-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetadash.py
259 lines (203 loc) · 9.87 KB
/
metadash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import time
import pandas as pd
import streamlit as st
from meta_utils import run_subprocess, load_metagraphs
# from opendashboards.assets import io, inspect, metric, plot
import meta_plotting as plotting
import asyncio
from functools import lru_cache
## TODO: Read blocks from a big parquet file instead of loading all the pickles -- this is slow
def get_or_create_eventloop():
try:
return asyncio.get_event_loop()
except RuntimeError as ex:
if "There is no current event loop in thread" in str(ex):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return asyncio.get_event_loop()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
import bittensor
netuid = 1
datadir=f'data/metagraph/{netuid}/'
blockfiles = sorted(int(filename.split('.')[0]) for filename in os.listdir(datadir) if filename.split('.')[0].isdigit())
DEFAULT_SRC = 'miner'
DEFAULT_BLOCK_START = blockfiles[0]
DEFAULT_BLOCK_END = blockfiles[-1]
DEFAULT_BLOCK_STEP = 1000
DEFAULT_NTOP = 10
DEFAULT_UID_NTOP = 10
# Set app config
st.set_page_config(
page_title='Validator Dashboard',
menu_items={
'Report a bug': "https://github.com/opentensor/dashboards/issues",
'About': """
This dashboard is part of the OpenTensor project. \n
"""
},
layout = "centered"
)
st.title('Metagraph :red[Analysis] Dashboard :eyes:')
# add vertical space
st.markdown('#')
st.markdown('#')
subtensor = bittensor.subtensor(network='finney')
current_block = subtensor.get_current_block()
@st.cache_data
def _metagraph(block, subnet):
print(f'rerunning cache with block {block}')
return (
subtensor.metagraph(subnet, block=block),
subtensor.metagraph(subnet, block=block - 7200),
subtensor.burn(netuid=subnet, block=block),
subtensor.burn(netuid=subnet, block=block - 7200),
)
current_metagraph, yesterday_metagraph, current_burn, yesterday_burn = _metagraph(10*(current_block//10), netuid)
current_validators = current_metagraph.validator_permit[current_metagraph.validator_trust > 0.0]
yesterday_validators = yesterday_metagraph.validator_permit[yesterday_metagraph.validator_trust > 0.0]
current_vcount = current_validators.sum().item()
current_mcount = (current_metagraph.trust > 0.0).sum().item()
yesterday_vcount = yesterday_validators.sum().item()
yesterday_mcount = (yesterday_metagraph.trust > 0.0).sum().item()
st.markdown('#')
mcol1, mcol2, mcol3, mcol4 = st.columns(4)
mcol1.metric('Block', current_block, delta='+7200 [24hr]')
mcol2.metric('Register Cost', f'{current_burn.unit}{current_burn.tao:.3f}', delta=f'{current_burn.tao-yesterday_burn.tao:.3f}')
mcol3.metric('Validators', current_vcount, delta=current_vcount-yesterday_vcount)
mcol4.metric('Miners', current_mcount, delta=current_mcount-yesterday_mcount)
st.markdown('#')
with st.sidebar:
st.title('Options')
st.markdown('#')
netuid = st.selectbox('Netuid', [1,11], index=0)
st.markdown('#')
c1, c2 = st.columns([0.7,0.3])
staleness = current_block - blockfiles[-1]
msg = c1.warning(f'Out of date ({staleness})') if staleness >= 100 else c1.info('Up to date')
if c2.button('Update', type='primary'):
msg.info('Downloading')
return_code = run_subprocess()
if return_code == 0:
msg.success('Up to date')
time.sleep(1)
msg.empty()
else:
msg.error('Error')
st.markdown('#')
block_start, block_end = st.select_slider(
'Select a **block range**',
options=blockfiles,
value=(DEFAULT_BLOCK_START, DEFAULT_BLOCK_END),
format_func=lambda x: f'{x:,}'
)
st.markdown('#')
st.markdown('#')
# horizontal line
st.markdown('<hr>', unsafe_allow_html=True)
r1c1, r1c2 = st.columns(2)
x = r1c1.selectbox('**Time axis**', ['block','timestamp'], index=0)
color = r1c2.selectbox('**Color**', ['coldkey','hotkey','ip'], index=0)
r2c1, r2c2 = st.columns(2)
ntop = r2c1.slider('**Sample top**', min_value=1, max_value=50, value=10, key='sel_ntop')
opacity = r2c2.slider('**Opacity**', min_value=0., max_value=1., value=0.5, key='opacity')
r3c1, r3c2 = st.columns(2)
smooth = r3c1.slider('Smoothing', min_value=1, max_value=100, value=1, key='sel_churn_smooth')
smooth_agg = r3c2.radio('Smooth Aggregation', ['mean','std','max','min','sum'], horizontal=True, index=0)
with st.spinner(text=f'Loading data...'):
# df = load_metagraphs(block_start=block_start, block_end=block_end, block_step=DEFAULT_BLOCK_STEP)
df = pd.read_parquet(os.path.join(datadir,'df.parquet'))
blocks = df.block.unique()
df_sel = df.loc[df.block.between(block_start, block_end)].sort_values(by='block')
