p, int off, uint16_t v);
int capn_set32(capn_list32 p, int off, uint32_t v);
int capn_set64(capn_list64 p, int off, uint64_t v);
int capn_setv1(capn_list1 p, int off, const uint8_t *data, int sz);
int capn_setv8(capn_list8 p, int off, const uint8_t *data, int sz);
int capn_setv16(capn_list16 p, int off, const uint16_t *data, int sz);
int capn_setv32(capn_list32 p, int off, const uint32_t *data, int sz);
int capn_setv64(capn_list64 p, int off, const uint64_t *data, int sz);
/* capn_new_* functions create a new object
* datasz is in bytes, ptrs is # of pointers, sz is # of elements in the list
* On an error a CAPN_NULL pointer is returned
*/
capn_ptr capn_new_string(struct capn_segment *seg, const char *str, ssize_t sz);
capn_ptr capn_new_struct(struct capn_segment *seg, int datasz, int ptrs);
capn_ptr capn_new_interface(struct capn_segment *seg, int datasz, int ptrs);
capn_ptr capn_new_ptr_list(struct capn_segment *seg, int sz);
capn_ptr capn_new_list(struct capn_segment *seg, int sz, int datasz, int ptrs);
capn_list1 capn_new_list1(struct capn_segment *seg, int sz);
capn_list8 capn_new_list8(struct capn_segment *seg, int sz);
capn_list16 capn_new_list16(struct capn_segment *seg, int sz);
capn_list32 capn_new_list32(struct capn_segment *seg, int sz);
capn_list64 capn_new_list64(struct capn_segment *seg, int sz);
/* capn_read|write* functions read/write struct values
* off is the offset into the structure in bytes
* Rarely should these be called directly, instead use the generated code.
* Data must be xored with the default value
* These are inlined
*/
CAPN_INLINE uint8_t capn_read8(capn_ptr p, int off);
CAPN_INLINE uint16_t capn_read16(capn_ptr p, int off);
CAPN_INLINE uint32_t capn_read32(capn_ptr p, int off);
CAPN_INLINE uint64_t capn_read64(capn_ptr p, int off);
CAPN_INLINE int capn_write1(capn_ptr p, int off, int val);
CAPN_INLINE int capn_write8(capn_ptr p, int off, uint8_t val);
CAPN_INLINE int capn_write16(capn_ptr p, int off, uint16_t val);
CAPN_INLINE int capn_write32(capn_ptr p, int off, uint32_t val);
CAPN_INLINE int capn_write64(capn_ptr p, int off, uint64_t val);
/* capn_init_malloc inits the capn struct with a create function which
* allocates segments on the heap using malloc
*
* capn_init_(fp|mem) inits by reading segments in from the file/memory buffer
* in serialized form (optionally packed). It will then setup the create
* function ala capn_init_malloc so that further segments can be created.
*
* capn_free frees all the segment headers and data created by the create
* function setup by capn_init_*
*/
void capn_init_malloc(struct capn *c);
int capn_init_fp(struct capn *c, FILE *f, int packed);
int capn_init_mem(struct capn *c, const uint8_t *p, size_t sz, int packed);
/* capn_size() calculates the amount of memory required to serialise the given
* Cap'n Proto structure in the unpacked format. It does NOT apply to packed
* serialisation, as that may (in rare cases) actually become bigger than the
* input. A buffer of this size can then be passed to capn_write_mem() without
* fear of truncation (again, only in the unpacked case).
*/
int64_t capn_size(struct capn *c);
/* capn_write_(fp|mem) writes segments to the file/memory buffer in
* serialized form and returns the number of bytes written.