miners = df_sel.loc[df_sel.validator_trust == 0]
validators = df_sel.loc[df_sel.validator_trust > 0]
# add vertical space
st.markdown('#')
st.markdown('#')
tab1, tab2, tab3, tab4 = st.tabs(["Overview", "Miners", "Validators", "Block"])
validator_choices = ['total_stake','incentive','emission','consensus','validator_trust','dividends']
miner_choices = ['total_stake','incentive','emission','consensus','trust']
cabal_choices = ['hotkey','ip','coldkey']
cabal_choices.remove(color)
### Overview ###
with tab1:
st.markdown('#')
st.markdown('#')
st.subheader('Hotkey Churn')
st.info('**Churn** *measures the change in network participants over time*')
churn_choice = st.radio('Hotkey event', ['changed','added','removed'], horizontal=True, index=0)
st.plotly_chart(
plotting.plot_churn(df_sel, time_col=x, type=churn_choice, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
st.markdown('#')
st.markdown('#')
st.subheader('Network Occupancy')
st.info('**Occupancy** *measures the number of network participants at a given time*')
st.plotly_chart(
plotting.plot_occupancy(df_sel, time_col=x, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
animation_aggs = ['mean','sum','std','max','min']
mac_choices = [f'{col}_{agg}' for col in miner_choices for agg in animation_aggs]+['hotkey_nunique','ip_nunique']
vac_choices = [f'{col}_{agg}' for col in validator_choices for agg in animation_aggs]+['hotkey_nunique','ip_nunique']
with tab2:
st.markdown('#')
st.markdown('#')
st.subheader('Miner Activity')
st.info('**Activity** *shows the change in stake and emission over time for **miners**, grouped by coldkey*')
mac1, mac2, mac3, mac4 = st.columns(4)
mac_x = mac1.selectbox('**x**', mac_choices, index=mac_choices.index('emission_mean'))
mac_y = mac2.selectbox('**y**', mac_choices, index=mac_choices.index('trust_mean'))
mac_size = mac3.selectbox('**marker size**', mac_choices, index=mac_choices.index('hotkey_nunique'))
mac_color = mac4.selectbox('**marker color**', mac_choices, index=mac_choices.index('total_stake_sum'))
st.plotly_chart(
plotting.plot_animation(miners, x=mac_x, y=mac_y, color=mac_color, size=mac_size, opacity=opacity),
use_container_width=True
)
miner_choice = st.radio('Select:', miner_choices, horizontal=True, index=0)
with st.expander(f'Show **{miner_choice}** trends for top **{ntop}** miners'):
st.plotly_chart(
plotting.plot_trace(miners, time_col=x, col=miner_choice, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
count_col = st.radio('Count', cabal_choices, index=0, horizontal=True, key='sel_miner_count')
with st.expander(f'Show **{count_col}** trends for top **{ntop}** miners'):
st.plotly_chart(
plotting.plot_cabals(miners, time_col=x, count_col=count_col, sel_col=color, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
with tab3:
st.markdown('#')
st.markdown('#')
st.subheader('Validator Activity')
st.info('**Activity** *shows the change in stake and emission over time for **validators**, grouped by coldkey*')
vac1, vac2, vac3, vac4 = st.columns(4)
vac_x = vac1.selectbox('**x**', vac_choices, index=vac_choices.index('incentive_mean'))
vac_y = vac2.selectbox('**y**', vac_choices, index=vac_choices.index('validator_trust_mean'))
vac_size = vac3.selectbox('**marker size**', vac_choices, index=vac_choices.index('hotkey_nunique'))
vac_color = vac4.selectbox('**marker color**', vac_choices, index=vac_choices.index('total_stake_sum'))
st.plotly_chart(
plotting.plot_animation(validators, x=vac_x, y=vac_y, color=vac_color, size=vac_size, opacity=opacity),
use_container_width=True
)
validator_choice = st.radio('Select:', validator_choices, horizontal=True, index=0)
with st.expander(f'Show **{validator_choice}** trends for top **{ntop}** validators'):
st.plotly_chart(
plotting.plot_trace(validators, time_col=x,col=validator_choice, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
count_col = st.radio('Count', cabal_choices, index=0, horizontal=True, key='sel_validator_count')
with st.expander(f'Show **{count_col}** trends for top **{ntop}** validators'):
st.plotly_chart(
plotting.plot_cabals(validators, time_col=x, count_col=count_col, sel_col=color, ntop=ntop, smooth=smooth, smooth_agg=smooth_agg, opacity=opacity),
use_container_width=True
)
with tab4:
st.markdown('#')
st.markdown('#')
st.subheader('Block Introspection')
st.info('**Block introspection** *shows the complete metagraph of a block*')
selected_block = st.selectbox('**Block**', reversed(df_sel.block.unique()), index=0)
st.dataframe(df_sel.loc[df_sel['block']==selected_block])