*/
/* TODO */
/*int capn_write_fp(struct capn *c, FILE *f, int packed);*/
int capn_write_fd(struct capn *c, ssize_t (*write_fd)(int fd, const void *p, size_t count), int fd, int packed);
int64_t capn_write_mem(struct capn *c, uint8_t *p, size_t sz, int packed);
void capn_free(struct capn *c);
void capn_reset_copy(struct capn *c);
/* Inline functions */
CAPN_INLINE uint8_t capn_flip8(uint8_t v) {
return v;
}
CAPN_INLINE uint16_t capn_flip16(uint16_t v) {
#if defined(__BYTE_ORDER) && (__BYTE_ORDER == __LITTLE_ENDIAN)
return v;
#elif defined(__BYTE_ORDER) && (__BYTE_ORDER == __BIG_ENDIAN) && \
defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8
return __builtin_bswap16(v);
#else
union { uint16_t u; uint8_t v[2]; } s;
s.v[0] = (uint8_t)v;
s.v[1] = (uint8_t)(v>>8);
return s.u;
#endif
}
CAPN_INLINE uint32_t capn_flip32(uint32_t v) {
#if defined(__BYTE_ORDER) && (__BYTE_ORDER == __LITTLE_ENDIAN)
return v;
#elif defined(__BYTE_ORDER) && (__BYTE_ORDER == __BIG_ENDIAN) && \
defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8
return __builtin_bswap32(v);
#else
union { uint32_t u; uint8_t v[4]; } s;
s.v[0] = (uint8_t)v;
s.v[1] = (uint8_t)(v>>8);
s.v[2] = (uint8_t)(v>>16);
s.v[3] = (uint8_t)(v>>24);
return s.u;
#endif
}
CAPN_INLINE uint64_t capn_flip64(uint64_t v) {
#if defined(__BYTE_ORDER) && (__BYTE_ORDER == __LITTLE_ENDIAN)
return v;
#elif defined(__BYTE_ORDER) && (__BYTE_ORDER == __BIG_ENDIAN) && \
defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8
return __builtin_bswap64(v);
#else
union { uint64_t u; uint8_t v[8]; } s;
s.v[0] = (uint8_t)v;
s.v[1] = (uint8_t)(v>>8);
s.v[2] = (uint8_t)(v>>16);
s.v[3] = (uint8_t)(v>>24);
s.v[4] = (uint8_t)(v>>32);
s.v[5] = (uint8_t)(v>>40);
s.v[6] = (uint8_t)(v>>48);
s.v[7] = (uint8_t)(v>>56);
return s.u;
#endif
}
CAPN_INLINE int capn_write1(capn_ptr p, int off, int val) {
if (off >= p.datasz*8) {
return -1;
} else if (val) {
uint8_t tmp = (uint8_t)(1 << (off & 7));
((uint8_t*) p.data)[off >> 3] |= tmp;
return 0;
} else {
uint8_t tmp = (uint8_t)(~(1 << (off & 7)));
((uint8_t*) p.data)[off >> 3] &= tmp;
return 0;
}
}
CAPN_INLINE uint8_t capn_read8(capn_ptr p, int off) {
return off+1 <= p.datasz ? capn_flip8(*(uint8_t*) (p.data+off)) : 0;
}
CAPN_INLINE int capn_write8(capn_ptr p, int off, uint8_t val) {
if (off+1 <= p.datasz) {
*(uint8_t*) (p.data+off) = capn_flip8(val);
return 0;
} else {
return -1;
}
}
CAPN_INLINE uint16_t capn_read16(capn_ptr p, int off) {
return off+2 <= p.datasz ? capn_flip16(*(uint16_t*) (p.data+off)) : 0;
}
CAPN_INLINE int capn_write16(capn_ptr p, int off, uint16_t val) {
if (off+2 <= p.datasz) {
*(uint16_t*) (p.data+off) = capn_flip16(val);
return 0;
} else {
return -1;
}
}
CAPN_INLINE uint32_t capn_read32(capn_ptr p, int off) {
return off+4 <= p.datasz ? capn_flip32(*(uint32_t*) (p.data+off)) : 0;
}
CAPN_INLINE int capn_write32(capn_ptr p, int off, uint32_t val) {
if (off+4 <= p.datasz) {
*(uint32_t*) (p.data+off) = capn_flip32(val);
return 0;
} else {
return -1;
}
}
CAPN_INLINE uint64_t capn_read64(capn_ptr p, int off) {
return off+8 <= p.datasz ? capn_flip64(*(uint64_t*) (p.data+off)) : 0;
}
CAPN_INLINE int capn_write64(capn_ptr p, int off, uint64_t val) {
if (off+8 <= p.datasz) {
*(uint64_t*) (p.data+off) = capn_flip64(val);
return 0;
} else {
return -1;
}
}
union capn_conv_f32 {
uint32_t u;
float f;
};
union capn_conv_f64 {
uint64_t u;
double f;
};
CAPN_INLINE float capn_to_f32(uint32_t v) {
union capn_conv_f32 u;
u.u = v;
return u.f;
}
CAPN_INLINE double capn_to_f64(uint64_t v) {
union capn_conv_f64 u;
u.u = v;
return u.f;
}
CAPN_INLINE uint32_t capn_from_f32(float v) {
union capn_conv_f32 u;
u.f = v;
return u.u;
}
CAPN_INLINE uint64_t capn_from_f64(double v) {
union capn_conv_f64 u;
u.f = v;
return u.u;
}
#ifdef __cplusplus
}
#endif
#endif